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112 Abstract

113 A recentinnovationin assessment of climate change impact on agricultural production

114 has been to'usgop multi modeensemble$MMES). These studies usually find large variability
115 between individual models btitat the ensemble meé&mean)and mediarje-median) often

116 seem to predict quite welHoweverfew studies havepecificallybeen concerned with the

117 predictive gualityof those ensemble predictorse\skwhat is the predictive quality ofmean

118 and e-median, and how does that depend on the ensemalpéeteristicsOur empirical results

119 are lased orfive'MME studies applied to wheat, using different data sets bsaiine25 crop

120 models . Wesshow that the ensemble predictors have quite high skill and are beteoshand
121 sometimes all individual modelsrfmostgroups of environments amdostresponse variables

122 Mean squaredrror ofednean decreases monotonically with $iee of the ensemble if models
123 are added atrandom, but has a minimum at usually 2-6 motelstiit models are adddst.

124  Our theoretical/results descritiee ensemblasing fourparameters; average bias, model effect
125 variance, gnvironment effectvance and interaction variance. We shawvalyticallythat mean
126 squared-errorof predictio(MSEP) of eemeanwill always besmallerthanMSEP averaged over
127 models, anavill be less thamMMSEP of the best model if squared bias is less than the interaction
128 variance.If models are added to the ensemble at random, M&Efean will decrease dise

129 inverse of ensemble siz&ith a minimum equal to squared bias plus interaction varianhiis.

130 minimumwvalues not necessarily small, and so it is important to evaluate the predictive quality
131 of emean for each target population of environmeht®se resultprovide new information on

132 the advantages @insemble predictordut also show their limitains.
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Introduction

Climate change is expected to hamaraportant impact on crop production and its
geographic variabilitywith most results to date showing a negative influence of climate change
on crop Yields (IPCC, 2014). Cregpnulationmodels aremportant tooldor impact assessment,
that allow(one t@eneralizé¢o environmental conditiamand management options beyond those
observed experimental(fwert et al., 2015; Porter et al., 201%his makes possibfer
example a detailed spatial analysighe impact of climate changRosenzweig et al., 2014)
(Rosenzweig etal., 2014) andalwation of adaptation strategies for climate chai@®enu et
al., 2017).

A recentinnovation inthe use of crop models for impact assessment is the use of crop
multi-model ensembles (MMES), largely as a result of recent international cooperative programs
(Ewert et al., 2015; Rosenzweig et al., 2013), although the first studies go back to 201io(Palos
et al., 2011)In these studies, different modeling groups running different models are given the
same inputdinfermation and requested to provide simulated values for the same andylss.

An initial objeective of these studies was to evaluate the uncertainty in crop model predictions.
These studies found that there is large variabilifgredictionsbetween models, implying large
uncertainty«in predictions when a siegnodel is use@Asseng et al., 2013; Bassu et al., 2014,
Hasegawa et al., 2017; Rotter, Carter, Olesen, & Porter, 2WElL)ise here the term

“prediction” in the sense of calculating an output based on known inputs, rather than iftggecast

the future,

Crop MME studies haveftennoted that thensemble meafe-mean)andensemble
median(e-median)of simulatedvalues give good agreement with observati@assu et al.,
2014; Palosuo et al., 2011; Rotter et al., 2012). This suggests that in practice, it migtdrlie bett
create a MME"and then use thedgictions of e-mean or e-median rather than use the predictions
of an individual modelSeveral recent impact assessnstatlies have based conclusions on

ensemblepredicto@\sseng et al., 2014; Liu et al., 2016).

Only afew studies have examined the properties of crop MME predictors in more detail
in each case for one set of environmental conditions. One study, based on predictitiiplef m
response variables in four environments, found that e-mean and e-median were both better tha

the best model, for a composite criterion including all outputs and environ(Ret® Martre et
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163 al., 2015).Yin et al.(2017) found that e-mean predicted grain N better than a randomly chosen
164 model. Of particular practical interest is the behavior-ofean and e-median as a function of

165 the number of models in the ensemble. This has been studied by treating the enstralildlas
166 population of models, and drawing sub samples from that population. The conclusions have been
167 that prediction.error decreases systematically as the number of models indriestsals(2015)

168 suggested.that‘eight models would be sufficient to obtain errormete-below 10% of

169 observed yield:"All of these studies have been empirical, based mglaMME study The

170 general behavior of crop ensemble predictors has not been addressed. Studie$iéhdgther

171 including group intelligence (Surowiecki, 2008ydrologic modelingDuan, Ajami, Gao, &

172  Sorooshian, 2007 gir quality modeling (Solazzo & Galmarini, 20XE5)d climate modeling

173 (Tebaldi & Knutti, 2007) have also found that averaging over multiple opinions or solaéions
174 give good predictions, often better than any individual model. The basis for using MME

175 predictors has received particular attention in the field of climate modélagedorn et al.,

176 2005; Welgel et al., 2008). However, the context there is quite different than for cdaspfor

177 example iprclimate modeling each MME member is often itself an ensemble based on a single
178 model with'different initial conditiongDelSole, Nattala, & Tippett, 201#)hereas in cno

179 modelingeach model normally provides a single simulation, a major interest iteclima

180 modeling.sin probabilistic predictions rather than the deterministic predictions of crop models
181 (DelSole et al., 2013; Wang et al., 20@@4d in climate modeling spatial patterns of prediction

182 play an important role (DelSole et al., 2013).

