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T
HE ORIGINAL IRI FORECAST SYSTEM.

The International Research Institute (IRI) for

Climate Prediction began issuing seasonal fore-

casts of global precipitation and temperature in late

1997, consisting of a forecast for the upcoming two

consecutive 3-month periods (Mason et al. 1999a).

Forecasts were issued quarterly, for the seasons of

January–March, April–June, etc. The IRI’s final issued

forecasts have been called “Net Assessments.” All of

the IRI’s forecasts, including those most current, can

be found online at http://iri.columbia.edu/climate/fore-

cast/net_asmt/.

As described in Mason et al. (1999a) and Goddard

et al. (2003a), the IRI’s approach to making forecasts

has been a two-tiered process in which a prediction

is first made for the sea surface temperature (SST) in

the global oceans, and then the SST prediction is used

as a driver of a forecast for the atmospheric climate.

The climate forecasts are issued as probabilities of

each of three equiprobable categories (above, near,

and below normal with respect to a recent 30-yr pe-

riod), based largely on a set of ensembles of dynami-

cal atmospheric general circulation model (AGCM)

predictions. A mix of dynamical and statistical mod-

els has been used to construct the SST predictions,

varying by tropical ocean basin. These include (but are

not limited to) the National Centers for Environmen-

tal Prediction (NCEP) coupled ocean–atmosphere

dynamical model for predictions of the tropical Pa-

cific SST (Ji et al. 1998), separate canonical correla-

tion analysis (CCA) predictions for the tropical At-

lantic and Indian Oceans, and damped persistence for

the extratropical oceans with 3 months e-folding time.

These predictions were smoothly blended at their geo-

graphical interfaces. For the first forecast season, in

addition to such evolving SST predictions, the ob-

served SST anomalies from the most recently com-

pleted calendar month were used as another SST pre-

diction scenario—that is, SST anomaly persistence.

As a supplement to Goddard et al. (2003a) that

details the skills of the IRI’s climate forecasts during
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their first four years, this paper discusses IRI’s newly

updated operational forecasting system. The new sys-

tem automates the synthesis of the predictive outputs

of several AGCMs, replacing more subjective human

deliberation. Here we examine the implications of the

newer system on forecast skill and reliability.

As discussed in Goddard et al. (2003a), while sta-

tistical tools played a role in formulating the IRI’s cli-

mate forecasts, three dynamical AGCMs were used

most heavily: the ECHAM3.6 model from Max-

Planck-Institut für Meteorologie in Hamburg, Ger-

many (Deutsches Klimarechenzentrum 1992;

Roeckner et al. 1992); the National Center for Atmo-

spheric Research (NCAR) Community Climate

Model version 3.2 (CCM3.2) in Boulder, Colorado

(Hack et al. 1998; Hurrell et al. 1998; Kiehl et al. 1998);

and the NCEP Medium-Range Forecast model

(MRF9) in Washington, D.C. (Kumar et al. 1996;

Livezey et al. 1996). The predictions from these

AGCMs were recalibrated to reduce systematic errors

based on a long (>40 yr) history of the models’ simu-

lations using observed SST and compared with cor-

responding contemporaneous observations [an At-

mospheric Model Intercomparison Project (AMIP)

design; Gates 1992; Gates et al. 1999]. Ensembles of

AGCM runs were used to calibrate probabilistic pre-

dictions, and the ensemble mean was used to

recalibrate the central tendency of the predictions

(Mason et al. 1999b).

The process of bringing together the three predic-

tions was done subjectively by the forecasters, who

examined maps of each AGCM’s predictions along

with accompanying hindcast skill maps, and weighted

the AGCMs to form the combined forecast. Hence,

the atmospheric predictions from the three AGCMs

were generally weighted unequally, in proportion to

their historical performance. For the first forecast sea-

son, the results using predicted SST versus persisted

SST anomalies were also weighted subjectively by the

forecasters in view of knowledge of the uncertainty

of the predicted SST, based on their own experience

and on formal studies relating to the given season and

location.

A major disadvantage of such a system is the large

time requirement in human resources. In 2001, fore-

casts began to be issued on a monthly instead of quar-

terly basis, and for four overlapping 3-month peri-

ods rather than two consecutive nonoverlapping

periods. Because of the resulting sixfold increase in

forecast production, automation of the process be-

came imperative.

In this paper, implications for possible changes in

forecast reliability and skill resulting from the auto-

mation of the IRI’s Net Assessment forecast process

are examined. In section 2 the more automated pro-

cedure is described, and in section 3 we provide a ret-

rospective evaluation of the skill of the objective por-

tion of the automated procedure for the 4 yr over

which IRI forecasts have been issued operationally.

