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Abstract To date the design of structures using topology

optimization methods has mainly focused on single-objective

problems. Since real-world design problems typically in-

volve several different objectives, most of which counteract

each other, it is desirable to present the designer with a set of

Pareto optimal solutions that capture the trade-off between

these objectives, known as a smart Pareto set. Thus far only

the weighted sums and global criterion methods have been

incorporated into topology optimization problems. Such meth-

ods are unable to produce evenly distributed smart Pareto

sets. However, recently the smart normal constraint method

has been shown to be capable of directly generating smart

Pareto sets. Therefore, in the present work, an updated smart

Normal Constraint Method is combined with a Bi-directional

Evolutionary Structural Optimization (SNC-BESO) algorithm

to produce smart Pareto sets for multiobjective topology op-

timization problems. Two examples are presented, showing

that the Pareto solutions found by the SNC-BESO method

make up a smart Pareto set. The first example, taken from

the literature, shows the benefits of the SNC-BESO method.

The second example is an industrial design problem for a

micro fluidic mixer. Thus, the problem is multi-physics as

well as multiobjective, highlighting the applicability of such

methods to real-world problems. The results indicate that the

method is capable of producing smart Pareto sets to indus-

trial problems in an effective and efficient manner.
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1 Introduction

Engineering design often involves several considerations, usu-

ally with conflicting requirements, that cannot be simplified

to a single objective function. In such cases, more than one

solution may exist that meets the design goals. For these

multiobjective problems, the Pareto frontier of the entire de-

sign space is the most valuable tool a designer can have to

select the most appropriate designs. The Pareto frontier is

defined as the set of all solutions for which no other solu-

tion is better in all objectives (Pareto (1964)). Such solutions

are known as Pareto-optimal. Therefore, Pareto sets give the

trade-off relationships between the particular objectives in a

multiobjective problem.

1.1 Pareto set generation methods

A variety of different algorithms for generating Pareto sets

are to be found in the literature. This section summarises the

most popular algorithms, comparing their efficiency and ef-

fectiveness in representing the design space. The interested

reader is advised to seek out the latest review articles (Mar-

ler and Arora (2004); Ruzika and Wiecek (2005)) on the

topic, which provide in-depth surveys of multiobjective op-

timization methods.

The most common approach in the multiobjective op-

timization literature is the weighted sums method in which

all objectives are combined to form a single function, known

as the aggregate objective function. Following the introduc-

tion of the weighted sums method by Zadeh (1963), many

authors have addressed its pitfalls with respect to identify-

ing the Pareto-optimal set, for example see (Koski (1985)),

(Stadler (1995)), (Athan and Papalambros (1996)), (Das and

Dennis (1997)) and (Messac et al (2000a)). There are three

main difficulties associated with the weighted sums method.
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First, although many methods for determining weights exist,

a satisfactory, a priori selection of weights does not guar-

antee an acceptable final solution will be obtained (Mar-

ler and Arora (2010)). In this case new weights need to be

defined to resolve the problem. Messac and Hattis (1996)

showed that weights must be a function of the original ob-

jectives, not constants, in order for a weighted sum to mimic

a preference function accurately. Second, the weighted sums

method is not able to capture solutions on the non-convex re-

gions of the Pareto frontier. Theoretical derivations for this

deficiency are given in (Das and Dennis (1997)) and (Mes-

sac et al (2000b)). Finally, varying the weights consistently

and continuously does not guarantee an even distribution of

Pareto solutions and an accurate, complete representation of

the Pareto set. However, the weighted sums method is easy

to implement and does generate solutions of Pareto attribute.

The compromise programming method (Chen et al (1999))

has been proven to overcome some of the drawbacks of the

weighted sums method; namely, it is able to find solutions

on the non-convex regions of the Pareto frontier. Messac

and Ismail-Yahaya (2001) showed that a relationship exists

between the order of the aggregate objective function and

that of the Pareto frontier for the compromise programming

method to successfully generate Pareto solutions. Therefore,

the success of the method is highly dependent on the order

of the aggregated objective function. Nevertheless, although

the compromise programming method is able to produce a

Pareto frontier for convex and non-convex regions, it still

shares some of the deficiencies associated with the weighted

sums method. Most notably, when using an even distribution

of weights it is unable to generate a set of evenly distributed

solutions. Hence, the weighted sums and compromise pro-

gramming methods are suitable for obtaining Pareto solu-

tions, but ill-suited for the creation of Pareto sets (Messac

et al (2003)).

The physical programming method was initially intro-

duced by Messac and Hattis (1996) to provide a means of

incorporating preferences without the need to define relative

weights (Chen et al (2000)). Objective functions, constraints

and goals are treated equally and combined into design met-

rics. Each design metric is associated with a type of utility

function, which is distinguished by its general form, such as:

monotonically decreasing, monotonically increasing or uni-

modal. The decision-maker specifies the numerical ranges,

corresponding to different degrees of preference (i.e. desir-

able, tolerable, etc.), for each metric. As the design process

evolves, these ranges may change. Messac et al (2004) show

that because of the way these utility functions are defined,

physical programming is able to effectively optimize objec-

tive functions with varying orders of magnitude. However,

the requirement that the decision-maker needs to quantita-

tively classify different ranges of values for each metric sug-

gests that physical programming requires significant knowl-

edge about each objective and constraint before the opti-

mization process. Nevertheless, the physical programming

method is superior to the weighted sums and compromise

programming methods, since it is able to represent the com-

plete Pareto set with an even distribution of points (Chen

et al (2000); Messac (2000); Messac et al (2001)). Further-

more, Martinez et al (2001) demonstrate the ability of the

method to handle non-convex Pareto-optimal surfaces. Mes-

sac et al (2001) prove that the physical programming method

provides a sufficient condition for Pareto-optimality, while

Messac and Mattson (2002) demonstrate how physical pro-

gramming can be used as a necessary condition for Pareto-

optimality, obtaining all Pareto-optimal points. However, if

an algorithmic implementation of the method is not avail-

able, then the application of physical programming becomes

difficult. Physical programming also requires significant knowl-

edge of the problem functions, since the decision-maker is

required to specify large amounts of information. Thus, phys-

ical programming can incorporate more information about a

problem; however, this comes at the cost of being inherently

more involved compared with the weighted sums and com-

promise programming methods.

In an effort to overcome the deficiencies of the weighted

sums approach, Das and Dennis (1998) proposed the Nor-

mal Boundary Intersection (NBI) method. This method in-

troduced a new parameter that provided a means for ob-

taining an even distribution of Pareto-optimal points, even

for a non-convex Pareto set, provided a consistent variation

in this parameter is defined. Although the NBI method has

been shown to generate an even distribution of Pareto solu-

tions representing the complete Pareto set, the method does

not provide a sufficient condition for Pareto-optimality and

therefore may produce non-Pareto-optimal points. Further,

for multiobjective problems of dimension n > 2 the NBI

method overlooks some Pareto-optimal points, i.e. it does

not explore the full design space. Das (1999) proposed a

modified NBI method whereby more Pareto points in the

nonlinear portions of the Pareto surface are generated.

