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Abstract. This paper aims to extend fuzzy MULTIMOORA with linguistic reasoning and group
decision-making (MULTIMOORA-FG). The new method consists of the three parts, namely
the fuzzy Ratio System, the fuzzy Utopian Reference Point, and the fuzzy Full Multiplica-
tive Form offering a robust comparison of alternatives against multiple objectives. In addition,
MULTIMOORA-FG is designed to deal with triangular fuzzy numbers which, in turn, can resem-
ble linguistic variables. MULTIMOORA-FG is a proper instrument for linguistic reasoning under
fuzzy environment. In our study an application of personnel selection illustrates the group decision-
making procedure according to MULTIMOORA-FG. Given the uncertainties peculiar of personnel
selection, the application of multi-objective decision making (MODM) is required in this area.
Fuzzy MULTIMOORA enables to aggregate subjective assessments of the decision-makers and
thus offer an opportunity to perform a more robust personnel selection. The committee decided
to consider eight qualitative characteristics expressed in linguistic variables. A numerical exam-
ple exhibited possibilities for improvement of human resources management or any other business
decision-making by applying MULTIMOORA-FG.

Keywords: personnel selection, personnel management, employment decisions, human resources
management, multi-objective optimization, MULTIMOORA, MULTIMOORA-FG, fuzzy number,
linguistic reasoning.

1. Introduction

Multi-objective decision-making methods (MODM) methods can deal with a selection
process: by finding an optimal solution from a set of available alternatives according
to a set of objectives. Sometimes none of the alternatives satisfies all the objectives.
Then a satisfactory decision is made instead of an optimal one. Roy (1996) presented
the following pattern of MODM problems: (1) α choosing problem – choosing the best
alternative; (2) β sorting problem – classifying alternatives into relatively homogenous
groups; (3) γ ranking problem – ranking alternatives from best to worst; (4) δ describ-
ing problem – describing alternatives in terms of their peculiarities and features. Belton
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and Stewart (2002) defined the three broad categories of MODM methods (Loken, 2007;
Zavadskas and Turskis, 2011): (1) value measurement models; (2) goal, aspiration, and
reference level models; (3) outranking models (the French school). In this study we will
extend and apply the MOORA and MULTIMOORA methods.

The Multi-Objective Optimization by Ratio Analysis (MOORA) was introduced by
Brauers and Zavadskas (2006). Subsequently, these authors further developed the method
(Brauers and Zavadskas, 2010a) thus presenting the MULTIMOORA (MOORA plus
the full multiplicative form). Numerous examples of application of MULTIMOORA are
present. The MULTIMOORA was applied as well as in a manufacturing and engineering
environment (Kracka et al., 2010; Chakraborty, 2011; Brauers et al., 2008a, 2008b; Kali-
batas and Turskis, 2008), as in regional development studies (Brauers and Zavadskas,
2010b, 2011b; Brauers and Ginevičius, 2009, 2010; Brauers et al., 2007). The theory
of dominance (Brauers and Zavadskas, 2011a) enables to summarize the ranks obtained
from different parts of MULTIMOORA. Moreover, MULTIMOORA has been updated
with fuzzy number theory (Brauers et al., 2011).

In this study a personnel selection case will be used as an assumed example. Per-
sonnel selection is an important part of human resources management in an enterprise.
It tries to find the best candidate for a well-defined vacancy also with determination of
the input quality of the personnel (Dursun and Karsak, 2010). The ongoing processes
of globalization as well as the increasing competition require improving the personnel
selection. However, many enterprises are not ready to make available the vast amount
of funds for personnel selection. Hence, it is important to develop new decision-making
techniques available for enterprises asking for various technological, financial, or intel-
lectual capacities. Consequently, more and more scientists have analyzed the practice of
personnel recruitment (Zavadskas et al., 2008). Indeed, the complexity of personnel se-
lection requires the application of MODM for robust recruitment. Consequently, MODM
methods were applied in many studies focused on personnel recruitment (Dursun and
Karsak, 2010; Zhang, Liu, 2011; Kelemenis and Askounis, 2010; Kelemenis et al., 2011;
Merigo and Gil-Laufente, 2011; Zavadskas et al., 2008). The latter two sources provide
comprehensive reviews of studies on personnel selection.

Zadeh (1965), the Founder of fuzzy logic, proposed employing the fuzzy set theory
as a modelling tool for complex systems that are hard to define exactly in crisp num-
bers. Fuzzy logic hence allows coping with vague, imprecise and ambiguous inputs and
knowledge (Kahraman, 2008; Kahraman and Kaya, 2010). Linguistic reasoning relying
on fuzzy logics was introduced by Zadeh (1975a, 1975b, 1975c) and applied in many
studies (Liang, 1999; Chen, 2000; Chou et al., 2008; Torlak et al., 2011; Kaya and Kahra-
man, 2011).