THE MORE AUTOMATED IRI FORECAST

SYSTEM. When monthly forecast issuance began

in June 2001, new methods for automating forecast

production also began, focusing mainly on combin-

ing the predictions of several AGCMs into a single

forecast.

Objective multimodel ensembling. Two multimodel

ensembling methods were implemented. One is

Bayesian in nature (Rajagopalan et al. 2002; A. W.

Robertson et al. 2003, unpublished manuscript, here-

after RLZG), and the other is a canonical variate tech-

nique (Mason and Mimmack 2002). Both methods

estimate an optimum relative weighting of the indi-

vidual AGCM predictions for a given season and lo-

cation, based on the past performance of seasonal

simulations for the period 1950–97 using observed

SST To date, both have operated on an individual

gridpoint basis. (For more information about these

two techniques, see the sidebar.) Model weights are

formulated in terms of AGCM performance with

“perfectly” known SST anomalies, defining an upper

limit of operational forecast skill in which knowledge

of future SST is imperfect. The estimates of the fore-

cast climate probability anomalies therefore still

needed to be modified (usually weakened) subjec-

tively by the forecasters, depending on the region and

the perceived uncertainty of the associated predicted

SST. The multimodel ensembling system carries an

implicit assumption that the ratio of the weights

among AGCMs would be, on average, approximately

the same with imperfectly as with perfectly predicted

SSTs. Here, “imperfectly” pertains to both evolving

and persisted SST predictions, for which the same

relative weighting across AGCMs is applied. Predic-

tions resulting from the two SST prediction scenarios

are currently weighted equally relative to one an-

other, although in practice the evolving SST scenario

receives greater weight because more AGCMs are

run using it than are run using the persisted SST sce-

nario.

The consolidated predictions produced by the two

schemes were found to have moderately high spatial

correlation, with the Bayesian method tending to pro-

duce probabilities deviating further from climatologi-

cal probabilities than the canonical variates. Their
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hindcast skills differ from one another spatially and

seasonally, but are similar overall. For simplicity the

predictions resulting from the two schemes were av-

eraged with equal weights. The resulting skill of ret-

rospective hindcasts over the 4-yr period of the IRI’s

forecasts will be compared with that of the IRI’s is-

sued Net Assessment forecasts over the same period

in section 3.

Expanded set of AGCMs. A benefit of using objective

multimodel ensembling schemes is that the set of

AGCMs included in the consolidation process can be

changed with minimal human effort. One only needs

to produce the multidecadal SST-based simulation

history for any new AGCM. Thus, when the auto-

mated weighting system began in June 2001 it be-

came easier to add AGCMs, and by October 2001 six

AGCMs were used (Table 1). Figure 1 illustrates the

IRI’s more automated forecast system as of Septem-

ber 2003. The six AGCMs listed in Fig. 1 differ

slightly from those shown in Table 1 in that

ECHAM3.6 was no longer included, and an AGCM

from the Experimental Climate Prediction Center

(ECPC) at Scripps Institution of Oceanography was

added.1

Higher spatial resolution in issued forecasts. One aspect

of the automation was the replacement of time-

consuming, human-drawn forecast maps with auto-

matically produced GrADS-based forecast maps (see

GrADS Web site: http://grads.iges.org/grads). Figure 2

shows a formerly issued hand-produced forecast map

for African precipitation [for July–August–Septem-

ber (JAS) 2000], and Fig. 3 shows a comparable auto-

mated map for a more recent forecast. The earlier

maps featured broad regions sharing the same fore-

cast probability distribution, while the automated

maps allow more detail to be retained—as much as

the forecasters believe is warranted. The task of spa-

tial smoothing, previously conducted subjectively, is

now done more objectively by computer using a

Cressman analysis (Cressman 1959) with an approxi-

mately 600-km-weighting radius. The resolution of

the gridded forecast field is 2.5° for precipitation and

2.0° for temperature, matching the resolution of the

verification data, which come from the Climate

1 The ECPC model is a revised version of the AGCM earlier imple-

mented at NOAA/NCEP (Kanamitsu et al. 2002), with some

changes to the physics as described in Kanamitsu and Mo (2003).

MORE ABOUT THE MULTIMODEL ENSEMBLING TECHNIQUES

In the Bayesian method, the

weights are derived to optimize a

likelihood score over the set of n

hindcast years. The score is

formulated by the product of the

forecast probabilities that had

been assigned to the observed

tercile-based category. A “regu-

larization” process accounts for

the greater certainty associated

with the performance of AGCMs

having a larger effective sample

size (e.g., longer historical record

of simulations, or greater number

of ensemble members). As

described in Rajagopalan et al.

