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Abstract
Multimode fibers (MMFs) are an example of a highly scattering medium, which scramble the coherent light

propagating within them to produce seemingly random patterns. Thus, for applications such as imaging and image

projection through an MMF, careful measurements of the relationship between the inputs and outputs of the fiber are

required. We show, as a proof of concept, that a deep neural network can learn the input-output relationship in a

0.75 m long MMF. Specifically, we demonstrate that a deep convolutional neural network (CNN) can learn the

nonlinear relationships between the amplitude of the speckle pattern (phase information lost) obtained at the output

of the fiber and the phase or the amplitude at the input of the fiber. Effectively, the network performs a nonlinear

inversion task. We obtained image fidelities (correlations) as high as ~98% for reconstruction and ~94% for image

projection in the MMF compared with the image recovered using the full knowledge of the system transmission

characterized with the complex measured matrix. We further show that the network can be trained for transfer

learning, i.e., it can transmit images through the MMF, which belongs to another class not used for training/testing.

Introduction
Multimode fibers (MMF) scramble the waves propa-

gating inside them and produce seemingly random pat-

terns known as speckles at their outputs. Despite this

seemingly random nature, the system consisting of an

input pattern, propagating through an MMF and a

detector, behaves deterministically. It has been shown by

many studies that image transmission or imaging through

an MMF could be carried out, for example, by analog

phase conjugation1–5, digital iterative methods6–10, digital

phase conjugation11,12 or measuring experimentally the

amplitude and phase of the output patterns correspond-

ing to each input pattern to construct a matrix of complex

numbers relaying the input to the output13–16. In the

latter, the experiment requires an external reference beam

brought to the output of the fiber to generate an inter-

ference pattern from which the complex optical field

(amplitude and phase) can be extracted. Careful phase

tracking needs to be implemented to correct for phase

drift, which further complicates the implementation.

Although some work has shown that the reference beam

can also be sent through the same MMF17, multiple

quadrature phase measurements must be done to extract

the phase. A system in which a camera is placed at the

output side of the fiber, which detects only the intensity of

the output beam, is much simpler to implement. Some

recent work used convex optimization to infer the matrix

from the intensity measurement only18,19.

With intensity-only detection, the optical system is

nonlinear and consists of finding what input phase

(or amplitude) generates the intensity pattern detected

at the output. We note that when a phase pattern ϕ(x, y)

is used at the input, the system has two nonlinearities:

the first is the conversion from the phase pattern ϕ(x, y)

to the actual phase pattern displayed on the spatial

light phase modulator eiϕ(x, y) and the second is the square

law of the detector, which takes the modulus of the

output complex optical field E x; yð Þj j2. We explore, in

this paper, whether neural networks are able to learn this
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nonlinear output to input a relationship without any

a priori knowledge of the light propagation in the

MMF system.

The idea of using neural networks in conjunction with

MMFs has been around for almost three decades20–22. In

Ref. 20, a neural network with a three-layer perceptron

structure was used to classify 10 categories of images

transmitted through the fiber. This simple neural network

could not recognize images, for which it was not trained.

In another experiment with an MMF, a single hidden

layer neural network was utilized to classify a speckle

pattern corresponding to an input code for the purpose

of increasing the transmission capacity of the fiber

optic system21,22.

Today, thanks to the ubiquitous availability of proces-

sing power via graphical processing units and new types

of neural network architectures, a revival of applications

using neural networks is happening and summarized

in Ref. 23. Convolutional neural networks (CNNs) are

a subclass of neural networks, which have been proposed

to surpass the performance of other neural networks by

decreasing the computation cost of fully connected layers

through parameter sharing and use of sparse filters

while, at the same time, increasing the number of layers

in the network to achieve deep networks for solving

more complex problems and speeding up the computa-

tions. With this new computational power, CNNs have

been recently applied to imaging systems24. For example,

in microscopy, deep CNNs have been successfully used

to provide resolution enhancement in images of a same

class of histology samples25 and phase recovery in non-

linear inverse problems26,27, i.e., obtaining the phase at

one plane when the intensity is measured at another

imaging plane. In other words, the neural network is able

to learn the Fresnel propagation kernel and the intensity

square law.

