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Multinational patterns of seasonal asymmetry in
human movement influence infectious disease
dynamics
Amy Wesolowski1, Elisabeth zu Erbach-Schoenberg2,3, Andrew J. Tatem2,3, Christopher Lourenço2,4,

Cecile Viboud5, Vivek Charu5, Nathan Eagle6, Kenth Engø-Monsen 7, Taimur Qureshi7,

Caroline O. Buckee6,8 & C.J.E. Metcalf 9,10

Seasonal variation in human mobility is globally ubiquitous and affects the spatial spread of

infectious diseases, but the ability to measure seasonality in human movement has been

limited by data availability. Here, we use mobile phone data to quantify seasonal travel and

directional asymmetries in Kenya, Namibia, and Pakistan, across a spectrum from rural

nomadic populations to highly urbanized communities. We then model how the geographic

spread of several acute pathogens with varying life histories could depend on country-wide

connectivity fluctuations through the year. In all three countries, major national holidays are

associated with shifts in the scope of travel. Within this broader pattern, the relative

importance of particular routes also fluctuates over the course of the year, with increased

travel from rural to urban communities after national holidays, for example. These changes in

travel impact how fast communities are likely to be reached by an introduced pathogen.
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The connectivity of human populations defines the spread of
infectious diseases: cities that are visited frequently
experience more introductions of vector borne1,2 and

directly transmitted3,4 infections. Estimates of mobility have been
used to inform targeting of control efforts5 and to characterize the
spatial spread of emergent pathogens2,6–8, demonstrating
the public health implications of human connectivity. Despite the
connection between travel and infectious disease spread, one
major feature of human mobility has been neglected in most
applications to date: human mobility is generally seasonal9–12.
This phenomenon has been attributed to the intersection of cli-
matic, economic, and social drivers and occurs in countries across
the globe. Environmental changes over the course of the year
define the timing of agricultural, livestock, and fishery
activities13–16; and these drivers can in turn shape travel for
subsistence (e.g., to water sources during dry seasons17,18) and
economic activity (e.g., seasonal, migratory labor15,19–21). Social
drivers such as religious holidays through to school terms also
play a substantial role22.

Seasonal travel has wide-ranging health implications. Beyond
re-introducing pathogens into locations where they have other-
wise been controlled, seasonal mobility and resulting human
aggregation may also increase transmission of directly trans-
mitted pathogens8. Term-times, when children are in schools, are
thought to be associated with higher measles23, rubella24, and
influenza transmission25,26; the dry seasons when agricultural
workers return to urban settings are also associated with higher
measles transmission in Niger27. Seasonal movement might also
coincide with periods of low nutritional status (e.g., the “hunger
season”28), and is likely to challenge the ability of existing health
systems to reach people, particularly in resource poor settings29.

Of course, travel represents one among a diversity of ways by
which health outcomes can be affected seasonally30. Seasonal
climatic conditions can directly affect pathogen transmission, by
modulating vector biology via temperature effects on life history31

or extension of suitable habitat by flooding during the rainy
season32; or by altering how viral particles fall out of the air33 and
thus changing transmission of directly transmitted pathogens.
Additionally, control efforts, which represent one of the largest
footprints on infectious disease incidence globally34 tend to focus
on time periods in which transmission is most intense (e.g.,
provision of bed-nets may be concentrated during the season of
greatest mosquito abundance) This diverse set of potentially
interacting drivers of seasonal fluctuations in infectious disease is
perhaps in part responsible for how rarely the impact of seasonal
travel has been quantified, despite its ubiquity and evidence for its
applied importance24,27. However, the single biggest barrier to
date has been data availability.

