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Ivan Giorgio · Antonio Culla · Dionisio Del Vescovo

Multimode vibration control using several piezoelectric
transducers shunted with a multiterminal network

Abstract In this paper a new approach is presented to reduce vibrations for one- and two-dimensional
mechanical structures, as beam or thin plates, by means of several piezoelectric transducers shunted
with a proper electric network system. The governing equations of the whole system are coupled to
each other through the direct and converse piezoelectric effect. More in detail, the mechanical equations
are expressed in accordance with the modal theory considering n vibration modes and the electrical
equations reduce to the one-dimensional charge equation of electrostatics for each of n considered
piezoelectric transducers. In this electromechanical system, a shunting electric device forms an electric
subsystem working as multi degrees of freedom (dof’s) damped vibration absorber for the mechanical
subsystem. Herein, it is introduced a proper transformation of the electric coordinates in order to
approximate the governing equations for the whole shunted system with n uncoupled, single mode
piezoelectric shunting systems that can be readily damped by the methods reported in literature. A
further numerical optimisation problem on the spatial distribution of the piezoelectric elements allows
to achieve a better performance. Numerical case studies of two relevant systems, a double clamped
beam and a fully clamped plate, allow to take into account issues relative to the proposed approach.
Laboratory experiments carried out in real time on a beam clamped at both ends consent to validate
the proposed technique.

Keywords Vibration control · Shunt damping · Multi-mode control · Multiple piezoelectric
transducers

1 Introduction

In the last years the employ of structures more and more thin had made arise numerous issues
regarding structural vibrations. Hence, the object of this paper is the reduction of flexural vibrations in
mechanical structures, as beam and thin plates. To obtain an effective damping of structural vibrations,
piezoelectric transducers are employed. This is primarily due to the growing availability of more efficient
piezoelectric materials. Smart structures using piezoelectric elements, indeed, are successfully employed
in reducing vibration [1; 2; 3; 4; 5; 6; 7; 8; 9].

In the shunt-damping technique the reduction of structural vibrations is achieved by shunting a
piezoelectric transducer with an electric network that acts to increase the mechanical damping. In
details, a piezoelectric transducer coupled to mechanical structures can convey the mechanical energy
toward the electric network system where it is dissipated.

A classical application of this method is a single resonant piezoelectric shunting system studied
in [10; 11]. The damper is formed by a piezoelectric element shunted with an inductor and a resistor.
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The external shunt circuit with the inherent piezoelectric capacitance is an RLC circuit. Its natural
frequency is imposed equal to one natural frequency of the original mechanical structure by maximising
the energy exchange. The resistance role is to maximise the electric dissipation of the energy coming
from the mechanical structure. Its main drawback is the requirement of high-value inductors (10 ÷
1000H), working at high-voltage. For this reason, passive components are commonly implemented
through active circuits which require an external feeding.

Further applications involve one piezoelectric transducer coupled with a multiresonant electric
network to damp a set of mechanical modes. Hollkamp’s circuit is one of this kind [12]. The shunt
network consists of a set of branches whose main is an RL circuit. The other branches are RLC
shunts. The number of controlled mechanical modes is equal to the number of the branches. An issue
of this technique is the necessity of retuning the circuit when a branch is added. Indeed, in [12] is
proposed no closed-form tuning solution.

Moreover, other approaches use multiple piezoelectric transducers by shunting each of them to a
proper multiresonant electric network [13]. In practice, to account for the undesired cross influence of
the shunt circuits on the mechanical modes to be controlled, a proper fine-tuning is due.

In [6; 14; 15; 5] systems with periodically distributed piezoelectric transducers and modular shunt-
ing networks are considered. This approach adopts homogenised continuum modelling and looks for
periodic lumped electric systems having, in the continuum limit, the same dynamic behaviour of the
mechanical structure to be controlled. The drawback of this “continuum mechanics” approach is the
requirement of a high number of piezoelectric elements and complex shunting networks, in order to
approach the continuum limit.

The aim of this study is to extend the resonant shunting techniques to control multiple vibration
modes with multiple piezoelectric transducers by an electric network which interconnects the whole set
of piezoelectric elements. A great attention has been devoted to design the shunting network system, in
order to ensure a satisfactory coordination of all piezoelectric transducers so that all mechanical dof’s
in need of control are damped at the same time. The key idea in this paper is to make the whole shunted
system equivalent to a set of independent single resonant piezoelectric shunting systems. Therefore,
it is possible to use the widely investigated methods presented in literature. The proposed network is
actualised for the laboratory experiments, despite of its passive nature, with an active feedback control.

2 Model of the structure integrating multiple piezoelectric transducers

We consider a structure integrating a set of piezoelectric transducers. The transducers are generally
piezoelectric patches bonded on the structure. From the electric point of view, each transducer is
characterised by two electrodes and can be regarded as a two-terminal port.

Let w(x, t) be the displacement field of a linear elastic continua with a set of np piezoelectric
transducer. As a first order of approximation, each piezoelectric transducer is, according to Norton’s
theorem, electrically equivalent to a strain dependent charge generator in parallel with a capacitance
Ch and a resistance Rh [16].