Messac et al (2003) developed the Normal Constraint

(NC) method as an alternative to the NBI method with fur-

ther improvements. The authors showed that when the nor-

mal constraint method is used with normalized objective

functions, often referred to as the Normalized Normal Con-

straint (NNC) method, and with a Pareto filter, which elim-

inates non-Pareto or locally Pareto-optimal points, this ap-

proach provides a set of evenly spaced Pareto-optimal points

in the criterion space. Its performance is independent of de-

sign objective scales, and it has been shown to be more

computationally stable than the NBI method, and less likely

to produce non-Pareto or locally Pareto-optimal solutions.

Messac et al (2003) show that the NC method overcomes

the deficiencies of the NBI method because of the different

structure of their formulations. The former uses inequality
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constraints whereas the latter uses equality constraints. The

method used in this paper to generate the Pareto sets is based

upon the NC method. Hence, the specific literature concern-

ing improvements in this method is discussed in Section 1.2.

1.2 Normal constraint method

Since the inception of the NC method (Ismail-Yahaya and

Messac (2002)) many variants and improvements have been

proposed. Shortly after introducing the method the origi-

nal authors proposed the NNC variant, which alleviates ob-

jective scaling issues by operating on the normalized de-

sign objective space (Messac et al (2003)). A number of au-

thors have suggested means for improving the distribution

of Pareto solutions by modifying the utopia plane (Martinez

et al (2007, 2009a); Motta et al (2012)). Furthermore, meth-

ods for avoiding local optima have been proposed by Mar-

tinez et al (2009b). The authors propose a hybrid algorithm,

which combines the NNC method with genetic algorithms.

The NNC method has been shown to capture the entire

Pareto frontier for problems of dimension n = 2 (Messac

et al (2003)). However, similarly to the NBI method, parts

of the design space could be left unexplored for problems of

higher dimension (Section 1.1). Messac and Mattson (2004)

proposed that, for problems where n > 2, the utopia plane

should be extended to include not just the region bounded

by anchor points, but rather the entire region of the utopia

plane that could produce a Pareto point. This extended re-

gion is bounded by the anchor points as well as the per-

pendicular projections of the anti-anchor points. Without the

use of this extended region for the utopia plane, one cannot

guarantee that the generated set will represent the complete

Pareto frontier for problems with n > 2.

A design space containing a disjointed Pareto set may

yield the same Pareto point, even when performing multiple

single-objective optimizations. Boyce and Mattson (2008)

proposed a method for identifying which utopia plane points

will produce redundant Pareto points, to avoid these single-

objective optimization runs. This is achieved by recognizing

when at least one of the normal constraints used in generat-

ing a point is not active. All the utopia plane points that lie

in the region between the normal constraint that first gener-

ated the replicated point and the parallel normal constraint

that would be generated directly through the given point can

then be removed.

Martinez et al (2007) proposed the uniform NNC method.

This method uses the distribution of known Pareto points to

help guide the NNC method in finding a new set of Pareto

solutions. The authors showed that this improved on the NNC

method’s ability to generate a more uniformly distributed

Pareto frontier. This idea was recently taken further by Han-

cock and Mattson (2013), developing the smart normal con-

straint (SNC) method. Additional linear constraints, known

as smart constraints (Haddock et al (2008)), are used to de-

termine which approximate point is most likely to produce a

smart Pareto solution. The authors show that the SNC method

alleviates the need for a Pareto filter to generate smart Pareto

sets. This improves the computational expense of the algo-

rithm, since the Pareto filter first generates many solutions,

then reduces the set by removing solutions that are consid-

ered insignificantly different from other Pareto points (Han-

cock and Mattson (2013)). Such an approach is computa-

tionally inefficient as a large number of designs, which are

later removed from consideration, are generated. Hancock

and Mattson (2013) apply the SNC method to three numeri-

cal examples from the literature: the TNK problem (Tanaka

et al (1995)), a gear box design (Huang et al (2006)) and

the WATER problem (Ray et al (2001)). While these exam-

ples do demonstrate the effectiveness and efficiency of the

SNC method in generating smart Pareto sets, they all have

objective functions that depend only on a small number of

design variables (2, 7 and 3, respectively). In all three cases,

no sensitivity analysis of the system is required since the ob-

jectives are given as continuous functions of the design vari-

ables. These problems therefore represent a niche set, with

a restricted problem size.

In contrast, topology optimization has become a highly

developed tool, which is extensively used in the mechani-

cal, automotive and aerospace industries (Sigmund (2011)).

Gradient-based topology optimization has been shown to ef-

ficiently solve fine-resolution problems with thousands or

even millions of design variables with only a few hundred

function evaluations. However, the topology optimization

literature shows a lack of multiobjective algorithms, limit-

ing their application to single-objective problems.

In this paper, we propose a multiobjective gradient-based

topology optimization algorithm which uses an updated SNC

method and couples it with a Bi-directional Evolutionary

Structural Optimization (BESO) algorithm. The BESO al-

gorithm uses the method of Lagrange multipliers to convert

the constraints into continuous variables such that multiple

objectives can be considered. The SNC method is modified

to take advantage of BESO’s ability to minimize an objec-

tive while satisfying all the constraints. The second illustra-

tive application presents a multi-physics problem, where the

objectives are from different disciplines. This highlights the

method’s ability to tackle real-world problems, which are

characterized by multiple conflicting objectives and often

multiple disciplines, especially in the aerospace and auto-

motive industries. It must be noted that, in real-world design,

multiple constraint problems are unavoidable, with a com-

mon example being the maximum stress of a structure not

exceeding its limit value. However, there are different types

of constraints, namely geometrical and physical, which are

each handled in a different way. Usually, one treats phys-

ical constraints as penalty terms in the calculation of the
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objective function. However, this study focuses on multiple

objectives instead of constraints. Nevertheless, the method

proposed in this article could treat physical constraints by

adding penalty terms in the objective functions accordingly.

Furthermore, geometrical constraints can be handled even

before the calculation of the sensitivities. This is already

demonstrated in this study for volume and non-design con-

straints - parts of the design domain which are constrained to

be either solid or void. Furthermore, this approach facilitates

the use of high-fidelity analysis methods in the conceptual

design stage for real-world problems.

1.3 A quick history of topology optimization

The field of topology optimization was born over a century

ago with the publication of a paper that derived the optimal-

ity criteria for the least weight layout of trusses (Michell

(1904)). This did not spark immediate interest, since the

first general theory of topology optimization, known as op-

timal layout theory, was not formulated until some 70 years

later by Prager and Rozvany (1977), and it was the sem-

inal paper by Bendsoe and Kikuchi (1988), which devel-

oped the first material distribution method, that revolution-

ized the field of structural optimization, making it applicable

to real-world engineering problems. Two methods, namely,

Solid Isotropic Material with Penalization (SIMP) (Bendsoe

(1989); Rozvany et al (1992)) and BESO (Xie and Steven

(1993); Yang et al (1999)) have now reached the stage of

application in single-objective industrial problems (Rozvany

(2009)). This work is concerned with the latter, proposing a

method for effectively and efficiently producing smart Pareto

sets for multiobjective topology optimization (MOTO) prob-

lems.

Compared to other types of structural optimization, topol-

ogy optimization of continuum structures, through material

distribution methods, is the most challenging; however, it is

the most rewarding economically as there are no restrictions

on the design. The main idea is to find the optimal distribu-

tion of the material in a predefined design domain consider-

ing an objective function and constraints. Since its introduc-

tion in 1988 (Bendsoe and Kikuchi (1988)), topology op-

timization through material distribution methods have seen

an exponential increase in publications (Munk et al (2015)).