183 One can easily imagine situations whemaean and e-median for crop models do not

184 predict well=For example, if all models have large positive bias, then e-meamsdias will

185 also haverlarge positive bias, anthedian will be worse than half the models. Thus, one cannot
186 automatically assume that one will obtain reliable mtéotis by using MME predictor§he

187 question we asthenis what is the predictive quality @mean and eiedian and how does that
188 depend on the.ensemble characteristid#® break this down into specific sub-questidfisst,

189 how daesithe predictivguality of MME predictors compare foredictive quality ot model

190 chosen at random from the models in the ensemble tbat@fthe best individual model in the
191 ensemble, and how does that depend on the ensemble characteristics? The answer to this
192 question affects the choice between using an individual model and a MME predictumdS
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what is the level of error of the MME predictors? This is a major determinant of the potential
usefulness of these predictoFsnally, how does the level of error of thBME predictors depend
on the number of models in the ensemble? This affects the very practical decision as to the

number of models to include in a MME.

Materials and Methods

Data

The.data sets simulated in the five wheat MME studies considered heesarided in
Table 1. Details are available in the cited references. Each data set concerns ardiffgeent
environmental conditions, where an environment is to be understood as a combination of
physical environment and managemé&¥ée consider each data set as representative of some
infinite range_of environmentthe target population. The target population corresponding to the
AgMIP wheatpilot data set is worldwide wheat environments. The data set is a sample from that
population;and the prediction problem is prediction for a randomly chosen individual
environment from that population. In the case of the HSC data set, the target population of
environments Is considered to be all possible weather sequences for wheat in Maricopa,
Arizona, geneated by different years and planting dates. The data set can be considered a sample
from thatdistribution of environments, where the heat treatments are meant to increase
artificially the diversity of the sampled conditions. In the case of the HSGESelathe target
population‘ef'environments is taken to be worldwide hot environments for wheat, including al
possible weather sequences and all locations. The target population for@&EVCBata set is
taken to be all possible weather sequences abtiatidn of the study, with or without heat
shocks during grain filling. Finally, the target population corresponding to the AGHEaGEset
is considered:to be wheat crops under different weather sequences at the locht@tuafy,
with or withoutirrgation and with either current or enhanced,Gfels.We consider here four
output variables that were measurednostor all of these studies: grain yield (yield), grain
protein eoncentratiomp(otein), final aboveground biomass (biomass) and maximahatea
index during the course of growth (maximum LAl).
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220 Models and calibration

221 We consider only the 25 crop models that provided simulation results for all of the data
222 sets for at least yield and biomaSsifplementaryable S1). All of these models have been

223 describedin detail in separate publications (see referendeble S). All are dynamic system

224  models; they describe crop development, crop growth and soil processes of a homogddeous fie
225 over a singlergrowing season, using differential or difference equations, often imthstdp of

226 one day. The explanatory variables include daily weather over the growing season, mahageme
227 (sowing date and cultivar, irrigation and fertilization, etc.) and soil characteristics and initial

228 conditions\While there are certainly similarities betweemsoof the crop models, it seems

229 reasonabléo consider them as independent since each has undergone at least some development
230 independently of other modelsaéh moe@l produces a single prediction of a specific output (e.qg.
231 yield) for each/environment. In addition to the individual models itviliiE we consider the

232 two most gemmon MME predictors, namely e-mean and e-median.

233 In all of these studies, some of the date provided to the modeling groups for
234 calibration(Tablel). The calibratiordataconsisted of detailed crajata, including yield from
235 one envirenment for the HSC and AGFACE data $ein) thethreecontrol environmenttor
236 the C3GEM data set anfitom four environments for the HSGE data set, gluse peripheral
237 informationrelated to, but not the same as, the variables to be sim(tatgdphenology

238 information, parameter values of some models that had previously seen the data)

239

240 Evaluation metrics
241 Qunbasic criterion odimulationaccuracy is mean squared error (MSE), i.e. squared error

242 averaged overenvironments of a data set:

N
243 MSE=1/NY(y; - §)°

i=1

244  wherey; is thesabserved value for tHeénvironment of the data set, is the corresponding

245 simulated value, and N is the number of environments in the dad3etis calculated

246 separately for each output variable and each model. Often it is more convetoehktat root

247 mean squared erroBMSE =VMSE .