The following partial differential equations describe the motion of the elastic continua coupled with
the dynamic equation, implying the charge conservation, of the piezoelectric transducers

L [w(x, t)] +
∂

∂t
D [w(x, t)] +M(x)

∂2w(x, t)

∂t2
= fd(x, t) +

np
∑

h=1

Ph [℘h(x)]
dψh(t)

dt

Qh(t) =
dψh(t)

dt
+

1

Rh Ch

ψh(t) +

∫

Ah

Ph [w(x, t)] dAh h = 1, 2, . . . np

(1)

A set of associated boundary and initial conditions must be considered to solve the differential problem.
L, D and M are linear homogeneous differential operators, with respect to the spatial coordinate x.
They constitute a model of stiffness, viscous damping and mass density respectively of the system.
The term fd(x, t) is the external disturbance load to the structure and the further sum involves that
each of the np piezoelectric transducer applies a forcing input proportional to the time derivative of
the flux linkage, i.e. the terminal voltage of the h-th transducer. To simplify the theoretical analysis,
the second equation of Eqs. (1) is normalised to a unit piezoelectric capacitance. Thus, the electric
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quantities ψh and Qh are respectively the product of the flux linkage by the square root of the inherent
capacitance and the induced charge divided by the square root of the same capacitance, Ch. Ph is a
linear homogeneous differential operator and ℘h(x) is a spatial function of piezoelectric localisation
that takes the value 1 where the piezoelectric element is placed and 0 everywhere else. The third term
of the right hand side of this equation is the normalised charge induced by the piezoelectric effect. The
region Ah is that occupied by the h-th transducer. In ordinary applications, the internal resistance Rh

is very large and can be neglected.
The displacement, w, of the considered system may be expanded in the series

w(x, t) =
∑

i

Wi(x) ηi(t) with i = 1, 2, . . . (2)

Wi(x) are the mode shapes of the i-th eigenfrequency of the undamped system for null mechanical

load and under short circuit condition: ψ̇h = 0 for each h (the superscript dot denotes the derivative
with respect to t). Therefore, they are the eigenfunctions that are obtained by solving the eigenvalue
problem

L [W (x)] = λM(x)W (x) (3)

with its associated boundary conditions. The coefficient ηi(t) is the generalised coordinate describing
the response of the i-th normal mode.

Considering nm normal modes, the Eqs. (1) may be rewritten as follows
{

η̈ +D η̇ +Ω2 η −Ω Γ ψ̇ = f

ψ̈ + Ξ ψ̇ + (Ω Γ )
T
η̇ = ı

(4)

with an opportune set of boundary and initial condition. This is a system of nm+np ordinary differential
equations.

Denoting each natural frequency of undamped oscillation under short circuit condition with ωi, the
nm × nm matrix Ω is defined as Ωih = ωi δih with δih the Kronecker delta. The nm × nm damping
matrix D is given by

Dih =

∫

A

Wi(x)D [Wh(x)] dA (5)

is symmetric if the operator D is self-adjoint. The unit-frequency normalised coupling matrix Γ is a
nm×np matrix whose entries Γih represent the coupling coefficient between the i-th normal mode and
the h-th piezoelectric transducer and are defined by

Γih = 1/ωi

∫

A

Wi(x)Ph [℘h(x)] dA

= 1/ωi

∫

A

℘h(x)Ph [Wi(x)] dA
(6)

The nm-dimensional vector f , representing mode forces, is given by

fi(t) =

∫

A

Wi(x) fd(x, t) dA (7)

The np×np matrix Ξ is defined as Ξih = [1/(RhCh)] δih. The column ı represents the np-dimensional
vector of normalised currents flowing through the piezoelectric elements.

3 An Independent Modal-Space Shunt Damping Technique

Let us consider nm = np = n, in order to use each electric dof, ψh, to control one modal mechanical
dof, ηi.

An undamped system is considered:
{

η̈ +Ω2 η −Ω Γ ψ̇ = f

ψ̈ + (Ω Γ )
T
η̇ = ı

(8)
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Note that a small amount of damping is not relevant to design the shunt network because it does not
produce a significant change in the natural mechanical frequencies and modes. The piezoelectric cou-
pling matrix Γ must not be a singular matrix in order to avoid lack of controllability and observability.
Generally Γ is also not diagonal. In Eqs. (8) mechanical and electric dof’s are coupled by means the
piezoelectric effect. In general Eqs. (8) represent a set of 2n simultaneous linear second-order ordinary
differential equations with constant coefficients.

In order to obtain a set of equations equivalent to Eqs. (8), consisting of n single mode piezoelectric
shunting systems [10; 11], a coordinate transformation is introduced

ψ = Uχ (9)

where χk(t) , k = {1, . . . n}, are generalised electric coordinates and U is a constant orthogonal square
matrix referred to as transformation matrix. Next, premultiplying both sides of the second equation
by UT , the transpose of U , and applying the orthogonal properties of U , it results

{

η̈ + Ω2 η −Ω G χ̇ = f

χ̈ + (Ω G)T η̇ = z
(10)

where the matrix G = ΓU is the electro-mechanical coupling matrix in the electric coordinates χk(t)
and

z = UT ı (11)

is an n-dimensional vector whose elements are the electric forcing terms associated with the new
coordinates χk(t). Comparing Eqs. (10) with (8), it is possible to note that the form of the system
does not change for the orthogonality imposition of the transformation matrix U . Besides, it is clear
from equations (10) that if G were diagonal, recalling that Ω is diagonal, the uncoupling by means of the
coordinate transformation would be reached. Therefore, it would be possible to identify n uncoupled
systems of two equations, each pair constituted by a mechanical equation and an electrical one. It
means that each component of χ influences only the corresponding component of η and vice versa.

It should be noted that, if Γ were diagonal it would be possible to identify immediately n single-
mode piezoelectric shunting systems, without recoursing to transformation U . But there would be
something inefficient with this arrangement. The action of a piezoelectric transducer is local and so,
working each of them on only one mechanical dof, the global damping is very weak. In addition, it is
difficult to find an optimal pattern of the piezoelectric set that makes Γ diagonal.