Until recently, available data, such as travel history surveys,
border crossing counts, GPS logger, and commuting data,
could only capture a snapshot of travel over a smaller geographic
area, subpopulation, or time frame, limiting their utility
for understanding broad patterns of seasonal travel, as this
requires high-resolution, comparable data9,35. Further, in many
low-income settings, such data are scarce. Novel, and often
digital, data sources have driven a change in our ability to
tackle the question of seasonal mobility. For example, flows of
airline data indicates that seasonal fluxes in national and inter-
national travel are driven by national holidays or tourism36; and
recently, mobile phone data have been used to extract subscriber
mobility patterns at national spatial scales1,5,24,37. Using
the location and timing of mobile communications, subscriber
travel patterns have been inferred and used to understand
general mobility patterns38,39 as well as the spread of infectious
diseases2,5,24,37,40,41. These data sets provide a powerful window
onto spatio-temporal variation in travel1. However, to date, these
have primarily been used to characterize overall patterns of
movement, and have yet to be used to address the question of
seasonal travel in depth.

Here, we compared mobile phone data from three countries—
Kenya, Namibia, and Pakistan—to characterize commonalities
and differences underlying human patterns of mobility. These
data sets have been previously analyzed to quantify broad travel
patterns in each country1,2,5, however the seasonal dimension has
not been systematically and comparatively analyzed, and direc-
tional aspects of mobility have not been previously investigated.
In Namibia, where data were available for multiple years, we show
clear, repeatable seasonal patterns in travel between years. In the
remaining two countries, the length of the data set (with only a
year or less available) limited our ability to identify repeatable
seasonal patterns of mobility. However, commonalities between
seasonal trends in these data, and those that emerged from the
longer time series available from Namibia suggest consistent
drivers of seasonal travel, and we thus use this term in subsequent
discussion. We evaluate the role of previously suggested drivers of
mobility across a unique combination of geographies in Africa
and Asia from extremely rural low-density contexts (Namibia) to
one of the most densely populated countries (Pakistan), investi-
gating both the amount and direction of travel and their seasonal
fluctuations, identifying clear switches in direction over the
course of the year. Building on this, we characterize the possible
implications of seasonal travel on the spread of infectious disease
using a simulation model of geographic spread, accounting for
directional asymmetries, seasonal variation in travel, and patho-
gen characteristics. We further discuss implications for timing of
control and outbreak preparedness.

Table 1 An overview of the mobile phone data and geographic characteristics of the three countries analyzed

Kenya Namibia Pakistan

Population 40M 2.3M 182M
Total area 225,000 sq miles 319,000 sq miles 307,000 sq miles
Population/area 178 per sq miles 7.2 per sq miles 592 per sq miles
District population (mean, 1–3rd quantile) 416 K (216–504 K) 20 K (12–25 K) 570 K (202–709 K)
Average district area 11,492 sq miles 7875 sq miles 25,252 sq miles
Mobile phone data
Time frame of data June 2008–June 2009, excluding

February 2009
October 2010–April 2014 June 2013–December 2013

Total number of subscribers in the data 14,816,521 See Supplementary Information 39,785,786
Number of districts (admin 2 level) with
mobile phone towers

69 105 113

Percentage of districts with a mobile phone
tower

100% 87% 88%
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Results
Country-wide mobility patterns. Using previously described
methods to extract mobility1,5 from mobile phone call data
records (CDRs, see Methods, Supplementary Fig. 1), we first
characterized country-wide seasonal changes in the magnitude of
travel using data from Kenya, Namibia, and Pakistan (Table 1),
defined as the proportion of subscribers that traveled on

