
 Open access Journal Article DOI:10.1109/TCSVT.2008.2009250

Multimode Embedded Compression Codec Engine for Power-Aware Video Coding
System — Source link

Chih-Chi Cheng, Po-Chih Tseng, Liang-Gee Chen

Institutions: National Taiwan University, Novatek

Published on: 01 Feb 2009 - IEEE Transactions on Circuits and Systems for Video Technology (IEEE)

Topics: Codec, Adaptive Multi-Rate audio codec, Variable-Rate Multimode Wideband, Data compression and
Lossy compression

Related papers:

 A Lossless Embedded Compression Using Significant Bit Truncation for HD Video Coding

 A New Frame Recompression Algorithm Integrated with H.264 Video Compression

 A new frame-recompression algorithm and its hardware design for MPEG-2 video decoders

 A 530 Mpixels/s 4096x2160@60fps H.264/AVC High Profile Video Decoder Chip

 Reference Frame Compression Using Embedded Reconstruction Patterns for H.264/AVC Decoder

Share this paper:

View more about this paper here: https://typeset.io/papers/multimode-embedded-compression-codec-engine-for-power-aware-
55iq4k50kn

https://typeset.io/
https://www.doi.org/10.1109/TCSVT.2008.2009250
https://typeset.io/papers/multimode-embedded-compression-codec-engine-for-power-aware-55iq4k50kn
https://typeset.io/authors/chih-chi-cheng-efu08mt8cf
https://typeset.io/authors/po-chih-tseng-3pdlkzj7sa
https://typeset.io/authors/liang-gee-chen-2x9nwql895
https://typeset.io/institutions/national-taiwan-university-2rx6qi8g
https://typeset.io/institutions/novatek-m6wpudkl
https://typeset.io/journals/ieee-transactions-on-circuits-and-systems-for-video-24qa4y1a
https://typeset.io/topics/codec-33xiehnn
https://typeset.io/topics/adaptive-multi-rate-audio-codec-3ts714tz
https://typeset.io/topics/variable-rate-multimode-wideband-lxh5hep5
https://typeset.io/topics/data-compression-3fp83o4g
https://typeset.io/topics/lossy-compression-27cguzwg
https://typeset.io/papers/a-lossless-embedded-compression-using-significant-bit-wxwom5z8me
https://typeset.io/papers/a-new-frame-recompression-algorithm-integrated-with-h-264-34f4x6xh66
https://typeset.io/papers/a-new-frame-recompression-algorithm-and-its-hardware-design-2rjcaqbcin
https://typeset.io/papers/a-530-mpixels-s-4096x2160-60fps-h-264-avc-high-profile-video-597yblv857
https://typeset.io/papers/reference-frame-compression-using-embedded-reconstruction-4d0coldw53
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/multimode-embedded-compression-codec-engine-for-power-aware-55iq4k50kn
https://twitter.com/intent/tweet?text=Multimode%20Embedded%20Compression%20Codec%20Engine%20for%20Power-Aware%20Video%20Coding%20System&url=https://typeset.io/papers/multimode-embedded-compression-codec-engine-for-power-aware-55iq4k50kn
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/multimode-embedded-compression-codec-engine-for-power-aware-55iq4k50kn
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/multimode-embedded-compression-codec-engine-for-power-aware-55iq4k50kn
https://typeset.io/papers/multimode-embedded-compression-codec-engine-for-power-aware-55iq4k50kn

1

Multi-Mode Embedded Compression Codec Engine

for Power-Aware Video Coding System
Chih-Chi Cheng, Po-Chih Tseng, and Liang-Gee Chen, Fellow, IEEE

Abstract— In a typical portable multi-media system, external
access, which is usually dominated by block-based video content,
induces more than half of total system power. Embedded com-
pression (EC) effectively reduces external access caused by video
content by reducing the data size. In this paper, an algorithm
and a hardware architecture of a new type EC codec engine
with multiple modes are presented. Lossless mode, and lossy
modes with rate control modes and quality control modes are all
supported by single algorithm. The proposed four-tree pipelining
scheme can reduce 83% latency and 67% buffer size between
transform and entropy coding. The proposed EC codec engine
can save 62%, 66%, and 77% external access at lossless mode,
half-size mode, and quarter-size mode and can be used in various
system power conditions. With TSMC 0.18 µm 1P6M CMOS logic
process, the proposed EC codec engine can encode or decode CIF
30 frame per second video data and achieve power saving of more
than 109mW. The EC codec engine itself consumes only 2mW
power.

I. INTRODUCTION

As the evolution of manufacturing process in VLSI, silicon

area has become less and less important. On the contrary,

power plays a more and more important role in VLSI design

and will be a critical design issue at least through 2009 [1],

[2]. As suggested in [3], the power of DRAM I/O occupies

more than 60% system power in a typical multi-chip portable

multimedia system. The block-based video content dominates

the external access of a video encoding system due to the

huge amount of data. Moreover, in a decoding system, power

induced by accessing the system bus and display buffer when

displaying is also important in total system power [4].

Bus encoding and embedded compression are most

commonly-used methods to reduce the bus access power. A

bus encoding system reduces the bus access power by reducing

the signal transition on the bus. Additional buses are required

for bus encoding techniques to indicate the signal change such

that the system bus structure has to be altered [5] [6] [7]. The

popular bus protocols such as AMBA [8] thus can not be used.

Moreover, the bus encoding technique will increase the data

size, and the off-chip memory access will also be increased.

This work was supported in part by National Science Council, Republic of
China, under the grant number 95-2752-E-002-008-PAE.

Chih-Chi Cheng and Liang-Gee Chen are with DSP/IC Design Lab,
Graduate Institute of Electronics Engineering and Department of Electrical
Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C. (e-
mail: {ccc, lgchen}@video.ee.ntu.edu.tw).

Po-Chih Tseng is with NovaTek Microelectronics Corporation, Hsinchu,
Taiwan, R.O.C. (e-mail: borchih@video.ee.ntu.edu.tw).

Copyright (c) 2006 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Digital Object Identifier: xx.xxxx/TCSVT.2008.xxxxxx

ME

EC decode

Reconstructed
frame

EC encode
Frame

Buffer

System Bus

Video Encoder

EC Codec

Fig. 1. The scheme for a video encoder with EC engine to reduce external
access when ME and MC.