3.1 Linear transformation for independent control

Let Mn denote the vector space of all square matrices of order n over real field R. It is easy
to check that given any square matrix Γ in Mn and a matrix U belonging to the orthogonal group
Orth(n), the problem of diagonalising G = ΓU admits solution if and only if the rows of Γ are mutually
perpendicular. If it does not occur, an exact diagonalisation of G is not feasible, so that a different
approach is desirable. Herein it is proposed to find the best transformation matrix U that makes G
approximatively diagonal. Using the point of view of the set theory, let G be the set of all possible
electro-mechanical coupling matrix that is the set of the matrices ΓU as U varies over the orthogonal
group Orth(n) as well let Dn be the vector subspace of the diagonal matrices of order n. The wanted
U is the matrix which identifies the Euclidean distance between these two sets. Such distance d(G,Dn)
between the sets G and Dn is defined as the infimum of all distances between any two of their respective
elements, ΓU and D, and can be expressed as

d(G,Dn) = inf
U∈Orth(n)

{

inf
D∈Dn

‖ΓU −D‖
}

(12)

where the expression inside the curly brackets defines the orthogonal projection of ΓU onto Dn and
indeed represents the closest diagonal matrix to ΓU . Thus, for any matrix U , there exists a unique
matrix DΓU that belongs to Dn that attain the infimum, that is to say a minimum. In particular, it
can be written

ǫ = min
D∈Dn

‖ΓU −D‖ = ‖ΓU −DΓU‖ (13)
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The non-negative quantity ǫ, identified by ‖ΓU −DΓU‖, represents the error by approximating ΓU
with a diagonal matrix.

To find the orthogonal projection DΓU for a given matrix Γ and any orthogonal matrix U , let
B = {Di : i = 1, 2, . . . n} be the standard basis of D consisted of n diagonal matrices with one in the
ii-th entry and zero elsewhere. Then, since the matrix DΓU can be written in the form

DΓU =
∑n

h=1
αhDh (14)

the coefficients αh can be obtained by using the orthogonality of the projection (ΓU −DΓU ) ·Dh = 0
and the orthonormality of the unit matrices of the chosen basis Dh ·Dk = δhk to get αh = ΓU ·Dh.
Thus, the orthogonal projection of ΓU over D is the operation of taking the diagonal part of the matrix
ΓU .

Besides, since the theorem of Weierstrass states that the real valued continuous function of the
matrix U , ǫ(U), assumes a minimum and a maximum value on the compact subset Orth(n) of Mn, it

assures the existence of a matrix Ũ in Orth(n) that attain the infimum of the expression (12). Thus,
the above optimisation problem, equivalently expressed in terms of squared distance, becomes

d(G,Dn)
2 = min

U∈Orth(n)
‖ΓU −DΓU‖2 (15)

Taking the properties of the standard inner product for granted, one can expand the cost function for
the optimisation problem (15) as follows

‖ΓU −DΓU‖2 = (ΓU −DΓU ) · (ΓU −DΓU ) =

= ΓU ·ΓU − 2ΓU ·DΓU +DΓU ·DΓU

(16)

Next, being the matrix U orthogonal, it is easy to check that

ΓU ·ΓU = Γ ·Γ (17)

that is to say the norm of coupling matrix G = ΓU does not depend on transformation matrix U . Once
again taking into account the orthogonality of the projection, it is possible to write

(ΓU −DΓU ) ·DΓU = 0 (18)

Therefore, introducing the Eqs. (17) and (18) into Eq. (16), it turns out that

‖ΓU −DΓU‖2 = Γ ·Γ −DΓU ·DΓU (19)

It is clear from the Eq. (19) that, for any fixed matrix Γ , the optimisation problem (15) is equivalent
to the problem

max
U∈Orth(n)

‖DΓU‖2 (20)

It turns out that any matrix G is associated with the transfer of power through the piezoelectric
transducers between the mechanical dof’s, ηi(t), and the electric dof’s, χk(t), employed to control
vibrations. The relation (17) shows that this power depend only on the matrix Γ and therefore the
piezoelectric placement. The role of the transformation matrix U is to improve the energy exchange
between the two linked systems. In fact, the two optimisation problems (15) and (20) are equivalent as
shown in (16)- (19). The first problem (15) guarantees that the off-diagonal entries of G are minimum,
the second one (20) makes the on-diagonal elements maximum.

An optimal matrix U , that depends on a given Γ , is obtained by solving the problem (20). By using
the method of Lagrange multipliers the following relationships can be written (see appendix A):















∑

r,h

(ΓirΓih − ΓjrΓjh)UirUjh = 0 ∀ i < j

∑

r

UirUjr = δij ∀ i ≥ j
(21)

that is a system of n2 quadratic equations in n2 unknown variables, Uij .
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3.2 Piezoelectric placement for independent control

An additional optimisation can be performed varying Γ through a placement modification of piezo-
electric transducers. The targets are to enhance the norm of the matrix Γ , in order to reach the
maximum power flow between the two subsystems, and to diminish the error ǫ in the approximation
of G with a diagonal matrix, see Eq. (13). It should be noted that such error vanishes as the rows of Γ
tend to be mutually perpendicular, in this case indeed the matrix G is absolutely diagonal. To this end,
consider the matrix ΓΓ T can be uniquely decomposed into the sum of two matrices, its diagonal part,
DΓΓT and its non-diagonal part, NΓΓT . In fact, the diagonal entries of DΓΓT are the squared lengths
of the rows of Γ and each of them represents the whole power transferred related to the corresponding
mechanical dof. Furthermore, the entries below or above the main diagonal of NΓΓT are all the dot
products between any two different rows of Γ and vanish only if they are perpendicular. Hence, a
natural objective function can be introduced as

µ(Γ ) = ‖DΓΓT ‖ − b‖NΓΓT ‖ (22)

where b is a proper positive real weight. Now, in accordance with the above, the additional optimisation
problem is to find the matrix Γ that maximises the objective function (22), that is

max
Γ∈S

µ(Γ ) (23)

in which S is the set of all possible Γ . Thus, the goal here is to find a matrix Γ whose rows approach
to be of maximum length and mutually perpendicular.

4 Numerical Simulations

In order to determine characteristics of proposed control, significant numerical cases are considered
in this section. At first a numerical analysis is performed on a thin beam with both ends clamped. To
further illustrate characteristics of these control a second case is considered involving a rectangular
fully clamped plate. Herein, a most important assumption is to consider as piezoelectric transducer two
identical thin slice of piezoelectric material bonded symmetrically on both faces of the thin structures
and connected in parallel. They are bonded with inverted polarisation directions in order to produce
opposite displacement and to induce pure bending. In this way each transducer is associated to one
electric dof because of the parallel connection.