subsequent (e.g., between day i and day i + 1) days. We observe
differences in the magnitude of travel between countries: the
mean percentage of the population traveling between subsequent
days for the entire country was lowest in Kenya (mean: 5%, 95%
quantile interval (2–8%)), intermediate in Namibia (13%
(11–18%)), and substantially higher in Pakistan (33% (31–36%)),
see Supplementary Table 1, Supplementary Figs. 2–3. Beyond
broad national differences, all countries showed striking variation
over the course of the time series available (Fig. 1). Major national
holidays drive particularly strong fluctuations (dashed lines,
Fig. 1), with increased travel around Christmas in Kenya and
Namibia (December), and decreased travel during Ramadan in
Pakistan (July–August); although for Pakistan the lack of a full
year of data means that we cannot compare this to the magnitude
of travel between January and May. While the largest increase in
travel volume happens around Christmas for Kenya and Namibia,
the percent of the population traveling peaks roughly three times
during the course of the year (highest peak month (December):
Kenya ~14% above the average, Namibia ~9% above the average)
in line with school term holidays (school breaks shown as a
dashed line). The data also suggest a high volume of travel around
Christmas in Pakistan, although again, the full year is not
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Fig. 1 The ratio of trips between districts vs. within a district per day in each country. The ratio of travel to other districts (see Supplementary Fig. 1 for a
map of districts) vs. stationary trips per district is shown for each day in each data set by year. Data from each district are shown in each row and ordered
according to latitude (North–topmost, South–bottom most). The color represents the percentage of travel ranging from red (high value) to blue (low
value). Coloring is scaled to capture the range for each country. Data for Namibia in a 2012, c 2013, and e 2014 are shown. Data for Kenya in b 2008 and
d 2009 are shown. Pakistan data for f 2013 are shown. The country median ratio of travel is shown in black (smoothed using a spline), and for each
country/year combination echoes underlying color fluctuations over the year, indicating consistent fluctuations in magnitude of travel across spatial scales.
School terms are shown as dashed lines

Table 2 The results from the lasso regression

Variable Kenya Namibia Pakistan

(Intercept) −2.98 −2.33 0.438
School terms 0.0476
Temperature −0.132 −0.0014 −0.0004
Precipitation 0.00088 0.00013
Location −0.001 0.0034 0.0004
Holiday 0.218 0.058 −0.005

In each country, we performed a lasso regression to predict the monthly average ratio of travel
per district using social (school terms), climatic (temperature and precipitation), and a location
variable. In all three countries, the social variable (holiday or school terms) was the largest
factor
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available for comparison. The longer Namibian time series allows
us to confirm that observed patterns are consistent between years
and indeed seasonal.

Across all countries, we analyze possible correlates of seasonal
travel including social determinants (school terms and national
holidays), climatic variables (rainfall and temperature, Supple-
mentary Fig. 4), and an effect of location (e.g., district of origin)
using lasso regression to constrain model complexity. We fitted
lasso models using cross-validation via the glmnet package in R to
minimize the mean-squared error (Supplementary Note 1;
Supplementary Table 2). Most variables were retained in all
three countries in the model identified under global cross-
validation, but social variables (holidays in all three countries and
school terms in Namibia) had by far the largest effects with
coefficients at least double of the next coefficients. In Pakistan, all
variables had small coefficients suggesting that these factors were
not able to predict peaks in travel (leading to a small
regularization coefficient). This may partly reflect the limited
timeframe of these data. In Kenya and Namibia, the coefficient on
temperature was negative (although small in Namibia), suggest-
ing that climatic variables may play a smaller, but consistent role
in these locations.

To explore how these seasonal fluctuations in mobility
translate into seasonal fluctuations in country-scale connectivity,
we used data on the total number of trips in each month to
construct connectivity networks. Kenya and Namibia were the
most connected in December and least connected in June (Fig. 2),
although this varied slightly by year in Namibia. Interestingly, in
line with the seasonal pattern of fluctuations, we find that
Pakistan is also the most connected in December, although the
national holiday does not occur in this month.

Routes of travel. Although the ratio of travel (or amount of travel
to other districts relative to the amount of individuals who stayed
in the same district), varied consistently across spatial scales in all
countries (Fig. 3), regional spread could also be modified by
fluctuations in the importance of particular routes (i.e., direc-
tionality of travel). To evaluate this, we categorized origins and
destination districts of all routes as either urban (based on the
proportion of the population living in urban areas in each district,
see Methods) or rural (likewise). Four types of routes are then
possible: urban to urban trips, urban to rural trips, rural to urban

trips, and rural to rural trips (Methods). This classification yields
two urban districts in Namibia, two in Kenya, and three in
Pakistan; the majority of routes in all three countries are conse-
quently classified as rural to rural (Supplementary Note 2; Sup-
plementary Tables 2, 3).