A wide variety of objective functions have been used with

topology optimization algorithms, diversifying their appli-

cation to almost all fields of engineering and design (Sig-

mund (2001); Steven et al (2000)). However, compared with

the extensive research on single-objective optimization, there

has been significantly less work concerned with topology

optimization for multiobjective problems. The most recent

topology optimization review articles have highlighted this

gap in the literature (Rozvany (2009); Sigmund and Maute

(2013); Deaton and Grandhi (2014); Munk et al (2015)),

with only one or two references concerning multiobjective

problems and no section dedicated to the topic. This lack

of literature is also seen in the latest books on topology op-

timization (Bendsoe and Sigmund (2004); Huang and Xie

(2010); Rozvany and Lewinski (2013)) with no reference

to multiobjective optimization problems. Recently, Sigmund

and Maute (2013) identified the handling of multiple con-

straints as one of the main future challenges of topology op-

timization.

Meta-heuristic algorithms have, thus far, dominated mul-

tiobjective methods, as shown by the latest review articles

(Zhou et al (2011); Kunakote and Bureerat (2011)) and books

(Coello et al (2007); Deb (2009)) in this field. For prob-

lems with many variables, such as those in topology opti-

mization, these techniques require orders of magnitude more

function evaluations for low resolution, coarse mesh, prob-

lems (Sigmund and Maute (2013); Sigmund (2011)). These

methods solely rely on objective function values, based on

random processes, to search the design space and progress

the solution. Thus, the handling of multiple objectives can be

achieved in an easy, non-intrusive, manner. Comparatively,

topology optimisation algorithms compute the gradients of

the objective functions to determine the sensitivities of the

objectives to each design variable. Therefore, the added dif-

ficulty is how one should combine the different gradients

for the different objectives such that the desired trade-off in

each objective can be found. Moreover, once the method of

determining the sensitivities of multiple objectives is found,

a rigorous convergence criterion must be established. In the

literature, especially for discrete methods, convergence of

topology optimisation algorithms has been shown to be dif-

ficult (Munk et al (2017)). Therefore, the addition of mul-

tiple objectives only makes convergence harder. The devel-

opment of gradient-based topology optimization algorithms

that can solve multiobjective problems would therefore be

of considerable benefit.

Early efforts were made to extend the Evolutionary Struc-

tural Optimization (ESO) method to encompass multiob-

jective problems (Proos et al (2001a)). The authors used a

weighted sums method and a global criterion method to in-

corporate multiple criteria into the ESO process, showing

that this approach is able to produce a range of options, of

Pareto attribute, for a multiobjective problem. However, the

weighted sums method has been criticized for its deficien-

cies in depicting the Pareto-optimal set (Section 1.1). The

global criterion method is only able to produce a single re-

sult, usually similar to that produced with equally weighted

objectives (Proos et al (2001a)), thus the Pareto set is not de-

fined. The same authors have also applied this method to two

different objectives (Proos et al (2001b)), namely, minimum

compliance and maximum specific inertia. Kim et al (2006)

developed a multiobjective structural optimization method

for a three-dimensional (3D) thermal protection system de-
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sign using an ESO algorithm. They again used a weighted

sums method with the objective of minimizing maximum

thermal stress and maximizing the fundamental frequency.

This review shows the small amount of literature avail-

able on applying ESO methods to multiobjective problems.

Only the weighted sums method has been successfully added

to the ESO method. Only the conventional ESO algorithm,

i.e. a monotonic algorithm, has been applied to multicriteria

problems, thereby avoiding convergence issues, since the so-

lution is found once a certain number of elements have been

removed.

This paper aims to extend this work on multiobjective

ESO algorithms in two main ways. First, by using a more

rigorous BESO, rather than ESO, algorithm. Modern BESO

algorithms are convergent and mesh-independent (Huang and

Xie (2007)), simultaneously removing and including mate-

rial in the design domain until the constraints and a conver-

gence criterion are satisfied. Second, by adopting a multiob-

jective algorithm which can more efficiently and effectively

represent the Pareto frontier. Thus far, only the weighted

sums method has been adopted. While this method does

produce Pareto-optimal solutions, it is not able to identify

solutions on non-convex regions of the Pareto frontier. It is

also unable to generate an evenly distributed Pareto front or

guarantee a smart Pareto set will be obtained. Therefore, the

multiobjective algorithm adopted for this work is a modified

SNC method, which has been shown to capture the entire de-

sign domain (Messac and Mattson (2004)), produce evenly

distributed Pareto solutions (Martinez et al (2007)) and ef-

ficiently obtain a smart Pareto set (Hancock and Mattson

(2013)).

The remainder of this paper is organized as follows: Sec-

tion 2 outlines the multiobjective optimization problem for-

mulation and the SNC method for generating a smart Pareto

set. Here the update to the original algorithm (Hancock and

Mattson (2013)) is presented. This is followed in Section 3

by a review of the BESO method and how it is applied to the

multiobjective formulation. In Section 4 the performance of

the SNC-BESO method is illustrated through two numeri-

cal examples, the latter being a real-world multi-physics en-

gineering design problem. Finally, Section 5 concludes the

paper.

2 The smart normal constraint method

In this section the mathematical definition of a multiobjec-

tive optimization problem (MOP) is introduced. The original

SNC method is then outlined. Finally, the update to the SNC

method used in this analysis is given. For an in-depth anal-

ysis of the original SNC and NC methods the reader should

seek out Hancock and Mattson (2013) and Ismail-Yahaya

and Messac (2002), respectively.

2.1 Multiobjective optimization

A generic MOP is usually stated mathematically as:

min(x) {µ1(x),µ2(x), . . . ,µn(x)}

subject to: n ≥ 2

g(x)≤ 0

h(x) = 0

xl ≤ x ≤ xu

(1)

where x is the design variable vector, such that the vectors xl

and xu are the corresponding lower and upper bounds of the

design variables. µ is the design objective vector, g and h are

inequality and equality constraint vectors, respectively, and

n is the dimension of the problem or number of objectives.

Solution of the problem (1) produces a Pareto set of optimal

solutions. Section 2.2 reviews the SNC method, which is

used in this work to generate the Pareto set.

There exist two important types of points in the design

space of the MOP which are pivotal to the understanding of

the SNC method. Therefore, they are first defined for clarity.

Anchor points are the points in the feasible design space,

the subset of designs satisfying the constraints of the MOP

(1), that correspond to the minimum value of one of the ob-

jectives. The anchor point for the ith objective is given by:

µ i∗ =
[

µ1(x
i∗),µ2(x

i∗), . . . ,µn(x
i∗)
]T

(2)

where xi∗ is defined as the design variable vector that gives

the minimum value for the ith objective.

Anti-anchor points are the opposite of anchor points in

that they correspond to the points in the feasible design do-

main with a maximum value of one of the objectives. The

anti-anchor point for the ith objective is thus defined as:

µ i◦ =
[

µ1(x
i◦),µ2(x

i◦), . . . ,µn(x
i◦)
]T

(3)

where xi◦ is the design variable vector that gives the maxi-

mum value for the ith objective.