(2002), an optimization algorithm

known as Feasible Sequential

Quadratic Programming (FSQP;

Zhou and Tits 1993) is used to

maximize the likelihood score of

the combined forecasts. The

optimization includes a baseline

model that always issues the

climatology forecast (33.3%

probabilities for each tercile-based

category), so that the final

combined forecast includes an

appropriate weight for climatol-

ogy as well as for the AGCMs. In

locations and seasons in which the

AGCMs have relatively high skill,

the climatology model exerts

relatively little influence, while in

lower-skill situations it would be

assigned higher weight, thereby

weakening AGCM predictions

toward climatological probabili-

ties. It is believed that the Baye-

sian method can consolidate the

AGCM forecasts to produce

higher skill than a simple average

across AGCMs. While the Bayesian

procedure does not explicitly

account for redundancies among

model forecasts, it does so implic-

itly through the optimization

scheme, which would be unlikely to

result in very high weights being

assigned to both of two skillful but

largely redundant models.

The canonical variate method

(Huberty 1994; Mason and

Mimmack 2002) involves con-

structing linear combinations of the

ensemble predictions to maximize

differences among the means of

forecasts across the predictand

categories (terciles of temperature

or precipitation). The ensemble

predictions are ranked by model in

order from the highest to the

lowest prediction value. Prior to

the canonical variate analysis, an

EOF analysis is performed, which

produces modes representing

shifts in the overall mean, the

ensemble variances, or other broad

features of the forecast distribu-

tions. Through the EOF analysis, as

well as the main part of the

procedure, the canonical variate

method accounts for redundancies

among model forecasts—a desir-

able characteristic missing in the

subjective method used earlier by

IRI. A summary of the formulation

of canonical variates is provided in

appendix C of Mason and

Mimmack (2002).
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Anomaly Monitoring System (CAMS; Ropelewski et

al. 1985) and from the Climate Prediction Center

(CPC) Merged Analysis of Precipitation (CMAP; Xie

and Arkin 1997), respectively. These resolutions do

not differ greatly from that of most of the AGCMs,

which is 2.8°.

SST scenario weighting. In addition to the approxi-

mately 10 ensemble runs produced from each of up

to six AGCMs using an evolving SST prediction as the

lower boundary condition, some of the AGCMs are

also run with persisted SST anomalies for the short-

est lead forecast season. Since there are unequal num-

bers of ensemble members between the two SST sce-

narios (not all models produce persisted SST anomaly

predictions for logistical/institutional reasons), simple

pooling with equal weights favors results using the

evolving SST prediction. A more satisfactory automa-

tion of SST scenario weighting that not only accounts

for unequal ensemble sizes, but that also explicitly ac-

counts for differences in the skill of the AGCMs un-

der specific SST scenarios, needs to be implemented.

Currently, the forecasters must discuss the uncertain-

ties in the two SST scenarios and subjectively weight

the two sets of AGCM results accordingly. This in-

volves estimating, from their own knowledge and ex-

perience, the likely differences in the climate effects

attributable to features of the two SST scenarios.

RETROSPECTIVE SKILL OF MULTIMODEL

ENSEMBLING OVER FOUR YEARS OF IRI

FORECASTS. An estimate of the effect on forecast

skill of using the multimodel

ensembling procedure is provided by

retrospectively examining the skills of

the predictions issued over the 4-yr

period of late 1997–2001, and compar-

ing them with the skill of the actual,

more subjectively derived IRI fore-

casts. A caveat, however, in addition to

the obvious one of only having a 4-yr

period available, is that the automated

predictions differ not only in their lack

of human judgment, but also in the

lack of varying degrees of input from

empirical tools such as ENSO-based

probabilities (Mason and Goddard

2001) that were present in the subjec-

tive forecast procedure. Furthermore,

the subjective forecast process evolved

somewhat over the 4-yr period

(Goddard et al. 2003a).

In this exercise, the ranked prob-

ability skill score (RPSS; Epstein 1969) is the main

metric used, as it is an appropriate measure for

probabilistically expressed forecasts. The RPSS gives

increased credit not only for forecasting an enhanced

probability for the observed category, but also for the

strength of the probability assigned to that category.

Similarly, it penalizes more severely for forecasts of a

category not observed, if given with higher probabil-

ity. The RPSS is designed to be 0 for the climatology

forecast, and 1.0 (or 100%) for a forecast having a

100% probability for the category subsequently ob-

served. It often ranges between 0 and 0.3 for climate

forecasts whose probabilities deviate within ±20% of

the climatological 33.3%, as is typically the case. The

formula and computation of the RPSS are illustrated

in appendix A of Goddard et al. (2003a).