To characterize fluctuations over the course of the year for each
separate route (identified as an ordered pair of districts), we
defined the z-score of the total amount of travel for that particular
route in each month. We then grouped routes according to their
classification (urban to rural, etc.) and compared median
deviations for each type of route in each month of the year
(Supplementary Note 2; Supplementary Figs. 5–10). Travel along
all types of routes increases seasonally with national holidays and
school terms (Fig. 3a), in line with country-wide analyses.
However, the relative magnitude of changes in travel along
specific types of routes varies according to season. Travel between
urban and rural areas in both directions (Fig. 3b; Supplementary
Information) is increased in December for Kenya and Namibia,
but with a much greater relative increase for travel from urban to
rural districts. Conversely travel from rural to urban areas is
increased in January, and travel from urban to rural areas is
reduced relative to baseline. We find similar qualitative results if
districts are classified by income levels (Supplementary Note 2;
Supplementary Figs. 11–14). This aligns with anecdotal evidence
of individuals traveling from cities to their family homes in rural
areas for the major holiday42. Results in Pakistan show a smaller
difference between the types of routes (i.e., similar magnitudes for
urban to rural and rural to urban trips over the course of the
year), which may be related to the consistently large amount of
travel, or incompleteness of data in this setting.

Seasonal connectivity and disease spread simulation. How will
seasonal differences in routes of travel affect the spread of a novel
pathogen (beyond the effects of fluctuations of magnitude of
travel)? We used a spatial diffusion model (Methods) to evaluate
the general consequences of seasonal and spatial variation in
connectivity (see Supplementary Note 3 and Supplementary
Figs. 15–17 for an additional simulation). To reveal the impacts of
mobility (rather than e.g., duration of stay), we focused on an
array of acute pathogen life histories, leveraging an existing
framing of the hazard of pathogen introduction43 for acute
infections (Methods). We explored how the magnitude of
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transmission (from β ¼ 2 to β ¼ 15) shaped the lag before
pathogen introduction into different districts under the con-
nectivity (and thus directionality) settings defined by different
months of the year in Namibia (since we had multiple years with
which the impact could be compared). Even under high trans-
mission, pathogen spread cannot occur in the absence of sus-
ceptible individuals, so we also varied the magnitude of
susceptibility, across a range from 10 to 90% reflecting a low vs.
high susceptibility setting. Many pathogens also show some
degree of seasonal fluctuation in transmission (reflecting climatic
forces or human aggregation44); but since our interest was in
titrating the impact of mobility alone, we assumed a constant
magnitude of transmission for these simulations. We focused on
introduction into the capital city (Windhoek), as its greater
international connectivity may make it a more likely origin of
pathogen introductions into the country; and as analogy with
other settings suggest that it might also be a core driver of
endemic dynamics23,45.

For pathogens with sufficiently high transmissibility, we found
a classic signature of distance decay for the timing of pathogen
introduction: introduction occurred later in districts further from
Windhoek. Higher transmissibility also results in more rapid
spatial spread (Fig. 4; Supplementary Figs. 18, 19). For pathogens
with weak transmission, both seasonal patterns and the impact of
distance are obscured; further, many locations escape infection in
this scenario (86%). Those locations that become infected, often
become infected early in the simulation, although the range of
estimates varies greatly.

