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We demonstrate that spectrally diverse multiple magnetic dipole resonances can be excited in all-dielectric

structures lacking rotational symmetry, in contrast to conventionally used spheres, disks, or spheroids. Such

multiple magnetic resonances arise from hybrid Mie-Fabry-Perot modes, and can constructively interfere with

induced electric dipole moments, thereby leading to novel multifrequency unidirectional scattering. Here we focus

on elongated dielectric nanobars, whose magnetic resonances can be spectrally tuned by their aspect ratios. Based

on our theoretical results, we suggest all-dielectric multimode metasurfaces and verify them in proof-of-principle

microwave experiments. We also believe that the demonstrated property of multimode directionality is largely

responsible for the best efficiency of all-dielectric metasurfaces that were recently shown to operate across

multiple telecom bands.
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I. INTRODUCTION

Modern nanophotonics aims to efficiently manipulate light

at the nanoscale, with applications ranging from near-field

microscopy and integrated optoelectronics to biomedical

science [1]. Recent decades have witnessed a growing research

interest in the study of plasmonic nanoparticles made of gold

or silver, recognized for their outstanding ability to squeeze

light into subwavelength volumes via surface-plasmon reso-

nances. The resonant optical plasmonic modes supported by

metallic structures endow them with an ability to manipulate

light at subwavelength scales. These optical resonances are

highly dependent on the choice of the structure’s material

and geometry, allowing for further manipulations. Various

types of photonic devices based on plasmonic nanoparticles

have thus been demonstrated [1–5]. However, their overall

functionalities and performance are severely affected by

high intrinsic losses in metals. When larger amounts of

metals are involved in complex plasmonic structures such

as metamaterials or metadevices [6–8], the loss problem is

exacerbated and hinders their scalability for practical use.

Whereas new materials with improved plasmonic properties

have been proposed, there has also been a growing realization

that the optical resonances of high-index resonant dielectric

structures can facilitate light manipulation below the free-

space diffraction limit with very low losses [9–26]. In contrast

to plasmonic nanoparticles that are dominated by electric

resonances, high-refractive-index dielectric nanoparticles have

proven to support both electric and magnetic Mie-type dipole

and multipole resonances, opening up new possibilities for

designer photonic metadevices [9–18]. For example, by using

an isolated magnetic dipole Mie resonance, a magnetic mirror

can be realized [26]. While if we use a magnetic dipole that
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is spectrally overlapped with an electric dipole, these two

dipole modes can satisfy the first Kerker condition [27] and

constructively interfere with each other, leading to directional

scattering and the realization of transparent Huygens’ metasur-

faces [9,10]. Therefore, how to fully exploit these intriguing

optically induced electric and magnetic resonances becomes

extremely crucial for realizing and functionalizing dielectric

metasurfaces.
However, in all studied dielectric resonant structures

presented so far, the geometry of dielectric nanoparti-
cles is considered to be close to either spheres [11–13],
spheroids/disks [14–16], cubes [17,18], or long rod [19,20]
[see Figs. 1(a) and 1(c)], so the exact Mie solutions of the
two- (2D) and three-dimensional (3D) scattering problems
can be applied to analyze the scattering by such isotropic
or symmetric nanostructures. These symmetric structures, as
verified by Mie theory and associated multipole expansion,
can support a series of different resonances, with first-
order Mie resonance usually a single magnetic dipole mode,
the second-order a single electric dipole, and subsequent
higher-order electric and magnetic multipoles. By contrast,
if we consider dielectric nanoparticles with broken rotational
symmetry such as finite-size nanobars [see Fig. 1(b)], as we
will show in the following, such asymmetric meta-atoms will
not only introduce new physics into the classical Mie scattering
problem but can also bring novel functionality to all-dielectric
structures and metasurfaces.

In this paper, we focus on silicon nanobars with a large as-

pect ratio and demonstrate that such elongated nanostructures

can support hybrid Mie-Fabry-Perot modes associated with

multiple magnetic dipole resonances. These intriguing modes

arise from the combination of conventional magnetic dipole

modes excited in the transverse direction (Mie resonances)

and the standing waves excited in the longitudinal direction

(Fabry-Perot cavity modes). Moreover, just like single mag-

netic dipoles, such multiple magnetic dipole modes can also

constructively interfere with induced electric dipoles, thereby
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FIG. 1. Classes of all-dielectric meta-atoms: (a) Sphere and nan-

odisk with high refractive index described by the three-dimensional

Mie scattering theory. Characteristic dimensions (d and L) are much

smaller than the free-space wavelength λ. (b) Finite-size nanorod

(L ∼ λ) with a high aspect ratio supporting the hybrid Mie-Fabry-

Perot as described in this work. (c) Long nanorod (L ≫ λ) described

by the two-dimensional Mie scattering theory.

leading to multifrequency directional scattering, characterized

by multiple Kerker conditions. Based on our theoretical

results, we further demonstrate novel all-dielectric Huygens’

metasurfaces with spectrally diverse directionality verified

in proof-of-principle microwave experiments. Due to the

existence of multiple magnetic dipoles, such metasurfaces can

work efficiently in both reflection and transmission modes

and also achieve all four quadrants of electromagnetic re-

sponses: ǫ > 0, μ > 0; ǫ < 0, μ > 0; ǫ > 0, μ < 0; ǫ < 0,

μ > 0, where ǫ and μ are electric permittivity and magnetic

permeability, respectively. It is also worth noting that whereas

there are some recent efforts on metasurfaces using dielectric

building blocks with broken rotational symmetry [28–30],

most designs do not directly rely on the resonances of

single elements [10,28,29] and only fundamental electric and

magnetic dipole modes have been studied [30]. Finally, we

also argue that the operation of the recently demonstrated

broadband all-dielectric metasurfaces [31] is largely due to

the multiple magnetic multipole modes of the constituent

elements in the form of tall dielectric rods, allowing the

achievement of destructive interference in reflection over a

large spectra bandwidth. Our findings are expected to provide

a methodology to design broadband and multifunctional all-

dielectric metadevices.