This paper aims at extending the fuzzy MULTIMOORA for linguistic reasoning un-
der group decision-making. The extended fuzzy MULTIMOORA is applied for solving
personnel selection. Therefore the remaining part of the paper is organized in the follow-
ing way. Section 2 describes the basics of fuzzy number theory, linguistic reasoning, and
MULTIMOORA. The following Section 3 presents the extended fuzzy MULTIMOORA
for group decision making. Finally, Section 4 sets forward a numerical example of per-
sonnel selection.
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2. Preliminaries

2.1. The Fuzzy Set Theory and Triangular Fuzzy Numbers

Fuzzy sets and fuzzy logic are powerful mathematical tools for modeling uncertain sys-
tems. A fuzzy set is an extension of a crisp set. Crisp sets only allow full membership or
non-membership, while fuzzy sets allow partial membership. The theoretical fundaments
of fuzzy set theory are overviewed by Chen (2000).

In a universe of discourse X , a fuzzy subset Ã of X is defined with a membership
function μÃ(x) which maps each element x ∈ X to a real number in the interval [0; 1].
The function value of μÃ(x) resembles the grade of membership of x in Ã. The higher
the value of μÃ(x), the higher the degree of membership of x in Ã (Keufmann and Gupta,
1991). Noteworthy, in this study any variable with tilde will denote a fuzzy number.

A fuzzy number Ã is described as a subset of real number whose membership function
μÃ(x) is a continuous mapping from the real line � to a closed interval [0; 1], which has
the following characteristics: (1) μÃ(x) = 0, for all x ∈ (−∞; a] ∪ [c; ∞); (2) μÃ(x)
is strictly increasing in [a; b] and strictly decreasing in [d; c]; (3) μÃ(x) = 1, for all
x ∈ [b; d], where a, b, d, and c are real numbers, and −∞ < a � b � d � c < ∞.
When b = d a fuzzy number Ã is called a triangular fuzzy number (Fig. 1) represented
by a triplet (a, b, c). Triangular fuzzy numbers will therefore be used in this study to
characterize the alternatives. The membership function μÃ(x) is thus defined as:

μÃ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < a,
x − a
b − a

, a � x � b,
x − c
b − c

, b � x � c,

0, x > c.

(1)

In addition, the parameters a, b, and c in (1) can be considered as indicating respec-
tively the smallest possible value, the most promising value, and the largest possible value
that describe a fuzzy event (Torlak et al., 2011).

Fig. 1. Membership function of a triangular fuzzy number Ã = (a, b, c).
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Let Ã and B̃ be two positive fuzzy numbers (Liang and Ding, 2003). Hence, the main
algebraic operations of any two positive fuzzy numbers Ã = (a, b, c) and B̃ = (d, e, f)
can be defined in the following way (Merigo and Casanovas, 2011):

1. Addition ⊕:

Ã ⊕ B̃ = (a, b, c) ⊕ (d, e, f) = (a + d, b + e, c + f); (2)

2. Subtraction �:

Ã � B̃ = (a, b, c) � (d, e, f) = (a − f, b − e, c − d); (3)

3. Multiplication ⊗:

Ã ⊗ B̃ = (a, b, c) ⊗ (d, e, f) = (a × d, b × e, c × f); (4)

4. Division 	:

Ã 	 B̃ = (a, b, c) 	 (d, e, f) = (a/f, b/e, c/d). (5)

The vertex method will be applied to measure the distance between two fuzzy num-
bers. Let Ã = (a, b, c) and B̃ = (d, e, f) be two triangular fuzzy numbers. Then, the
vertex method can be applied to measure the distance between these two fuzzy numbers:

d(Ã, B̃) =

√
1
3
[
(a − d)2 + (b − e)2 + (c − f)2

]
. (6)

Fuzzy numbers can be applied in two ways when forming the response matrix of al-
ternatives on objectives. First, fuzzy numbers can represent the values of linguistic vari-
ables (Zadeh, 1975a, 1975b, 1975c) when deciding either on the importance of criteria or
performing qualitative evaluation of alternatives. For the latter purpose Chen (2000) de-
scribes the following fuzzy numbers identifying values of linguistic variables from scale
Very poor to Very good: Very poor – (0, 0, 1); Poor – (0, 1, 3); Medium poor – (1, 3, 5);
Fair – (3, 5, 7); Medium good – (5, 7, 9); Good – (7, 9, 10); Very good – (9, 10, 10). Sec-
ond, the fuzzy numbers can represent monetary (quantitative) terms. It can be done either
through direct input of certain fuzzy numbers into the response matrix or by aggregation
of raw data (e.g., time series). For example, if there are costs “approximately equal to $
200” estimated, the sum can be represented by triangular fuzzy number (190, 200, 210).
Moreover, the fuzzy numbers can embody expected rate of growth. For example, if there
is level of unemployment of 5 per cent with expected growth of 10 per cent, a triangular
fuzzy number (5, 5.5, 6.1) can summarize these characteristics. As for time series data, a
fuzzy number can represent the dynamics of certain indicator during past t periods:

(
min

p
{ap},

( t∏
p=1

ap

)1/t

, max
p

{ap}
)

, (7)
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where ap represents the value of certain indicator during period p(p = 1, 2, . . . , t).
The results of comparison of alternatives based on fuzzy numbers are also expressed

in fuzzy numbers. The fuzzy numbers therefore need to be converted into crisp ones in
order to identify the most promising alternative. There are four defuzzification methods
commonly employed: (i) the centered method (or centre of area – COA); (ii) the Mean-
of-maximum (MOM); (iii) the α-cut method; and (iv) the signed distance method (Zhao
and Govind, 1991; Yao and Wu, 2000). In this study the COA method will be applied to
obtain the Best Non-fuzzy Performance (BNP) value:

BNP Ã =
(c − a) + (b − a)

3
+ a, (8)

where a, b and c are respectively the lower, modal, and upper values of fuzzy number
Ã = (a, b, c)1 (Triantaphyllou, 2000; Zavadskas and Antucheviciene, 2006, 2007). More-
over, the robustness as well as precision of multicriteria optimization can be improved by
applying either intuitionist fuzzy numbers (Zhang and Liu, 2010) or two-tuple linguistic
representation (Liu, 2009).

2.2. The MULTIMOORA Method

Multi-Objective Optimization by Ratio Analysis (MOORA) was introduced by Brauers
and Zavadskas (2006) on the basis of previous research by Brauers (2004). Brauers and
Zavadskas (2010a) extended the method and in this way it became more robust as MUL-
TIMOORA (MOORA plus the full multiplicative form). These methods have been ap-
plied in numerous studies (Brauers et al., 2007; Brauers and Ginevičius, 2009, 2010;
Brauers and Zavadskas, 2009) focused on regional studies, international comparisons
and investment management.

MOORA method begins with matrix xij where its elements xij denote ith alternative
of jth objective (i = 1, 2, . . . , m and j = 1, 2, . . . , n). MOORA method consists of two
parts: the ratio system and the reference point approach. MacCrimmon (1968) defines
two stages of weighting, namely normalization and voting on significance of objectives.
The issue of weighting is discussed by Brauers and Zavadskas (2010), Zavadskas et al.
(2010b), while the problem of normalization is analyzed by Brauers (2007) and Turskis
et al. (2009).

The MOORA method includes internal normalization and treats originally all the ob-
jectives equally important. In principle all stakeholders interested in the issue only could
give more importance to an objective. Therefore they could either multiply the dimension-
less number representing the response on an objective with a significance coefficient or
they could decide beforehand to split an objective into different sub-objectives (Brauers
and Ginevičius, 2009).

The Ratio System of MOORA defines internal data normalization by comparing an
alternative of an objective to all values of that objective:

1Mode is the measurement with the maximum frequency if there is one. As there is only a lower limit and
an upper limit the average of both is taken.
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x∗
ij =

xij√∑m
i=1 x2

ij

, (9)

where x∗
ij denotes ith alternative of jth objective after internal normalization. Usually

these numbers belong to the interval [−1; 1].
They are added for a maximum (j = 1, 2, . . . , g) or subtracted for a minimum

(j = g + 1, . . . , n):

y∗
i =

g∑
j=1

x∗
ij −

n∑
j=g+1

x∗
ij , (10)

where y∗
i denotes the internal normalized assessment of alternative i with respect to all

objectives. Finally, the y∗
i are ranked in a descending order.

The Reference Point of MOORA is based on the ratios found in the Ratio System (9).
The reference Point can be defined in a non-subjective way as the Maximum Objective

Reference Point. This approach is called realistic and non-subjective as the co-ordinates,
which are selected for the reference point, are realized in one of the candidate alternatives.
The alternatives A (10; 100), B (100; 20) and C (50; 50) will result in the Maximal
Objective Reference Point Rm (100; 100).

The Reference Point can also be found as an Aspiration Objective Reference or a
Utopian Objective Reference Point. The co-ordinates qi of an Aspiration Objective Vector
are formed as: qj � rj ; with (rj − qj) being a subjective element.