In the context of our specific aim of titrating the impact of
seasonal differences in mobility on the spatial spread of an
infectious disease, we find differences in spread associated with
time of year of pathogen introduction. Indeed, the overall speed
of pathogen spread depends not only on characteristics of the
pathogen, but also the month of its introduction into the country.
For each district, we identified the introduction time

corresponding to the location becoming infected with the greatest
delay. Districts closest to Windhoek, although infected early
relative to other districts, are infected with the greatest delay for
introductions occurring in December. This is in contrast to all
other districts: the greatest delay before infection is associated
with introductions occurring in either January or February for a
wide range of parameter values (Fig. 4). This result is driven by
seasonal fluctuations across particular routes of travel alone, since
we are not evaluating the role of magnitude of travel here.

Discussion
Human mobility is seasonal. Here, we used a unique data source
to reveal the magnitude and consistency of temporally varying
human mobility across spatial scales. We identify social and
cultural drivers as having a key role in shaping these patterns, an
effect which shows marked consistency both within and between
countries. Although we were unable to test the repeatability of
temporally varying trends in Pakistan and Kenya, in Namibia,
seasonal patterns were highly repeatable. An important con-
sequence of this phenomenon is that countries are most con-
nected during national holidays.

Investigation of fluxes along specific routes reveals further
nuance: directionality of mobility also changes over the course of a
year. In Kenya and Namibia, travel from urban to rural areas
increases in December and January, and travel from rural areas to
urban areas in January, suggesting travel from urban areas for
Christmas and back after the holidays. This directionality also
affects spread of an introduced pathogen. Our model of geo-
graphic spread combined with a connectivity matrix reflecting
each month for which data was available revealed geographical
and temporal differences in when a location may become “infec-
ted” as a result of differences in directionality of travel at different
times of year. The consistency of the differences we obtain across a
diversity of pathogen life histories suggest that there may be some

Jan Jun Nov Apr Sep Feb Jul Nov Apr

–2

0

2

4
Rural to urban route

Jan Jun Nov Apr Sep Feb Jul Nov Apr

2

0

2

4

Urban to rural route

–1

0

1

2

R
ou

te
 z

-s
co

re

Jan Mar May Jul Sep Nov

Above

Below

Kenya
Namibia
Pakistan
Rural to urban route
Urban to rural route

a b

c

Fig. 3 The relative amount of travel for each route per month. a For each route (i.e., an ordered pair of districts) within each country, a z-score was used to
characterize deviations in travel across the year. Deviations were grouped by types of route (rural to urban (dashed line, circle), vs. urban to rural (solid
line, square)); and associated median z-scores across the year are plotted (y-axis) for each month (x-axis). Median z-scores above 0 (dotted line) indicate
travel volumes greater than baseline on that type of route; values below 0 indicate reduced travel volumes on that type of route (see Supplementary
Information for remaining routes, rural to rural, and urban to urban). Kenya (red) and Namibia (blue) experience greater travel volumes between rural and
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potential to leverage urban/rural directionality in planning timing
of control effort deployment across districts; and that this will be
of greatest utility for high transmission pathogens. For less
transmissible pathogens, the patterns of spread are less pre-
dictable. However, the spatial model of pathogen spread indicates
that this can shape the spread of infectious disease, which will in
turn shape the best timing for investments in efforts toward the
control of pathogens such as malaria5.

Moving up to the national scale, all three countries are
the most connected in December, a time when seasonal
travel fluxes are highest (although note previous caveats about the
scale of data in Pakistan). These results may have implications
for pathogens emergence and global pandemics—homogeniza-
tion of the timing of holidays across large regions of the globe
will make these areas ripe for rapid pathogen spread, by
maximizing connectivity at particular times of year. Overall,
we uncover consistent differences in patterns of pathogen
spread as a result of seasonal travel (with Kenya and Namibia
the most similar), suggesting generalizable trends in mobility
may be identifiable and are likely to have considerable impacts
on the landscape for national and international infectious disease
spread.