2.2 Review of the smart normal constraint method

The SNC method converts the MOP into a series of single-

objective optimization (SOO) problems, with additional, dif-

ferent, linear constraints calculated to produce a Pareto so-

lution in a particular region of the design space. The SNC

method can be divided into 7 steps, which will be outlined in

this section, using a bi-objective optimization problem (Fig.

1). For problems with n > 2, the lines described in these

steps are replaced by their higher dimensional counterparts,

i.e. planes for n = 3 or hyperplanes for higher dimensions.

Steps 2–7 are repeated until there are no more approximate

regions of the Pareto surface that are capable of yielding

a smart Pareto point. Further details on the method can be

found in Hancock and Mattson (2013).
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Step 1: Generating the reference points

First, the anchor and anti-anchor points must be located in-

side the design domain. These are used as the vertices on

the edges of the Pareto frontier approximation to guarantee

convergence of the entire Pareto set (Messac and Mattson

(2004)). Using (2) and (3) the anchor and anti-anchor points

are found, respectively.

Step 2: Connecting the approximation vertices

The vertices created by the anchor and anti-anchor points are

divided into approximation segments or planes to approxi-

mate the Pareto frontier. For the bi-objective case, each ver-

tex is connected to the neighbouring vertices on either side

of it, as shown in Fig. 1. For problems with n > 2, the con-

nectivity of approximation vertices is found by linearly pro-

jecting them onto the utopia plane and finding the Delaunay

triangulation (Barber et al (1996)) of the projected set.

The lines that connect the anchor points are known as

the utopia lines. Therefore, a utopia line vector, N j, is found

using the equation:

N j = µ j∗−µn∗ ∀ j ∈ (1,2, . . . ,n−1) (4)

Hence, n−1 utopia line vectors are defined, all of which

point to the anchor point corresponding to the nth dimension,

µn∗.

Fig. 1 Initial set-up of the SNC method before constrained SOO for a

bi-objective problem

Step 3: Approximating the Pareto frontier

Evenly spaced approximation points (Fig. 1) are generated

along each approximation plane, through the following rela-

tion:

Si =
n

∑
j=1

α
j

i Pj (5)

where Si is the ith approximation point and Pj is the jth ap-

proximation vertex. The non-dimensional parameter α
j

i sat-

isfies the constraints given by:

0 ≤ α
j

i ≤ 1 (6)

and

n

∑
j=1

α
j

i = 1 (7)

α j is varied from 0 to 1 with a fixed increment of δ j such that

an even distribution of approximation points over the entire

Pareto frontier is obtained. Traditionally the value of δ j was

arbitrary and only depended on how close to each other the

designer wanted the approximation points to be. However,

close approximation points may result in several converging

to the same region of the Pareto frontier, and hence being

discarded. Hancock and Mattson (2013) found that, in prac-

tice, it is simple and effective to set δ j equal to the shortest

Euclidean distance between a centre point and the Practi-

cally Insignificant Trade-off (PIT) region that defines one

smart distance around it. Further discussion of the PIT re-

gion and smart distances is given in Step 5 (Section 2.2).

Thus, the increment δ j can be found by:

δ j =

∥

∥

∥

∥

min
d
||d||

∥

∥

∥

∥

(8)

where d is a vector of distances between the centre point

of the PIT region and any second point on the boundary of

the PIT region. Here d is constrained by setting the smart

distance to unity, s = 1.

A smaller increment, δ j, will result in more approxi-

mation points. Computations performed on the approxima-

tion points are relatively inexpensive, as more approxima-

tion points will not result in more functional calls, because

only one point is used per iteration. Therefore, in contrast

to the NC method, the efficiency of this algorithm depends

little on the value of δ j.

Step 4: Removing restricted approximation points

Unavoidably, some SOOs will result in the generation of so-

lutions that will not produce new smart Pareto points. There

may also be regions where the Pareto frontier is discontin-

uous and, therefore, solutions cannot exist. In Step 7 (Sec-

tion 2.2), these restricted regions are recorded, and avoided

in further iterations. In Step 4 approximation points that lie

within one smart distance of already existing smart Pareto

points are removed from further consideration.
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Step 5: Calculating the smart distances

In this step the smart distance between each approximation

point and all the existing approximation vertices is found.

Mattson et al (2004) first introduced the idea of a smart

Pareto set, based on the assumption that: “when the trade-off

is significant a designer is willing to give up an insignificant

amount in one objective to gain significantly in another”. To

achieve such a set, Mattson et al (2004) introduced the smart

Pareto filter, use of which has been shown to be computa-

tionally prohibitive (Section 1.2). The fundamental concept

of the smart Pareto filter is to remove any duplicate Pareto

solutions which fall inside a user-defined shape, the PIT re-

gion, surrounding each Pareto solution. The PIT region is

defined by two control parameters, ∆r and ∆ t, which deter-

mine the significant amount of change in an individual ob-

jective and the trade-off amount that is considered insignifi-

cant, as shown in Fig. 2(a). One advantage of this method is

that it can be used alongside any algorithm capable of pro-

ducing a well-distributed Pareto set.

In the SNC method, the direct generation of a smart

Pareto set is facilitated by the smart distance between points

in the design space. The shape of the PIT region around a

point is called a Lamé curve in 2D or a hyper-Lamé curve in

nD (Fig. 2(b)).

(a) Using the smart Pareto filter (Mattson et al (2004))

(b) Using the smart distance formulation

Fig. 2 The user-defined PIT region

Therefore, the PIT region is defined as the area that lies

on or within the Lamé curve (Fig. 2(b)). All points inside

the PIT region have a smart distance s ≤ 1 from the centre

point. Since, by definition all members of a smart Pareto set

do not lie within the PIT regions of any other member of the

set, each will have a smart distance s > 1 with respect to all

other members of the set. The smart distance between two

points is found by the following formula:

s = ‖Ad‖p for (0 ≤ p ≤ 2) (9)

where:

A =







1
a1

· · · 0

...
. . .

...

0 · · · 1
an






for (a > 0) (10)

d is a vector between the two points and ‖Ad‖p is the p-

norm of the vector Ad, which follows that given by (Rynne

(2007)), where for this case it is given by:

‖Ad‖p =

(

n

∑
i=1

|Ai,idi|
p

)
1
p

(11)

The variables a and p determine the distribution of the

smart Pareto points that will be generated for a particular

problem. The values ai, which make up the diagonal of ma-

trix A, correspond to the ith objective and can be consid-

ered as the amount of change in the ith objective that would

constitute a significant difference between two points if all

other objectives remain practically unchanged. Therefore,

any Pareto point that lies within a distance ai of another

Pareto point and does not have a significant trade-off in one

or more other objectives will fall within the PIT region and

be discarded. Larger values of the matrix A will thus cor-

respond to fewer points in the smart Pareto set. The value

of p determines the amount of curvature of the PIT region,

and hence controls the amount of trade-off between objec-

tives that is required in order for two points near each other

to both remain in the smart Pareto set. The SNC method

will work for values of p between 0 and 2; however, it is as-

sumed that for most cases: 0≤ p≤ 1, since this will result in

a trade-off that is equal to or less than the significant change

in a single objective. Since the values for a and p are user-

defined, it is therefore the user’s preferences that determine

the distribution of that set.