II. SCATTERING AND MULTIPOLE DECOMPOSITION

The schematic of a designed silicon nanobar is shown in

Fig. 2(a). The geometric parameters are all different in three

dimensions with W = 110 nm, Lz = 220 nm, and Ly = 400

nm. For comparison, we also introduce a symmetric silicon

nanobar with Ly = Lz = L = W = 400 nm, as depicted in

Fig. 2(b). Here we use 3D finite-difference time-domain

(FDTD) simulations [32] and the Cartesian multipole analysis

(see Appendix A) to calculate the response of the structures

and identify the contributions from each multipole moment.

The optical constants of silicon are taken from Palik’s

handbook [33] while the surrounding media is assumed to

be air. The structures are illuminated by a normally incident

plane wave with electric field along y direction.

Figures 2(c) and 2(d) represent the calculated scattering

efficiency spectra and decomposed multipole contributions.

FIG. 2. (a), (b) Schematic diagrams of (a) an elongated (W =
110 nm, Ly = 400 nm, and Lz = 220 nm) and (b) a symmetric

(W = L = 400 nm) silicon nanobar. (c), (d) Simulated scattering

spectra (solid black line) and calculated multipole decompositions

(total contributions: dotted red line, ED: dotted blue line, MD: dotted

green line, EQ: dotted magenta line) of (c) the elongated and (d)

symmetric nanobar, respectively.

The scattering efficiency Qeff is defined as Qeff = Qsca/Qgeo,

where Qsca and Qgeo are scattering and geometrical cross

sections of the particle, respectively. Here in our case, Qgeo =
W × Ly . For multipole expansion, we only consider the first

four terms, namely, electric dipole (ED), magnetic dipole

(MD), electric quadrupole (EQ), and magnetic quadrupole

(MQ) modes. The scattering spectra obtained from the FDTD

simulations (solid black line) and the multipole expansion

(dotted red line) are in a good agreement with each other,

indicating that higher-order multipoles are negligible in our

case. At first glance, both scattering spectra of the nanobars

have similar optical responses with two pronounced maxima

[cf. dotted black curves in Figs. 2(c) and 2(d)]. However,

through the multipole expansion, we reveal that the underlying

contributions of each multipole moment to these peaks are

completely different. For the symmetric nanobar, the peaks are

attributed to the separated MD and ED resonant modes, as

has been reported in many previous studies on all-dielectric

spheres, disks, or cubes. By contrast, the first peak in

the scattering spectrum of the elongated nanobar shows a

resonance overlap of MD and ED, while the second peak arises

from the second maximum in the magnetic dipole contribution,

implying the existence of a second-mode magnetic dipole

(MD2), which has never been discussed or demonstrated

before. We would also like to note that this MD2 mode is

essentially different from conventional MQ mode, which will

be shown in the following section.

III. MULTIFREQUENCY DIRECTIONAL SCATTERING

To further illustrate the properties of the isotropic nanobar

and especially the MD2 mode, in Fig. 3 we plot the near-

and far-field distributions at two peak wavelengths (λ =
992 nm and λ = 721 nm). For λ = 992 nm, the induced

ED (parallel to the incident polarization, py1) and MD (mx1)

dominate the near-field profiles with very close amplitudes
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FIG. 3. (a), (c) Near-field distributions in the middle cut plane (z = 0) and 3D far-field scattering patterns of the nanobar at (a) λ = 992 nm

and (c) λ = 721 nm, respectively. The colors represent normalized amplitudes of the electric and magnetic fields, and arrows show the field

vectors. (b), (d) Simulated far-field scattering patterns (dotted black line) and calculated multipole radiation patterns (solid red line) at (b)

λ = 992 nm and (d) λ = 721 nm, respectively. The patterns are normalized to the maximum scattering intensity in the far field.

(|py1| = 1.03 × |mx1|/c, where c is the speed of light in

vacuum) and a moderate phase difference (�φ ∼ 23◦), making

them approximately satisfy the first Kerker condition [27]

and thus resulting in unidirectional forward scattering along

z direction, as shown in Figs. 3(a) and 3(b). The simulated

scattering patterns (dotted black lines) are also in an excel-

lent accordance with the calculated radiation patterns from

decomposed multipoles (solid red lines).