248 MSE is an important measure of model error, but skill measures are better at conveying
249 the usefulness of model simulations, since they compare model errors $scoésome

250 alternative, simple predictoFhe skill measure commonly used for crop models is modelling

251 efficiency (EF)defined as

252 EF =1- MSE, ., /MSE,

253  where MSE;57is MSE for the model in question amdsE, is MSE when all predictions use

254 the averge of observed values for that data Sg}.(Sincey is a constant, it explains none of

255 the variability in the data set. A perfect model has EF=1. A model that does waorsg tias

256 EF <0 and can be considered to have no skill in explaining variability between environments.
257 Thée"above criteria refer to the data in the data set. As a criterion of prediction accuracy
258 for the targetpopulation we use mean squared error of prediction (MSEP), defined as the
259 expectation of squared error over the target population. It is well known that ihtleedsda are

260 used for calibration and for evaluation, MSE tends to uedemate MSEPTo examine how

261 important'this isye calculated MSE for yield, using either all environmentkeaving out all

262 those environments which provided yield for calibration. The resulting MSE valuesniean

263 and e-medianyand their ranks among all models, were very similar (Supplenieuizn?).

264 We therefore use MSBEased on all environment$ a data set as an estimate of MSEP for the

265 corresponding target population.

266

267  Statistical. deseription of multi-model ensemble

268 We propose a random effects statistical model for describing model errors:

269 g =uto+p+y, (1)
270 whereg, iserror (observed value for environmgntinus value simulated by modgl . is

271 the overall,bias (error averaged over models and environments)a random model effect
272  with mean 0 and variancg?, g, is a random environment effect with mean 0 and variarice

273 andy; is the random interaction term, with mean 0 and variaffcéScheffé, 1959). Thus the
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274 random effects model characterizes a Mbf#tel target population ugj four parameters: , o2,

275 a; and Gf )

276 If there is bias, this implies that predictions, averaged over models and environments, are
277 too small or too large. For example, if models tended to underestimate potetdi&bytbe

278 cultivars of the HSGE data set, this could lead on the averaysteEmatiainder-prediction of

279 vyield and therefore to a positive bid$ie bias term contributes equallyatb individual models

280 andthereforealsoto e-mean, for all environments of the target populatibime model effect

281 indicates to what extent a sp@gcimodel over- or undempredcts, on the average over

282 environments. The largef, the larger the variability between errors of different models. The

283 environment effect indicates to what extent there is-aweunder-prediction foindividual
284 environments, averaged over models. For example, if all models tended to over-predict
285 specifically for the highest temperature§the HSC target population, this would lead to an

286 environment effect. The larges?2 , the larger the variability between errors for different

287 environments. Finally, the interaction effect measures the effect of interaction between a

288 specific model'and a specific environment on model error.

289 If it IS assumed that models are drawn at ranffom some underlying distribution of

290 models;andthat environments are drawn at random from the target population of eswispnm

291 thenall the random effects are mutually uncorrelgt@cheffé, 1959) If there israndom

292 measurementerror it affects the observations of each environntetitus is included in the

293 environment effect. The bias and variance components were estimated for each data set using the
294 R packagelmefBates, Machler, Bolker, & Walker, 2015; R Core Team, 20Mi&t) the REML

295 option. The variance components for yield, calculated with or without the environimants t

296 providedwyield-data for cddraion, werequite similar Supplementarfable S5)

297

298 Results

299 Empirical results
300 Figure 1 shows RMSEelative to emedian(RMSEnoder RMSEe-median) for yield for each

301 model and each data séflodels with negative values have smaller RMSE tharedian.lt is
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seen thae-medianis better than all individual models (all individual models have positive values
of RMSE relative to-enediar) except for the HSGE and AGFACE studies, where there are
respectivelyfour and twandividual modelsout of 25 that are better than eedian E-imean is
slightly warse than e-medigglightly positive RMSE relative to-median) except for the HSGE
data setlts werst ranking for yield is seventh (among the 25 individual models, e-mean and e-
median) . Foprotein biomass and maximum LA, the rankingfse-median and eaean are

more variable:"At worst-eedian is ranked sixth and e-mean tentmdglian is better than e

mean in 13"outof the 17 combinations of data set and output variable (Supplementary Figures
S1-S3).Figure2'shows as an example the fit efrean, e-median and the individual models to
the HSC yield-data.