Display

LCD bus

Display

Buffer

System bus

EC Decode Video

Decoder

EC Encode

Line Buffer

Fig. 2. The scheme for decoding system with EC engine to reduce the system
bus and display buffer access when displaying.

An embedded compression (EC) engine reduces the bus

access power of video data by compressing the data directly.

Block-based video data generated by video coding systems

are compressed macroblock by macroblock before they are

sent to system bus and hence reduce not only the bus-

access power but also the off-chip memory access. Figure

1 shows the scheme for a video encoder with block-based

embedded compression engine to reduce the external access.

During Motion Compensation (MC), the pixels in motion-

compensated frame have to be written into frame buffer. The

EC encoder compresses those motion-compensated pixels to

reduce the bus and DRAM access. During Motion Estimation

(ME), the pixels in searching region of previous encoded

frame have to be read from the frame buffer. The EC decoder

de-compresses the compressed pixels in previous frame, and

passes the de-compressed pixels to the video encoder. Figure

2 shows the presented scheme for a decoding system with

EC engine to reduce the system bus and display buffer access

when displaying in a similar way. On average, the external

access can be reduced to the reciprocal of the compression-

ratio (CR) in the EC engine. For example, if CR is equal to

two, then the external access can be halved.

In recent years, many algorithms and implementations of

embedded compression engines for various applications are

presented [4], [9]–[15]. Existing EC algorithms can be divided

2

into two groups: lossy EC algorithms and lossless EC algo-

rithms.

There are unique advantages in both lossless EC algorithms

and lossy EC algorithms. Lossy embedded compression with

fixed compression ratio [4], [9]–[13], [15] can guarantee the

size of compressed data of each macroblock (MB). Thus

it is able to reduce not only external access but also the

required external memory size. However, lossy EC is not

suitable for applications in close-loop video coding system

if the high video quality is necessary. It will cause drifting

effects or so called catastrophic error propagation, and severe

quality drop will be induced with a large GOP size [9], [10].

Therefore, lossy EC is more suitable for being used in the

low-power modes of a power-aware system where quality is

of much less importance or in an open-loop coding scheme

without drifting effect. Such open-loop schemes include bi-

directional predicted frames, motion-compensated temporal

filtering scheme, and Scalable Video Coding (SVC) systems

with or hierarchical-B scheme. On the contrary, lossless EC

can guarantee no quality loss of video data, and hence no

drifting effect exists in close-loop video coding systems with

uncertain compressed MB size [14]. Lossless EC cannot

reduce the memory size until the EC engine maintains a table

indicating the bitstream size of each macroblock. However,

the lossless EC can still effectively reduce the access power

of external memory and system bus with guaranteed video

quality.

From the discussion above, a configurable EC codec with

both lossless and lossy embedded compression modes can

provide a good trade-off between power consumption and

visual quality. Therefore, a multi-mode EC codec can be

used in a variety of quality/power requirements and perfectly

suitable for a power-aware video system.

In this paper, the algorithm, VLSI architecture, and chip im-

plementation for a multi-mode embedded compression codec

engine is proposed for power-aware systems. This work is

characterized as follows: 1) This is a multi-mode embedded

compression codec supporting lossless compression and lossy

compression with bitstream size modes and quality control

modes. With the adopted Set-Partitioning In Hierarchical Trees

(SPIHT) algorithm, all functionalities can be supported by

a unified algorithm. 2) A hardware-oriented scheduling of

SPIHT, four-tree pipelining scheme, is proposed. The proposed

four-tree pipelining scheme can reduce 83% latency, 67%

buffer size between DWT and SPIHT, and at least 55%

chip area compared to direct implementation of the SPIHT

algorithm. 3) VLSI architecture of the EC codec engine is also

proposed. The state buffer in SPIHT algorithm is eliminated.

Most parts of hardware circuits of EC encoding and EC

decoding are shared in the proposed hardware architecture.

This paper is structured as follows. Section II introduces

the SPIHT algorithm adopted in proposed EC engine, and

the proposed four-tree pipelining scheme will be presented

in section III. The corresponding VLSI architecture will be

presented in section IV, and the experimental results will be

shown and discussed in section V. Finally, section VI will give

a conclusion to the proposed multi-mode EC codec engine.

root leaves

Fig. 3. Illustration of hierarchical tree in SPIHT algorithm.

II. THE ADOPTED SPIHT ALGORITHM

A. Overview of SPIHT Algorithm

There are two major issues in the selection of coding

algorithm for a multi-mode embedded compression codec.

The first one is the functionality. To support the power-

aware functionality of video coding systems, the embedded

compression algorithm must support both lossless encoding

and lossy encoding. Therefore, those algorithms support only

lossless encoding such as CALIC [16] are not considered.

Furthermore, for lossy coding, the encoded bitstream size must

not exceed the allocated storage size in off-chip memory.

The encoding algorithms that cannot guarantee the encoded

bitstream size with one-pass encoding are also not considered

[17] [18].

The second issue is the trade-off between the algorithm

complexity and coding efficiency. Embedded compression is

to reduce the off-chip bus and off-chip memory access power

by reducing the data size. The coding efficiency of adopted

compression algorithm therefore directly links to the achieved

power reduction. JPEG 2000 [19] can achieve very good

coding efficiency with higher complexity. The reported JPEG

2000 codec chips all have die sizes above 20mm2 with 0.18µm

technology [20] [21] [22]. If JPEG 2000 algorithm is adopted

for embedded compression, only the tile buffer between DWT

and EBCOT will require more than 30000 logic gates. This

gate count is more than the gate count of whole EC codec in

our chip implementation. The algorithm in JPEG is simple.

However, according to [23], the encoded bitstream size of

JPEG is 1.8× of bitstream size of JPEG 2000.

SPIHT algorithm is an image coding algorithm with

embedded-coding property presented by Said and Pearlman

[24]. According to table II of [25], the quality difference

between JPEG 2000 (JP2K) and SPIHT is about 0.15dB,

and SPIHT outperform JPEG 2000 in lossless cases. SPIHT

supports both lossless and lossy encoding, and it generates

bitstream with embedded coding properties. Therefore, the

bitrate control is very simple, and the required functionalities

can be fully supported as will be discussed in Sec. II-B.