Now, recalling that G is quasi-diagonal and therefore neglecting its off-diagonal entries, it is possible
to set Gjk = gj δjk and, thus, the equations (10) can be written in the scalar form

{

η̈j(t) + ω2
j ηj(t)− ωj gj χ̇ j(t) = fj(t)

χ̈ j(t) + ωj gj η̇j(t) = zj(t)
, j = 1, 2, . . . n (24)

For each j index, the equations (24) represent a single mode piezoelectric shunting system being the
electric forcing term, zj , dependent on the generalised electric coordinate, χj , and its derivatives:

zj = zj(χj , χ̇j , . . .), j = 1, 2, . . . n (25)

In accordance with Wu’s method [11] all the test cases are performed by considering the following
relationship for the control action:

zj = − 1

rj
χ̇j(t)−

1

ℓj
χj(t), j = 1, 2, . . . n (26)

This is a shunt circuit with a resistor, rj , and an inductor, ℓj , connected in parallel, see Fig. 1.
Computing the optimal values of rj and ℓj for each mode to control, it is possible to assemble the

generalised electric forcing vector z

z = −R χ̇− L χ (27)
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Fig. 1 Equivalent circuit for a virtual passive shunt circuit in parallel configuration.

defining the diagonal matrices Rhk = (1/rh)δhk and Lhk = (1/ℓh)δhk. Thus, the network constitutive
relations get the form

ı = −NR ψ̇ −NLψ (28)

utilising definitions (9) and (11) and setting

NR = UR UT NL = UL UT (29)

where NR and NL are the inductive and the resistive part of the network shunts to the piezoelectric
terminals. Because rh and ℓh are all strictly positive and the matrix U is orthogonal, it follows that the
network matrices NR and NL are symmetric and positive definite. The column vectors of the matrix
U can be interpreted as their common eigenvectors, and (1/rh)’s and (1/ℓh)’s are the corresponding
eigenvalues. Besides, to assure their realisation with purely passive components, the network matrices
should fulfill other conditions as well as being symmetric and positive definite. A sufficient further
condition is the property to be diagonally dominant matrices, see e.g. [17]. Herein, this additional
condition has not been considered because the shunt network is implemented with an active feedback
control.

4.1 Finite Element Model

For all the test cases an accurate estimate for the natural frequencies and corresponding mode
shapes, including effects of the piezoelectric transducers under short circuit condition, is obtained by
a finite element code ANSYS

r . The finite element model, here elaborated, is based on the choice
of brick elements, solid226, for the discretisation of piezoelectric patches and of quadrilateral shell
elements, shell93, for modelling the host structures given that they are designed to model efficiently
thin structures.

It is clear that the connection between these two kind of elements is a crucial problem for modelling
overall structure. The condition of bonding the piezoelectric material on the host structure is realised
in Ansys by constraint equations, where node displacements of piezoelectric element at the interface
with the structure are imposed to make null the relative displacement between the two types of element
according to the hypotheses of the Kirchhoff-Love model, as proposed in [18].

The short circuit condition for the piezoelectric elements is modelled by imposing a null voltage on
both electrodes of each patch.

To determine the entries of the coupling matrix Γ , the above finite element model is used.

4.2 Clamped-clamped beam case study

The clamped-clamped beam is assumed to be made of aluminium with a rectangular cross section
of height h equal to 2.9 · 10−3 m and width 2 · 10−2 m and having length L equal to 0.45 m. Three
piezoelectric transducers are bonded on the beam to implement the proposed technique on three
mechanical modes. The modes of interest are the lowest because they are prominent in the dynamics
of interest. The piezoelectric transducers are assumed to be of ceramic material with properties given in
table 1. The example results given below are for piezoelectric patches of width bp equal to 1.8 · 10−2 m
and thickness hp equal to 2.67 ·10−4 m. Table 2 displays lengths of the piezoelectric transducers and
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Fig. 2 The beam with three piezoelectric transducers in bending configuration.

Table 1 Material characteristics of the piezoelectric transducers

symbol value unit

Permittivity ε33 3800 ε0
Piezoelectric Strain Constant d33 650× 10−12 m V−1

d31 −320× 10−12 m V−1

Density Mass ρpe 7800 kg m−3

Young Modulus Y3 50× 109 Pa
Y1 62× 109 Pa

Poisson’s Ratio νpe 0.31

their positions defined as the distance of each two-element piezoelectric transducer from one end of the
beam. The structure is sketched in Fig. 2.

The modal model of the beam with piezoelectric transducers has the same form presented in Sect. 2.
In agreement with classical results [19; 20], the expression for the entries of the normalised piezoelectric
coupling matrix Γ are

Γjr =
d31 Y1 (h+ hp) bp

ωj

√
Cr

[

∂Wj

∂x1

]x
(r)
1,f

x
(r)
1,i

(30)

Herein the notation [f(x1)]
x1,f
x1,i = f(x1,f )−f(x1,i) has been used. Let us remember that the piezoelectric

material is orthotropic. d is the piezoelectric strain constant, ε is the permittivity at constant stress.

x
(r)
1,i and x

(r)
1,f represent respectively the start and end distance of the r-th transducer, ∂Wj/∂x1 is the

mode rotation function of the beam for the j-th mechanical mode under short circuit condition and ωj

is the natural frequency associated with it. It should be noted that these entries are also proportional to
the average mode curvature of the region covered by the piezoelectric patches. The whole capacitance
of the two piezoelectric elements in parallel connection is

Cr = 2
(

ǫ33 − 2 d 2
31 Y1

) ar bp
hp

(31)

The piezoelectric locations are summarised in table 2. Two piezoelectric transducers are placed near
to the clamps of the beam and one is located close to, but not exactly, the middle section to sense or
excite even the second mode. The lengths are chosen to obtain coupling coefficients with comparable
values of bending wavelengths.