The ranking of enean improves more or less systematically as one considers more
environments, up to the actual number of environments for each data set (Supplementary Figur
S4). A finalsstep in this progression of averaging over more situations is tgaw@data
sets. When"RMSE values are averaged adatsssetse-mean is ranked 2, 6, 2 and 3 for the
output variables yieldyrotein biomass and maximum LAI, respectivé§upplementary Table
S3). The corresponding ranks for e-median are 1, 1, 1 and 2. Among the individual models, the
average rankings amore variable. The model SQ is systematiagliye well ranked (3, 3, 3
and 8 foryieldyprotein, biomass and maximum LAl respectively) but the best indimddal
for protein has rankings of 13, 2, 18 and 23 for the four output variables and the best individual
model formaximum LAI has rankings 12, 11, 21 and 1. In all cases, both e-mean and e-median
are better/than the average over individual modelslabeled “ave” ifrigure 1 and

Supplementary Figures1-S3).

Figure-l.showshatRMSE using the average of observed val(esr labeled “ybar”)s
appreciably‘larger than RMSE for e-mean or e-median for yield for four of thestudplying
that the ensemble predictors have substantial skill values for those stiaiies/er, no model,
including e-mean and median, has skill for the HSGE data set (ibar” has the smallest
RMSE value). Over all combinations of study and output variabiee@ and-enedian have no

skill in a little over one third of the situations (Supplementary T8d)e

Figure 3shows empirical results for the effect of number of models on MSEr&am,

for predicting yield. These results are averages over multiple chaficesdels, and correspond
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to choosing the models to add to the ensemble at random. There is an almost monotone decreas
in MSE as more models are added to the ensemble. Similar behavior is exhibiledditrer

output variables (Supplementdfigure S5.

Rather than building the MME by adding models chosen at random, suppose that one
starts fromthe'model with smallest RMSE and then adds models in the order of increasing
RMSE. Thergeneral result of doing so is an initial decrease in RMSE and thed aftre
increasing RMSE as the number of models in the ensemble increases. In 12 out of 17
combinations of data set and output, minimum RMSE is reached with 2-6 models in the

ensembleKigure 3 and Supplementary Figure S5).

Theoreticalresults

In the following we focus only on eean, which is more amenable to theoretical
treatment than-enedian. The analysis is based on eq.hich separates model error into a bias
component and model, environment and model x environment interaction effeetsstimated

values of use?; c)-; and af for eachdata seaand output variable are shown in Supplementary

Tables S5-S8. The results are that squared bjasis usually much smaller than any of the

variance compenents. That is, model error averaged over models and environmentsdataeac
set is small=The contributions of the other variance components are quitéevddegiending on
the data set and thawable that is predicted, the major variability can arise from the variability
in errors between models (e.g. maximum LAI prediction for th&SE®4 data set), the

variability in errors betweeenvironments (e.g. biomass prediction for the AGFACE dajaset

from the interaction (e.g. prediction of protein for the HSC data set).

MSEPof:e-mean based on a MME of size n is
n n 2
MSEP, ..(N) = E{{uvt(lln)z:ai + B+ (1/n)27”1 } ()
i=% i1

Using the,properties of the random effects model, this leads directly to
MSEP, ,..(N)= > +0.In+0;+0?/n (3)

Letting n tend toward infinity, it is seen that in the limit of a very large MME
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358 MSEP, . =+ 0'2 (4)

e—

359 On the other hand, the expectation of MSEP over individual mot3&R ) is

360 MSEP=E{[,u+ai+,BJ.+}/ij}2}=,u2+0§+0'§+0'72 (5)

361 Thus MSEP istalways as large as or largean MSEP, . This sa generalization of the

362 empiricalresults inFigure 1and Supplementary Figures SB-which show that @aean has

363 smaller RMSExthan the average over moble bar labeled “ave”) in all the cases considered

364 Assuming thea, values have a normal distribution, we can also obtain results for the

365 probability thatemean is better thaany individual model. A model with random effegt=a

366 has an MSP value of
367 E[(y+ai+ﬂj+7ij 2 :a)ZJ:(,u+a)2+a§+ay2 (6)

368 If the a have ainormal distribution, then in the limit of a very large MME, the probathbt

369 an individualkmodel will have MSERSs than or equal tMSEP, ., is
370 P[(,u+a)2+aﬁ2+af£y2+aﬁ2}=P[a’é(,uz—af)/of] @)

371 where(a')2 is_distributed as a noncentral chi squared variable with 1 degree of freedom and

372 non<entrality parametef” / o2 (Supplementary Figure S6). & > 4* (interaction variance

373 greater thanssguared bias), then in the limit of a very large MidEprobability is 0The result

374 just depends.on the relative values of squared bias and interaction variance, and not on how good
375 the individual'models ardhe inequality is satisfied for every data aetl output variable here,

376 implying that inithe limit of many models and averaged over environments, e-mean should be

377 Dbetter than every model in the ensemblesihan extension of the empirical results, which

378 concerna finite number of models and environments. Those results shéwetbaire relatively

379 few models that are better thamean.
380 Equation(4) shows thaMSEP, . is not necessarily small, even in the limit of a very

381 large MME. It will only be small if bothu* and aj are smallln the limit of large MME, the
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382 model effect and the interaction effect cancel out between models and thusodbrfiute to

383 MSEP

e-mean *

Empirically, it is found thatu’ is always relatively small, but this is not tbese for

384 02 . As a resulthere are several cases whemean has no skill.