Temperature. A comparison of skill for the original

forecasts and the retrospective objective multimodel

forecasts for temperature is shown in Fig. 4. It is ap-

parent that in general, reliance upon the objective

skill-weighted indications of the AGCMs would have

delivered temperature forecasts having greater skill

than that of the IRI’s issued forecasts. Higher scores

are seen in Indonesia, the Philippines, Japan, south-

ern Africa, parts of the low-latitude Americas, and

French Polynesia. Inspection of the geographical dis-

tributions of skill of the three individual AGCMs (see

Figs. 6c–6e in Goddard et al. 2003a) indicates that

these higher skill pockets were usually also achieved

by one, two, or all three of the AGCMs, and did not

come about specifically as a result of our multimodel

FIG. 1. Schematic of the IRI’s dynamical climate forecast system as

of mid-2003. The flow begins with SST prediction, followed by en-

semble runs of several AGCMs, followed by statistical postprocess-

ing and consolidation into a single prediction using multimodel

ensembling.
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ensembling. This is consistent with

findings of others that, following the

removal of biases in individual mod-

els, multimodel ensembling typically

produces skills equal to or just slightly

better than the skill of the most skill-

ful AGCM in the set (Pavan and

Doblas-Reyes 2000; Palmer et al. 2000;

Peng et al. 2002).

A reason for the better perfor-

mance of the multimodel ensemble

predictions than the IRI’s issued fore-

casts for temperature has to do with

the disappointing performance of a

statistical tool—the ENSO-based

probabilistic composites—that con-

tributed to the issued forecasts. (How-

ever, as discussed below, this same tool

bolstered the skills of the precipitation

forecasts.) Indeed, Goddard et al.

(2003a) reported that the AGCMs

were the highest scoring input tools to

the IRI’s temperature forecasts over

the 4-yr period.

Figure 5 contains a set of reliabil-

ity diagrams for three versions of the

temperature forecasts over the 4-yr

period: the IRI’s Net Assessment fore-

casts, the objective multimodel en-

semble, and one of the AGCMs. The

concept of reliability is well developed

FIG. 2. Illustration of the IRI’s forecast map graphic used before Jun

2001.

TABLE 1. The AGCMs used at IRI’s forecast operation in Oct 2001, with their associated refer-

ences. Revision of this list by Aug 2003 is indicated in Fig. 1.

Model Where model was developed Where model is run monthly

CCM 3.2 NCAR, Boulder, COa IRI, Palisades, NY

NCEP/MRF9 NCEP, Washington, DCb QDNR, Queensland, Australia

ECHAM 3.6 Max Planck Institute, Hamburg, Germanyc IRI, Palisades, NY

ECHAM 4.5 Max Planck Institute, Hamburg, Germanyd IRI, Palisades, NY

NSIPP NASA GSFC, Greenbelt, MDe NASA GSFC, Greenbelt, MD

COLA Center for Ocean–Land–Atmosphere COLA, Calverton, MD

Studies (COLA), Calverton, MDf

aHack et al. (1998); Hurrell et al. (1998); Kiehl et al. (1998).
bKumar et al. (1996); Livezey et al. (1996).
cDeutsches Klimarechenzentrum (1992); Roeckner et al. (1992); Goddard and Mason (2002).
dRoeckner et al. (1996).
eBacmeister et al. (2000); Pegion et al. (2000); Schubert et al. (2002).
fKinter et al. (1988); DeWitt (1996); Schneider (2002).
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(e.g., Murphy 1973; Wilks 1995), and diagrams such

as those shown in Fig. 5 were used in the evaluation

of the IRI’s Net Assessment forecasts (Wilks and

Godfrey 2002) and the forecasts of the NOAA/CPC

(Wilks 2000). Reliability refers to the correspondence

between forecast probabilities for a given category

(above, near, or below normal) and the relative fre-

quencies of occurrence of the subsequent observations

in the given category over a sufficient sample of cases.

In such diagrams, the 45° dashed line represents per-

fect resolution and reliability, in which observed rela-

tive frequencies match forecast probabilities over the

full range of forecast probabilities. Additional detail

is provided in the caption of Fig. 5. The 4-yr period

was strongly dominated by above-normal tempera-

ture as defined by the 30-yr normal in effect, as this

category was observed more than 70% of the time (in-

dicated by the green asterisk on the vertical axis) as

opposed to the climatologically expected 33%.

While both the issued IRI and the

multimodel ensemble forecast sets

gave considerably higher probabilities

for above normal than expected long-

term (roughly 40%–50%), they fell

short of what occurred. This bias ap-

pears in the reliability diagrams as an

overall vertical displacement of the

curve from the 45° line, in which most

of the points are located above (below)

the 45° line in the diagram for above-

(below) normal forecasts. The bias of

the multimodel ensemble is somewhat

smaller than that of the IRI’s issued

forecasts, particularly for below-nor-

mal temperature. In the multimodel

combination plots, the blue curves and

regression lines show results when

forecasts of the three AGCMs are

combined with equal weights. Equal

weighting is seen to give results simi-

lar to those using the more sophisti-

cated methods, except that the cool

bias is reduced more using equal

weights. More is said about this below.