In this work, we propose to investigate whether CNNs

can be applied to learn the propagation of light in an

MMF when only intensity detection is performed at its

output.

In the first part, we demonstrate that a deep CNN

is able to learn two types of nonlinear inverse problems:

1-amplitude-to-amplitude and 2- amplitude-to-phase. As

indicated above, the former nonlinearity is due to the

detector square law and the latter adds another non-

linearity due to the complex exponential dependence

of the phase at the input of the fiber. The CNN is

trained with pairs of images, which are the fiber output

amplitude speckles corresponding to the spatial light

modulator (SLM) input phases (amplitude) associated

with the database of handwritten Latin alphabet. This

experiment corresponds to an amplitude-to phase/

amplitude mapping. We note that this choice of database

is not unique. We particularly use two types of network

architectures for this task. One is a 22-layer CNN,

which uses VGG-nets28 style, while the other is a

20-layer CNN based on residual networks29–31 (Res-net).

We show that the former can generate input SLM

amplitude and phase patterns with average two-

dimensional correlations of ~93% for amplitude patterns

and ~79% for phase patterns (and can reach fidelities

as high as ~98% and ~85%, respectively) for the

validation set, while the latter architecture reproduces

input amplitudes with a fidelity of ~96% and input

phases with a fidelity of ~88% with a much faster con-

vergence rate.

In the second part, we show that the network is able to

reconstruct images that have not been seen by the net-

work, i.e., which are not in the training or validation set.

Specifically, we show that images belonging to a different

class (handwritten digits, a heart picture, a house, etc.) can

be reconstructed with an ~90% fidelity through the MMF.

This result shows that the trained CNN is able to do

transfer learning in the MMF system. To our knowledge,

this has not been demonstrated before in MMFs.

Finally, we demonstrate the ability of CNNs to project

arbitrary patterns through the MMF using neural net-

works. For this, we use the measured transmission matrix

and compute its inverse to generate examples of SLM

phase patterns that produce the amplitude images of the

database of handwritten alphabets at the output. The

CNN is then trained with this set. The phase patterns

generated by the network are then displayed on the SLM

experimentally and we verified that the desired intensity

patterns were generated at the output of the MMF with a

fidelity that could be as high as ~94%. This result is

interesting as the trained CNN is effectively replicating

the capability of the matrix. We note that the measured

matrix fully describes the transmission because the system

is linear in the complex optical field. However, to access it,

nontrivial interferometric approaches are needed. In

contrast, the proposed neural network only uses the

amplitude of the output pattern to deduce the input

phase/amplitude field, which considerably reduces the

implementation complexity for learning light transmis-

sion in MMFs.

Results
Amplitude-to-amplitude inversion

In the first part, the inverse problem of regenerating the

input amplitudes from the output amplitudes in an MMF

is investigated. We train both CNNs (VGG-net and Res-

net) with 60000 image pairs and test on the 1000 images

in the validation dataset. Each pair contains an image of

the Latin alphabet adopted from Ref. 32, together with the

corresponding output speckle amplitude obtained at the

distal end of the fiber (see data preparation subsection in

“Materials and Methods” section). Figure 1 plots the mean
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squared error (MSE) as well as the 2D-correlation

between the labels and the reconstructed SLM ampli-

tude patterns belonging to the Latin alphabet when the

amplitude input image is used (Fig. 1a, b) to train the

VGG-net CNN. Examples of the labels, corresponding

speckles and reconstructed amplitude patterns in the

validation dataset are shown in Fig. 1c.

Similarly, Supplementary Fig. S9 plots the 2D-

correlation when the Res-net style CNN is used for

training with the same data set. Table 1 quantitatively

compares the performance of the two CNNs for this task.