385 Consider now the effect of the size of the MME. &) shows thatMSEP, _...(n)
386 decreasesasil/going from* + o’ + o)+ 0 when there is a single model 16 + o, when

387 there are infinitely many models. This assumes that models in the ensemble are chosen at

388 random from the distribution of models. Figure 3 &ugiplementary Figure S5 show how

389 MSEP, ...(m=decreases with the size of the MME, based on the estimated variance components

390 and eq. 3'The results generalizke empirical result® predictionfor the target population.

391 Eq. (3) also helps understand the empirical behavior of MSE of e-mean when the
392 ensemble is built from successively worse models. Suppose that one starts from a sample of size

393 nfrom some population P1 of models, for whMBEP ofe-mean is

394 MSEP, 0 (P1) = o + 0 oy + (LIN)(0 2 o1y + 0oy (8)
395 To obtainsan MME of size+ 1, one must enlarge the sampled population to P2, with say
396 MSEP, 1o (P2) = 1oy + oy + (L 0+ D) 025y + 0o ) 9)

397  Since models are added in order of increasing RISE + o + o + 0, is larger for P2 than for
398 P1. However, the contribution tife termo? + o is divided by n for P1 and by n+1 for P2,

399  which caneffset the increase irf + o> + o + o/, especially for small n. The empirical result is
400 a minimum in MSE of enean for some value of n almost always largantl.

401

402 Discussion

403 There have been several publications that have documented the good performance of e-
404 mean and enedianfor crop models, including for the samata sets considered here (Asseng et
405 al., 2014; Martre et al., 2015) and also for other crops than \(Basgu et al., 2014; Fleisher et

406 al., 2017; Li et al., 2015; Roétter et al., 201B)owever, here for the first time we analyze the
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results using MMEs for five different data sets, each representlifgeentrange of

environmental variability, in a common framework.

Empirical evidence is esstal, but necessarily limited. It is important to complement the
empirical evidence with theoretical results. The theoretical framework that we propose helps
explain and generalize the empirical results. The framework assumes that there is some
essentialanfiniterunderlying distribution of crop models, from which the models in the MME
are sampled at random. This assumption could be questioned, on the basis that there are in fact a
limited number of existing crop models. However, it has been found that even crop models
derived from the same underlying model but differing in parameterization can gige qui
different resultgFolberth et al., 2016), implying that the number of effectively different crop

models is in fact essentially infinite.

Thestheoretical results are based on variance components, which are simple to calculate
It may be worthwhile doing so systematically for MME studies, because the random effects
model then provides a diagnostic tool for relating results to the characteristics of thanME
also a toofor extrapolating tahe targepopulation of environments and to different numbers of

models;

The.theoretical results all concern the simple mean of the values simulated by the
individual models. It might be possible to improve the performance of e-mean by weighting
different models depending on agreement with observations, using for example Bayssan m
averaging (Raftery, Balabdaoui, Gneiting, & Polakowski, 2003). This is however difcult
crop models, because each environment involves growing a crop for a full season and as a
consequence there are in general relatively few data available for estimating the weighting
coefficients. Simple averaging is also often used for climate model ensembles (for example
Wang et al., 2009).

Thesempirical results show that MSE efmedian and enean are always smaller than the
average MSE of the individual models in the MMI&is has ao been observed with respect to
climate modelg§Wang et al., 2009)[he theoretical results show that this will always be true for
MSEP of emean compared to MSEP averaged over models, for any size of the MME. The
advantage of eaean will increase as the ensemble size incre@bkes.theoryand empirical

results agree thdatis better (less prediction error) to usenean than a model chosen at random
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from the population of models, on average over the chosen nitdestatistical basis for the
superiority ofe-mean is that the model anderaction effects cancel out between models. One
possible modeling explanation could be that different models have differentiertioes

parameters, and averaging over models averages out the parameter errors. A similar mechanism

has been suggested féinate modelgWang et al., 2009).