The Aspiration Objective Vector moderates the aspirations by choosing smaller co-
ordinates than in the maximal objective vector. Indeed stakeholders may be more moder-
ate in their expectations.

On the contrary, the Utopian Objective Vector gives higher values to the co-ordinates
of the reference point than the maximal objective vector. Even more, a Utopian Objective
Reference Point can be considered at a very large distance, rather as an ideal point not to
be reached in reality. A desirable reference point as in the Utopian Objective method is
then understandable for Performance Management, such as for student evaluation or for
any performance in the private or public sector (Brauers, 2004). Alternatives striving only
for a maximum and not for a minimum are then logical consequences of this application
of the Utopian Objective Reference Point2.

The Maximal Objective Vector is self-evident, if the alternatives are well defined,
as for projects in Project Analysis and Project Planning. Some call this realism only a
Satisficing Result or Bounded Rationality as it seems that the stakeholders are completely
satisfied if this realistic reference point is reached (Wierzbicki, 1982; Ahituv and Spector,
1990). Therefore, the Utopian Objective Vector, more than the Maximal Objective or
the Aspiration Objective Vector, offers a better response to the idea of Multi-Objective
Optimization.

2Nevertheless a filter can be placed beforehand, e.g., only non-smokers are allowed.
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The Min–Max Metric of Tchebycheff takes care of the final ranking in an ascending
order:

min
i

(
max

j

∣∣rj − x∗
ij

∣∣). (11)

The Full Multiplicative Form and MULTIMOORA

Brauers and Zavadskas (2010a) proposed MOORA to be updated by the Full Mul-
tiplicative Form. The choice of a Utopian Objective Reference Point for Performance
Management embodies only maximization of the full multiplicative utility function.

Overall utility of the it alternative can be expressed as a dimensionless number:

Ui =
n∏

j=1

xij , (12)

where Ui denotes the product of objectives of the ith alternative to be maximized with
i = 1, 2, . . . , m.

MULTIMOORA summarizes MOORA (i.e., Ratio System and Reference Point) and
the Full Multiplicative Form. Ameliorated Nominal Group and Delphi techniques can be
used to reduce remaining subjectivity (Brauers and Zavadskas, 2010a).

3. The Fuzzy MULTIMOORA Method for Group Decision Making

The fuzzy MULTIMOORA was introduced by Brauers et al. (2011). However, the
fuzzy method is further modified in this study. The fuzzy MULTIMOORA for group
decision making (MULTIMOORA-FG) begins with decision matrices X̃k = x̃k

ij =
(xk

ij1, x
k
ij2, x

k
ij3), where x̃k

ij denotes ith alternative of the jth objective evaluated by the
kth decision maker (i = 1, 2, . . . , m; j = 1, 2, . . . , n; and k = 1, 2, . . . , K). Noteworthy,
these variables can represent both quantitative and qualitative assessments of alternatives.
Then the responses of the decision makers are aggregated by employing fuzzy weighted
averaging (FWA) operator3 (Xu and Da, 2003):

x̃ij =
K∑

k=1

w̃kx̃k
ij/

K∑
k=1

w̃k, (13)

where w̃k is the fuzzy coefficient of significance for the kth decision maker. The equal
coefficients of importance may be applied when the executive committee is homogenous,
namely w̃k = (1/K, 1/K, 1/K). Hence we arrive at the fuzzy response matrix X̃ with
x̃ij = (xij1, xij2, xij3) being the aggregated responses of alternatives on objectives.

3More sophisticated aggregation operators might be applied, for instance the OWA operator (Yager, 1988)
and its extensions (Merigo and Casanovas, 2011; Merigo and Wei, 2011; Merigo and Gil-Laufente, 2009; Wang
and Parkan, 2007; Chen and Chen, 2003).
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3.1. The Fuzzy Ratio System

The Ratio System defines internal normalization of the fuzzy numbers x̃ij resulting in
matrix of dimensionless numbers. It is performed by comparing appropriate values of
fuzzy numbers (Liu and Liu, 2010):

x̃∗
ij =

(
x∗

ij1, x
∗
ij2, x

∗
ij3

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x∗
ij1 = xij1

/√∑m
i=1

[
(xij1)2 + (xij2)2 + (xij3)2

]
,

x∗
ij2 = xij2

/√∑m
i=1

[
(xij1)2 + (xij2)2 + (xij3)2

]
,

x∗
ij3 = xij3

/√∑m
i=1

[
(xij1)2 + (xij2)2 + (xij3)2

]
.