In the SPIHT algorithm, one DWT-transformed image is

partitioned into many hierarchical trees. As shown in Fig. 3, a

hierarchical tree comprises either a single LL-band coefficient

3

DWT

Output

Word-by-
Word

Input MB Transformed

Coefficients

SPIHT

Bitplane

Sign

Encoding
Bitplane-by-

Bitplane
MSB

LSB

Buffered
Coefficients

Fig. 4. Illustrations of the data flow of SPIHT encoding and the dataflow
mismatch between word by word dataflow of DWT and bitplane by bitplane
dataflow of SPIHT engine.

or one LL-band coefficient and low-level coefficients from

HL-band, LH-band, or HH-band. The coding efficiency of

SPIHT algorithm mainly comes from exploiting the inter-level

redundancy by use of this hierarchical tree structure. After par-

titioning the DWT-decomposed image into hierarchical trees,

SPIHT algorithm processes the hierarchical trees bitplane

by bitplane, and from the roots to leaves at each bitplane.

The encoding flow of SPIHT algorithm is shown in Fig. 4.

According to the data in [24], the quality difference between

SPIHT algorithm with arithmetic coding and without entropy

coding is about 0.3dB in most bitrates. Aiming for a low-cost

implementation, this work focuses on SPIHT implementation

without entropy coding.

B. Achieving Functionalities of Multi-Mode EC Engine

There are many good inherent properties that make SPIHT

coding algorithm suitable for implementation of multi-mode

EC codec engine. Firstly, lossless and lossy embedded com-

pression modes are both supported since SPIHT algorithm

supports both lossless and lossy coding. Secondly, the fixed

compression-ratio (CR) modes can be achieved by simply

terminating the encoding/decoding process when the desired

size is reached. This is because SPIHT is an embedded coding

algorithm. Thirdly, simple quality control can be achieved by

truncating bitplanes when encoding, since SPIHT is a bitplane

coding algorithm. The distortion induced by truncating the

bitplanes can also be estimated well [26]. Finally, the SPIHT

algorithm is one of the most simplest coding algorithms with

the above-mentioned properties and comparable coding effi-

ciency. This is beneficial for low power VLSI implementation.

C. Design Challenges of Implementing SPIHT in EC Engine

Although there are many good properties that make SPIHT

algorithm suitable for EC engine, there are still two main

disadvantages for SPIHT algorithm in VLSI design.

The first disadvantage of SPIHT algorithm is the large

buffer size between DWT and SPIHT. As can be seen in

Fig. 4, DWT transforms the input image pixel-by-pixel, while

the SPIHT engine encodes the DWT coefficients bitplane-by-

bitplane. Moreover, being different from the moving-window

access in embedded block coding of JPEG 2000 [19], SPIHT

requires image-level access. This means that when coding

one bitplane, the entire current bitplane must be available.

This mismatch of the dataflow between DWT and SPIHT

coding engine makes it necessary to have a buffer storing

One Macroblock

Time

One Macroblock

DWT Transform

SPIHT Encoding

Unit 1

Time

DWT Transform

SPIHT Encoding Unit 1

Unit 2

Unit 2

Unit 3

Unit 3

Unit 4

Unit 4

Fig. 5. An illustration of the change of encoding flow by dividing one
macroblock into four coding units.

DWT coefficients of entire image. This also contributes a long

latency since SPIHT module can start encoding only after the

finish of DWT transform.

The second disadvantage of SPIHT algorithm is the large

buffer inside SPIHT module. There are three buffers defined in

the SPIHT algorithm: List of Insignificant Sets (LIS), List of

Insignificant Pixels (LIP), and List of Significant Pixels (LSP).

The contents of buffer are pixel coordinates. Therefore, the

bitwidth is 2 log2 L (L is the image width). In the worst case,

the LIS can have L2/4 pixels, and LIP and LSP can have L2

pixels. Therefore, the required buffer size can be 4.5log2 L

bits. This buffer size is even larger than the image itself.

Several wavelet-based image coding algorithms have been

proposed. To reduce the buffer size, no-list SPIHT algorithm

is presented [27] with very small quality drop compared to

SPIHT algorithm. However, the buffer inside SPIHT engine

with size more than a quarter of image size is still required,

and this is still too large for a low-cost design. Chrysafis

[17] has proposed a line-based coding scheme with very

low memory requirement. One advantage of SPIHT over this

algorithm is the capability of generating embedded bitstream.

In the algorithm of [17], the bitstream size is controlled by

adjusting the step of a ”dead zone quantizer” before entropy

coding, and the encoded bitstream size is therefore unknown

before the finish of encoding. In lossy embedded compression

applications, however, the encoded bitstream size of each

macroblock must not exceed the target bitstream size to avoid

the insufficiency of memory space allocation.

III. PROPOSED FOUR-TREE PIPELINING SCHEME

A. Four-Tree Pipelining in SPIHT Engine

As mentioned in Section II-C, the image-level access de-

fined in original SPIHT algorithm induces low hardware

utilization, long encoding/decoding latency, and two large-

sized buffers. Dividing one macroblock into smaller pieces

and encode/decode each piece separately can greatly alleviate

all these problems. Firstly, both the two large-sized buffer,

DWT coefficient buffer and SPIHT state variable buffer, have

a size proportional to the size of encoding unit. Therefore, the

size of these two buffers can be greatly reduced by using a

smaller coding unit. Secondly, a proper pipeline scheme can

be designed and applied between DWT module and SPIHT

module such that both DWT hardware and SPIHT hardware

4

25

26

27

28

29

30

31

32

33

34

35

1.5 2.5 3.5 4.5

P
S

N
R

 (
d

B
)

Bitrate (bpp)

Test Sequence:Table Tennis

29

30

31

32

33

34

35

1 2 3 4

P
S

N
R

 (
d

B
)

Bitrate (bpp)

Test Sequence: Foreman

25

26

27

28

29

30

31

32

33

34

35

1.5 2.5 3.5 4.5

P
S

N
R

 (
d

B
)

Bitrate (bpp)

Test Sequence:Stefan

25

26

27

28

29

30

31

32

33

34

35

1.5 2.5 3.5 4.5

P
S

N
R

 (
d

B
)

Bitrate (bpp)