The'empirical results show thaneedian often has smaller MSE values than even the
best individual model, and if not, it has an MSE value quite close to that of the bekt Eode
mean is not as highly ranked, but also is always close to the best M8E Madutheoretical
results show that in the limit of a very large MM&ESEP of e-mean will be smallethanMSEP
of the best model when squared bias is smaller than the variance of the interactiomtedfect.
bias refers to error averaged over models, huad bias contributes to MBBf emean. An
individual model however may have a model effect that is the negative of the bidsjsvhic
simply to say-that the best individual model may have very small or zeraeem@gd over
environmentseThus the exasice of biasends to make arean a worse predictor than the best
model.A large interaction variance implies that model error is sometimes small, sometimes large
for different environments. The average over models of the interaction term hoerel®td
zero for largesMMESs, for each environment. Thius existence of interaction tends to make e
mean arbetterpredictor than any model. Overall then, the relative values of squared bias and
interaction variance determine whether there will be individual nrsdaister than-enean.

Based on the estimated variance components, squared bias is smaller than the variance of
the interaction effedor all thedata setsand outputs considered here. Together, the empirical
and theoretieakresults suggest that in a wide variety of casesae or anedian will be a better
choice as-predictor than any individual model, withhedian seeming to be empirically
somewhat better thanmeean. The fact that the ensemble predictorgpetiorm mosbr all
models not only, for yield but also fprotein biomass and maximum LAI, suggests that they are
useful not only for predicting final yield but also for prediction of the growth trajeetod
quality of.the crop.

The value ofMSEP, ,.,is not necessarily small; it is equal to the sum of squared bias and

the variance of the environment effect. SilM&EP, . can be largethe skill of emean can be

poor. It is thus essential to verify, for each application of crop models, thase-is indeed
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467 sufficiently skillful for the application intended. Model improvement, to the exbentitt
468 reduces bias and/or leads to models which track the effects of environmentosele (Ce.

469 reduces the variance of the environmergajfwill reduceMSEP, | ... Thus model
470 improvement isinot only important in its own right, but can also be a path to improvedipredic
471 by e-meanyassshown in (Maiorano et al., 2016) where improving wheat models by oalibrati

472 and/or taking=better account of heat stress improved prediction accuracyedfainsimply

473 making models more similar, in the absence of improvement, reducearidngce of the model

474  effect, but this,does not reduddSEP, . . It is easy to show that according to the mixed model,
475 the covariance between errors of two different models for a given environmqnaIScea;,

476 the variance of the environment effect. Thergerything else being equal, thmallerthe

477  covariance (théessthe model outputs are related), 8maller MSEP, . will be. The fact that

478 bias is small for all the data séisre mighte partially a consequence of calibration. The
479 calibration:datallow modelerdo verify that their simulated values are close to reality for at

480 least somerenvironments.

481 The effect of number of models in a MME is of practical importance, and hage@cei
482 attention in Several studies. For example, Li eflalet al., 2015) suggested that eight models

483 would be sufficient to obtain errors of e-mean below 10% of observed yield. The resailts her

484  shed further light on this question. Our results indicate that the behawtf, ... as a

485 function of ensemble size depends on how the MME is created. If models are addddrat ra

486 thenMSER,_ . (n) depends on, the number of models, through the tefaf + o”) /n, which

487 decreases monotonically with n. In this case, a larger ensemble size always leads in expectation
488 to a smaller value dISE, .. (n) . Even going from 1 t@ models is of interest, since it reduces

489 that term byshalfWith five models, one obtains 80% of the potential improvement from adding

490 more models=Note that the theoretical reductioMBE, ., with nis in expectation, not for

491 each ample of models. Wang et al. (2009) similarly found that improvement of a MME of
492 climate modelsiwas very slight beyond Bnodels.

493 If, instead of choosing models at random, one is capable of identifying the best models
494  and builds the MME by successively adding models with larger prediction é&earite
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empirical results show tha?!SE_ ., (n) has a minimum at some shimaumber of models,

almost always greater than 1. That is, even if the best model is assumed to be kiscalmoist
always found to be advantageous to create at least a small MME by including less well

performing models. The theoretical results shaat this is due te@ancellation oferrors

between models which reduces the model effect and interaction contributibt&R ,,...(n) .

In this case it is not advantageous to make the MME as large as possible. Adding increasingly

poorly perfoming models eventually increasb&SE, . ..(n) . To take advantage of this

behavior, ©ne would need to identify the best models (to be included in the MME) and/or the
worst models (to be excluded). Hoveeythe empirical results shawatidentifying the best
models canbe very difficult, since all models had a wide range of rankings for &t to th
observations:"Thus actually creating an MME which containstbelypest models or at least
avoids the'worst models is a challeng& examinedhere the rather simple strategy of adding
models iniinverse order of MSE. For climate models, it has been suggested that the optimal
choice of models should take into account both the skill of the individual mdaigsskill

better) and. their degree ofpgendency (less dependency beitégo & Kang, 2005).

Thewpractical conclusioof this studyis that predicting with-enean or e-median of a
fairly smal"MME of around five models which have been shown to besuékd to the
predictions of interest, will ofteneba good strategy. the models are chosen in a way that is
equivalent.to choosing models at randdhen this ensemble size captures, in expectation, most
of the cangellation of errors that arises from having multiple models. Ihitiigdies only the
best modelsthen this size is consistent with the number of models that empirically gives

smallest error for-enean.