This method of smart distances is unique in that it only

requires a single scalar value, the smart distance, to define a

PIT region. This allows the algorithm to identify whether or

not a new point is a smart Pareto point. It can also determine

to what extent the point is smart. Thus, the SNC method

is able to search the design space more efficiently and de-

termine which point is most likely to generate a new smart

Pareto solution. It is this ability that makes the SNC method

more efficient than the NC method, which iteratively cycles

through all the utopia line points.
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Step 6: Generating the new Pareto point

The approximation point with the largest smart distance to

its nearest known Pareto point is selected to construct the

SOO problem given by:

min(x) µ1(x)

subject to: n ≥ 2

g(x)≤ 0

h(x) = 0

xl ≤ x ≤ xu

N j(µ(x)−S j)
T ≤ 0 ∀ j(1,2, . . . ,n−1)

(12)

This SOO problem has an additional linear constraint

(12), which excludes all points found above the line that in-

tersects the approximation point and is orthogonal to the ap-

proximation line. Thus, for every approximation point that

is deemed likely to produce a smart Pareto solution, a cor-

responding point on the Pareto frontier is found. Figure 1

shows the Pareto point P that is produced by solving (12)

using the approximation point S. In this case, the approxi-

mation points are closer to the Pareto front than the utopia

line points that are obtained with the NC method. This usu-

ally results in fewer function calls per SOO for the SNC

method compared to the NC method.

Step 7: Confirming the new Pareto point belongs to the smart

Pareto set

The new Pareto point, found by solving the SOO problem

of (12), may not lie in the smart Pareto set. Therefore, if

this is the case, a restriction enabling the removal of future

approximation points in these regions, which are known to

be unable to produce smart Pareto points, must be added.

Hancock and Mattson (2013) identify three criteria to test

whether the new point lies inside the smart Pareto set. If the

point meets one of these criteria, then it is not a smart Pareto

point.

First, a dominated point may be produced by solving

the topology optimisation problem of (12) when there are

local minima or maxima in the design space. When using

gradient-based algorithms, local optima can be perceived

as global optima by the optimizer. A dominated solution

is one which is locally optimal, but not globally optimal,

since there exists at least one other solution where one of

the objective functions can be improved in value, compared

to the dominated point, without degrading the other objec-

tive values. If any of the other objective values deteriorate,

then the points are Pareto-equivalent - neither dominates the

other. For one point to dominate another, it needs to be bet-

ter with respect to at least one objective and not worse with

respect to any other objective. Therefore, a solution is called

Pareto-optimal if there does not exist another solution that

dominates it. These solutions can be identified and omitted

with a Pareto filter, as suggested by Messac et al (2003). By

passing the new points through a Pareto filter, the algorithm

can avoid using dominated points as approximation vertices.

Including such points would decrease the accuracy of its ap-

proximation of the true Pareto frontier.

Second, a redundant point can be produced when the

new solution falls within the PIT region of another, already

present, Pareto point. This may occur because the true shape

of the Pareto frontier is unknown, rather it is just approx-

imated by the already existing Pareto solutions that have

been obtained. Therefore, simply by selecting an approx-

imate point which does not lie inside the PIT of another

Pareto point does not guarantee, once the optimisation prob-

lem has been solved (12), that the obtained Pareto point also

won’t lie inside the PIT of another Pareto point. If this oc-

curs, the new Pareto point can still be used as an extra ap-

proximation vertex to better approximate the Pareto frontier

for future points; however, it cannot be kept in the smart

Pareto set. No approximation point that lies along the nor-

mal constraint line that resulted in a redundant solution can

be used for future SOOs. The reader is directed to Fig. 6

for an example of a redundant point being produced by the

original SNC method.

Finally, a point that is separated from the normal con-

straint lines or planes, which were used in the SOO (12) that

created it, is referred to as a separated point. This separa-

tion indicates that there is a region in the design space in

which all SOOs will converge to the same solution. This oc-

curs when the Pareto frontier is discontinuous in this region.

Using the normal constraint line that produced the separated

point and a parallel normal constraint line that intersects the

final solution, a restricted region can be created. This re-

stricted region is kept for the remainder of the optimization

process, to avoid the generation of redundant points.

Thus, each new solution is a smart Pareto point if it

is not dominated, redundant, separated or any combination

there of. For more detail on the restrictions of smart Pareto

sets, the reader is advised to consult (Hancock and Mattson

(2013)).

2.3 Updated smart normal constraint method

Here the modifications to the SNC method (Hancock and

Mattson (2013)) that improve its coupling with the BESO

algorithm (Section 3) are described. The aim is to generate

smart Pareto points in a computationally efficient way. The

method is graphically represented in Fig. 3.

Figure 3(a) shows that the anchor points have been found

and a line connecting them created. The line is divided equally

into a series of approximation points. This is the main dif-

ference between the SNC and NC methods. For the SNC



Multiobj and Multidis SNC-BESO method 9

method, the line represents an approximation of the Pareto

frontier, which, in the first iteration, is clearly not a good

approximation. However, as the solution progresses the ap-

proximation becomes more accurate, improving the method’s

ability to locate smart Pareto points.

The main difference between the original SNC method

(Hancock and Mattson (2013)) and the one used in this work

is also illustrated in Fig. 3(a). Hancock and Mattson (2013)

keep the normal constraint of the SOO problem (12) the

same as that used in the NC method. However, in this work,

the normal constraint is modified to take advantage of the

BESO algorithm’s ability to satisfy multiple constraints while

minimizing the objective. Instead of defining a large region,

approximately half the design space for the first iteration

(Fig. 1), a small band (the shaded area in Fig. 3(a)) is de-

fined, using the following two normal constraints:

N j(µ(x)−Sr)
T ≤ 0 ∀ j(1,2, . . . ,n−1) (13)

and

−N j(µ(x)−Sl)
T ≤ 0 ∀ j(1,2, . . . ,n−1) (14)

where Sr and Sl are the approximation points on either side

of the approximation point that is determined to be most

likely to produce a smart Pareto solution (Section 2.2 Step

6). In this way, the solution is guaranteed to fall at the in-

tersection of the Pareto curve and the normal line, which

intersects the approximation point that is most likely to pro-

duce a smart Pareto solution. Therefore, this method is less

likely to produce dominated or redundant points, since the

solution must fall inside the constrained region. However,

there is one restriction that is not automatically handled by

the updated SNC method. Separated points may still occur

if the Pareto frontier is discontinuous over the entire con-

strained region. Furthermore, it is possible for a local opti-

mum to exist inside the narrow region defined by the two

constraints (13) and (14). Therefore, a dominated point in

this region could still be produced. This is unavoidable when

using gradient-based methods, since local optima can be ob-

tained. However, the BESO method ranks all new solutions

against the previously determined ones. Therefore, if a local

optimum is found, it is removed from the Pareto set and the

constrained region that produced it is omitted for the entire

duration of the optimization process.