Figure 3(c) shows contrasting field distributions at λ =
721 nm. We observe that standing-wave patterns appear in

both electric and magnetic fields, providing valuable insights

into the nature of the MD2 mode. The electric field is the super-

position of a standing wave Ez and an induced ED mode (py2)

in y direction, whereas the magnetic field is the consequence

of a standing wave Hx along with an induced MD mode in

x direction as well, leading to the appearance of the hybrid

Mie-Fabry-Perot mode MD2 (see Appendix B for theoretical

standing-wave decompositions). In spite of the standing-wave

pattern or fluctuations in the magnetic field distribution, the

MD2 mode still has a net magnetic dipole moment (mx2) in

−x direction, just like the fundamental MD mode that we now

call MD1 mode. Interestingly, this magnetic dipole moment

can also nearly satisfy the first Kerker condition with the

electric dipole (|py2| = 0.98 × |mx2|/c,�φ ∼ 13◦), thereby

offering the novel behavior of multimode (multifrequency)

unidirectional scattering (see Appendix C for theoretical ex-

planations). This unique property is clearly shown in Fig. 3(d).

We can find good agreement between the simulated and

calculated angular patterns. Meanwhile, we should remember

the existence of the EQ mode. Although it brings about small

undesired backscattering, it also substantially narrows the

scattering pattern and boosts the directivity. A front-to-back

power ratio higher than 9 thus could be obtained in this case.

Besides the two well-defined maxima in the scattering

spectrum, there is also a noticeable dip around λ = 767 nm

[see in Fig. 2(c)], accompanied by a minimum near zero in the

MD contribution, indicating that the contribution of the MD

mode to the far field almost vanishes. This dip can be attributed

to the cancellation of the induced magnetic dipoles which

have opposite directions in the antinodes of the standing-wave

pattern, mimicking a magnetic “dark mode.” Specifically, the

amplitude of the net magnetic dipole moment at λ = 767 nm is

only ∼1/5 of that of the electric dipole moment, corresponding

to ∼1/25 in the far-field contributions.

Since the MD2 mode arises from a magnetic standing-wave

pattern, one can intuitively expect a strong dependence of

geometric parameters on the mode characteristics and further

contributions to the scattering properties. In Figs. 4(a) and 4(c),

we use two-dimensional color maps to show the impact of the

geometric parameters W and Ly on the scattering spectra. With

increasing length Ly and width W , we can see evident redshifts

and the newly emerged higher-order Mie resonances. These

redshifts and new Mie resonances, along with the Fabry-Perot

resonances, can further lead to other multimode ED and MD

besides the MD2 mode. For instance, the scattering spectra for

nanobars with Ly = 1000 nm and W = 300 nm, marked by

the dashed black lines in the 2D color maps, show a fasci-

nating property of triple-wavelength unidirectional scattering

supported by an individual nanobar [Figs. 4(b) and 4(d)]. This

is exactly due to the interferences of the multimode MD and

FIG. 4. Scattering efficiency spectra as a function of geometric

parameters (a) Ly with fixed W = 110 nm and Lz = 220 nm, and (b)

W with fixed Lz = 220 nm and Ly = 400 nm. (c), (d) Scattering

spectrum for a nanobar with dimensions marked by the dashed

lines in (a) and (b) correspondingly. The insets show the far-field

unidirectional scattering patterns at different resonance wavelengths.
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FIG. 5. (a), (b) Reflection and transmission spectra of the metasurface composed of the silicon nanobars shown in Fig. 2(a). The periodicities

in x and y directions are 160 and 500 nm, respectively. Insets diagram the configuration and corresponding near-field magnetic distributions

in the xy plane at R1, T1, and T2 peak wavelengths. (c) Calculated impedance of the metasurface. The solid black line is the real value Z′ of

the impedance Z, which corresponds predominantly to radiation resistance. The green dotted line is the impedance phase. The blue dashed

line indicates the impedance-matching condition Z′ = Z0. (d) Effective permittivity (blue) and permeability (red) of the metasurface obtained

using S-parameter retrieval. ǫ ′ and μ′ denote the real parts of ǫ and μ.

ED as well as other multipole moments excited inside the

nanobars with increasing geometric parameters, accompanied

by increasing-order Fabry-Perot modes. In particular, it can

be seen that, the increase in Ly results in higher-mode MD

while the increase in W brings about higher-mode ED (see

Appendix D).

IV. MULTIMODE METASURFACES

Since the presented individual nanobars have proven to
support multifrequency directional scattering, we expect that
a metasurface composed of such nanobars can also have
a multimode response. In Fig. 5 we plot reflection and
transmission full spectra (intensity and phase) of such a
metasurface. The inset diagrams the metasurface with Px =
160 nm and Py = 500 nm (periodicities in x and y directions)
on a glass substrate (nglass = 1.5). One reflection peak R1

and two transmission peaks T1 and T2 can be seen in the
plots, indicating that our metasurface can function as either a
perfect mirror or a transparent film at different wavelengths. At
transmission peak T1, the fundamental electric and magnetic
dipole moments (ED1 and MD1) constructively interfere with
each other and lead to the high transmission. While at the high
reflection peak R1, a standing-wave pattern appears and the
magnetic dipole moment has an opposite direction to that at T1.
With the electric field kept in the same direction, this will lead
to a reversal in the direction of power flow, i.e., changing from
high transmission to high reflection. By contrast, at the second

transmission peak T2, the hybrid magnetic dipole moment
once again has the same direction as that in T1, thereby
resulting in a second high transmission peak. This phase-
flipping phenomenon of the magnetic dipoles and associated
multimode high transmission are directly due to the emergence
of MD2 modes. Moreover, these multiple resonant modes
also enable both reflected and transmitted light to experience
significant phase changes with maintained high efficiency. The
abrupt phase changes arising from the resonances can be easily
tuned by varying the sizes of the nanostructures, which can
be further used in the implementation of perfect reflectors,
magnetic mirrors, or gradient metasurfaces [9,10]. Compared
to previous studies where metasurfaces can only work in
reflection or transmission modes, our metasurface makes it
possible to control both reflected and transmitted light, which
can remarkably extend the functionality of metasurfaces.