While.thé emphasis here has been on ensemble predictors, it should be noted that there
are other objectives of ensemble stud&/allach, Mearns, Ruane, Rotter, & Asseng, 2026)
major objective is to obtain information on model uncertainty, based on the spreaérbetwe
modelsAnother important objective is to foster collaboration between modedimgsg Those
objectives could lead to different considerations concerning ensemble sizet Kklgoportant
to emphasize that using ensemble predictors is not a substitute for moaeldmpnt. Both
model improvement and use of ensemble predicéittser singly or in combination, could

contribute to extending the usefulness of crop models.
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Table 1

Environments

Data furnished for Calibration

References

AgMIP- Four global sites, corresponding to four different mega Anthesis and maturity date, all Asseng et al. (2016);
Wheat Pilet|.environments. environments Martre et al. (2015)
(4) 3 spring cultivars (Gamenya, HD 2009, and Oasis), 1 winter

cultivar (Arminda)

Yields 2.57.5 t ha
HSC Maricopa, Arizona. Gradient of mean growing season Detailed crop measurements Asseng et al. (2014)
(15) temperature from 15.0°C to 33.4°C created by varying sow|nigr one environment (average

date and artificial heatin temperature of 15.4°C).

1 spring cultivar (Yecora Rojo) Phenology parameters used previously in

Yields 08 t ha' one model.
HSGE 6 high temperature global sites, two years, one or two plan1ir%eta”ed crop measurements for four Asseng et al. (2014);
(34) dates. Number of days with Tmax>31f&hged from 28 to 74. environments at one location (Obregar 'Martre et al. (2017)

2 spring cultivars (Bacanora 88 and Nesser)

Yields 1.98.0 t ha

Mexico).

Anthesis and maturity dates for all othe

environments.

—
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664

665
666

C3-GEM Control and heat shock environments in outdoor controlled| Detailed crop measurements for the 3 | Majoul-Haddad,
(10) environment chambers. Heat shock of Tmax=38°C for 4 houcentrol environments. Bancel, Martre,

for 2 or 4 days during the lag or linear grain filling period or Triboi, & Branlard

both. (2013)

1 winter cultivar (Récital)

Yields 5.68.4 t ha'
AGFACE. [ Elevated free air COconcentration experiment, over three Detailed crop measurements tore O’Leary et al. (2015)
(18) years, early or late sowing, G@oncentrations of 385 or 550 environment (385 ppm GOearly

ppm, rainfed or irrigated. sowing, irrigated).

1 spring cultivar (Yitpi) Parameters used previously in 6 models.

Yields 1.24.6 t ha

Table 1.

Data sets. Thefive wheat data setsthat provided the empirical evidence. * The number of environmentsin the data set

isgiven in.parentheses.
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667 Figure legends
668 Figure 1.

669 RMSE relative to RMSE of-enedian(RMSEmoqer RMSEe-mediay fOr each data setA

670 negative value means that the model has smaller RMSE tmeadlian. The two letter codes

671 represent different crop models, see Table S1 for model identification atform“ybar” refers

672 to the predictorthat uses the same predicted value, equalawedisge of observed values for

673 the data set, for all environments. Models with relative RMSE values larger than "ybar" have no
674 skill. Relative RMSE for “ave” is obtained by averaging MSE over all individual taptéking

675 the squareyroot and subtractiRWSE: median

676 Figure 1

677 Fit of models to HSC yield data. Each environment number corresponds to a different
678 sowing date, either without (“C”) or with (“H”) supplementary heating. Solid diamonds are
679 observed Yyields. Circles and triangles show respectively e-mean and e-medias.sallated
680 by the 25 individual models are connected by thin dotted lines.

681 Figure 3.

682 Effect ofilensemble size on root mean squared error (RMSEneka for yield. Left

683 panel. Effectrof*ensemble size on RMSE -ohean for yield when models are chosen at random.
684 Each point is the RMSE of e-mean averaged over 100 samples of n (n=1,...,25) models drawn at
685 random, without replacement, from the models of the original MME. The lines a&@ tas

686 equation 3, using the variance components estimated for each data set. Right panef. Effe

687 ensemble size on RMSE oingean for yield when models are added from best (smallest RMSE)
688 to worst.