Ultimately, building models that combine robust estimates of
seasonal travel with pathogen biology and data on disease inci-
dence has the potential to define the best timing and spatial
distribution of control efforts over the course of a year (although
much of the nuance of other drivers of seasonality will have to be
addressed30). This is one of many threads that could contribute to
updating the current simple public health schema where both

burden and control efforts are evaluated as yearly aggregates29.
However, no model is better than its underlying data. Mobile
phone data are likely to provide an incomplete picture of seasonal
travel for a number of reasons. Mobile phone subscribership,
although increasing46,47, does not represent a randomized sample
of the population. From previous work, we know that mobile
phone ownership is biased toward more educated, urban males, a
group that may be more mobile46, and potentially misses parts of
the lowest income groups48. Thus, while the data may capture the
full scope of travel of some individuals, the details of biases may
be rather complex. Mobile phone data are also likely to under
sample the movement of children, which is potentially proble-
matic given their importance in the transmission of many
pathogens23. Mobile phone coverage and mobile phone owner-
ship may be low in particular locations (e.g., remote rural loca-
tions), limiting our understanding of the full spatial context; just
as the extent of the time series we had available (particularly for
Pakistan) limited our understanding of the full temporal scope.
The higher amount of travel in Kenya and Pakistan compared to
Namibia may in part be related to differential ownership of
mobile phones, but might also reflect biases in the sources of data
available (e.g., coverage within the population, etc.). Although we
focused on differences in travel on a rural–urban gradient, using a
measure of socio-economic status (Supplementary Information)
that may better capture differential ownership patterns qualita-
tively show similar results (Supplementary Figs. 12–14). However,
since there is no single proxy for socio-economic status, these
results may vary depending on the method of categorizing
locations.
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Windhoek become infected earlier. The only exception is the influenza-like simulation (e.g., corresponding to low magnitude of transmission), where many
locations do not become infected; and this pattern is intensified where susceptibility is low. As the transmission parameter increases, the pathogen spreads
faster throughout the population, often reaching all districts within a few generation times (i.e., e, f). The timing at which a district becomes infected will
also depend on when during the year the pathogen was introduced, given seasonal fluctuations in mobility. For locations nearby Windhoek, the pathogen
reaches these locations the latest in December, reflective of the decrease in travel from Windhoek East to nearby locations in this month
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As we were primarily interested in how travel patterns changed
over the course of the year, differential ownership should not too
greatly bias our results (unless there is considerable hidden spatial
heterogeneity in seasonality that deviates from the broad patterns
identified here). In both Kenya and Namibia, the mobile phone
operator had the largest market share at the time of data collec-
tion implying that these samples are likely reflective of the
majority of mobile phone owners, and thus likely have reasonable
spatial representation. Although the percentage of the population
included from Pakistan was lower (22%) than the other countries,
this could partially be explained by multiple operators in the
country limiting the subscriber base of any individual operator.
However, it is unlikely we are completely missing more remote
areas since the operator has a higher than expected coverage in
these regions2.

Although this analysis improves upon yearly aggregates
of mobility, we still chose to aggregate movement to a daily
time step. Small-temporal scale commuting behavior within a
single day will consequently be missed, despite its potential
importance for transmission of pathogens such as influenza49.
Likewise, long-term migration trends that are commonly
observed in the national census may be missed by the duration of
these data sets, although the relative patterns may be similar50.
Previous work suggests that although the magnitude of travel
obtained from the census does not match the definition of
travel we use from mobile phone data, the relative ranking
of routes of travel remains the same, so that overall trends in
long-term migration may be captured51. Finally, our analysis does
not include cross-border and international travel, which may
also be seasonal51, and likely to interact in complex ways
with pathogen introduction. Without a firm understanding of
cross-border travel in these countries and the transmission
characteristics of a specific pathogen, it is unclear how this will
modulate the outcomes we have described. We believe that,
particularly for the emergence of novel pathogens, cross-border
movement will play an important role in the location of the first
introduced case into these countries, which will impact the spatial
diffusion patterns.