Amplitude-to-phase inversion

In the second part, we study the amplitude-to-phase

inversion on the same type of images, i.e., the Latin

alphabet. Therefore, we train the CNN with phase

modulated images of the Latin alphabet. Figure 2 plots

the MSE as well as the 2D-correlation between the

labels and the reconstructed SLM phase patterns

belonging to the Latin alphabet when the phase input

image is used (Fig. 2a, b). Examples of the labels,

corresponding speckles and reconstructed amplitude

patterns in the validation dataset are shown in Fig. 2c
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Fig. 1 Amplitude-to-amplitude inversion. Performance of the network in reconstructing the input amplitudes from the output amplitude speckle

patterns when the CNN is trained with the handwritten Latin alphabet. The speckle pattern for each letter image is obtained using the transmission

matrix of the system. Calculated (a) MSE and b 2D-correlation for the train/validation datasets. c Examples of the output amplitude speckle patterns

and the reconstructed fiber input amplitude patterns produced via the CNN. The fidelity number for each reconstructed image with respect to its

corresponding grayscale label is shown

Table 1 Comparison of the VGG-net and Res-net performance on the amplitude-to-amplitude/amplitude-to-phase

inversions for the validation data set

Network Architecture 2D correlation at convergence Training time

Amplitude-to-amplitude Amplitude-to-phase Amplitude-to-amplitude Amplitude-to-phase

VGG-net ~0.93 ~0.79 ~4 h 35min ~9 h 0 min

Res-net ~0.96 ~0.88 ~1 h 20min ~1 h 0 min
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(also refer to Table 1 and Supplementary Fig. S9 for-

a comparison between the results of VGG-net and

Res-net).

Transfer learning

We show in the previous section that both CNNs are

able to perform the inverse mapping between the ampli-

tude at the distal end and the phase/amplitude at the

proximal end of the fiber. An interesting question is

whether the network is able to transfer its learning to

other images, i.e., images belonging to other categories

that have never been seen by the network even in the

training step.

We use the VGG-net CNN that was trained on the

amplitude of the speckle patterns and the input ampli-

tude/phase of the Latin alphabet dataset. We use images

of the digit dataset32 for evaluating the transfer learning

reconstruction performance. The dataset for training/

testing is thus not of the same class of images, although

they are both grayscale and of a handwritten nature.

Examples of (a) the reconstructed amplitude input

pattern and (b) the reconstructed phase input pattern

by the CNN belonging to another class are depicted

in Fig. 3a, b, respectively. The reconstructed amplitude

input pattern for a heart picture, as well as other images,

is also shown in Fig. 3c, which shows a good visual fide-

lity (~90% correlation with the labels). This demonstrates

the ability of the network to perform transfer learning

in the MMF system.

Additionally, Supplementary Movie 1 and 2 contain

animations of a “Moving Donuts” as well as a “Running

Dog”, which are obtained by the network to further

illustrate transfer leaning (See the Supplementary

Materials).

Experimental validation and image projection

We used the measured transmission matrix and com-

puted its inverse. The matrix inverse was then used to

compute the SLM phase patterns that produce the

amplitude images of the database of handwritten alpha-

bets at the output. The VGG-net CNN is then trained

with this set. Supplementary Figure S1 plots the MSE

between the labels and the reconstructed SLM phase

patterns produced by the trained CNN. As illustrated in
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Fig. 2 Amplitude-to-phase inversion. Performance of the network in reconstructing the input phases from the output amplitude speckle patterns

when the CNN is trained with the handwritten Latin alphabet. The speckle pattern for each letter image is obtained using the transmission matrix of

the system. Calculated (a) MSE and (b) 2D-correlation for the train/validation data sets. c Examples of the output amplitude speckle patterns and the

reconstructed fiber input phase patterns produced via the CNN. The fidelity number for each reconstructed image with respect to its corresponding