Test Sequence: Football

`

25

26

27

28

29

30

31

32

33

34

35

1.5 2.5 3.5 4.5

P
S

N
R

 (
d

B
)

Bitrate (bpp)

Test Sequence: Hall_Monitor

25

26

27

28

29

30

31

32

33

34

35

1.5 2.5 3.5 4.5

P
S

N
R

 (
d

B
)

Bitrate (bpp)

Sequence: Coastguard

QP = 10

QP = 15

QP = 20

QP = 10

QP = 15

QP = 20

QP = 10

QP = 15

QP = 20

QP = 10

QP = 15

QP = 20

QP = 10

QP = 15

QP = 20

QP = 10

QP = 15

QP = 20

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Comparisons of coding efficiency of SPIHT algorithm (black solid line) and the four-tree pipelined SPIHT (grey dashed line). The test sequences
comprise CIF 30 frame-per-second reconstructed videos generated by MPEG-4 simple profile encoder with different quantization parameters (QPs). The results
in the figure are the averaged coding efficiency after those sequences are processed by embedded compression macroblock-by-macroblock.

tree1

tree2tree3

tree0(root only)

Fig. 6. The proposed algorithm takes four adjacent hierarchical trees
(three complete trees and one tree without descendent) in DWT transformed
coefficients as a coding unit of SPIHT engine

can work concurrently. Figure 5 shows an illustration of the

change of encoding flow of by dividing one macroblock into

four coding units. Both the hardware utilization problem and

the encoding latency problem can be solved by pipelining in

this way.

Using a small coding unit can effectively reduce the buffer

size, shorten the latency, and increase the hardware utilization.

However, in general, encoding small coding units separately

leads to only a local optimization, and the coding efficiency

will be degraded. How to choose a coding unit which can

maintain the good coding efficiency of SPIHT algorithm is the

critical issue to be discussed. The proposed four-tree pipeline

scheme is to take adjacent four hierarchical trees as an unit

as shown in Fig. 6. As can be seen in Fig. 6, these four trees

comprise one LL-band tree with only one coefficient (tree0),

one HL-band tree (tree1), one HH-band tree (tree2), and one

LH-band tree (tree3). These four adjacent hierarchical trees

can form a square of 2n+1×2n+1 pixels, where n is the number

of decomposition levels, and this square is one coding unit.

There are three main reasons to adopt this four-tree struc-

ture. The first reason is that the four-tree structure completely

retains the original tree structure in SPIHT, thus the inter-level

correlation in a tree is preserved. The inter-level correlation

is the main source of the good coding efficiency in SPIHT

algorithm. Furthermore, we’ve found that this change of cod-

ing order among trees have no influence on coding efficiency

5

LL LH

HL HH

L H

Row

DWT

Column

DWT

Fig. 8. An example of dataflow in single level 2-D DWT of four pixels

in lossless coding. That is, the proposed four-tree pipelining

scheme can achieve exactly the same coding efficiency as that

of the original SPIHT algorithm in lossless mode.

The second reason is that the adjacent four trees corre-

spond to the same block of input macroblock. Therefore

the most important part of correlation between hierarchical

trees is preserved. Figure 7 shows the comparisons of coding

efficiency of SPIHT algorithm (solid line) and the four-tree

pipelined SPIHT (dashed line). The test sequences comprise

CIF 30 frame-per-second reconstructed videos generated by

MPEG-4 simple profile encoder with different quantization

parameters (QPs). The results in the figure are the averaged

coding efficiency after those sequences are processed by em-

bedded compression macroblock-by-macroblock. Three modes

are tested: lossless compression mode, half-size mode with

target compression ration (CR) to be equal to 2, and quarter-

size mode with target CR to be equal to 4. As can be seen from

Fig. 7, the proposed four-tree pipeline scheme can have exactly

the same coding efficiency as SPIHT algorithm in lossless

mode, and the quality drop induced by the four-tree pipeline

scheme is very small in other modes.

The final reason is that we’ve derived a DWT scheme

that can match this dataflow to further reduce the buffer size

between DWT and SPIHT engine, as will be discussed in the

next section.

B. Four-Tree Pipelining in DWT

To reduce the buffer size between DWT and SPIHT engine,

the dataflow between them must be matched. During DWT

process, coefficients of the four subbands (LL, LH, HL, and

HH) are outputted together as shown in Fig. 8. That is, each

subband has the same number of outputted coefficients in a

period of time. However, in the trees structure shown in Fig.

3, a tree comprises coefficients only from two subbands of

different levels (the root is from LL band, and the rest is from

LH, HL, or HH band). This leads to a mismatch of dataflow

between DWT and SPIHT. The minimum number of trees that

matches the dataflow of DWT is four. As shown in Fig. 6, the

number of coefficients in each subband at the same level are

the same. Therefore, an input macroblock can be divided into

blocks with four trees outputted after one block is processed.

C. Overall Scheduling of Four-Tree Pipelining Scheme

As discussed in section III-B, DWT can be performed block

by block. Combined with the four-tree pipelining in SPIHT

engine shown in section III-A, the whole EC process of a

macroblock can be performed block by block. Figure 9 shows

the proposed four-tree pipelining scheme of one macroblock.

The four-tree pipelining scheme divides the input MB into 6

2

4

6

1 2

3 4

5 6

1 2

3 4

5 65 6

1 2

3 4

5 6

1 2

3 4

5 6

1 2

3 4

1 2

3 4

5 6

1 2

3 4

5 6

Two-Level
IDWT

Two-Level

DWT

n : Coefficients Produced in n-th Pipeline Stage

1

11

1

1

1

1
2

22

2

2

2

2

3

33

3

3

3

3
4

44

4

4

4

4

5

55

5

5

5

5
6

66

6

6

6

6

DWT of 1
(to buffer 1)

SPIHT of 1
(from buffer

1)

DWT of 2
(to buffer 2)

SPIHT of 2
(from buffer

2)

SPIHT of 3
(from buffer

1)

SPIHT of 4
(from buffer

2)

SPIHT of 5
(from buffer

1)

SPIHT of 6
(from buffer

2)

DWT of 3
(to buffer 1)

DWT of 4
(to buffer 2)

DWT of 5
(to buffer 1)

DWT of 6
(to buffer 2)