In previous sections the assumption that the system possesses negligible mechanical damping is
made. At this point the damping effect is included. Introducing this effect and making explicit the
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Table 2 Specifications of the piezoelectric transducers.

piezo length ar (m) location x
(r)
1,i (m)

1 0.036 0.003
2 0.07 0.155
3 0.036 0.411

actual electric flux linkage φ, the governing equations for the whole system assume the form











η̈ +D η̇ +Ω2 η = P φ̇ + f

C φ̈ + ℵp φ̇ = −PT η̇ + ι̃

ι̃ = −(NR φ̇ +NLφ)

(32)

in which Ω is the diagonal matrix of natural frequencies under the short-circuit condition, φ̇ = 0; the
matrix P defined as

P = Ω Γ
√
C (33)

is the piezoelectric coupling matrix; f is the modal mechanical forcing vector. The vector η has as
elements the modal coordinates. In this case the damping is assumed of the proportional type. This
implies that the matrix D is diagonal and can be expressed as

Dij = 2ξjωjδij (34)

where ξj is the damping ratio of the j-th mode assumed equal to 4 · 10−3 for all modes and δij is the
Kronecker symbol. The second equation is the current balance at the electrodes of the piezoelectric
elements. The matrix C is a diagonal positive definite matrix of piezoelectric capacitances, whose
elements Chδhk represent inherent capacitances of piezoelectric patches at blocked modal deflections,
η̇ = 0, the matrix ℵp is a diagonal positive definite matrix, whose entries are (1/Rh)δhk being Rh the

piezoelectric internal resistances assumed all equal to 10 MΩ; the term ι̃ =
√
C ı is the actual currents

flowing through the piezoelectric transducers. The third equation represents the network constitutive
relation in which the network matrices are defined as

NR =
√
CNR

√
C NL =

√
CNL

√
C (35)

The system (32) has been modelled with Simulink. The locations used to excite the beam and to
compute its response have been chosen to avoid the nodes appearing for low frequency bending modes.
In the simulation, the beam is exited by an impulse with a frequency spectrum covering a frequency
range from near zero to fmax that is 1200 Hz at 0.08 m from the one end of the beam. To model the
impulse, a half sine is employed. The peak value, F0, is assumed equal to 1 N and the time duration,
τ , is equal to 2.78 ·10−4 s so that 1/τ = 1.5fmax. The time of simulation T is about equal to 10 s, thus
the frequency analysis has a frequency resolution ∆f about equal to 0.1 Hz. The simulation step size
is 1/12500 s to avoid computation errors. The output is the velocity at the point x1 equal to 0.333 m.

Figure 3 displays the transfer mobilities of the uncontrolled beam with short-circuited piezoelectric
transducers and the beam with the optimal passive shunt. The first five modes are considered for the
computation of the mobilities and the first three modes are controlled. It is shown that at the first,
second and third eigenfrequencies the controlled beam mobility decreases of about 23 dB, 22 dB and
20 dB, respectively. It is still shown that the control does not influence the not controlled forth and
fifth modes. Since the same results shown in Fig. 3 are obtained when only the first three controlled
modes are considered in the computation, the spillover is negligible.

Figure 4 shows the comparison between impulse response of the controlled and uncontrolled beam.
The controlled response decreases faster than the uncontrolled one. In fact, at 0.15 s the controlled
response reduces of 99.8%, instead of the uncontrolled one that decreases of 98% at 1 s.
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Fig. 5 The plate with five piezoelectric transducers in bending configuration.

Table 3 Geometric and material characteristics of the plate.

symbol value unit

Length L1 0.297 m
Width L2 0.210 m
Thickness h 0.001 m
Density mass ρ 2700 kg m−3

Young modulus Y 69× 109 Pa
Poisson’s ratio ν 0.33

4.3 Fully clamped plate case study

The plate investigated in this case study is a rectangular fully clamped aluminium plate with
multiple piezoelectric transducers according to Fig. 5. In order to control five mechanical modes, the
proposed control uses five piezoelectric transducers in bending configuration. Let the five transducers
be identical. The model used below is summarised in appendix B. The domain A denotes the region
occupied by the plate and Ak is the region occupied by the k-th transducer. Tables 3 and 1 report the
material and geometric characteristics of the plate and of the piezoelectric elements.

This section presents an example that illustrates the optimisation problem of the transducer al-
location on the plate using the procedure outlined in Sect. 3.2 based on the index (22). To set up
the problem, one piezoelectric transducer out of five, A1, is placed at the centre of the plate a priori.
The other four piezoelectric transducers are located to form a symmetric pattern as shown in Fig. 5.
Lengths, a, and widths, b, of the piezoelectric laminae are fixed equal and comparable with wavelengths
of the modes of interest. Thus, the edges of the piezoelectric elements are 3.6 · 10−2 m, whilst the thick-
ness hp is equal to 2.67 · 10−4 m. These choices allow to make a parameterization of the transducer
arrangement by means of two scalar parameters [α1, α2] which represent the coordinates of left lower

corner, [x
(2)
1,i , x

(2)
2,i ], of the piezoelectric pair A2. Holding their symmetry the positions of piezoelectric

transducers from A2 to A5 are dependent only on the position of A2. Thus, the goal in this example
is to find a set of values [α̃1, α̃2] that maximise the index (22), that is

µ(Γ ) = ‖DΓΓT ‖ − 1

2
‖NΓΓT ‖ (36)

as parameters [α1, α2], subject to the constraint to avoid overlap between transducers, vary in a quarter
of the plate. This optimisation problem is iterative and requires the computation of the whole finite
element model at each step, thus it is very expensive. For this reason, a roughly analysis is previously
performed using mode shapes and natural frequencies of the plate without transducers. This analysis
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Fig. 6 Piezoelectric placement objective function µ(Γ ) for a quarter of plate.

permits to make faster the following finite element analysis using as initial guess for the parameter
vector [α1, α2] the optimal parameter vector obtained in this preceding step, see figure 6. Thus, the
starting guess is initialised to [0.0622, 0.0550] and the optimal parameter vector obtained with the
finite element model is

[α̃1, α̃2] = [0.0676, 0.0554] (37)

which corresponds to the position of the piezoelectric elements represented in Fig. 5. Note that the finite
element analysis yields little different result from the preliminary one, so it could be safely ignored.