grayscale label is shown
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Fig. 3 Transfer learning. Performance of the network in transfer learning the reconstruction of the input amplitudes/phases from the output

amplitude speckle patterns when the CNN is trained with the handwritten Latin alphabet. The speckle pattern for each image is obtained using the

transmission matrix of the system. a Reconstructed amplitude input patterns and b reconstructed phase input patterns of digit images. c Example of

reconstructed amplitude input patterns for other images. The fidelity for each reconstructed image with respect to its corresponding label is shown
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the diagram of Fig. 4, the phase patterns generated by the

network are then displayed on the SLM, transmitted

through the fiber and captured by the camera using the

optical setup in Fig. 5. Figure 4 depicts images of the Latin

alphabet (b–e), digits (f–i), a cross, and a heart (j, k)

captured by the camera at the output of the fiber.

Discussion
We have shown that essentially, deep CNNs trained

with a database of handwritten Latin alphabet letters

were able to learn two types of highly nonlinear relations

between the two-dimensional spatial output amplitude

of an MMF and the two-dimensional spatial phase/

amplitude at the input of the fiber. Interestingly, the

performance difference between VGG-net and Res-net

further confirms the presence of considerable nonlinearity

in the learning system. We observe that a better perfor-

mance is achieved with Res-net, which has a more com-

plex architecture and thus is better suited for more

complex problems.

Amplitude-to-amplitude inversion

In the case where the inverse mapping is a conversion

from output amplitude speckles to input amplitude

patterns, the nonlinearity is due to the intensity-only

detection at the distal end of the fiber, where the

phase information is lost. Hence, the network is

effectively learning to reconstruct the amplitude of the

fiber input optical field I(x, y) from the amplitude of

the fiber output complex optical field E(xy) such that

H Eðx; yÞj jð Þ ¼ Iðx; yÞj j, wherein H (.) is the feed-forward

operator of the trained CNN used in this inverse problem.

In this manner, we showed that while the performances

of the two CNNs, i.e., VGG-net and Res-net, are similar in

terms of fidelity (~93% vs. ~96%), the training time of the

latter is noticeably shorter (4 h 35min vs. 1 h 20min).

Amplitude-to-phase inversion

When the network is trained to infer the input phases

from the output amplitude speckles, another form of

nonlinearity due to the exponential dependence of the
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Fig. 4 Experimental validation. a Schematic of the SLM phase inference by the CNN. The trained neural network reconstructs SLM phases from

unseen images. The reconstructed phases are then sent through the MMF. Outputs of the fiber are then captured by the camera. The network, which

is trained to regenerate input phases that output only the Latin alphabet, is also able to regenerate input phases belonging to other categories

(transfer learning). Captured images of (b–e) Latin alphabets, (f–i) digits, (j) a cross and k a heart at the output of the fiber. The fidelity for each

transmitted image with respect to the same transmitted image obtained using the transmission matrix of the system (sending ground truth SLM

phases (labels), which are calculated by the inverse of the transmission matrix through the fiber, and capturing output images by the camera) is also

shown
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phase is also introduced. Thus, in this scenario, the net-

work is automatically learning to recover the phase ϕ(x, y)

in an inverse mapping, in which the amplitude of the fiber

output complex optical field, i.e., Eðx; yÞj j, is used as the

input of the CNN feed-forward operator H (.):

H Eðx; yÞj jð Þ=∠I(x, y)=∠eiϕ(x, y)
= ϕ(x, y), where ∠ is

the argument operator. We observe that the training takes

longer and converges to a higher MSE than that in the

amplitude case. We attribute this partly to the fact that

there is a high level of resemblance among the output

amplitude speckle patterns when different handwritten

Latin alphabet examples are shown, and partly because

the network needs to learn a double nonlinearity. We

showed that this problem of convergence rate could be

significantly improved by using Res-net style networks.