∀i, j. (14)

Computation of summarizing ratios ỹ∗
i for each ith alternative comes next. For Per-

formance Management the x̃ij are only added according to (2):

ỹ∗
i =

g∑
j=1

x̃∗
ij . (15)

Then each ratio ỹ∗
i = (y∗

i1, y
∗
i2, y

∗
i3) is de-fuzzified by applying (8):

BNP i =
(y∗

i3 − y∗
i1) + (y∗

i2 − y∗
i1)

3
+ y∗

i1, (16)

where BNP i denotes the best non-fuzzy performance value of the ith alternative. Conse-
quently, the alternatives with higher BNP values are attributed with higher ranks.

3.2. The Fuzzy Reference Point

The fuzzy Reference Point approach is based on the fuzzy Ratios obtained by (14).
The Utopian Objective Reference point ř is defined, in the application under consid-

eration, as (1, 1, 1). Performance Management does not allow that objectives should be
minimized.

Every element of the ratio matrix is recalculated and final rank is given according to
deviation from the reference point (6) and the Min–Max Metric of Tchebycheff:

min
i

(
max

j
d
(
r̃j , x̃

∗
ij

))
. (17)

Finally the candidates are ranked in an ascending order.
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3.3. The Fuzzy Full Multiplicative Form

Overall utility of the ith alternative can be expressed as dimensionless number by em-
ploying (5):

Ũ ′
i = Ãi = (Ai1, Ai2, Ai3) =

g∏
j=1

x̃ij . (18)

Formula (4) is applied when computing these variables. Since overall utility Ũ ′
i is a fuzzy

number, (8) has to be used to rank the alternatives namely with the higher the BNP, the
higher the rank of a certain alternative.

MULTIMOORA-FG summarizes fuzzy MOORA (i.e., fuzzy Ratio System and fuzzy
Reference Point) and the fuzzy Full Multiplicative Form as described by the dominance
theory (Brauers and Zavadskas, 2011a). The MULTIMOORA-FG is quite an effective
tool for assessing sustainability of various phenomena resulting in unbiased ranking of
alternatives.

4. Personnel Selection: An Assumed Example

Group decision-making according to MULTIMOORA-FG is applied for a personnel se-
lection problem. The enterprise has formed an executive committee consisting of four
decision makers (DM1, DM2, DM3, DM4). The committee has to choose the best candi-
date for a vacancy from four participants (A1, A2, A3, A4). The committee has decided
to consider eight objectives to be fulfilled as much as possible: (1) creativity, innova-
tion (C1); (2) leadership (C2); (3) strategic planning (C3); (4) communication skills (C4);
(5) team management (C5); (6) emotional steadiness (C6); (7) educational background
(C7) and (8) professional experience (C8). More specifically, these objectives are ex-
pressed in linguistic variables belonging to a seven-point scale (Table 1). A scale from 1
to seven is considered as a maximum for the human brain (Miller, 1965).

Table 1

Linguistic term set for qualitative evaluation

Linguistic term Fuzzy number

Very low (VL) (0, 0, 0.16)

Low (L) (0, 0.16, 0.34)

Medium low (ML) (0.16, 0.34, 0.5)

Moderate (M) (0.34, 0.5, 0.66)

Medium high (MH) (0.5, 0.66, 0.84)

High (H) (0.66, 0.84, 1)

Very high (VH) (0.84, 1, 1)

Ideal (UORP) (1, 1, 1)
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Table 2

Decision matrix of the four experts

C1 C2 C3 C4 C5 C6 C7 C8

DM1 A1 H ML VH H MH VH VH H

A2 M H M MH H M VH VH

A3 M VH L L VH MH H VH

A4 VH L H ML VH ML ML M

DM2 A1 VH L H VH H H H MH

A2 M VH H VH VH H MH MH

A3 H H MH M H MH M H

A4 M ML MH H MH ML M M

DM3 A1 M MH H MH MH H H MH

A2 M H VH H M MH VH H

A3 H H MH MH H MH M ML

A4 H H ML M H L M M

DM4 A1 H MH VH M M MH MH MH

A2 H H MH VH VH H H MH

A3 VH VH H VH MH H M VH

A4 VH VH M ML H H ML ML

As said above the Utopian Objective Reference Point is preferred for Performance
Management ahead of the other definitions of a reference point. Therefore a Utopian
Objective Reference Point (1, 1, 1,) will be added as UORP to strive for. Table 1 brings
the fuzzy numbers translations of the linguistic variables.

Each of the decision makers evaluated every candidate according to the eight attributes
(Table 2).

Table A1 in Annex A presents the results of translation of these ratings into fuzzy
numbers as described in Table 1. The FWA operator (13) with uniform coefficients of
significance, namely w̃k = (1/4, 1/4, 1/4) for all k, was applied. Nevertheless it is al-
ways possible that a decision maker, for instance the head of the personnel department, is
more important for this application than the other ones. At that moment his significance
coefficient is for instance doubled.