Separated points are handled using the conventional SNC

method, i.e. by identifying solutions that converge to the

same point even when different approximation points are

used (Section 2.2). In the updated method, there are two

ways of identifying a separated point. First, if the Pareto

frontier is discontinuous, but the design space is not, then

a solution will be found that is locally Pareto-optimal. If this

occurs, then the point is not added to the smart Pareto set,

and the constrained region that was used to find that solu-

tion is omitted for the entire duration of the optimization

process. Second, if the design space happens to be discon-

tinuous over the entire constrained region, then no solution

will exist to the SOO problem with the constraints given by

(13) and (14). Alternatively, with the addition of an extra

constraint it is possible that the feasible design space can

become limited such that the algorithm struggles to con-

verge. In both these cases, the objective will oscillate back

and forth over either side of the discontinuity, and hence the

constrained region as well. This is found by tracking the ob-

jective and stopping the solution if this oscillatory behaviour

is observed. Again, the constrained region is omitted for the

entire duration of the optimization process.

Figure 3(b) shows how the approximation of the Pareto

frontier is improved after the first Pareto point is found. Now

the approximation curve is made up of two segments of

piecewise linearly varying points, instead of one as used in

the NC method. This updated approximation of the Pareto

frontier provides the algorithm with more information about

where the remainder of the smart Pareto set is most likely

to be found. Before each SOO (12) the nearest Pareto point,

in terms of its smart distance, to each approximation point

is found. The approximation point that has the largest smart

distance to its nearest known Pareto point is identified as

the most likely point to produce the next smart Pareto solu-

tion. The constrained region is then constructed by using the

points on either side of this approximation point (Sl and Sr).

An SOO is then performed with the normal constraints de-

fined by (13) and (14). This process is then repeated multiple

times iteratively to construct a more accurate approximation

of the Pareto frontier.

Figure 3(c) shows the smart Pareto set obtained once no

approximation point has a minimum smart distance of s > 1

from any discovered Pareto points. Once this occurs, the al-

gorithm terminates and the smart Pareto set has been found.

The strategy of approximating the Pareto frontier through

an approximation curve is identical to that used in the orig-

inal SNC method (Hancock and Mattson (2013)). Likewise,

the general method for creating individual Pareto solutions,

i.e. solving a constrained SOO problem, is the same for the

NC and SNC method used here. However, in this work, the

constraint is tightened by defining a narrow band, through

two parallel normal constraints, in which the solution must

lie. Therefore, the solution of the SOO does not have to be

passed through a Pareto filter, nor does the smart distance

from the current solution to the already determined Pareto

points need to be calculated, to determine if the solution

is dominated or redundant. These restrictions are actively

handled in the optimization process. Thus, the SNC method

used here retains all the improvements of the original (Han-

cock and Mattson (2013)), since the algorithm dynamically

adjusts the spacing between the constructed constraint re-

gions according to the final distribution, as described by the

user through the definition of the PIT regions.
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(a) Upon completion of first SOO

(b) Upon completion of second SOO

(c) Final smart Pareto set

Fig. 3 The updated SNC method for a bi-objective case

Finally, as with all optimisation algorithms, a poor ini-

tial parameter selection may unavoidably result in the gen-

eration of unfavourable solutions. However, this is not new

to topology optimisation, nor specific to it, and will be auto-

matically handled by Step 7 (Sect. 2.2) where the solution’s

Pareto optimality is assessed.

3 The bi-directional evolutionary structural

optimization method

This work uses the BESO algorithm to solve the SOO (12)

of the SNC method. In this section the developments of the

algorithm are outlined, followed by the method of Lagrange

multipliers, which is used to implement the multiple con-

straints of the SOO problem.

3.1 Developments of the BESO algorithm

BESO is a variant of ESO with a bi-directional formulation,

i.e. elements can be included in, as well as removed from,

the design space. The idea behind the original ESO algo-

rithm (Xie and Steven (1993)) was that by gradually remov-

ing inefficient material from an initial, over-sized, structure;

the design would then evolve towards the optimum. How-

ever, this monotonic algorithm is limited in two main ways:

first, only material can be removed from the structure, and

consequently the initial model must be significantly over-

designed. Second, if structure is prematurely removed, it

cannot be recovered. Thus far, only the ESO algorithm has

been applied to MOTO problems (Section 1.3); therefore,

these deficiencies are present in the algorithms used.

Modern BESO algorithms are mesh-independent and con-

vergent (Huang and Xie (2007)), removing and including

material in the design domain until the constraints and a

convergence criterion are satisfied. Recently, a further im-

provement of the BESO algorithm introduced the use of soft

material, to model void elements (Huang and Xie (2009)).

This method, known as soft-kill BESO, is used in the work

presented in this paper. The SOO (12) can be transformed

into the general topology optimization problem for soft-kill

BESO, implementing the updated constraints ((13) and (14))

with two objectives, by:

min(x) µ1(x)
subject to: [K]u = f

∑
Ne
i=1 ≤V

N1(µ(x)−Sl)
T ≤ 0

−N1(µ(x)−Sr)
T ≤ 0

x = [xmin,1]

(15)

where f and u are the nodal force and displacement vec-

tors, respectively, and [K] is the global stiffness matrix of

the structure. V is a predefined volume fraction and Ne is

the total number of elements in the model design space.

Therefore, this part of the problem formulates the volume

constraint. The design variables x are discrete, where xi =
xmin = 10−4 represents void material and xi = 1 defines solid

material.



Multiobj and Multidis SNC-BESO method 11

3.2 Sensitivity analysis

In this study, three different objectives are considered in the

test cases presented in Section 4. The first objective is mini-

mum compliance or maximum stiffness, used for stiffness

optimization. In finite element analysis the change in the

stiffness of the structure due to the removal of an element

is equal to the element strain energy (Chu et al (1996)). This

change is defined as the element sensitivity for compliance

minimization:

αcmp
e =

∂c

∂xi

=
1

2
px

p−1
i uT

e [K]0eue (16)

where c is the compliance, p = 3 is the penalization factor,

a superscript of 0 indicates solid values and a subscript of

e represents elemental values. The element sensitivity (16)

takes advantage of the SIMP material model (Bendsoe and

Sigmund (1999)), where the Young’s modulus, E, is defined

by the following power law penalization:

E(xi) = E0x
p
i (17)

The second objective is the maximization of the funda-

mental frequency, used for dynamic optimization of struc-

tures. The element sensitivity for natural frequency maxi-

mization is calculated by the following:

α f rq
e =

∂ωn

∂xi

=
1

2ωn

Φen

(

1− xmin

1− x
p
min

px
p−1
i [K]0e −ω2

n [M]0e

)

Φen

(18)

where Φen is the element eigenvector that corresponds to

the nth mode, ωn is the nth natural frequency, where ω2
n is

the eigenvalue that corresponds to the nth mode, and [M] is

the global mass matrix of the structure. In order to avoid

localized fictitious modes in the soft material, Huang et al

(2010) proposed a modified SIMP material model, described

by:

ρ(xi) = xiρ
0

E(xi) =
[

xmin−x
p
min

1−x
p
min

(1− x
p
i )+ x

p
i

]

E0 (19)

where ρ is the density of the material. When maximizing

a given frequency, adjacent eigenmodes often converge to-

wards each other, becoming multiple by having the same or

very similar frequencies. The BESO method handles this nu-

merical difficulty by taking the average of the sensitivities of

the relative modes (Zuo et al (2010)). For a complete deriva-

tion of the frequency sensitivity number (18) and the mate-

rial model (19) the reader is advised to seek out (Huang et al

(2010)). Further discussion on the numerical difficulties and

alternative material models for dynamic optimization can be

found in (Pedersen (2000)) and (Du and Olhoff (2007)).