Not only does Res-net perform better in terms of training

time but also it performs better in terms of fidelity.

We achieved a fidelity of 79% for VGG-net and 88% for

Res-net with training times of 9 h 0min for VGG-net

and 1 h 0 min for Res-net. Conspicuous differences in

fidelity numbers further show the necessity of using a

more complex architecture when dealing with highly

nonlinear inverse problems.

Transfer learning and image projection

Remarkably, we showed that our CNN is able to achieve

transfer learning, i.e., reconstruct/transmit the desired

patterns that did not belong to the class of images used to

train the network. Specifically, we found that the VGG-

net CNN was able to reconstruct the class of handwritten

digits with an ~90% fidelity.

In a similar manner and in another experiment, we have

shown that the network can be trained successfully with a

different set of input–output images. In particular, we

used a set of input plane waves at different angles filling

the numerical aperture of the fiber and their corre-

sponding speckle amplitude patterns at the fiber output

(see the Supplementary Materials). In this case, very

similar results in terms of image fidelity reconstruction

were obtained (Supplementary Fig. S2). Interestingly,

this network did not perform well in transfer learning

(Supplementary Fig. S4). It is thus important to use a

proper set of training examples. We posit that there could

be other sets of images (than the handwritten Latin

alphabet), which could work well with the MMF. Notably,

the transmission matrix of the system is similarly built

using a proper set of complex input–outputs using non-

trivial interferometric approaches. The proposed CNN-

based method, however, learns to relate the nonlinear

amplitude-to-phase/amplitude inversion in the real

domain. Thus, the network is effectively learning a sub-

space, instead of the complete space, which the matrix

learns, by using a much simpler noninterferometric

optical setup. Replicating the transmission matrix also

brings advantages for image projection in MMFs. In this

manner, we showed that our CNN could implement

transfer learning for image projection, i.e., it can generate

input phases that project arbitrary patterns at the distal

end of the MMF.

Materials and methods
Experimental set-up

The optical setup for the transmission of light through

the fiber is depicted in Fig. 5. The system here is a step-

index (length= 0.75 m) MMF with a 50 µm diameter

silica core and a numerical aperture of 0.22 (1055 number

of fiber modes33). The inputs correspond to 2D phase

patterns displayed on a phase only SLM, which are then

MMF

FC1
OBJ1

PA

FC2
QWP2

OBJ2

QWP1

SMF1

LP1
L4

L1AP
FH1 SLM

SLM driver unit

Camera

L2

Fig. 5 Optical setup. A schematic of the experimental setup for the transmission of light through the fiber. The pattern created by the SLM is

imaged through the relay system (lens L1 and objective lens OBJ1) at the MMF input. An identical relay system (OBJ2 and L2) magnifies the image

transmitted through the fiber and projects it on the camera plane
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demagnified on the MMF entrance facet by the 4 F system

composed of lens L1 and OBJ1. The MMF output facet

is imaged onto a camera.

The light source is a continuous wave source at 532 nm

with a power of 100 mW, which is attenuated with a

variable attenuator to deliver only 1 mW for the acquisi-

tion of the images. The light source is coupled into a

single mode fiber. The light beam coming out of the

SMF1 (object beam) is filtered by the polarizer LP1, col-

limated by the lens L4 and directed on the SLM, which

can spatially modulate the impinging light. The pattern

created by the SLM is imaged through the relay system

(lens L1 and objective lens OBJ1) at the MMF input. The

quarter wave plate (QWP1) before the fiber input changes

the polarization from linear to circular (this polarization

is better preserved in step-index fibers34). Then, light

travels through the fiber and at the output, an identical

relay system (OBJ2 and L2) magnifies the image of the

output and projects it on the camera plane (the QWP2

converts the circular polarization back to linear).

Neural network architecture

The problem of inferring the input phases/amplitudes

from the output amplitude speckle patterns can be well

studied in the framework of learning-based approaches, in

which one seeks to solve an inverse problem based on

available examples that are related to each other via an

operator representing the physical system, here the fiber.