When the slope of the reliability

curve is shallower than that of the 45°

line, overconfidence is indicated in the

forecasts. Some overconfidence is

present both in the probabilities in the

IRI’s issued forecasts and in the

multimodel ensemble predictions, for

forecasts for above- and below-normal

categories.2 In other words, increases in

the forecast probability for a given category of tempera-

ture usually correspond to somewhat lesser increases

in the probability of actually observing that category.

An exception is seen in the multimodel predictions

for below-normal temperature, but only for some of

the high forecast probabilities.

As compared with the IRI’s Net Assessment fore-

casts and the multimodel ensemble forecasts, the re-

FIG. 3. Illustration of the IRI’s forecast map graphic used since Jun 2001.

2 Reliability results for the near-normal category are not shown

because little forecast skill was indicated for that category. This

has been found repeatedly in previous studies (e.g., van den

Dool and Toth 1991), and is related to the fact that overall shift-

ing in the forecast probability distribution toward below or

above normal is what is relatively most predictable, as opposed

to a narrowing of the distribution, which is usually not size-

able. Large shifting can reduce the probability of the near-nor-

mal category, but changes probabilities in the two outer cat-

egories far more substantially.
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liability diagrams for an indi-

vidual AGCM (right column

of Fig. 5) indicate a relatively

milder underestimation

(overestimation) of the ob-

served frequency of the

above- (below) normal tem-

perature category—averag-

ing near 60% (12%). That is,

the AGCMs reproduced the

overall strong tendency to-

ward above-normal tem-

perature relatively well.

However, an extreme degree

of overconfidence is revealed

by a shallow slope for all

three AGCMs. Confirming

this overconfidence is a rela-

tively flat frequency distribu-

tion of predicted probabili-

ties (inset histogram),

showing that large deviations

from climatological forecast

probabilities are common.

This overconfidence suggests

that 1) the shifts of the en-

semble means away from cli-

matology within an AGCM

are too large, and/or 2) the

spreads among ensemble

members are too small. Ei-

ther or both of these possi-

bilities may be due partly to

a lack of accounting for un-

certainty associated with the

models’ own physical param-

eterizations (e.g., Toth and

Vannitsem 2002; Palmer

2001). Model overconfidence

is greatly reduced in the

multimodel ensemble due to

the averaging of the predic-

tions across the models, as

well as from spatial smooth-

ing and the probabilistic damping in the two

multimodel schemes based on the models’ imperfect

performance histories. A lack of accounting for the

uncertainty in the predicted SST that forces the AGCM

may also contribute to a tighter clustering in the

AGCMs’ climate predictions, and in the multimodel

combination, than in the corresponding observations.

An adjustment for this uncertainty was subjectively

incorporated in the Net Assessment forecasts, and in

principle could be objectively incorporated into the

multimodel combination.

The RPSS of the individual AGCMs for tempera-

ture over the 4-yr period were unsurpassed by any

other predictive tool or by the IRI’s issued forecasts.

This is largely due to the fact that their probabilities

for above- (below) normal temperature averaged well

above (below) their climatological values, as did the

corresponding observed relative frequencies to an

FIG. 4. (a) Geographical distribution of RPSS (%) averaged over 16 IRI half-

month lead seasonal Net Assessment forecasts of temperature for Jan–Feb–

Mar 1998 through Oct–Nov–Dec 2001. Forecasts of the climatological distri-

bution are included. Gray-shaded areas have insufficient verification data to

be scored. [Note: This is the same as Fig. 2b in Goddard et al. (2003a)]. (b) As

in (a), except for the objective two-scheme multimodel ensemble predictions

using three AGCMs (ECHAM 3.6, CCM 3.2, and NCEP/MRF-9) as input, forced

by predicted SST.
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even greater extent. This is indicative of good reliabil-

ity in terms of the mean forecast probability shifts.

However, the shallow slopes in Fig. 5 reflect poor fore-

cast resolution (Murphy 1973): The relative frequency

of above- or below-normal observed temperature is

largely independent of the AGCMs’ forecast prob-

abilities. In Fig. 5 the multimodel ensemble forecasts

(middle column) and issued IRI Net Assessment fore-

casts (left column) both have improved resolution as

seen in the more favorable slopes and appropriately

narrower ranges of forecast probabilities. However,

because the latter two forecast sets have weaker mean

probability shifts toward above-normal temperature,

the positive contribution to their RPSS of the better

resolution is outweighed by their greater cool bias.