Figure 5(c) shows the calculated impedance of the meta-

surface. The two transmission peaks T1 and T2 correspond

well to the impedance-matched points while reflection peak

R1 corresponds to a largely mismatched point where the wave

impedance becomes predominantly imaginary. A striking flip

of the impedance phase also occurs around 990 nm from +90◦

to −90◦, indicating the metasurface switching fast from a

magnetic conductor to an electric conductor [17].

To better understand the optical response of the meta-

surface, we also adopted a standard S-parameter retrieval

method [34] to compute the effective permittivity and perme-

ability, as shown in Fig. 5(d). Two notable magnetic resonances
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FIG. 6. (a) Dielectric bar scatter. Left: A sketch of the experimental setup to measure the radiation pattern of the single scatter with

the dimensions W = 0.5 cm, Ly = 1.8 cm, and Lz = 1.5 cm. Right: Experimentally measured (red dots) and CST numerically simulated

(solid curves) radiation patterns for the Kerker conditions. (b) Dielectric metasurface. Left: photograph of the fabricated multimode Huygens’

metasurface composed of silicon dielectric bars with the dimensions W = 0.5 cm, Ly = 1.8 cm, and Lz = 1.5 cm placed with the periods

Px = 0.9 cm and Py = 2.7 cm. Right: Experimentally measured (solid curves) and CST numerically simulated (dashed curves) reflection and

transmission spectra magnitudes of the multimode Huygens’ metasurface.

and one electric resonance could be observed. Combing the

corresponding near-field distributions, it is easy to verify

the existences of the ED, MD1, and MD2 mode induced in

the metasurface. The spectral positions of these modes are

different from those induced in the individual nanobar because

of the substrate effect and the mutual interaction. Two inter-

sections between the plots of permittivity and permeability

indicate the impedance-matched points and the fulfillment of

the Kerker condition. The first transmission T1 appears at the

tails of the fundamental ED and MD1 resonances, showing

an off-resonant directionality. In this region (λ > 1080 nm),

the permittivity and permeability of the metasurfaces are

both above zero, which means the overall response of the

metasurface is similar to conventional dielectric materials.

However, for shorter wavelengths, the electric and magnetic

resonances lead to distinct phenomena. The MD1 mode makes

the metasurface function as a magnetic mirror which has a

negative permeability (μ < 0) while the ED mode enables the

metasurface to function as an electric mirror with a negative

permittivity (ǫ < 0). More interestingly, these two contrasting

behaviors can be switched to each other very fast since the

ED and MD1 modes are spectrally very close to each other.

This is also in good accordance with the impedance phase

flip occurring at 980 nm. Another fascinating feature of the

metasurface is its negative refractive index (ǫ < 0, μ < 0)

attributed to the MD2 and the ED modes for λ < 950 nm. In

this region, the constructive interference of the MD2 and ED

modes happens in both of their resonance regimes, resulting

in an efficient Huygens source with negative permittivity

and permeability. Therefore, our metasurface can support all

four quadrants of possible optical responses, which can bring

various unexplored possibilities and functionalities.

To verify the proposed concept experimentally, the silicon

nanobars are scaled up to the microwave frequency range.

Here we employ full-scale numerical simulations [35] to

optimize bar scatterers and use Eccostock HiK ceramic powder

(permittivity ε = 10 and loss tangent tanθ = 0.0007) as the

high-index dielectric material to mimic silicon nanobars in the

microwave region.

First, we study experimentally the scattering from a single

bar scatter in an anechoic chamber. The experimental setup is

sketched in Fig. 6(a). To perform a plane-wave excitation and

to receive the scattered signal, we utilized a pair of identical

rectangular linearly polarized wideband horn antennas (oper-

ational range 1–18 GHz) that were connected to the ports of a

vector network analyzer (Agilent E8362C). The polarization

is along y direction. The transmitting antenna and the single

scatter have been fixed, whereas the receiving antenna was

moving around the scatter in the xz plane. The scattering

cross-section patterns measured in the xz plane at two distinct

frequencies f = 6.8 GHz and f = 9.2 GHz are plotted in

Fig. 6(a) and they are compared with the results of numerical
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simulations. We find the best agreement for slightly shifted fre-

quencies f = 6.4 GHz and f = 9.0 GHz, and the difference

between the measured Mie resonant frequencies and simulated

resonances can be explained by the tolerance of the antenna

prototype fabrication. These results clearly demonstrate the

multifrequency directional scattering supported by a single

dielectric bar scatter.

Next, we consider all-dielectric metasurfaces composed

of the elongated bars. A photograph of the experimental

metasurface prototype is shown in Fig. 6(b). The transmis-

sion and reflection spectra of the metasurface have been

investigated both numerically and experimentally. We ob-

serve that the metasurface exhibits an expected multimode

response with two pronounced maxima in the transmission

coefficient (at the frequencies around 6.5 and 9.5 GHz)

and one well-defined peak in the reflection coefficient (in

the frequency band 7.5–8 GHz), as predicted numerically

for the optical frequency range. The slight disagreement

between the measured and simulated results in the positions of

frequencies in the transmission/reflection maxima and minima

can be explained by the tolerance of the sample fabrication.