In this case the piezoelectric coupling matrix relative to the generalised electric coordinates χk(t)
becomes

G =











0.250 0 0 9.75 ·10−4 0
0 0.302 0 0 0
0 0 0.297 0 0

7.84 · 10−4 0 0 0.323 0
0 0 0 0 0.396











(38)

Note that the second step of optimisation introduced in Sect. 3.2 allows to obtain a coupling matrix
Γ with all rows mutually perpendicular. Only the angle ϑ14 between the first row and the fourth row
of Γ is a slightly different, that is 0.498 π.

To validate damping performances of the proposed control, a Simulink model with the same
layout as the beam is used. In detail, the plate is excited by an impulse with a frequency spectrum
over a frequency range from near zero to fmax that is 1000 Hz. The mobility is considered between the
transversal force applied at the point Pf shown in Fig. 5, and the transversal velocity calculated at the
same point. The position of the point Pf is chosen to excite and observe all modes in the frequency
range of interest by avoiding nodal lines as more as possible. The impulse has a peak value F0 of 1 N
and a time duration τ of 3.33 ·10−4 s so that 1/τ = 1.5fmax. The time of simulation T is about equal
to 10 s. The simulation step size is 1/12500 s. To take into account the spillover problem the system
model consists of ten mechanical modes instead of five. Figure 7 displays the point mobilities of the
uncontrolled plate with short-circuited piezoelectric elements and the controlled plate with the optimal
shunting network. The proposed control is equally effective on all modes acting simultaneously on five
picks. Figure 8 displays the comparison between impulse response of the controlled and uncontrolled
plate. The controlled response reduces of 97.4% at 0.15 s, while the uncontrolled one has the same
decrement at 0.5 s.

Several authors extended the technique of the single shunt to damp multiple mechanical modes [12;
4; 21]. They shunt a single piezoelectric element with a circuit including several resistors, capacitors,
and inductors, to obtain a multi-resonant behaviour. In Fig. 9 the comparison between the result
given by the technique proposed in this paper and that obtained by the multi-resonant current flowing
circuits proposed in [21] is shown (see appendix C). The main feature of the proposed technique is to
exploit the coupling of the different piezoelectric transducers in an optimal way, by the maximisation
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Fig. 7 Comparison between mobility of the controlled and uncontrolled beam: the first five modes considered.
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Fig. 8 Comparison between impulse response of the controlled and uncontrolled beam.

of the transfer power and improvement of the energy exchange efficiency between the mechanical
and electrical system. Furthermore, the proposed approach does not employ additional capacitances
which reduce the efficiency of electromechanical coupling. The computational solution obtained by the
proposed technique allows to reach a maximum reduction in the magnitude of mobility of about 25
dB, instead of about 15 dB of the result of the approach proposed in [21].
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Fig. 9 Mobility of the uncontrolled plate and the comparison with the proposed control and the current
flowing control on the first five modes.

5 Laboratory Experiments

To test the effectiveness of proposed controls, an experimental case is considered in this section. The
analysis is performed on a thin beam with both ends clamped, the same described in section 4. First,
a system parameter identification is accomplished by means of system frequency response functions
(FRF’s). Then, the results of proposed technique are presented and are compared with those obtained
with numerical models. Particularly, the shunting network is implemented by means of an active
feedback control to avoid actualisation issues as the requirement of large inductor values.

5.1 Experimental set up

The test system is a uniform aluminium beam with rectangular cross section and experimentally
clamped boundary conditions at both ends. Great attention has been devoted to fix end points of the
beam to ground, in order to ensure that the whole assembly gives repeatable results. One of the tackled
problems is the change in stiffness due to axial load caused by environment temperature variations. To
avoid this problem the axial displacement at one end is allowed. Three pairs of piezoelectric ceramic
rectangular patches, connected in parallel, are bonded symmetrically to either side of the beam surface.
They are used as actuator to provide disturbing force, as sensor and also as shunting layer. The
experimental set up used to measure the FRF’s of interest is a typical layout for measurement or for
the active feedback control. The measurement chain consists in:

1. a Pc based data acquisition and arbitrary waveform generation system;
2. a piezoelectric transducer used as actuator to introduce external disturbance or driving excitation;
3. a power amplifier to drive with voltage or current piezoelectric patches;
4. two piezoelectric transducers used as shunting layer for the active feedback control;
5. sensors to measure the various responses of interest: accelerometers, a laser vibrometer and piezo-

electric transducers.
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Fig. 10 Mobility function of the beam.

Table 4 Resonance frequencies of the beam.

experimental (Hz) numerical (Hz) discrepancy (%)

mode 1 74.3 74.6 0.4
mode 2 206.2 209.6 1.6
mode 3 402.6 405.6 0.7
mode 4 660.2 662.4 0.7

5.2 System Identification

To extract modal parameters, that is resonance frequencies and related damping ratios, the beam is
excited by the piezoelectric pair 1 with a random band-limited signal so as to excite the bending modes
of interest with a frequency spectrum covering a range from 50 Hz to 1000 Hz. A power amplifier to
drive the piezoelectric actuator with voltage is used. As sensor a laser vibrometer is used. The time
history signals are 10 s long. Figure 10 shows the frequency response function obtained. The estimated
eigenfrequencies are summarised in table 4 in which there are even the resonance frequencies obtained
by the finite element analysis for comparing experimental and numerical results.