The final objective considered in this work is vorticity

maximization. The last analysis in Section 4 is a multi-physics

and multiobjective topology optimization problem. One of

the objectives is to increase the mixing of two fluid species

for a given Reynolds number. This objective is imperative to

the operation of micro fluidic mixers since their function is

to efficiently mix two fluid species. Thus, as the flows have

low Reynolds numbers, typically lower than 1000, vorticity

is an efficient measure of the degree of mixing. Recently, the

authors of this work developed a soft-kill BESO method for

the vorticity maximization of fluids using the Lattice Boltz-

mann Method (LBM) (Munk et al (2016b)). The sensitivity

number was derived using the circulation method for vortic-

ity (Abrahamson and Lonnes (1995)) and the shape deriva-

tive given in (Kasumba and Kunisch (2012)). Therefore, the

sensitivity number for vorticity maximization is given by:

αvrt
e = max(−→ω )−∆γT

e x
p−1
i ∆γe (20)

where
−→
ω is the vorticity of the flow and ∆γe is the change

of the element velocity vector defined as:

γe =
{

∆γx,∆γy,∆γz,∆Wx,∆Wy,∆Wz

}T
(21)

where γx, γy and γz are the spatial components and W is the

circulation. For the element sensitivity number given in (20),

the presence of fluid and solid are defined by a design vari-

able of xi = 1 and xi = xmin, respectively.

3.3 Handling of multiple constraints by the method of

Lagrange multipliers

To solve a multi-constrained optimization problem, Zuo et al

(2012) proposed transforming the problem formulation (15)

into an equivalent formulation using a Lagrange relaxation.

This is achieved by first defining slack variables S2
k to trans-

form inequality constraints into equality constraints, as fol-

lows:

g(x)k +S2
k = 0 (22)

where g(x)k represents the kth inequality constraint. Then,

by using Lagrange multipliers λk, the relaxed objective func-

tion can be found as the following Lagrangian:

L(x,λ ,S2) = µ1(x)+
m

∑
k=1

λk

[

g(x)k +S2
k

]

(23)

where m is the number of inequality constraints.

Hence, the sensitivity of the Lagrangian due to a change

in design variable xi is found by:

αe =
∂L

∂xi

=
∂ µ1

∂xi

+
m

∑
k=1

λk

∂gk

∂xi

(24)

Thus, comparing the sensitivity function (24) with the

single-objective sensitivity functions (Section 3.2), it is seen



12 David J. Munk et al.

that the Lagrange multipliers are utilized to compromise the

original objective function and constraints (Zuo et al (2012)).

The equivalent formulation requires not only the design

variables x to be found, but also the Lagrange multipliers

λ and slack variables S2, in order for a solution to the op-

timization problem to be determined. The sensitivity of the

Lagrangian to the additional variables is expressed as:

∂L

∂λk

= g(x)k +S2
k (25)

and

∂L

∂Sk

= 2λkSk (26)

The Kuhn-Tucker necessary conditions for optimality

state that the additional sensitivities ((25) and (26)) need to

equal zero. Therefore, in this way, an update trend for the

Lagrange multipliers can be determined based on the Kuhn-

Tucker conditions.

For the inequality constraints g(x), if the constraint value,

g(x)k is positive, then the additional sensitivity (25) must

also be positive. Therefore, λk needs to be decreased for

minimization of the Lagrangian. However, for (26) to equal

zero, λk = 0 if Sk 6= 0, and, according to (22), if Sk 6= 0

then g(x)k ≤ 0. Therefore, if an inequality constraint is sat-

isfied, the corresponding Lagrange multiplier is zero, and

the constraint is not considered in the minimization of the

Lagrangian.

The additional variables are continuous in an infinite do-

main. Thus, it is computationally infeasible to search such a

domain for a solution with a direct method. Zuo et al (2012)

therefore suggest defining λk through a scaling function of

replacement factors ϕk that range in a reduced domain [0,1),
given by:

λk =
ϕk

1−|ϕk|
ϕ ∈ [0,1) (27)

However, in this case, the reduced domain must be ex-

tended to (−1,1), since the problem is multiobjective and

thus it must be possible to increase, as well as decrease,

the objectives from their initial values. Hence, the Lagrange

multipliers λk are represented in the whole range by the re-

placement factors ϕk, since ϕk = 0 =⇒ λk = 0 and limϕk→1 λk =

∞. Thus, the Lagrange multipliers can be increased or de-

creased by increasing or decreasing the corresponding re-

placement factors. In this way, the Lagrange multipliers which

satisfy the Kuhn-Tucker conditions are determined by search-

ing for replacement factors within (−1,1) using an incre-

ment programming algorithm.

Using this formulation the optimization problem (15) for

the stiffness and dynamic objectives becomes:

min(x) 1
2
uT [K]u

subject to: [K]u = f

∑
Ne
i=1 ≤V

C(x)−Cl ≤ 0

ωln −ωn(x)≤ 0

Cr −C(x)≤ 0

ωn(x)−ωrn ≤ 0

x = [xmin,1]

(28)

where C(x) is the compliance of the structure, ωn is the nth

natural frequency of the structure, Cl and ωln are the con-

straints imposed by Sl , and Cr and ωrn are the constraints

imposed by Sr. The constraints given by (13) and (14) are

expanded in (28). Thus, using the method of Lagrange mul-

tipliers from this section to construct the Lagrangian for

the inequality constraints of the compliance and natural fre-

quency, the sensitivity number is given by:

αe = αcmp
e −λ1αcmp

e +λ2α f rq
e (29)

The overall element sensitivity number is therefore a

combination of the element sensitivities of the mean com-

pliance, α
cmp
e , and nth natural frequency, α

f rq
e . The amount

each objective is considered is determined by the two normal

constraints in the updated SNC method (Section 2), since the

Lagrange multipliers are updated depending on whether or

not the constraints are satisfied.

The Lagrange multipliers start from zero and are gradu-

ally updated according to the corresponding objectives. For

example, the replacement factor ϕk for Lagrange multiplier

λk is increased if the corresponding constraint is not satis-

fied. The increment defined for the replacement factor is set

to a small value (1% in this study), if the constraint is not

close to being satisfied. As the constraint approaches zero,

i.e. becoming satisfied, the increment value gets smaller ac-

cording to the difference between the constraint value and

the imposed value. This is expressed mathematically, for the

problem given in (28), by Algorithm 1.

In Algorithm 1, ε1 and ε2 are small numbers, which are

set to ε1 = ε2 = 0.01 for this study to restrict the amount by

which the Lagrange multipliers can change between optimi-

sation iterations.