Because the RPSS awards high credit for forecasts

that probabilistically lean in the direction of the ob-

servations with high probabilities, the issuance of

many predictions with higher probabilities for the

above-normal category than what their long-term

FIG. 5. Reliability diagrams for temperature forecasts at low latitude (30°N–30°S) over the 4-yr period for (left

column) the IRI’s issued forecasts (called Net Assessment), (middle column) the objective multimodel ensemble

prediction, and (right column) for one of the three individual AGCMs. Just one of the AGCMs is included be-

cause all three of them have very similar reliability curves. (top row) Forecasts for above-normal temperature,

and (bottom row) below-normal temperature. The x axis indicates forecast probability, and y axis relative ob-

served frequency. The red line is a least-squares regression that takes into account the sample size represented

by each point. The green asterisks on the axes show the overall mean of the forecast probabilities and observed

relative frequencies. The inset histograms show the frequency with which each category of probability was fore-

cast (with a logarithmic frequency scale), with the climatological probability (0.33) shown by the red vertical

line. In the case of the multimodel combination (middle column), the blue dots and regression lines show results

using a simple pooling (equal weighting) scheme as opposed to the two multimodel schemes. For IRI forecasts

and multimodel predictions, the probability categories are centered on integer multiples of 0.05, while for the

AGCM they are centered on integer multiples of 0.10.
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reliability-maximizing values would be (i.e., overcon-

fidence) resulted in high RPSS scores over this very

warm period. Such skill levels may not be sustainable

over a longer period in which only moderately skill-

ful but grossly overconfident predictions are made,

and in which one of the two outer categories does not

dominate the observations. This was in fact found

to be the case in a multidecadal reliability analysis in-

volving a set of AGCMs (Goddard et al. 2003b).

The above discussion

points up the major role that

multidecadal trends can play

in climate diagnosis and pre-

diction. Traditional 30-yr cli-

matological base periods not-

withstanding, use of a recent,

much shorter base period

(e.g., the last 10 yr) would

serve the purpose of isolating

interannual variability to

simplify the interpretation of

verifications such as those

discussed above. Addition-

ally, forecasts expressed with

respect to the climatology of

the last 10–12 yr would most

likely be more meaningful to

users.

Precipitation. A comparison of

skill for the original forecasts

and the retrospective objec-

tive multimodel forecasts for

precipitation is shown in Fig.

6. In contrast to the results

for temperature, skill for the

multimodel ensemble is gen-

erally not more skillful than

the IRI’s issued forecasts, and

falls short of them in some

pockets of high skill such as

over the Philippines and east-

ern Africa. The geographical

distributions of skill of the

three individual AGCMs

(not shown) show patterns

similar to that of the multi-

model ensemble, but with

even more sparsely spaced

pockets of positive skill.

Thus, all of the AGCMs had

modest skills over much of

the globe, and the multimo-

del ensemble made the most of a weak set of inputs.

However, it should be noted that in the regions where

precipitation is known to have some predictability, the

predictability is usually limited to specific times of the

year. Skills for these specific seasons alone, highlighted

in Goddard et al. (2003a), are higher than those av-

eraged over all seasons as in Fig. 6.

One reason that the objective multimodel en-

semble predictions did not have greater skill than the

FIG. 6. (a) Geographical distribution of RPSS (%) averaged over 17 IRI half-

month lead seasonal Net Assessment forecasts of precipitation for Oct–Nov–

Dec 1997 through Oct–Nov–Dec 2001. Forecasts of the climatological distri-

bution are included. Gray-shaded areas have insufficient verification data to

be scored. [Note: This is the same as Fig. 3b in Goddard et al. (2003a)]. (b) As

in (a), except for the objective two-scheme multimodel ensemble predictions

using three AGCMs (ECHAM 3.6, CCM 3.2, and NCEP/MRF-9) as input, forced

by predicted SST.
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more subjectively derived IRI forecasts is that, unlike

the case for temperature, the supplementary inputs

to the IRI’s forecasts proved beneficial. In particular,

the empirical ENSO-associated precipitation prob-

abilities enhanced the skills of the IRI’s precipitation

forecasts in a number of regions having known sen-

sitivities to ENSO. The AGCMs showed skill in pre-

dicting precipitation impacts to ENSO in Indonesia,

the Philippines, most tropical Pacific islands, the

southeastern United States, and small parts of east-

ern Africa and northeastern Brazil. The empirical

ENSO-associated probabilities were fairly successful

in many (but not all) of these regions, as well as some

others such as southeastern Brazil and Uruguay,

southern Africa, and northeastern Africa/Saudi

Arabia. A combination of the two types of tools pro-

duced the most skillful result for precipitation, as was

done in the subjective process leading to the IRI’s is-

sued Net Assessment forecasts. If the best possible

forecasts are to be issued in a more objective, auto-

mated way, the process may benefit from including

empirically based tools in addition to the AGCMs.

A possible reason that the AGCMs sometimes fell

short of the empirical ENSO-associated probabilities

is the presence of systematic errors in the AGCMs.