This article is protected by copyright. All rights reserved



gcb_14411_fla.pdf
a Yield AgMIP-Wheat pilot

<

o
jab)
=
|

2
@
I

”UI

®
—
I

pd
Y
|

I

e—median —
e—-mean —

ﬂlﬂiﬂlﬂl

Thisoa'rsticle is pjf'o(%ected b}li '(:50pyright2. A)ll rights%‘eSServed 3.0

t/ha

0.0



e—median
e—mean

gcb_14411_f1b.pdf
Yield HSC

I I I I I
This gf%cle is pr%t(e)cted by él'o'}5)yright. A%l' Qights resze'r5ved
t/ha

3.0



gcb_14411_flc.pdf

C Yield HSGE
ybar — il
ave — | |
NG — |
AW — | |
OL — ]
WO — I |
IC — ]
ST — C e/
GL — ]
DC — | |
NP — ]
LI — C T 1
NS — |
AN — | |
SA ]
LP — | |
S2 — ]
DR — | |
AQ — [ ]
NC — |
MO — I
HE — (|
MC — ]
SP q O
CS — [ ]
EwW 4 0O
SQ Il
e—median — I
e—-mean — 1

O'Cl]'his article ig'p?rotected by ]Cb%yright. All r]i'g?lts reserved2 -0
t/ha



e—median
e—mean

_ .IDII

gcb_14411_f1d.pdf
Yield C3-GEM

|HIH‘H‘

|

0.0 This a9t15cle is prot%'cged by cop]ygght. All righ(%s reservec?l S

t/ha



gcb_14411_fle.pdf
e Yield AGFACE

|

O
(o
|
m

O
|

Z9
To
[
Iu_

L
I
=

pd
0)]
|

wm
>
I

‘ﬂimu

Ow
"o
[ |

_ IﬁHIUI

SQ
e—median
e-mean —

This a9t15c1e is projfe'gted by colp?lright. Allzr'Pghts rese%VSed

t/ha

0.0



Yield t/na

12

10

HSC Yield

—— e—mean
- &= emedian

| | | | | | | | |
NN o O N PN /\‘_3‘ & X
environment

gcb_14411_f2.eps

This article is protected by copyright. All rights reserved

|
OO
NUENEN



RMSE e—mean t/ha

2.0

1.5

1.0

0.5

gcb_14411 f3a.pdf

Yield
—— AgMIP-Wheat pilot
, -& - HSC
3 -+ HSGE
- -%- C3-GEM
3. -6- AGFACE

I I I I I
This ar’?cle is protect:elagy copyrightl A§rights rese%g 2 5
number of models




@)

Yield

RM &E_@a,ﬁ[ﬁ@@n t/ha
02 04 06 08 1.0 1.2

O<>X

._-.._-.._-.._-
._-.-_-.-_- +
++
+ 4
T
+.+.+ + * A A-A-
+ A D\D\ AN A
. ) ~A-
/&.\D/ \D:D -A Ny
A TA-AAT
o
00
0-0-C
o AV\Av 000
R
w O - X' X.X.X. Q
K- 3 LR X. . X7
0\« x.x.x \O\mao
(o]
(o) o. -
4 . V4 ,o
o 0 o 2 /o, 29
O:O (o] o

Right. All rlghts reserved

This article is pfrote€ed by cop

number of models




University Library

* o A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Wallach, D;Martre, P;Liu, B;Asseng, S;Ewert, F;Thorburn, PJ;van Ittersum, M;Aggarwal,
PK;Ahmed, M;Basso, B;Biernath, C;Cammarano, D;Challinor, AJ;De Sanctis, G;Dumont,
B;Rezaei, EE;Fereres, E;Fitzgerald, GJ;Gao, Y;Garcia-Vila, M;Gayler, S;Girousse,
C;Hoogenboom, G;Horan, H;lzaurralde, RC;Jones, CD;Kassie, BT;Kersebaum, KC;Klein,
C;Koehler, A-K;Maiorano, A;Minoli, S;Mueller, C;Kumar, SN;Nendel, C;O'Leary, GJ;Palosuo,
T;Priesack, E;Ripoche, D;Roetter, RP;Semenov, MA;Stockle, C;Stratonovitch, P;Streck,
T;Supit, I;Tao, F;Wolf, J;Zhang, Z

Title:
Multimodel ensembles improve predictions of crop-environment-management interactions

Date:
2018-11-01

Citation:

Wallach, D., Martre, P, Liu, B., Asseng, S., Ewert, F, Thorburn, P. J., van Ittersum, M.,
Aggarwal, P. K., Ahmed, M., Basso, B., Biernath, C., Cammarano, D., Challinor, A. J., De
Sanctis, G., Dumont, B., Rezaei, E. E., Fereres, E., Fitzgerald, G. J., Gao, Y. ,... Zhang,

Z. (2018). Multimodel ensembles improve predictions of crop-environment-management
interactions. GLOBAL CHANGE BIOLOGY, 24 (11), pp.5072-5083. https://doi.org/10.1111/
gcb.14411.

Persistent Link:
http://hdl.handle.net/11343/284698


http://hdl.handle.net/11343/284698