The piezoelectric inherent capacitances, are measured by a series LC circuit. The quantity C of
the circuit is the piezoelectric inherent capacitance, the inductance L is a variable floating inductor
made by active components. The LC circuit is excited by a voltage source and it is measured the
voltage on the piezoelectric terminals. Thus, the electric resonance frequency, ωLC , can be obtained
by analysing the frequency spectrum. By tuning the inductance, the frequency ωLC is set in a fre-
quency range where the mechanical effect can be neglected. For this value of electric eigenfrequency
the corresponding inductance is measured. Therefore, the piezoelectric capacitance is calculated by the
following relationship C = 1/

(

Lω2
LC

)

. The results are

C1 = 111.3 nF, C2 = 216.5 nF and C3 = 104.8 nF (39)

5.2.1 Coupling coefficients

The identification procedure used to measure the coupling parameters, that are the entries of the
matrix Γ , exploits the classical results based on the inductive-resistive single resonant piezoelectric
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Table 5 Normalised piezoelectric coupling coefficients.

piezo 1 piezo 2 piezo 3

mode 1 -0.0944 0.114 -0.105
mode 2 0.0821 -0.0868 -0.0915
mode 3 -0.0619 -0.0801 -0.0722
mode 4 -0.0533 -0.141 0.0533

Table 6 Numerical normalised piezoelectric coupling coefficients.

piezo 1 ∆1 (%) piezo 2 ∆2 (%) piezo 3 ∆3 (%)

mode 1 -0.1106 14 0.1327 9 -0.1105 5
mode 2 0.0965 14 -0.0973 7 -0.0987 9
mode 3 -0.0802 15 -0.1025 12 -0.0828 6
mode 4 -0.0637 21 -0.1417 1 0.0610 2

shunt circuit and the fixed point theory. For further details the reader is referred to the paper [22]. The
beam is excited through one piezoelectric transducer by a voltage source using a chirp of amplitude 1 V
which rises linearly in frequency nearly to the mechanical eigenfrequency of interest for a time of 10 s.
A second piezoelectric transducer is used as sensor, to obtain the frequency response function of the
system. The last piezoelectric transducer is shunted with a series RL tuned circuit where the inductor
is a variable device op-amp based. According with the fixed point theory, the coupling parameters are
calculated using the following relation

Γjr =

√

√

√

√−β2
jr +

√

β4
jr +

(ω2
T − ω2

S)
2

ω4
j

(40)

where βjr is the ratio of the electric resonance of the RLC shunt circuit on the r-th piezoelectric
transducer and the mechanical eigenfrequency ωj . The frequencies ωS and ωT are the fixed points
related to several values of resistance as depicted in Fig. 11. The inductance is tuned to have a ratio
βjr equal to 1. The obtained results are shown in table 5. In table 6 are shown the coupling coefficients
obtained via a finite element model and the comparison between direct measurement and numerical
prediction.

5.3 Control Validation

To test the proposed control, laboratory experiments are carried out in real time. In particular,
the MathWorks xPC Target is used to create a real-time controller using a standard PC. Matlab and
Simulink are used to create a model of the shunting network (see Fig. 12). It should be noted that
model size, complexity, and target PC hardware affect minimal sample time of execution. The model
employed (Fig. 12) can run with a sample time as fast as 33.3 µs, i.e. 30 kHz.

The shunt network system is realised through an active feedback control considering as measurement
signal the voltage on each piezoelectric transducer and as control signal the current flowing through the
same piezoelectric transducer in order to mimic the network behaviour. The chosen set up is primarily
due to the following aspects: the easiness to measure high voltage and to supply current with required
accuracy on a piezoelectric transducer, as well as the minor influence of the hysteretic phenomena of
the piezoelectric transducers driven by current source.

To check the validity of control, a dual channel FFT analysis is performed to calculate a FRF of
the beam. The disturbance actuator is one piezoelectric transducer driven by a linear chirp waveform
with a frequency range from 50 Hz to 800 Hz and an amplitude equal to 3 V. An accelerometer is
used to measure the response of the system and, therefore, to calculate the FRF . The other two
piezoelectric transducers are employed to control the beam vibrations. The acquisition time is 10 s,
hence the frequency analysis has a frequency resolution ∆f = 0.1 Hz. The figures 13-15 show the
transfer inertance and the comparison between the system response without control and with the
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control applied on two modes. It is shown as the passive network system acts over different pair of
modes attesting to be equally able to accomplish the purpose of reducing vibrations.

6 Conclusions

The main result of this work is an extension of the known piezoelectric shunt damping techniques.
We illustrated a method for controlling n structural modes by n piezoelectric transducers shunted
with a multiterminal electric network system. Differing from existing approaches which consider sev-
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Fig. 13 Inertance function of the beam and comparison with proposed control for the first and the second
modes.
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Fig. 14 Inertance function of the beam and comparison with proposed control for the first and the third
modes.
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Fig. 15 Inertance function of the beam and comparison with proposed control for the second and the third
modes.

eral separately shunts, our shunting network interconnects the piezoelectric transducers for a spatial,
simultaneous control of different mechanical modes. The shunting network forms, with the n inherent
piezoelectric capacitances at blocked modal deflections, an n dof’s electric system having the following
modal properties: the same natural frequencies of the set of mechanical modes to be controlled, optimal
damping ratios to absorb the mechanical energy.

Two optimisation problems were shown. By introducing a proper transformation of electric coordi-
nates, a one to one correspondence between the modal mechanical and new electric dof is approximately
attained. Further, the distribution of the piezoelectric transducers is improved to maximise the damp-
ing performance.