Let I(x,y) and E(x,y) denote the complex optical fields

at the input and output of the fiber, respectively. Our

objective is to find the input fields, either the amplitude or

the phase of I(x,y), from the amplitudes of the output

optical fields, i.e., Eðx; yÞj j. Mathematically, the objective

function for amplitude-to-amplitude inverse problem

reads as24

θ
o ¼ arg min f H θ; Eðx; yÞj jð Þ; Iðx; yÞj j½ � ð1Þ

in which H is the feed-forward operator and f is the cost

function. In the case of an amplitude-to-phase conversion,

Iðx; yÞj j is replaced with ∠Iðx; yÞ. The feed-forward

operator H is basically the CNN, comprising linear mul-

tiplicative and additive weights and biases as well as

nonlinear units. Learnable parameters of the network are

denoted by θ. The ultimate goal is to find optimal values

of these parameters, denoted by θ°, in a way that the

operator H (which in principle is representing light back-

propagation in the MMF) minimizes the cost function.

The architecture of the VGG-net CNN (feed-forward

operator H) is schematically shown in Fig. 6 (the
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architecture of the Res-net CNN is discussed in detail in

the Supplementary Materials). This architecture consists

of 12 blocks, in which the first and the last are the input

and output units that are responsible to encode and

decode data to the network, respectively. The input block

maps the grayscale input images (one channel) to 64

channels (stack of processed images) via a trainable con-

volutional unit. The middle 10 blocks constitute the 20

hidden layers of the neural network, wherein each block is

formed by two convolutional entities that are individually

followed by an element of the rectified linear unit35

(RELU) with a mapping functionality RELU(x)=max(0,x).

The convolutional layers within each block take the

convolution of the stack of input feature map X
q
k using

weights W
q
k and biases B

q
k complying with the formula

X
q
kþ1 ¼ ConvW q

k
ðXq

k Þ þ B
q
k , where the subscript k indicates

the layer number and the superscript q={1,2} corresponds

to the first and second convolution operations in each and

every block. Mathematically, the convolution operator

outputs the input feature maps X
q
k as27:

X
q

kþ1;rði; jÞ ¼
X

p

X

2

n1¼0

X

2

n2¼0

X
q

k;pðiþ n1; jþ n2ÞW
q

k;r;pðn1; n2Þ

ð2Þ

where i and j are the pixel indices of the feature maps and

X
q

k;p denotes the p-th input feature map of the stack X
q
k

inside the k-th layer and before the q-th convolution unit in

that layer. Likewise, W
q

k;r;p indicates a kernel of weights

belonging to the k-th layer and the q-th convolution, which

is multiplied to the p-th input feature map and outputs

the r-th feature map in the next layer. We have used only

3 × 3 convolution kernels and thus, the pixel indices of

the kernels, i.e., n1 and n2, take values from 0 to 2.

At the output of each block, an additional Max-

pooling36 unit is considered. Max-pooling units help

to avoid overfitting and therefore are essential parts

of the network. These units decrease the widths and

heights of the images passing through them by a factor

of two. To keep the dimension of the images constant

throughout the network, additional Reshaping units

are placed just before the Max-pooling units. Supple-

mentary Figure S7 depicts the detailed schematic of

the Reshaping elements. These units reorder the stack of

256 MxM images into 64 2Mx2M images. The Max-

pooling units then downsample the 2Mx2M images back

to MxM images.

The final block is made of a convolutional layer that

simply decodes back the images from 64 channels to the

original single-channel grayscale images. The architecture

of the network in this work follows the standard block-

structure (conv-RELU)→(conv-RELU)→MaxPool, which

is adopted from VGG-Nets (VGG19) and customized by

adding the Reshaping units before the Max-pooling units.