Our analysis provides a comparative assessment of seasonal
fluctuations in directionality of travel, finding intriguingly similar
trends across three different countries. Evidence from Namibia
indicates that both magnitude of travel but also its directionality
varies repeatedly across the year; data from all three countries
points to consistency in patterns across spatial scales. Accumu-
lating data from more countries will allow us to identify the
degree to which there are generalizable patterns of seasonal travel.
This would open the way to investigating whether general pat-
terns for infectious diseases and their movement across scales
emerges, grounding this line of research in both knowledge of key
social and cultural events, but also the importance of broad
structural features, such as urban vs. rural communities. Building
toward an ability to predict the consistency and/or variability
of introduction times of pathogens into different locations
across the year will broadly contribute to epidemic or pandemic
preparedness.

Methods
Geographic data. For each country, district and province level shape files and
areas were obtained from GISDiva.org. The population of each country, province,
and district was calculated using 100 × 100 m population distribution data sets
from WorldPop (Supplementary Fig. 1). Although we focused on dynamic
population movements, these static estimates are based on the census values that
represent a single population estimate from the date of the census. We classified
districts as either urban or rural based on the census reported percentage of the
population considered urban; districts where at least 25% of the population was
considered urban were classified as urban districts. All others were classified as
rural districts.

Quantifying mobility patterns from mobile phone data. We analyzed mobility
data extracted from mobile phone CDRs from operators in three countries (from a
single operator per country): Kenya, Namibia, and Pakistan. These data vary in
terms of the number of subscribers, time frame, and number of mobile phone
towers (Table 1; Supplementary Fig. 1). The number of subscribers in each data set
and the number of mobile phone towers both varies by an order of magnitude
between countries (Table 1). However, they all have similar geographic mobile
phone tower coverage in terms of the percentage of the country serviced by mobile
phone towers (Supplementary Fig. 1) and district areas (Supplementary Fig. 20).
Mobile phone ownership varies between countries and may be due to mobile
phone adoption and the number of mobile phone operators in each country. For
example, in Pakistan we analyzed data from ~40M subscribers in a country of
~182 M (~20% of the population), however there are a number of mobile phone
operators in the country, which likely reduce the market share of any single
company. In contrast, the data analyzed in Namibia, a country with few mobile
phone operators, included near 1.8 M subscribers in a country of ~2.3 M (~78% of
the population). Operator market share may be spatially heterogeneous; however,
subnational market share data are not available in many low- and middle-income
contexts.

To compare across countries and contexts, mobility patterns from each data set
were extracted using the same method. Briefly, we assigned each individual
subscriber a primary daily location based on either the most frequently used mobile
phone tower or the most recently used mobile phone tower if a call was not placed
on the day. In the Kenya and Pakistan data, each subscriber is assigned a location
for each day in the data set; regardless of the first day they made a call/SMS.
However, given the long time frame of the Namibia data set and the changes in the
number of subscribers over this time (~970,000 subscribers in 2010 vs.
2,200,000 subscribers in 2014, see Supplementary Fig. 21), we estimated the
primary daily location for subscribers only for the period between their first and
last call record, to avoid overestimation of stays. We aggregated daily tower
locations to administrative level 2 (referred to as a district) in each country. Based
on each subscriber’s district location on consecutive days, we calculated the
number of trips between all districts. Here a trip between districts A and B on day
N is measured if a subscriber's daily location is district A on day N and district B on
day N + 1.

We aggregated the number of trips between all pairs of districts for each day in
each data set and compared the number of trips between districts to the number of
stationary individuals who have not changed their district location on consecutive
days. Using these two values, we defined the magnitude of travel as the ratio of the
subscribers that traveled on consecutive days. As the spatial and population scales
in all three countries varied, using the ratio of the population traveling provides a
tractable and roughly comparable unit of measure (Supplementary Fig. 20).

Calculating country-wide mobility patterns. For each country, we calculated the
z-score of the raw ratio of travel values per location per day (Fig. 1). The overall
country-wide trend is shown (in black) and is the daily median value smoothed
using a spline.