Time Axis

Input Macroblock DWT Coefficients
SPIHT Coding Unit

1

3

5

Fig. 9. The proposed four-tree pipelining scheme with encode scheduling

DWT of One Macroblock
(to Buffer)

SPIHT of One Macroblock
(from buffer)

Time Axis

Fig. 10. The encode scheduling of direct implementation of SPIHT algorithm.

smaller blocks as indexed from 1 to 6 in Fig. 9, and each input

block is transformed into DWT coefficients corresponding to

four hierarchical trees. When encoding, DWT is processing

n-th block while SPIHT is processing (n−1)-th block in the

same pipeline stage as indicated at the bottom of Fig. 9. In

general, the size of each input block in Fig. 9 is unequal to

be transformed into four hierarchical trees because DWT has

latency cycles (the gray region) in most filters such as (5,3) or

(9,7) filter commonly used in JPEG 2000. With other simpler

DWT transform like S-transform [28], the input block size

can be equal. In our final implementation, the S-transform is

adopted for the best coding efficiency in virtually all near-

lossless and lossless cases. The proposed four-tree pipelining

scheme, however, can be adopted with all DWT filters.

Form the discussion above, the buffer size between DWT

and SPIHT can be reduced to two-sets of four hierarchical

trees rather than the whole macroblock. Compared with the

scheduling of direct implementation shown in Fig. 10, the

latency of the EC engine is reduced to the duration of

performing DWT on a set of four hierarchical trees rather than

the duration of performing DWT on the whole macroblock.

IV. PROPOSED VLSI HARDWARE ARCHITECTURE FOR

MULTI-MODE EC CODEC ENGINE

A. Utilized Algorithms for EC Codec Engine

The proposed EC codec engine adopts the SPIHT algo-

rithm discussed in section II to support lossless mode, fixed

compression-ratio mode, and quality control modes. Aim-

ing for a low cost VLSI implementation, the proposed EC

codec engine is scheduled according to the proposed four-tree

pipelining scheme presented in section III.

Because the coding unit of the presented EC engine is only

one macroblock with luminance and chrominance components

(Y:16× 16 pixels, U:8× 8 pixels, V:8× 8 pixels), there will

be no increase in coding efficiency with decomposition level

6

Open-Loop Performance of Stefan QP = 5 in MPEG-4 Encoder

PSNR is Calculated from Reconstructed Frame after EC and Original Frame

15

20

25

30

35

40

0 1 2 3 4 5 6 7

bit rate (bpp)

P
S

N
R

 (
d

B
)

1-level

2-level

3-level

Fig. 11. A typical example of coding efficiency between different decom-
position levels of DWT

2-level

2D DWT

/IDWT

Register

Array

(64 words)

Register

file

(8x64)

Pixel Value

of MB

To External

DWT

Coefficients

word to

bitplane

bitplane &

sign

control

Bitstream
Encode out
/Decode in

SPIHT

engine
FIFO

Fig. 12. The proposed system architecture for multi-mode EC codec engine

of DWT more than two levels. Figure 11 shows a typical

example of coding efficiency between different decomposition

levels of DWT. Therefore, the proposed SPIHT architecture is

designed for two-level DWT. With two-level DWT, the size

of four hierarchical trees is 64 coefficients, which is the size

of processed data in one four-tree-pipeline stage. With two-

level DWT in four-tree pipelining scheme, 67% buffer size

between DWT and SPIHT and 83% latency can be reduced,

respectively.

B. Proposed System Architecture

Figure 12 shows the proposed system architecture of the

multi-mode embedded compression codec engine. The arrows

are all bidirectional because of the difference in dataflow

between encoding and decoding. The encoding flow is from

the pixel value of a macroblock through DWT and SPIHT

to the external, and decoding flow is exactly in the reverse

direction. The following discussion will be presented mainly

from the encoding perspective and the decoding is just its

reverse process.

The input pixel value of a macroblock is firstly passed into

DWT module. During two-level DWT, coefficients of four hi-

erarchical trees are outputted to a register array coefficient-by-

coefficient. After DWT, there are eight bubble cycles loading

the decomposed coefficients into an 8× 64 register-file (the

behavior is just the same as SRAM) bitplane-by-bitplane. A

register file has better storage density and requires less area

compared with registers. If the bubble cycles are not desired,

an alternative system architecture, as shown in Fig. 13, can

be adopted. In the alternative system architecture, two register

array buffers are used in a ping-pong mode.

The register file therefore has to be read only once for every

bitplane to move bitplane data into 64 bits temporary registers

2-level

2D DWT

/IDWT

Register

Array 1

(64 words)

SPIHT

engine

Pixel Value

of MB

To External

DWT

Coefficients

control

Bitstream

Encode out

/Decode in

Register

Array 2

(64 words)

FIFO

Fig. 13. Alternative system architecture avoiding bubble cycles

1 2

3 4

Fig. 14. The sequence of encoding/decoding one coding pass in one bitplane.
The number indicating the clock cycle corresponding region is processed, and
the arrows indicating the sequence of coding within one clock cycle.

in SPIHT engine, and it can be turned off at other time. This is

also another reason utilizing register file for implementation.

After SPIHT coding, the encoded bitstream is outputted

through a FIFO. The FIFO comprises a bitstream buffer and

control circuits. The FIFO will output after the amount of

data accumulated in bitstream buffer exceeds the bitwidth of

external bus.

C. Proposed Two-Level SPIHT Codec Engine Architecture

In the special case of two-level DWT utilized, SPIHT

algorithm can be further simplified. In a general SPIHT

algorithm, three lists are maintained: List of Insignificant Pixel

(LIP), List of Insignificant Sets (LIS), and List of Significant

Pixels (LSP). Three lists totally require 9.9 KBytes without

four-tree pipelining and 1.2 KBytes if the four-tree pipelining

scheme is adopted. However, in the special case of two-level

DWT utilized, the three lists can be eliminated by exploiting

the equivalent possible encoding/decoding signal paths in the

SPIHT algorithm.

The coding process of each bitplane is divided into three

passes in hardware implementation: LIP pass, LIS pass, and

LSP pass. Each pass encodes/decodes the data in the cor-

responding buffer that originally exists in SPIHT algorithm.

Whether one coefficient belongs to the current coding pass

or not can be judged by simple combinational circuits with

exploiting properties of the SPIHT algorithm and two-level

DWT.