The mismatching in the magnitudes of transmission/reflection

coefficients is due to a deviation of permittivity in each

particular unit cell caused by different density of ceramic

powder.

V. CONCLUSION

We have presented all-dielectric metasurfaces with multi-

mode directionality. Such metasurfaces can support all four

possible quadrants of electromagnetic responses and can also

work efficiently with either high reflection or high transmis-

sion, which may find many applications and largely extends

the possibilities of planar optics. We have also demonstrated

that this unique multimode property originates from the hybrid

Mie-Fabry-Perot modes supported by high-index dielectric

structures with large aspect ratios. The revealed hybrid modes

and associated multiple magnetic dipole resonances also open

a way for engineering the properties of resonant nanostructures

and metamaterials.

We also believe that the phenomenon of multimode mag-

netic dipole moments is responsible for the best efficiency of

broadband all-dielectric metasurfaces based on the generalized

Huygens principle. Indeed, the superposition of the scattering

contributions from several electric and magnetic multipole

modes of the constituent meta-atoms allows one to achieve

destructive interference in reflection over a large spectral band-

width, demonstrating reflectionless half-wave plates, quarter-

wave plates, and vector beam q plates that can operate across

multiple telecom bands with ∼99% polarization conversion

efficiency [31].
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APPENDIX A: MULTIPOLE DECOMPOSITION

We employed the Cartesian multipole expansion tech-

nique [14,36] to analyze different multipole modes inside

the nanobars. The multipoles are calculated through the light-

induced polarization P = ǫ0(ǫr − 1)E, where ǫ0 and ǫr are the

vacuum permittivity and relative permittivity of the nanobar,

respectively. We can write P as

P(r) =
∫

P(r′)δ(r − r′)dr′, (A1)

and then expand the delta function in a Talyor series with

respect to r′ around the nanobar’s center (origin point r0).

Then we can get

P(r) ≃ pδ(r) +
i

ω
[∇ × mδ(r)] −

1

6
Q̂∇δ(r)

−
i

2ω
[∇ × M̂∇δ(r)], (A2)

where the multipole moments (electric dipole p, magnetic

dipole m, electric quadrupole tensor Q̂, and magnetic

quadrupole tensor M̂) are defined as

p =
∫

P(r′)dr′, (A3)

m = −
iω

2

∫

[r′ × P(r′)]dr′, (A4)

Q̂ = 3

∫

r′P(r′) + P(r′)r′ −
2

3
[r′ · P(r′)]Ûdr′, (A5)

M̂ =
ω

3i

∫

{[r′ × P(r′)]r′ + r′[r′ × P(r′)]}dr′, (A6)

where ω is the angular frequency and Û is the 3 × 3 unit tensor.

The scattered far-field electric field thus can be calculated by

Esca(r) ≃
k2

0

4πǫ0

eik0r

r

{

[n × [p × n]] +
1

c
[m × n]

+
ik0

6
[n×[n × Q̂n]] +

ik0

2c
[n × (M̂n)]

}

, (A7)

in which r = |r|, n is the unit vector directed along r, k0 is

the wave number, and c is the speed of light in a vacuum. The

total radiation power Psca of the multipoles is

Psca ≃
c2k4

0Z0

12π
|p|2 +

k4
0Z0

12π
|m|2 +

c2k6
0Z0

1440π

∑

|Qαβ |2

+
k6

0Z0

160π

∑

|Mαβ |2, (A8)

where Z0 is the vacuum wave impedance and α,β ≡ x,y,z

denote Cartesian components.
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APPENDIX B: FIELD DECOMPOSITION OF A

DIELECTRIC RESONATOR: THEORY VS SIMULATIONS

Herein we present a theoretical interpretation of the near-

field profiles of the hybrid Mie-Fabry-Perot modes. The optical

resonances of a dielectric rectangular particle can be described

in terms of induced standing waves inside a high impedance

cavity. Consider a homogeneous, isotropic dielectric rectangu-

lar resonator spanning x = −W/2 to x = W/2, y = −Ly/2

to y = Ly/2, and z = −Lz/2 to z = Lz/2. To decompose the

electric and magnetic fields into standing-wave cavity modes

we begin with the vector Helmholtz equation, which can be

obtained from the source-free Maxwell equations:

∇ × ∇ × {E,H } − ω2με{E,H } = 0. (B1)

Solution of the vector Helmholtz equation (B1) can be obtained

via the rectilinear generating function ψ ,

∇2ψ + k2ψ = 0, (B2)

where k2 = ω2με. By separation of variables, the rectilinear

generating function may be written as ψ = X(x)Y (y)Z(z).