Drivers of seasonal travel. To identify overall drivers of seasonal travel, we
analyzed the ability of social (school terms and major national holidays) and
climatic variables (rainfall and temperature) to predict travel values. In each
country, we identified the date of the major national holiday (Christmas on 25
December in Kenya and Namibia, Ramadan between 9 July–7 August 2013 in
Pakistan). We used the national average school term breaks for each country.
School break time in Kenya and Namibia varied by year, but in general were during
April, August, and December/January. Pakistan has a single long break from
July–August. We also calculated the monthly average temperature and monthly
total precipitation per district based on the nearest weather station (weather station
data obtained from www.ncdc.noaa.gov). We also used a location variable, which
was a factor variable for each district.

We performed a lasso regression to predict the monthly average ratio of travel
per district using school terms, temperature, precipitation, a location factor, and a
major holiday indicator (Supplementary Information).

Routes of travel. We classified each district as either urban or rural based on the
percentage of the population living in urban areas. Districts were considered urban
if at least 25% of the population lived in an urban area. This threshold was chosen
to ensure that all countries had at least one urban district (Supplementary Table 2).
We classified each route of travel based on the urban/rural classification of the
origin and destination districts (i.e., urban to urban, urban to rural, rural to urban,
and rural to rural, see Supplementary Table 3). We then analyzed each route of
travel separate and calculated the relative seasonal fluctuations in travel using a z-
score of the number of trips. We then grouped routes based on the urban/rural
classifications (see Supplementary Information, Supplementary Table 2, Supple-
mentary Figs. 5, 6 for the results using various cut off points in Namibia).

Simulating outbreak risks with time-varying travel patterns. We also simulated
a spatial spread model that defined the outbreak risk in each location per month. In
each district, a new outbreak will spark if there is contact with an infected
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individual from elsewhere and both the size of the susceptible population and
magnitude of transmission will enable an outbreak4. This can be reformulated as a
time-varying hazard:

h t; jð Þ ¼ βSt;j 1� exp �P
k cj;kxt;k

� �
St;j

�� �

1þ βSt;j
ð1Þ

where β reflects the magnitude of transmission; St;j is the proportion of the
population in location j at time t that is susceptible; cj;k reflects mobility from
location k to location j; and xt;k is the proportion of the population at time t in
location k that is infected. We set a fixed starting proportion of the population
susceptible (St;j) across all locations that we varied for each simulation (Supple-
mentary Information; Fig. 4). We did not include a seasonally varying transmission
value and chose a fixed value of β per simulation reflecting R0 estimates for various
pathogens. The extension to include a seasonally varying transmission parameter
would be trivial to include in the simulation, but would require an assumed
relationship between seasonal transmission and connectivity. We compared the
simulations using different connectivity matrices cj;k per month where travel was
normalized to understand the changes in routes of travel as opposed to the mag-
nitude of trips. We also took the simplifying assumption that transmission does not
vary spatially.

We then simulated a stochastic process of introductions into districts using the
above hazard:

Itþ1;j � Binomðh t; jð ÞÞ for It ¼ 0 ð2Þ
In locations where the disease has been introduced, we simulated deterministic

dynamics including both transmission and susceptible depletion according to:

Itþ1;j ¼ βSt;jIt;j for It > 0 ð3Þ

Stþ1;j ¼ St;j � It;jþ1 þ b ð4Þ

with a fixed approximate birth rate, b, (~29 per 1000 per year)52. Here, the
generation time is implicitly included in the discrete model since it assumes that
infections are cleared within a single time step.

Code availability. R code to perform the infectious disease simulation is available
from the corresponding author (A.W.) upon request.

Data availability. The data that support the findings of this study are not publicly
available since that would compromise the agreement with the mobile phone
operators that made the said data available for research. Information about the
process of requesting access to the data that support the findings of this study can
be obtained from the corresponding author (A.W.).
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