The coding process of each pass in one bitplane is planned

to be accomplished in four cycles, with sixteen coefficients

processed per cycle. Figure 14 shows the sequence of en-

coding/decoding one coding pass in one bitplane. The coding

sequence in one clock cycle is also shown. In general, SPIHT

algorithm cannot be implemented with fixed order of coding.

7

Decode in

Upper PE
Array

 Decode Shifter

Bit Count
Lower PE

arrayDecode in Low

Encode Shifter

Bit count
Encode out Up

FIFO
Encode Out to External

External

Encode
out Low

Coefficient Value of Current Bitplane

Decode In from External

Fig. 15. The architecture of SPIHT codec engine. Solid lines indicate the
dataflow of encoding, and the dashed lines are decoding dataflow.

However, in the special case of two-level coefficients, the

proposed fixed coding order can make a coding path equivalent

to SPIHT algorithm.

Sixteen processing elements (PEs) connected in order shown

in Fig. 14 are utilized to encode/decode coefficients within one

clock cycle. They are further divided into two groups, eight

PEs each.

When encoding, the input of one PE is the bitstream which

contains the encoded results of previous PEs. The job of one

PE is to calculate the bit count that it will output and to shift

the input right by this bit count. After the shifting process,

the PE appends its own encoded bits at the leftest side of the

shifted input bitstream and passes the appended bitstream to

the next PE.

When decoding, the input of one PE is the remaining

bitstream where the bits decoded by previous PEs have been

removed. The job of one PE is to calculate the bits that it will

decode in exactly the same way as in encoding. After that, it

removes the bits decoded by it from rightest side of input and

shifts the input bitstream right by the bit count before passing

the shifted bitstream to the next PE.

Please note that the direction of bitstream in one PE is

reversed for the encoding and decoding processes. A PE

appends the bits encoded by itself at the leftest side of its

input when encoding. However, a PE removes the bits decoded

by itself at the rightest side of its input when decoding. This

leads to the same shifting process in one PE for the encoding

and decoding processes. The calculation of bit count and the

encoded/decoded bits are also the same between encoding and

decoding. This makes the PE hardware highly reused between

encoding process and decoding process.

Figure 15 shows the proposed VLSI architecture for SPIHT

codec engine. The solid lines indicate the encoding dataflow,

and the dashed lines are the decoding dataflow. The sixteen

PEs are divided into two PE arrays with eight PEs in each array

to reduce the bitstream length which a PE will shift. This will

induce shifters to combine or distribute the bitstream. When

encoding, the Upper PE Array and Lower PE Array generate

their own bitstreams and bit counts, the bits generated by these

two PE arrays will be combined and sent to FIFO by Encode

Shifter. When decoding, Decode Shifter will shift the input

by the number of bits that the Upper PE Array has decoded

and send the remaining part to the Lower PE Array. Please

note that only the shifters in the proposed architecture are not

shared by encoding process and decoding process.

TABLE II

COMPARISONS OF THE QUALITY DROP INDUCED BY EMBEDDED

COMPRESSION AT HALF-SIZE MODE.

[9] [10] [12] [15] This Work

avg. PSNR drop @ CR=2 0.65dB 0.2dB 0.5dB
1

0.15dB
2 0.1dB

1
This number is the average number in a 12-frame GOP

2
The encoding unit conprises 9 macroblocks

3
Except this work, all works support only fixed-bitrate compression

D. Hardware Scheme for Multi-level DWT/IDWT

The proposed four-tree pipelining is independent of the

adopted DWT filter type. As discussed in section III-B, DWT

can be performed on a macroblock block by block, where

processing a block outputs four hierarchical trees shown in Fig.

6. The proposed architecture is thus suitable for all multi-level

block-based DWT architectures with output block size 8× 8

[29].

V. EXPERIMENTAL RESULTS

Table I shows the open-loop coding efficiency of the pro-

posed four-tree pipelining scheme with S-transform adopted

as DWT filter. The test sequences are the reconstructed frame

after motion compensation of MPEG-4 simple-profile encoder

with Quantization Parameter (QP) of 10, 15, and 20. QP of

10, 15, and 20 correspond to the high quality, medium quality,

and low quality sequences.

On average, 62.4% external access can be saved in lossless

mode. The lossless mode in the proposed EC engine can be

used under the normal operation of a power-aware system,

and no quality will be sacrificed. The size of encoded mac-

roblock is not guaranteed, so the external memory size for one

macroblock has to be unchanged.

65.3% external access can be saved in half-size mode,

and compression ratio of all macroblock is at least two. The

average quality drop is 0.1dB. This mode can be used in the

low-power modes of power-aware encoding/decoding systems

where moderate quality loss is allowed. This mode further

guarantee at least 50% size reduction of each macroblock.

Therefore, the frame buffer size can also be halved.

On average, 77% external access can be eliminated in

quarter-size mode, the compression ratio of all macroblock

is at least four. However, there is more quality drop with this

mode, and therefore quarter-size mode is more suitable for

very low power mode of power-aware encoding/decoding sys-

tem. In such cases the accomplishment of encoding/decoding

process is the most important thing, this quarter-size mode will

be very useful since it can reduce 77% external access power.

Is can also be used for low-quality video with tolerable video

quality drop (0.78dB when QP = 20).

Table III shows the comparisons between the proposed

architecture with four-tree pipelining scheme and direct imple-

mentation of SPIHT algorithm. Utilizing the proposed four-

tree pipelining scheme results in the reduction of latency

and buffer size between DWT and SPIHT. Exploiting SPIHT

algorithm with two-level DWT eliminates the lists in SPIHT

algorithm.

8

TABLE I

THE OPEN-LOOP CODING EFFICIENCY OF THE PROPOSED EC CODEC WITH S-TRANSFORM AS DWT FILTER. SEQUENCES ARE RECONSTRUCTED

FRAMES OF MPEG-4 ENCODER WITH DIFFERENT QP (QUANTIZATION PARAMETER) VALUES.