Table A2 of Annex A calculates the ratios by aggregation and by applying (14).

1. The Fuzzy Ratio System. The x̃ij are added to come to sums of ratios ỹ∗
i for each

ith alternative (15). Each ratio ỹ∗
i = (y∗

i1, y
∗
i2, y

∗
i3) is de-fuzzified by (16).

The candidates were ranked according to the fuzzy Ratio System in a descending
order (Annex A Table A5). The second candidate (A2) was considered the best one
and the fourth candidate (A4) the worst one.

2. Reference Point Method. A reference point was defined as the Utopian Objective
Reference Point (1, 1, 1). We proceeded with calculations of deviations of each
alternative from this reference point by applying (17). The candidates were ranked
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Table 3

Ranking of the candidates according to MULTIMOORA-FG

The fuzzy The fuzzy The fuzzy Full MULTIMOORA-FG

Ratio System Reference Point Multiplicative Form

A1 2 3 2 2

A2 1 2 1 1

A3 3 1 3 3

A4 4 4 4 4

according to the fuzzy Reference Point in an ascending order (Annex A Table A4).
In this case, the third candidate was the most preferred.

3. Full Multiplicative Form. The Full Multiplicative Form (18) suggested the second
candidate being the best one (Annex A Table A5).

4. MULTIMOORA-FG. The theory of dominance (Brauers and Zavadskas 2011a) was
applied when summarizing the ranks provided by different parts of MULTIMO-
ORA-FG.

The three methods of MULTIMOORA were assumed to have the same importance.
It was already noticed that one decision maker could be more important than the other
ones but this is not the case with the three methods of MULTIMOORA. These three
methods represent all existing methods with dimensionless measures in multi-objective
optimization and consequently all the three have the same significance of importance.

As shown in Table 3, the second candidate A2 should be employed before candidate
A1 who dominates candidate A3, on its turn dominating candidate A4.

The numerical example exhibited possibilities for improvement of human resources
management by applying MULTIMOORA-FG. However, further studies, empirical and
not simulated, might be useful when based on real fieldwork.

5. Conclusion

This study extended the MULTIMOORA method itself composed of the Ratio System,
the Reference Point and the Full Multiplicative Form methods to a MULTIMOORA-FG
method. This proposed MULTIMOORA-FG method is suitable for tackling uncertain
information, for it allows fuzzy inputs (e.g., linguistic variables identifying expert assess-
ments), which, in turn, reduces information losses throughout computation.

Moreover, the new MULTIMOORA-FG method is extended to cope with group
decision-making. A personnel selection problem illustrates the group decision-making
procedure according to MULTIMOORA-FG. In our example, an executive committee
consisting of four decision makers was to choose the best candidate from four partici-
pants. The committee has decided to consider eight qualitative objectives. More specif-
ically, these objectives were expressed in linguistic variables belonging to a seven-point
scale.
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The theory of dominance was applied when summarizing the ranks provided by dif-
ferent parts of MULTIMOORA-FG, namely the fuzzy Ratio System, the fuzzy Reference
Point, and the fuzzy Full Multiplicative Form. Hence, the MULTIMOORA-FG might be
suitable when making business decisions which require quantitative as well as qualitative
inputs. However, further studies might be useful for extending the method if it would be
based on empirical data.
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Annex A. Group Decision Making According to MULTIMOORA-FG

Table A1
The ratings of the four decision-makers expressed in triangular fuzzy numbers

C1 C2 C3 C4 C5 C6 C7 C8

DM1 A1 (0.66, 0.84, 1) (0.16, 0.34, 0.5) (0.84, 1, 1) (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.84, 1, 1) (0.84, 1, 1) (0.66, 0.84, 1)

A2 (0.34, 0.5, 0.66) (0.66, 0.84, 1) (0.34, 0.5, 0.66) (0.5, 0.66, 0.84) (0.66, 0.84, 1) (0.34, 0.5, 0.66) (0.84, 1, 1) (0.84, 1, 1)

A3 (0.34, 0.5, 0.66) (0.84, 1, 1) (, 0.16, 0.34) (, 0.16, 0.34) (0.84, 1, 1) (0.5, 0.66, 0.84) (0.66, 0.84, 1) (0.84, 1, 1)

A4 (0.84, 1, 1) (, 0.16, 0.34) (0.66, 0.84, 1) (0.16, 0.34, 0.5) (0.84, 1, 1) (0.16, 0.34, 0.5) (0.16, 0.34, 0.5) (0.34, 0.5, 0.66)