Inserting this into the scalar Helmholtz equation (B2) and

dividing by X(x)Y (y)Z(z) yields

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
+

1

Z

∂2Z

∂z2
= −k2, (B3)

from which we deduce

1

X

∂2X

∂x2
+ k2

xX = 0,
1

Y

∂2Y

∂y2
+ k2

yY = 0,
1

Z

∂2Z

∂z2
+ k2

zZ = 0,

(B4)

with k2 = k2
x + k2

y + k2
z . The general solution of Eq. (B3) can

be written in the following form:

X = Xe cos(kxx) + Xo sin(kxx),

Y = Ye cos(kyy) + Yo sin(kyy), (B5)

Z = Ze cos(kzz) + Zo sin(kzz),

where the corresponding amplitudes are found from the

corresponding boundary conditions. For high refractive index

particles, due to their high impedance for the wave inside the

cavity, perfect magnetic conductors (PMCs) are typically used

as approximate boundary conditions [37–39]. PMC boundary

conditions are dual to the perfect electric conductor (PEC)

conditions used for metallic cavities. Using PMC boundary

conditions, i.e., B‖ = E⊥ = 0, we can deduce the following

electric and magnetic field profiles of the cavity modes:

⎛

⎜

⎝

Ex

Ey

Ez

⎞

⎟

⎠
=

⎛

⎜

⎝

A sin(kxx) cos(kyy) cos(kzz)

B cos(kxx) sin(kyy) cos(kzz)

C cos(kxx) cos(kyy) sin(kzz)

⎞

⎟

⎠
,

⎛

⎜

⎝

Bx

By

Bz

⎞

⎟

⎠
=

i

ω

⎛

⎜

⎝

(Cky − Bkz) cos(kxx) sin(kyy) sin(kzz)

(Akz − Ckx) sin(kxx) cos(kyy) sin(kzz)

(Bkx − Aky) sin(kxx) sin(kyy) cos(kzz)

⎞

⎟

⎠
.

(B6)

Note that magnetic field satisfies the equation ∇ · B = 0.

The coefficients A,B,C are subject to the condition ∇ · E = 0,

which leads to the condition Akx + Bky + Ckz = 0. The

boundary conditions determine the eigenfrequency of the

cavity modes as

f =
ω

2π
=

ck

2π
√

εμ
=

c

2π
√

εμ

√

k2
x + k2

y + k2
z

=
c

2π
√

εμ

√

(

nπ

W

)2

+
(

mπ

Ly

)2

+
(

lπ

Lz

)2

,

fnml =
c

2
√

εμ

√

(

n

W

)2

+
(

m

Ly

)2

+
(

l

Lz

)2

, (B7)

with kx = nπ
W

, ky = mπ
Ly

, kx = lπ
Lz

. It should be noted that Eq.

(B7) holds both for dielectric and metallic cavities because

of the duality of PEC and PMC conditions, whereas the

electric and magnetic fields obtained in Eq. (B6) for dielectric

resonators are distinct from those for metallic cavities [40].

To relate this mode analysis to the scattering problem, we fix

the direction of propagation along the z axis. For TM modes

Bz = 0, which requires that Bkx − Aky = 0, or B = ky

kx
A and

C = − A
kz

(
k2
y

kx
+ kx). This yields the E and B fields for TMnml

modes:

⎛

⎜

⎝

Ex

Ey

Ez

⎞

⎟

⎠
= A

⎛

⎜

⎜

⎝

sin
(

nπ
W

x
)

cos
(

mπ
Ly

y
)

cos
(

lπ
Lz

z
)

mW
nLy

cos
(

nπ
W

x
)

sin
(

mπ
Ly

y
)

cos
(

lπ
Lz

z
)

−Lz(n2L2
y+m2W 2)

nlWL2
y

cos
(

nπ
W

x
)

cos
(

mπ
Ly

y
)

sin
(

lπ
Lz

z
)

⎞

⎟

⎟

⎠

,

⎛

⎜

⎝

Bx

By

Bz

⎞

⎟

⎠
=

iA

ω

⎛

⎜

⎜

⎝

−
(mLz(n2L2

y+m2W 2)

nlWL3
y

+ mlW
nLyLz

)

cos
(

nπ
W

x
)

sin
(

mπ
Ly

y
)

sin
(

lπ
Lz

z
)

(Lz(n2L2
y+m2W 2)

lW 2L2
y

+ l
Lz

)

sin
(

nπ
W

x
)

cos
(

mπ
Ly

y
)

sin
(

lπ
Lz

z
)

0

⎞

⎟

⎟

⎠

. (B8)

The cavity modes TM101 and TM301 [see Figs. 7(a) and 7(b)]

replicate the electromagnetic field structure of two magnetic

dipolar resonances in Fig. 3 (see main text). One might also

construct higher-order magnetic dipole mode profiles for larger

values of n > 1 and l > 1 [see Figs. 7(c) and 7(d)] and

corresponding scattering resonant modes in Figs. 8 and 9. We

would like to emphasize that this theoretical treatment is based

on the approximate PMC boundary conditions which are only

applicable to high-permittivity structures. There is no exact

closed-form expression available for the resonant frequencies

165426-7
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FIG. 7. Profile of the resonant cavity modes. Typical TM modes

of the rectilinear cavity with quantum numbers (a) n = 1, m = 0, l =
1; (b) n = 3, m = 0, l = 1; (c) n = 4, m = 0, l = 1; and (d) n =
3, m = 0, l = 2. The blue arrows indicate electric vector field and

the red arrows indicate magnetic vector field. The TM101 and TM301

modes replicate the field distribution of two magnetic dipole modes

in Fig. 3 in the main text.

or field distributions of such dielectric resonators, but we have

provided an approximate solution to extract the essential modal

behavior seen in simulations, as discussed in the main text.