QP Sequence Lossless Mode Half-Size (CR = 2) Quarter-Size (CR = 4)

akiyo 69.8% / 0dB 71.1% / 0.40dB 77.8% / 3.25dB

coastguard 49.2% / 0dB 57.3% / 0.07dB 75.4% / 2.61dB

foreman 54.3% / 0dB 59.4% / 0.63dB 75.6% / 3.12dB

mother-daughter 67.8% / 0dB 68.8% / 0.00dB 77.3% / 1.38dB

silent 58.7% / 0dB 62.3% / 0.05dB 76.0% / 1.85dB

table-tennis 49.9% / 0dB 57.3% / 0.19dB 75.4% / 1.85dB

Average 58.2% / 0dB 62.4% / 0.22dB 76.2% / 2.34dB

akiyo 71.3% / 0dB 72.4% / 0.01dB 78.1% / 1.50dB

coastguard 54.6% / 0dB 60.4% / 0.01dB 75.7% / 1.49dB

foreman 56.7% / 0dB 60.9% / 0.17dB 75.7% / 1.94dB

mother-daughter 70.9% / 0dB 71.5% / 0.00dB 78.0% / 0.69dB

silent 64.0% / 0dB 65.7% / 0.01dB 76.3% / 0.8dB

table-tennis 61.3% / 0dB 64.5% / 0.04dB 76.5% / 0.8dB

Average 63.1% / 0dB 65.9% / 0.04dB 76.7% / 1.2dB

akiyo 72.0% / 0dB 72.8% / 0.00dB 78.3% / 0.98dB

coastguard 59.6% / 0dB 63.0% / 0.01dB 76.0% / 0.83dB

foreman 58.8% / 0dB 62.3% / 0.17dB 76.0% / 1.42dB

mother-daughter 71.1% / 0dB 71.5% / 0.00dB 77.9% / 0.48dB

silent 66.8% / 0dB 67.8% / 0.06dB 76.5% / 0.46dB

table-tennis 67.6% / 0dB 69.4% / 0.14dB 77.3% / 0.55dB

Average 65.9% / 0dB 67.8% / 0.06dB 77.0% / 0.78dB

62.4% / 0dB 65.3% / 0.10dB 76.6% / 1.44dB

Coding Efficiency

10

15

20

(Reduced Data Ratio / Quality Loss Induced by Lossy EC)

Overall Average

TABLE III

THE COMPARISONS BETWEEN THE PROPOSED ARCHITECTURE WITH

FOUR-TREE PIPELINING SCHEME AND DIRECT IMPLEMENTATION OF

SPIHT ALGORITHM

Direct Implementation Proposed EC Codec Reduction

Latency 240 cycles 40 cycles 83%

Buffer Between DWT and SPIHT 3.84 KB 1.28 KB 67%

State Variable Buffer in SPIHT Engine 9.88 KB 12 bits 99%

Table II compares this work with previous embedded com-

pression works. For hardware area or silicon implementation

results are not available, only the coding efficiency is com-

pared here. The quality drop data are the PSNR difference

when video processed by video coding systems with and

without embedded compression. Average quality drop data

with embedded compression running on half-size mode are

used in the table.

Figure 16 shows the prototyping chip of the proposed multi-

mode EC engine, and Table IV shows the measurement results.

The power consumption is 2mW while supporting CIF 30

frame per second encoding/decoding. The encoding/decoding

time is 84us for each macroblock. An encoded macroblock

will be required by the video coding system after at least

30ms, so the encoding/decoding delay introduced by EC will

not cause problems. Without the proposed four-tree pipelining

scheme, only the buffer between DWT and SPIHT will occupy

38,400 logic gates. Therefore, the proposed four-tree pipelin-

Fig. 16. The die photo of the implemented prototyping chip.

ing reduces at least 55% total gate-count. Moreover, the target

timing specification can not be met with the same hardware

architecture because the latency is six-time longer.

According to the data provided in [3], the external access

in a MPEG-4 encoding system supporting QCIF resolution

consumes 651mW with 0.25um process. Assuming equal

9

TABLE IV

THE MEASURED RESULTS OF THE PROTOTYPING CHIP OF PROPOSED

MULTI-MODE EC ENGINE. TSMC 0.18 µM 1P6M CMOS PROCESS IS

UTILIZED.

Supply Voltage 1.3V

Working Frequency 10MHz

Throughput CIF (352x288) 4:2:0 @30fps

Lossless EC Supported

Fixed Compression-Ratio Mode Half-Size, Quarter-Size

Quality Control 8 Quality Levels

Logic Gate Count 26,932

Buffer Size 8x64 single-port SRAM

Core Size 0.75x0.75 mm
2

Measured Power Consumption encoding: 1.77mW

decoding: 2.01mW

oxide thickness, we scale this power consumption into 0.18um

technology:

P180 = P250 ×
C180
C250

× (
VDD180
VDD250

)2

= P250 × (0.18
0.25

)2 × (1.8
2.5)2

= P250 ×0.268

= 174.9mW

(1)

According the average data reduction ratio listed in Table

I, the proposed EC engine can save 109mW, 114mW, and

136mW in 0.18um process with lossless mode, half-size mode,

and quarter-size mode, respectively. Because the implemented

EC codec can process video with CIF resolution that is 4×
as the QCIF resolution in [3], the power saving introduced

by this EC codec can be actually even larger. Compared with

the 2mW power consumption of EC engine while processing

video with CIF format, the power saving is quite huge.

VI. CONCLUSION

In this paper, the algorithm and architecture for a new type

embedded compression codec engine with multiple modes

are proposed. With the proposed EC codec engine, lossless

embedded compression and lossy embedded compression with

rate control modes and quality control modes can be all

supported by single algorithm based on SPIHT algorithm.

The proposed four-tree pipelining can reduce 83% latency

and 67% buffer size between DWT and SPIHT compared with

direct implementation of SPIHT algorithm. Proposed hardware

architecture of multi-mode embedded compression codec en-

gine shares most hardware circuits between EC encoder and

decoder by designing of dataflow. Moreover, 9.9KBytes state

buffer in SPIHT algorithm is eliminated by exploiting the

properties of two-level SPIHT algorithm.

The implemented EC codec engine can encode or decode

at CIF 30fps with 10MHz clock rate and 1.3V power supply.

The proposed EC codec engine can save 62%, 66%, and

77% external access with lossless mode, half-size mode, and

quarter-size mode and can be used in various scenarios. The

gate count is 27K with 8× 64 bits buffer and the measured

power is 2mW. Compared with the amount the reduced DRAM

area and external access power (we estimated as 109mW or

more), the area and power overhead is small.