Two numerical cases, a double clumped beam and a fully clamped plate, was developed to validate
the technique. The numerical simulations, obtained with the aid of Simulink, show that the damping
performances are sensibly increased with respect to existing techniques for multimodal damping. This is
mainly due two reasons: the effective optimal use of all the transducers for all the modes, the avoidance
of the usage of additional external capacitors, which decrease the electromechanical couplings. Besides,
an experimental test case was accomplished: double clamped beam. In experimental implementations,
the required shunting network was obtained by an active feedback control, using multiple voltage-
controlled current sources.

The obtained shunt damping network is passive because the network matrices are positive definite
so the present technique can be classified as a virtual passive damping [23] and has the main advantage
with respect to purely active approaches to be unconditionally stable.

Appendix A: Optimisation problem

The optimisation problem (20) can be solved by using the method of Lagrange multipliers. To this
end, let ϑ(U) the objective function

ϑ(U) = DΓU ·DΓU (A-1)

subject to the orthogonal constraint

UUT − I = O (A-2)
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where I is the identity matrix and O the zero matrix both of size n. Now, define the Lagrangian, Λ, as

Λ(U, S) = DΓU ·DΓU − (UUT − I) ·S (A-3)

where S is a symmetric matrix of undetermined multipliers. Setting the partial derivatives of Λ respect
to U and S equal to zero, it is possible to write the system of equations

{

SU = Γ TDΓU

UUT − I = O
(A-4)

which solved yields the stationary values for the objective function (A-1). In detail, the Lagrange
multiplier matrix S can be expressed as

S = Γ TDΓUU
T (A-5)

Since the matrix S must be symmetric

S = Γ TDΓUU
T = UDΓUΓ = ST (A-6)

the first equation of the (A-4) becomes

(ΓU)TDΓU = DΓUΓU (A-7)

Finally, taking only the significant equations of the (A-7) and (A-2), the equation set that solved the
problem (20) consists of the following equations















∑

r,h

(ΓirΓih − ΓjrΓjh)UirUjh = 0 ∀ i < j

∑

r

UirUjr = δij ∀ i ≥ j
(A-8)

There is a geometric interpretation of this system. Each equation determines a quadric in n2-dimen-
sional space and hence, the solution set is the intersection of these quadrics.

Appendix B: Modal analysis of the plate

The governing equation of the plate with several piezoelectric transducers can be rewritten as
follows























B̃∇4w + m̃
∂2w

∂t2
= p+

np
∑

r=1

Kme (h+ hp)√
Cr

∇2℘r

dψr

dt

Qr =
dψr

dt
+

∫

Ar

Kme (h+ hp)√
Cr

(∂2w

∂x21
+
∂2w

∂x22

)

dAr, r = 1, 2, . . . np

(B-1)

Let us remember that the plate material is isotropic and the piezoelectric material is orthotropic.
The subscript p is related to piezoelectric properties. The material constants Kmm, Kme and Kee are
given by

Kmm =
Y1

1− ν 2
12

Kme = d31
Y1

1− ν12

Kee =
(

ǫ33 − 2 d 2
31

Y1
1− ν12

)

(B-2)
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Table 7 Parameters of the five current flowing circuits identical used for comparison.

I branch II branch III branch IV branch V branch

Li H 89.61 33.98 13.97 11.14 8.84
Ri Ω 4500 3500 1700 1500 1500
Ki nF 14.6 14.6 14.6 14.6 14.6

Ar is the area occupied by each piezoelectric pair, Cr = 2 (Kee/hp)Ar is the overall inherent capaci-
tance of the r-th piezoelectric pair, the total bending stiffness and the total mass per unit of surface
are

B̃ = B +

np
∑

r=1

Kmm

(

h2 hp
2

+ hh2p +
2

3
h3p

)

℘r

m̃ = ρ h+ 2

np
∑

r=1

ρp hp℘r

(B-3)

In order to consider the eigenvalue problem (B-1), the boundary conditions of fully clamped edges

for the transverse displacement, w, and the short circuit condition for normalised voltage, ψ̇r, are
assumed.

The mode model of the smart plate can be given in the form of Eq(8) where

Γir =
Kme (h+ hp)

ωi

√
Cr
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x
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 (B-4)

and

fi =

∫

A

p(x1, x2, t)Wi dA i = 1, . . . nm (B-5)

Appendix C: The current flowing shunt circuit

The current flowing shunt circuit proposed in [21] seems the most efficient thanks to the modular
circuital pattern and the reduced number of elements. The shunt has as many parallel branches as
the number of mechanical modes to be damped. Each branch is a series composed of two inductors
L̂i, L̃i, a capacitor Ki and a resistor Ri. The series L̂iKi behaves as a passband filter centred at the
eigenfrequency ωi of the i-th mechanical mode; in that frequency interval, the series L̃iRi operates in
a similar way as in a resistive-inductive single resonant circuit. Ideally, with this configuration each
branch controls a single mechanical mode, without affecting the others. With this assumption, the
optimal inductance for i-th mode would have the following expression

Li = L̂i + L̃i =
1

ω 2
i

(

1

Ki

+
1

Ch

)

(C-1)

where Ch is the capacitance of the piezoelectric transducer. In practice, to account for the undesired
cross influence of the branches on the mechanical modes to be controlled, a further numerical fine-tuning
is applied. Also, the additional capacitances Ki’s are set approximately to 10% of the piezoelectric
capacitance Ch, considering that additional capacitances worsen the electro-mechanical coupling and
smaller capacitances requires larger inductances.

The performance of the proposed shunting controls is compared with this multi-modal shunting
technique. To make these methods comparable, the single-shunt approach is generalised for the use
of multiple piezoelectric patches. The five piezoelectric transducers are shunted with five identical
multi-resonant current flowing circuits. Table 7 reports the corresponding numerical values for the
circuital components in Fig. 16. The inductances of each shunt are chosen according to (C-1), with a
further numerical fine-tuning. The resistances Ri’s are optimised numerically to minimise the maximum
amplitude of the plate mobility function around each natural frequency.



22

Fig. 16 A single shunt for multi-modal current flowing control.
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