APPENDIX C: RADIATION OF MD2 MODES

It is worth noting that for the conventional multipole

decomposition, the MD mode is usually defined as only

one magnetic dipole positioned in the center of the particle

[Eq. (A4)]. However, here we can observe two separate

magnetic dipoles in the near-field distributions of the MD2

mode (the magnetic dipole in the center is neglected since

simulations show it to be weak) [Fig. 3(c)]. Usually two

dipoles cannot be equivalently replaced by one dipole because

the spatial distance between the two dipoles can lead to an

additional phase term in the far-field response. However, in

the following, we will show that Eq. (A4) and conventional

multipole decomposition are still valid for the MD2 mode and

can clearly reveal its underlying physics.

FIG. 8. Equivalent model for second magnetic resonance.

First we consider two separate magnetic dipoles m1 and m2

at the MD2 resonance with a spatial distance 2d, as shown in

Fig. 8.

Given the axial symmetry of the structure, we can assume

that these two magnetic dipoles are identical to each other with

m j = 1
2
mMD2 (j = 1,2), where mMD2 is the total magnetic

dipole moment that we can obtain through the multipole

expansion. We note y j the position vectors of the two magnetic

dipoles and thus we can write the electric field Em produced

in the far field by these two magnetic dipoles as

Em(r) =
∑

j

k2
0

4πǫ0rc
eik|r−yj|(mj × n). (C1)

At far-field limit where r ≫ d we can have

|r − yj| − r =
√

x2 + (y ∓ d)2 + z2 − r

≈ r

(

√

1 ∓
2yd

r2
− 1

)

≈ ∓d

(

y

r

)

≈ ∓d sinθ sinϕ. (C2)

Then we can derive Em as follows:

Em =
k2

0

4πǫ0c
|mMD2|

eikr

r
cos(kd sinθ sinϕ)

× (−sinϕθ̂ + cosθ cosϕϕ̂). (C3)

with θ̂ and ϕ̂ the unit vectors of the spherical basis. In

the above equation, one can clearly see the additional term

cos(kd sinθ sinϕ) contributed by the spatial distance and how

it influences the far-field response. However, this additional

term will not have an impact on the total scattered power

Pm contributed by the two magnetic dipoles, which can be

determined by the following expression:

Pm =
∫

�

dPmd� =
1

2Z0

∫ π

0

∫ 2π

0

|Em|2r2sinθdθdϕ

=
Z0k

4

12π
|mMD2|2. (C4)

Equation (C4) shows that the power contribution Pm of

two separate identical magnetic dipoles is only determined by

their total magnetic dipole moment other than their relative

positions. In our paper, we decompose the far-field scattering

cross section into multipolar series, which is only related to the

power contribution of each multipole. Therefore, the second

peak in the MD curve represents a local maximum contribution

from the MD modes to the total scattering power, proving the

existence of the MD2 mode which consists of two magnetic

dipoles.

Next, we consider the interference of the MD2 and ED

mode. As shown in Fig. 8, there is also an induced electric

dipole p oscillating along y direction. One can write the total

electric field Epm induced by the three dipoles as

Epm(r) =
k2

0

4πǫ0r
eikr

[

|p|(cosθ sinϕθ̂ − cosϕϕ̂)

+ 2
|mj|
c

cos(kdsinθ sinϕ)(−sinϕθ̂ + cosθ cosϕϕ̂)

]

.

(C5)
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FIG. 9. Near-field distributions of electric and magnetic fields of

the nanobar with Ly = 1000 nm, W = 110 nm, and Lz = 220 nm.

Given the incident light is along −z direction in our study,

the backward and forward radar cross sections of the nanobar

can be defined as

σback = lim
r→∞

4πr2 |Epm(θ = 0,ϕ = 0)|2

|Einc|2

=
k4

4πǫ0|Einc|2

∣

∣

∣

∣

py − 2
mxj

c

∣

∣

∣

∣

2

, (C6)

σforward = lim
r→∞

4πr2 |Epm(θ = π,ϕ = 0)|2

|Einc|2

=
k4

4πǫ0|Einc|2

∣

∣

∣

∣

py + 2
mxj

c

∣

∣

∣

∣

2

, (C7)

with |Einc| the amplitude of the incident electric field, and |py |
and |mxj | the amplitudes of the induced electric and magnetic

dipole moments. Therefore, suppressed backscattering and

maximum forward scattering occur if the condition

py =
2

c
mxj =

1

c
mMD2 (C8)

is satisfied. Equation (C8) clearly reveals that, for a system

consisting of ED and MD2 modes, unidirectional forward

scattering can only appear when the electric dipole moment p

is equal to the total dipole moment mMD2 of the two magnetic

FIG. 10. Near-field distributions of electric and magnetic fields

of the nanobar with W = 300 nm, Ly = 400 nm, and Lz = 220 nm.

dipoles mj . When there is only one fundamental magnetic

dipole, Eq. (C8) becomes py = 1
c
mx , which is the well-known

first Kerker condition [27].

APPENDIX D: NEAR-FIELD DISTRIBUTIONS

OF HIGHER-ORDER HYBRID MODES

As predicted by the theory (Fig. 7) and demonstrated by the

numerical simulations (Fig. 4), we expect to find higher-order

hybrid modes accompanied by higher-order multipoles and

cavity modes with increasing geometric parameters. Here we

show their near-field distributions.