REFERENCES

[1] “International technology roadmap for semiconductors(ITRS) 2003 edi-
tion,” 2003.

[2] Pat Gelsinger, “Giga-scale integration for tera-ops performance -
opportunities and new frontiers,” in Keynote Speech of IEEE Design

Automation Conference, 2004.
[3] T. Nishikawa and et al., “A 60MHz 240mW MPEG-4 video-phone

LSI with 16Mb embedded DRAM,” in Digest of Technical Papers,

International Solid-State Circuits Conference (ISSCC), 2000, pp. 230–
231.

[4] Hojun Shim, Naehyuck Chang, and Massoud Pedram, “A compressed
frame buffer to reduce display power consumption in mobile systems,”
in Proceedings of the Asia and South Pacific Design Automation

Conference, 2004, pp. 819–824.
[5] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,”

IEEE Transactions on VLSI Systems, vol. 3, no. 1, pp. 49–58, Mar. 1995.
[6] M. Olivieri, F. Pappalardo, and G. Visalli, “Bus-switch coding for

reducing power dissipation in off-chip buses,” IEEE Transactions on

VLSI Systems, vol. 12, no. 12, pp. 1401–1404, Dec. 2004.
[7] Z. Khan, T. Arslan, and T. Erdogan A, “A novel bus encoding scheme

from energy and crosstalk efficiency perspective for AMBA based
generic SoC systems,” in IEEE International Conference on VLSI

design, 2005, pp. 751–756.
[8] AMBA Specification, http://www.amba.com.
[9] Ulug Bayazit, Lenny Chen, and Robert Rozploch, “A novel memory

compression system for MPEG-2 decoders,” in IEEE International

Conference of Consumer Electronics, 1998, pp. 56–57.
[10] M. v.d. Schaar-Mitrea and Peter H.N. de With, “Near-lossless embedded

compression algorithm for cost reduction in DTV receivers,” in IEEE

International Conference of Consumer Electronics, 1999, pp. 112–113.
[11] Shawmin Lei, “A quad-tree embedded compression algorithm for

memory-saving DTV decoders,” in IEEE International Conference of

Consumer Electronics, 1999, pp. 120–121.
[12] Egbert G.T. Jaspers and Peter H.N. de With, “Embedded compression

for memory resource reduction in MPEG systems,” in IEEE Benelux

Signal Processing Symposium, 2002, pp. S02–1–S02–4.
[13] G. M. Callico, A. Nunez, R. P. Llopis, and R. Sethuraman, “Low-cost

and real-time super-resolution over a video encoder IP,” in Proceedings

of IEEE Fourth International Symposium on Quality Electronic Design,
2003, pp. 79–84.

[14] Rashindra Manniesing, Richard Kleihorst, Rene van der Vleuten1, and
Emile Hendriks, “Implementation of lossless coding for embedded
compression,” IEEE Program for Research on Integrated Systems and

Circuits/Workshop on Circuits, Systems and Signal Processing, 1998.
[15] Peter H.N. de With, Peter H. Frencken, and Mihaela v.d. Schaar-Mitrea,

“A MPEG decoder with embedded compression for memory reduction,”
in IEEE International Conference of Consumer Electronics, 1998, pp.
60–61.

[16] Xiaolin Wu and N. Memon, “CALIC-a context based adaptive lossless
image codec,” in Proceedings of 1996 IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), 1996, pp. 1890–
1893.

[17] C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet
image compression,” IEEE Transactions on Image Processing, vol. 9,
no. 3, pp. 378–389, Mar. 2000.

[18] JPEG Image Coding System, ISO/IEC IS 10918-1 — ITU-T Recom-
mendation T.81, 2000.

[19] JPEG 2000 Image Coding System, ISO/IEC FDIS15444-1, 2000.
[20] Yu-Wei Chang, Hung-Chi Fang, Chih-Chi Cheng, Chun-Chia Chen,

Chung-Jr Lian, Shao-Yi Chien, and Liang-Gee Chen, “124Ms/s pixel-
pipelined motion-JPEG 2000 codec without tile memory,” in Di-

gest of Technical Papers, International Solid-State Circuits Conference

(ISSCC), 2006, pp. 404–405.
[21] Yu-Wei Chang, Chih-Chi Cheng, Chun-Chia Chen, Hung-Chi Fang, and

Liang-Gee Chen, “124 MSamples/s pixel-pipelined motion-JPEG 2000
codec without tile memory,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 17, no. 4, pp. 398–406, Apr 2007.
[22] H. Yamauchi, K. Mochizuki, K. Taketa, T. Watanabe, T. Mori, Y. Mat-

suda, Y. Matsushita, A. Kobayashi, and S. Okada, “A 1440×1080 pixels
30frames/s motion-JPEG2000 codec for HD movie transmission,” in Di-

gest of Technical Papers, International Solid-State Circuits Conference

(ISSCC), 2004, pp. 326–530.

10

[23] D. Taubman and M. Marcellin, “JPEG2000: Standard for interactive
imaging,” Proceedings of IEEE, vol. 90, no. 8, pp. 1336–1357, Aug.
2002.

[24] Amir Said and William A. Pearlman, “A new, fast, and efficient image
codec based on set partitioning in hierarchical trees,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243 –
250, June 1996.

[25] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE Transactions on Circuits and Sysyems for Video Technology, vol.
14, no. 11, pp. 1219–1235, Nov. 2004.

[26] C.-C. Cheng, C.-T. Huang, J.-Y. Chang, and L.-G. Chen, “Line buffer
wordlength analysis for line-based 2-D DWT,” in IEEE International

Conference on Acoustics, Speech and Signal Processing, 2006, vol. 3,
pp. 924–927.

[27] F. W. Wheeler and W. A. Pearlman, “SPIHT image compression without
lists,” in 2000 IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2000, pp. 2047–2050.
[28] A. Said and W. A. Pearlman, “An image multiresolution representation

for lossless and lossy compression,” IEEE Transactions on Image

Processing, vol. 5, pp. 1303–1310, Sept. 1996.
[29] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Analysis and VLSI

architecture for 1-D and 2-D discrete wavelet transform,” vol. 53, no.
4, pp. 1575–1586, 2005.