DM2 A1 (0.84, 1, 1) (, 0.16, 0.34) (0.66, 0.84, 1) (0.84, 1, 1) (0.66, 0.84, 1) (0.66, 0.84, 1) (0.66, 0.84, 1) (0.5, 0.66, 0.84)

A2 (0.34, 0.5, 0.66) (0.84, 1, 1) (0.66, 0.84, 1) (0.84, 1, 1) (0.84, 1, 1) (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.5, 0.66, 0.84)

A3 (0.66, 0.84, 1) (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.34, 0.5, 0.66) (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.34, 0.5, 0.66) (0.66, 0.84, 1)

A4 (0.34, 0.5, 0.66) (0.16, 0.34, 0.5) (0.5, 0.66, 0.84) (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.16, 0.34, 0.5) (0.34, 0.5, 0.66) (0.34, 0.5, 0.66)

DM3 A1 (0.34, 0.5, 0.66) (0.5, 0.66, 0.84) (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.5, 0.66, 0.84) (0.66, 0.84, 1) (0.66, 0.84, 1) (0.5, 0.66, 0.84)

A2 (0.34, 0.5, 0.66) (0.66, 0.84, 1) (0.84, 1, 1) (0.66, 0.84, 1) (0.34, 0.5, 0.66) (0.5, 0.66, 0.84) (0.84, 1, 1) (0.66, 0.84, 1)

A3 (0.66, 0.84, 1) (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.5, 0.66, 0.84) (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.34, 0.5, 0.66) (0.16, 0.34, 0.5)

A4 (0.66, 0.84, 1) (0.66, 0.84, 1) (0.16, 0.34, 0.5) (0.34, 0.5, 0.66) (0.66, 0.84, 1) (, 0.16, 0.34) (0.34, 0.5, 0.66) (0.34, 0.5, 0.66)

DM4 A1 (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.84, 1, 1) (0.34, 0.5, 0.66) (0.34, 0.5, 0.66) (0.5, 0.66, 0.84) (0.5, 0.66, 0.84) (0.5, 0.66, 0.84)

A2 (0.66, 0.84, 1) (0.66, 0.84, 1) (0.5, 0.66, 0.84) (0.84, 1, 1) (0.84, 1, 1) (0.66, 0.84, 1) (0.66, 0.84, 1) (0.5, 0.66, 0.84)

A3 (0.84, 1, 1) (0.84, 1, 1) (0.66, 0.84, 1) (0.84, 1, 1) (0.5, 0.66, 0.84) (0.66, 0.84, 1) (0.34, 0.5, 0.66) (0.84, 1, 1)

A4 (0.84, 1, 1) (0.84, 1, 1) (0.34, 0.5, 0.66) (0.16, 0.34, 0.5) (0.66, 0.84, 1) (0.66, 0.84, 1) (0.16, 0.34, 0.5) (0.16, 0.34, 0.5)
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Table A2
Ratios for each alternative (candidate)

C1 C2 C3 C4 C5 C6 C7 C8

A1 (0.63, 0.8, 0.92) (0.29, 0.46, 0.63) (0.75, 0.92, 1) (0.59, 0.75, 0.88) (0.5, 0.67, 0.84) (0.67, 0.84, 0.96) (0.67, 0.84, 0.96) (0.54, 0.705, 0.88)

A2 (0.42, 0.59, 0.75) (0.71, 0.88, 1) (0.59, 0.75, 0.88) (0.71, 0.88, 0.96) (0.67, 0.84, 0.92) (0.54, 0.71, 0.88) (0.71, 0.88, 0.96) (0.625, 0.79, 0.92)

A3 (0.63, 0.8, 0.92) (0.75, 0.92, 1) (0.42, 0.58, 0.76) (0.42, 0.58, 0.71) (0.67, 0.84, 0.96) (0.54, 0.71, 0.88) (0.42, 0.59, 0.75) (0.625, 0.795, 0.875)

A4 (0.67, 0.84, 0.92) (0.42, 0.59, 0.71) (0.42, 0.59, 0.75) (0.33, 0.51, 0.67) (0.67, 0.84, 0.96) (0.25, 0.42, 0.59) (0.25, 0.42, 0.58) (0.295, 0.46, 0.62)

Table A3
Normalized aggregated ratings for each alternative (candidate) and the Utopian Objective Reference Point

C1 C2 C3 C4 C5 C6 C7 C8

A1 (0.24, 0.31, 0.35) (0.11, 0.18, 0.25) (0.3, 0.37, 0.4) (0.25, 0.31, 0.37) (0.18, 0.24, 0.31) (0.28, 0.35, 0.4) (0.27, 0.34, 0.4) (0.22, 0.29, 0.36)