For increased length Ly = 1000 nm (Fig. 9), to clearly

illustrate the “higher-mode” magnetic dipolar responses and

the associated higher-order cavity modes, here we plot field

components Ez and Hx . It can be readily seen that the three

peaks (λ = 992, 858, and 747 nm) in the scattering spectrum

[see Fig. 4(c)] correspond to the existence of the MD2, MD3,

and MD4 modes, respectively.

For increased width W = 300 nm (Fig. 10), fundamental

ED and MD modes can be clearly seen at λ = 1228 nm,

while at λ = 833 nm, an ED2 mode accompanied by a

standing-wave pattern (three antinodes) in x direction can be

observed. A MD2 mode can also be seen at this wavelength.

For shorter wavelength λ = 652 nm, we observe complex and

hybrid modal distributions while the higher-mode ED and MD

responses could still be distinguished.

[1] L. Novotny and B. Hecht, Principles of Nano-Optics (Cam-

bridge University Press, Cambridge, UK, 2012).

[2] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and

M. L. Brongersma, Plasmonics for extreme light concentration

and manipulation, Nat. Mater. 9, 193 (2010).

[3] L. Novotny and N. Van Hulst, Antennas for light, Nat. Photonics

5, 83 (2011).

[4] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and

W. E. Moerner, Large single-molecule fluorescence enhance-

ments produced by a bowtie nanoantenna, Nat. Photonics 3, 654

(2009).

[5] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant,

and N. F. van Hulst, Unidirectional emission of a quantum dot

coupled to a nanoantenna, Science 329, 930 (2010).

[6] D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the

diffraction limit, Nat. Photonics 4, 83 (2010).

[7] A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Pla-

nar photonics with metasurfaces, Science 339, 1232009

(2013).

[8] N. I. Zheludev and Y. S Kivshar, From metamaterials to

metadevices, Nat. Mater. 11, 917 (2012).

[9] S. Jahani and Z. Jacob, All-dielectric metamaterials, Nat.

Nanotechnol. 11, 23 (2016).

[10] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma,

Y. S. Kivshar, and B. Lukyanchuk, Optically resonant dielectric

nanostructures, Science 354, aag2472 (2016).

[11] A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Erik-

sen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov,

165426-9

https://doi.org/10.1038/nmat2630
https://doi.org/10.1038/nmat2630
https://doi.org/10.1038/nmat2630
https://doi.org/10.1038/nmat2630
https://doi.org/10.1038/nphoton.2010.237
https://doi.org/10.1038/nphoton.2010.237
https://doi.org/10.1038/nphoton.2010.237
https://doi.org/10.1038/nphoton.2010.237
https://doi.org/10.1038/nphoton.2009.187
https://doi.org/10.1038/nphoton.2009.187
https://doi.org/10.1038/nphoton.2009.187
https://doi.org/10.1038/nphoton.2009.187
https://doi.org/10.1126/science.1191922
https://doi.org/10.1126/science.1191922
https://doi.org/10.1126/science.1191922
https://doi.org/10.1126/science.1191922
https://doi.org/10.1038/nphoton.2009.282
https://doi.org/10.1038/nphoton.2009.282
https://doi.org/10.1038/nphoton.2009.282
https://doi.org/10.1038/nphoton.2009.282
https://doi.org/10.1126/science.1232009
https://doi.org/10.1126/science.1232009
https://doi.org/10.1126/science.1232009
https://doi.org/10.1126/science.1232009
https://doi.org/10.1038/nmat3431
https://doi.org/10.1038/nmat3431
https://doi.org/10.1038/nmat3431
https://doi.org/10.1038/nmat3431
https://doi.org/10.1038/nnano.2015.304
https://doi.org/10.1038/nnano.2015.304
https://doi.org/10.1038/nnano.2015.304
https://doi.org/10.1038/nnano.2015.304
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472


YUANQING YANG et al. PHYSICAL REVIEW B 95, 165426 (2017)

Demonstration of magnetic dipole resonances of dielectric

nanospheres in the visible region, Nano Lett. 12, 3749 (2012).

[12] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and

B. Luk’Yanchuk, Magnetic light, Sci. Rep. 2, 492 (2012).

[13] A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko,

P. A. Belov, and Y. S. Kivshar, Subwavelength Topological Edge

States in Optically Resonant Dielectric Structures, Phys. Rev.

Lett. 114, 123901 (2015).

[14] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker,

A. Chipouline, A. I. Kuznetsov, B. Lukyanchuk, B. N. Chichkov,

and Y. S. Kivshar, Nonradiating anapole modes in dielectric

nanoparticles, Nat. Commun. 6, 8069 (2015).

[15] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S.

Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I.

Brener, and Y. Kivshar, Tailoring directional scattering through

magnetic and electric resonances in subwavelength silicon

nanodisks, ACS Nano 7, 7824 (2013).

[16] B. S. Lukyanchuk, N. V. Voshchinnikov, R. Paniagua-

Domínguez, and A. I. Kuznetsov, Optimum forward light

scattering by spherical and spheroidal dielectric nanoparticles

with high refractive index, ACS Photonics 2, 993 (2015).

[17] J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens,

P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem,

and M. B. Sinclair, Realizing Optical Magnetism from Dielectric

Metamaterials, Phys. Rev. Lett. 108, 097402 (2012).

[18] D. Sikdar, W. Cheng, and M. Premaratne, Optically resonant

magneto-electric cubic nanoantennas for ultra-directional light

scattering, J. Appl. Phys. 117, 083101 (2015).

[19] K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne,
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