While biases in mean and variance are effectively re-

duced on an individual gridpoint basis in the

multimodel ensembling scheme, spatial displacement

errors were not treated on a pattern level using mul-

tivariate statistical techniques such as CCA or singu-

lar value decomposition (SVD; e.g., Feddersen et al.

1999; Ward and Navarra 1997), or other techniques.

Even small spatial shifts may negatively impact the

precipitation skills of the AGCMs, since, in contrast

to temperature, precipitation patterns often involve

small-scale features (e.g., Gong et al. 2003). While

spatial displacement errors are not a general or severe

problem in AGCMs, they are identifiable. Spatial cor-

rections have been found to increase the value of the

AGCM predictions in particular regions such as

southwest Asia (Tippett et al. 2003) and southern

Africa (Landman and Goddard 2002), and work is un-

der way to apply this process to IRI’s AGCM predic-

tions more regularly, where beneficial.

Figure 7 contains reliability diagrams presented in

the same format as those shown in Fig. 5 for tempera-

ture forecasts. The 4-yr period was characterized by

a slight preponderance of drier-than-normal condi-

tions (40%–45%). This came mainly at the expense of

the near-normal category rather than the above-nor-

mal category, as the latter was observed at least 30%

of the time.3 The IRI’s issued forecasts, and particu-

larly the multimodel ensemble predictions, did not

reflect this dry tendency, and thus had wet biases with

respect to the below-normal category as noted by

most points being above the reliability-maximizing

45° line. The slope of the curve, being roughly simi-

lar to that of the 45° curve, reveals acceptable resolu-

tion (lack of overconfidence or underconfidence) in

both the IRI’s issued forecasts and in the multimodel

ensemble predictions. This implies that increases in

the forecast probability for a given category of pre-

cipitation correspond approximately correctly to

comparable increases in the probability of observing

that category. Results for the equal weighting version

of the multimodel combination (blue curves) show

greater overconfidence (i.e., worse resolution), al-

though the bias of underestimating dryness is re-

duced.

The reliability curves for one of the AGCMs, rep-

resenting the curves of the other two AGCMs also, re-

veals strongly overconfident predictions. This over-

confidence, as revealed by the shallow slope of the

reliability curve and the flat frequency distribution of

forecast probabilities (inset histogram), was also noted

above for temperature predictions. The overconfi-

dence is largely eliminated in the multimodel en-

semble through averaging across models, spatial

smoothing, and the calibrating effects (including

amplitude damping) of the filtering and weighting

processes of the two multimodel schemes. As noted

by the blue curves and regression lines in the middle

column of Fig. 7, a simple equal-weighting scheme to

combine the forecasts of the three AGCMs does not

sufficiently reduce the overconfidence.

SUMMARY AND DISCUSSION: EFFECTIVE-

NESS OF THE MULTIMODEL ENSEMBLE

PROCESS. The results above suggest that the auto-

mated, objective multimodel ensemble procedure ef-

fectively consolidates predictions from several

AGCMs by weighting them using two formulations,

each based on their historical performance under

conditions of perfectly known SST. The procedure

appears to successfully substitute for human re-

3 This may be due to a difference in climatologies between the

University of East Anglia data (New et al. 1999, 2000) used to

define the terciles, and the CMAP data (Xie and Arkin 1997)

used for verification. A check for relative biases during the

overlap period did not reveal a problem, but differences in the

tercile boundaries may exist. Another possibility is that the

distribution of precipitation may in fact be changing toward

more general dryness but with a higher frequency of extreme

events, and therefore occasional very high seasonal rainfall to-

tals (Dai et al. 1998; Karl et al. 1995).
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sources, in that the weighting and spatial smoothing

is of approximately equal quality as when done sub-

jectively.4 The skill results for precipitation suggest

that additional empirical tools could still beneficially

complement the best combination of AGCMs. The

marginally lower overall precipitation skill of the

AGCMs alone compared with the skill of the AGCMs

complemented by the statistical ENSO tool may be

attributed to 1) model-specific systematic errors re-

lated to their physical parameterizations and/or 2)

systematic errors in pattern shape and/or location,

which were not statistically corrected in this study. In

terms of reliability (correspondence between forecast

probabilities and observed relative frequencies), the

individual AGCMs are seen to be greatly overconfi-

dent for both temperature and precipitation. Overall

biases in the AGCMs are not severe, despite some un-

derestimation of the pervasive warmth and the ten-

dency toward dryness in the 4-yr study period. The

multimodel ensemble and the IRI’s issued Net Assess-

ment forecasts greatly reduced the overconfidence of

the AGCMs, due to the conditional acceptance and

recalibration of the model predictions, which can be

done either subjectively by the forecasters or objec-

tively and automatically using the multimodel en-

semble schemes.