A2 (0.16, 0.22, 0.29) (0.28, 0.35, 0.4) (0.23, 0.3, 0.35) (0.3, 0.37, 0.4) (0.24, 0.31, 0.33) (0.22, 0.3, 0.36) (0.29, 0.36, 0.4) (0.26, 0.33, 0.38)

A3 (0.24, 0.31, 0.35) (0.3, 0.36, 0.4) (0.17, 0.23, 0.3) (0.18, 0.24, 0.3) (0.24, 0.31, 0.35) (0.22, 0.29, 0.37) (0.17, 0.24, 0.31) (0.26, 0.33, 0.36)

A4 (0.26, 0.32, 0.35) (0.16, 0.23, 0.28) (0.17, 0.23, 0.3) (0.14, 0.21, 0.28) (0.24, 0.31, 0.35) (0.1, 0.17, 0.24) (0.1, 0.17, 0.24) (0.12, 0.19, 0.26)

r̃ (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
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Table A4
The fuzzy Reference Point approach

C1 C2 C3 C4 C5 C6 C7 C8 max
j

d(r̃j , x̃∗
ij) Rank

A1 0.7025 0.8205 0.6449 0.6928 0.7581 0.6604 0.6643 0.7106 0.8205 3

A2 0.7776 0.6608 0.7066 0.6457 0.7063 0.7073 0.6522 0.6813 0.7776 2

A3 0.7025 0.6491 0.7684 0.7626 0.7019 0.7073 0.7618 0.6863 0.7684 1

A4 0.6912 0.7759 0.7683 0.7924 0.7019 0.8285 0.8303 0.8131 0.8303 4

Table A5
The fuzzy Ratio System and the fuzzy Full Multiplicative Form

The fuzzy Ratio System The fuzzy Full Multiplicative Form

ỹ∗
i BNP i Rank Ũ

′
i BNP i Rank

A1 (1.86, 2.39, 2.83) 2.36009 2 (0.00001, 0.00005, 0.00022) 0.000095 2

A2 (1.99, 2.53, 2.91) 2.475324 1 (0.00001, 0.00009, 0.00029) 0.000132 1

A3 (1.78, 2.31, 2.73) 2.27359 3 (0.00001, 0.00004, 0.00018) 0.000076 3

A4 (1.3, 1.84, 2.3) 1.8121 4 (0, 0.00001, 0.00004) 0.000017 4
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MULTIMOORA-FG: daugiatikslio sprendim ↪u priėmimo metodas
lingvistiniam pagrindimui ir jo taikymas personalo atrankoje

Alvydas BALEŽENTIS, Tomas BALEŽENTIS, Willem K.M. BRAUERS

Šio straipsnio tikslas – pritaikyti neraišk ↪uj↪i MULTIMOORA metod ↪a lingvistiniam programa-
vimui grupiniame sprendim ↪u priėmime. Naujasis MULTIMOORA-FG metodas sudarytas iš trij ↪u
dali ↪u: neraiškiosios santyki ↪u sistemos, neraiškiojo atskaitos taško, neraiškiosios pilnosios sandau-
gos formos. Minėt ↪u trij ↪u metod ↪u taikymas leidžia atlikti efektyv ↪u alternatyv ↪u ↪ivertinim ↪a atsižvel-
giant ↪i daugel↪i iš anksto apibrėžt ↪u tiksl ↪u. MULTIMOORA-FG metodas leidžia apdoroti trečiojo
laipsnio neraiškiuosius skaičius, kurie gali atspindėti kiekybin ↪e ir kokybin ↪e informacij ↪a, pavyzdžiui
lingvistinius kintamuosius. Taigi naujasis metodas tinkamas lingvistiniam sprendim ↪u pagrindimui.
Šiame straipsnyje MULTIMOORA-FG pritaikytas apibendrinant skirting ↪u ekspert ↪u nuomones ir
taip atliekant atspari ↪a nuokrypiams personalo atrank ↪a. Dėl personalo atrankos procese pasitaikančio
neapibrėžtumo, dviprasmiškumo ir netikslumo, jame tikslinga taikyti daugiakriterinio vertinimo
metodus bei šiuolaikines informacines technologijas. Konkreti personalo atrankos problema buvo
panaudota kaip MULTIMOORA-FG metodo taikymo pavyzdys: ↪imonė sudarė keturi ↪u ekspert ↪u
grup ↪e personalo atrankai, ekspertai vertino kandidatus pagal aštuonis kriterijus. Šie kokybiniai kri-
terijai buvo išreikšti lingvistiniais kintamaisiais. Minėtas skaitinis pavyzdys patvirtino galimyb ↪e
patobulinti žmogišk ↪uj ↪u ištekli ↪u valdym ↪a taikant nauj ↪aj↪i metod ↪a MULTIMOORA-FG.