Increasing the number of layers or the number of chan-

nels (very deep and wide architectures) adds to the

complexity of the network. It is a well-known fact from

the generalization theory in machine learning that more

complex networks require more training data to over-

come overfitting. On the other hand, the ability of the

network to generalize degrades when shallow/thin net-

works are used. Therefore, the number of hidden layers,

herein 20 for the VGG-net architecture, as well as the

number of output (input) channels in the input (output)

block, i.e., 64 channels, is empirically chosen based on a

trade-off among the network’s complexity, the number

of training data, and the level of accuracy desired to

obtain the optimal results. Additionally, more complex

networks require processing units that are able to do

computationally intensive calculations more rapidly.

Therefore, the complexity of the network is also balanced

here with the available hardware power as well as the

image output time.

Once the images are obtained in the final layer of the

CNN (feed-forward step), they are compared with their

corresponding labels in a MSE sense. The MSE in this

comparison that is used for updating the learnable para-

meters in the stochastic gradient descent37 algorithm

reads as follows:

MSEðθÞ ¼
1

N ´M ´M

X

N

l¼1

X

M

i¼1

X

M

j¼1

jY Rl

i;j ðθÞ � Y Ll
i;j j

2

ð3Þ

where θ is the CNN’s set parameters (including weights

and biases), i and j are the indices of the neural network

reconstructed image Y Rl and the label image Y Ll

belonging to the l-th image pairs, where l and N are the

samples’ mini-batch index and size, respectively, and M is

the width and height of the images. Once the stochastic

MSE function in Equation (3) is calculated, it is optimized

using the adaptive moment estimation optimization

(ADAM) algorithm37. To obtain accurate results within a

reasonable time, we empirically choose a learning rate

parameter of 10−4 in the optimization algorithm and a

mini-batch size of 64 (to expedite training, we choose

a higher learning rate (10−3) for the CNN that is used

for experimental validation. The batch size in this case

is 20). Details of the technical implementation including

the platform for writing the back-propagation algorithm

as well as the specifications of the processing units can be

found in the Supplementary Materials.

Data preparation

Throughout the paper, the field amplitude at the output

of the MMF, i.e., Eðx; yÞj j, is used as the input of the

neural network and its corresponding phase or amplitude

pattern at the proximal end of the fiber, i.e., ∠Iðx; yÞ or

Rahmani et al. Light: Science & Applications  (2018) 7:69 Page 9 of 11



Iðx; yÞj j, is used as the labels to the network. We use the

transmission matrix of the system, referred to as T

hereafter, which is obtained via the optical setup sche-

matically depicted in Supplementary Fig. S5, to generate

the input/label pairs for the training and test datasets. The

procedure to obtain the matrix is further explained in

the Supplementary Materials. The transmission matrix

method has been shown to be a robust method to accu-

rately characterize the transmission of light through

MMFs and thus provide a convenient method to generate

the datasets.

In a more detailed fashion, the dataset for training the

network used with the Latin alphabet is obtained as fol-

lows. The transmission matrix is utilized to compute the

output amplitude speckle patterns of the input amplitude/

phase Latin alphabet adopted from Ref. 32:

Eðx; yÞ ¼ F�1 T :F Iðx; yÞ½ �½ � ð4Þ

where F and F−1 denote the Fourier and inverse Fourier

transforms, respectively. Accordingly, pairs

Eðx; yÞj j; Iðx; yÞj jf g and pairs { Eðx; yÞj j, ∠I(x, y)} constitute
the data used for the amplitude-to-amplitude and

amplitude-to-phase inversions, respectively.

Likewise, the data set for training the network used for

experimental verification are obtained as follows. The

inverse of the transmission matrix is used to generate the

SLM phases that experimentally output images of the

Latin alphabet, i.e., phases that produce specific alphabet

images if illuminated on the fiber via the SLM:

ffIðx; yÞ ¼ arg F�1 T�1
:F Eðx; yÞ½ �

� �

ð5Þ
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