The multimodel ensemble and the IRI’s issued

forecasts did not improve upon the overall bias char-

acteristics of the AGCMs over the 4-yr period—the

underprediction of warmth and dryness. The three

AGCMs had already been corrected for biases over a

longer historical period, as the tercile boundaries were

derived in terms of their own historical distribution.

Underprediction of the warm conditions, which may

FIG. 7. As in Fig. 5 (reliability diagrams), except for precipitation forecasts. See the caption of Fig. 5 for more

detail.

4 It is impossible to assess this precisely, due to the inclusion of

additional inputs to the IRI’s issued forecasts. These empirical

inputs appear to have increased the skill of the precipitation

forecasts, and degraded the skill of the temperature forecasts

over the 4-yr study period.
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be regarded as a bias, can also be seen as an individual

forecast underestimation in the sense that the warmth

in many locations occurred more or less continuously

throughout the period. This points to the fact that a

4-yr period is insufficient to perform a conclusive

analysis, particularly when a variable does not have

sufficient opportunity to span its normally expected

range. A differing interpretation is that it was not the

short period, but rather the decadally upward-trended

temperature with respect to an “outdated” normal,

that led to the preponderance of above-normal tem-

perature that the AGCMs reproduced to a moderate

extent, but not fully.

Although the two multimodel ensembling schemes

exhibited somewhat differing characteristics, their

skills and reliability diagrams (not shown) were com-

parable, and neither scheme was found to have un-

desirable characteristics. Because of the imperfectly

correlated outputs of the two schemes, together they

delivered a well-balanced product in terms of pattern

and strength. It is worth noting that a simple method

to combine the forecasts of the three AGCMs using

equal weights (blue curves and lines in the middle

column of Figs. 5 and 7) yielded results comparable

to those of the two “smarter” schemes for tempera-

ture (Fig. 5)—in fact, with a better cool bias reduc-

tion. For precipitation, however, equal weighting

yielded less effective correction of overconfidence

than the two schemes, although it did slightly better

with bias (Fig. 7). The Bayesian scheme was found to

outperform equal weighting over a multidecadal pe-

riod (Rajagopalan et al. 2002; RLZG). While its ben-

efit is less clear in this 4-yr period, we cannot conclude

that equal weighting would be as effective as the more

sophisticated schemes.

It is possible to include one or more empirical tools

in an objective, automated fashion as additional in-

put to objective predictions of either precipitation or

temperature. Empirical predictions could include, for

example, the ENSO-related probabilistic composites

already discussed (Mason and Goddard 2001), a CCA

or SVD relating observed patterns of climate over

land to patterns of SST anomalies (e.g., Barnett and

Preisendorfer 1987; Graham et al. 1987; Wallace et al.

1992; Barnston and Smith 1996), and a decadal-scale

persistence tool (e.g., “optimum climate normals”) as

used for forecasts for the United States by the NOAA/

NCEP/CPC (Huang et al. 1996). Statistical spatial cor-

rection of the AGCM predictions [i.e., model output

statistics (MOS)] would give the AGCM tools greater

value. In sum, it is possible that the skill of IRI’s final

forecasts can be improved beyond what has been

shown here.

A final element that may have helped the subjec-

tively produced precipitation forecasts but not the

automated forecasts is the ability of the forecasters to

judge the reality of the evolving versus the persisted

SST prediction in certain critical precipitation-deter-

mining seasons and regions, and to beneficially ad-

just the climate forecasts accordingly. Such delibera-

tion was less frequently applied to the temperature

forecasts. This factor is difficult to automate because

it is related to uncertainties in the SST prediction—a

prediction accepted as a fixed quantity in the forecast

system and in this study.

The prediction of SST is a challenge in its own

right, in which much progress is needed. Improve-

ments in a global ocean observing capability should

make possible new research. The introduction of new

three-dimensional global upper-ocean data with the

Argo data network [Wilson 2000; Commonwealth

Scientific and Industrial Research Organisation

(CSIRO) 2002], and the Pilot Research Moored Ar-

ray in the Tropical Atlantic (PIRATA) array in the

tropical Atlantic beginning in 1997 (Servain et al.

1998), may lead to improvements in SST prediction,

particularly outside of the tropical Pacific where pre-

diction skill is weakest. A more methodological issue

of interest is that of the value of fully coupled ocean–

atmosphere prediction systems (e.g., Stockdale et al.

1998) as opposed to two-tiered prediction systems.

One of the ultimate goals of the IRI is to produce

the most skillful and reliable climate forecasts that are

relevant to society’s needs. Progress toward this goal

involves automating the forecast process where pos-

sible without degrading forecast quality, to free time

for researching and implementing further improve-

ments. A step in this direction has been described

here.
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