3.4 Mesh independence and convergence

In order to guarantee that a solution to the topology op-

timization problem (28) exists, some restriction on the re-

sulting design must be introduced (Sigmund and Petersson

(1998)). A filter scheme is used to smooth the element sen-

sitivities (29) across the entire domain. This alleviates the

problems of mesh-dependency and checkerboarding, which
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if N1(µ(x)−Sl)
T ≤ 0 and −N1(µ(x)−Sr)

T ≤ 0 then

All constraints are satisfied.;

else

if N1(µ(x)−Sl)
T > 0 then

if
C(x)−Cl

Cl
> ε1 then

ϕ1 = ϕ1 + ε1

else

ϕ1 = ϕ1 +
C(x)−Cl

Cl

end

end

if
ωln−ωn(x)

ωln
> ε2 then

ϕ2 = ϕ2 + ε2

else

ϕ2 = ϕ2 +
ωln−ωn(x)

ωln

end

end

end

if −N1(µ(x)−Sr)
T > 0 then

if
Cr−C(x)

Cr
> ε1 then

ϕ1 = ϕ1 − ε1

else

ϕ1 = ϕ1 −
Cr−C(x)

Cr

end

end

if
ωn(x)−ωrn

ωrn
> ε2 then

ϕ2 = ϕ2 − ε2

else

ϕ2 = ϕ2 −
ωn(x)−ωrn

ωrn

end

end

end

end

end

Algorithm 1: Lagrange multipliers updating scheme

are a result of the sensitivity numbers becoming discontin-

uous across the element boundaries. The filter scheme re-

quires the nodal sensitivity numbers, which are defined as

the average of the sensitivities of the elements connected to

the node. It follows that:

αn =
M

∑
i=1

wiαei
(30)

where M is the number of elements connected to the node.

The weighting factor of the ith element, wi, is defined with

respect to its distance from the jth node, ri j, as:

wi =
1

M−1

(

1−
ri j

∑
M
i=1 ri j

)

(31)

where ri j is the distance from the center of the ith element to

the jth node.

The nodal sensitivity numbers (30) are then converted

to smooth element sensitivities using a mesh-independency

filter. A sub-domain, Ω , is defined by the filter radius, rmin,

which identifies the nodes that the element sensitivities are

spread over. The value of rmin must be large enough that

Ω covers at least one element; for the purpose of this study,

rmin = 3. Therefore, nodes located inside Ω contribute to the

smoothing of the element sensitivity, by:

αe =
∑

N
j=1 w(ri j)αn j

∑
N
j=1 w(ri j)

(32)

where N is the total number of nodes in the sub-domain, Ω ,

and w(ri j) is a linear weighting factor defined as:

w(ri j) = rmin − ri j j = 1,2, . . . ,N (33)

The filter scheme smooths the elemental sensitivity num-

bers over the entire design domain, including void regions.

Therefore, it effectively addresses the mesh-dependency and

checkerboard problems. However, the objective function and

corresponding topology may not be convergent. In order to

overcome this problem, Huang and Xie (2007) showed that

the sensitivity numbers (29) should be averaged over their

history, thus:

αe =
α itr

e +α itr−1
e

2
(34)

where itr is the current iteration number. Therefore, the up-

dated sensitivity number includes the history of the sensitiv-

ity information from the previous iterations.

The BESO method defines a target volume for each iter-

ation, given by:

Vitr+1 =Vitr(1±ER) (35)

where ER, known as the evolutionary ratio, is a percentage

of the current structural volume and increases or decreases

Vitr+1 towards the desired volume constraint V . Hence, this

in turn sets the threshold, αth, of the sensitivity numbers.

Solid elements are switched to void when:

αe ≤ αth (36)

and void elements are switched to solid when:

αe > αth (37)

The amount by which the volume of the structure can

increase between iterations, AR, is restricted by a maximum

addition ratio, ARmax. Once AR > ARmax, only some of the

elements (those with the highest sensitivity numbers) are

added, such that AR = ARmax. Then the elements with the

lowest sensitivity numbers are removed, in order to satisfy

the target volume Vitr+1. Void elements can have higher sen-

sitivities than solid elements due to the soft material model,

which adds a small fictitious stiffness to these elements. Due

to the mesh-dependency filter, void elements near solid re-

gions with high sensitivity numbers have their sensitivities

increased by the elements inside their sub-domain Ω .
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Once the volume constraint is satisfied, the iteration tar-

get volume remains constant at V . The topology evolves un-

til a convergence criterion and the normal constraints are

satisfied. The convergence criterion is defined as:

∆C =
∑

4
h=0 Citr−h −∑

4
h=0 Citr−5−h

∑
4
h=0 Citr−h

≤ δ (38)

where δ is a predefined error tolerance. (38) evaluates the

change in the objective for the last 10 solutions. The solu-

tion is deemed to be converged if the change in the objec-

tive is minimal and all constraints are satisfied. More details

on evolutionary topology and shape optimization algorithms

can be found in the latest textbooks (Huang and Xie (2010))

and review articles (Munk et al (2015)) on the subject.

4 Results and discussion

This section presents the results for applications of the new

SNC-BESO algorithm developed in this study. First, a 2D

plane stress problem taken from the work of Proos et al

(2001a) is analysed. This allows the performance of the al-

gorithm to be compared with a previous method used for

multiobjective topology optimization. This validates the new

method and shows its benefits compared to the current litera-

ture. Then, an industrial problem, which is both multiobjec-

tive and multi-physics, the design of a micro fluidic mixer, is

considered. This second example shows the ability of such

methods to be applied to real-world problems.

4.1 Rectangular plate with roller supports (Proos et al

(2001a))

Proos et al (2001a) present a problem where a structure must

be designed to support nine point loads, each having a mag-

nitude of 200 N, distributed at 0.01 m intervals. The struc-

ture has roller supports at the bottom two corners (Fig. 4).

The design domain has a width of 0.8 m, a height of 0.5 m

and a thickness of 0.01 m. A discretization of 80×50 four-

node square elements is used to model the design domain

(Fig. 4). The material properties used for the elements are:

a Young’s modulus of E = 200 GPa, a Poisson’s ratio of

ν = 0.3, and a density of ρ = 7000 kg m−3. Throughout the

analysis 2D plane-stress conditions are assumed.

The objectives of this optimization problem are to min-

imize the mean compliance and to maximize the first mode

natural frequency. A volume constraint of V = 0.7 is also

applied to the problem. The MOTO problem is then solved

using the SNC-BESO method presented in this paper. The

amount of change in either objective that would constitute a

significant difference between two points, if all other objec-

tives remain practically unchanged, is set to 5%. The amount

Fig. 4 Initial rectangular plate design domain (Proos et al (2001a))

of curvature of the PIT region is defined as p = 0.6. The cor-

responding Pareto curve of the first mode natural frequen-

cies and the minimum mean compliance terms is presented

in Fig. 5. Points marked (a)–(j) correspond to the topologies

shown in Fig. 8. The dashed lines correspond to the limits of

both objectives, found by solving a single-objective topol-

ogy optimization problem for each objective.

Fig. 5 Pareto frontier of the first mode natural frequency and mean

compliance for the roller-supported rectangular plate found using the

SNC-BESO method

The first observation is that the points given in the Pareto

frontier of Fig. 5 make up a smart Pareto set: the points are

evenly spaced along the Pareto front, such that no point lies

within the PIT of any other. Furthermore, all PIT regions

intersect their neighbouring point’s PIT region in some lo-

cation, demonstrating that the entire design space has been

searched. Therefore, no new design can be found that would

be of interest to the designer. This is a particularly important

improvement over the previous methods used in multiobjec-

tive topology optimisation, as the designer has the minimum

amount of information needed to give all the possibilities

for the problem under consideration. Thus, the SNC-BESO

method used is able to access the entire design domain, pro-

duce evenly distributed Pareto solutions and efficiently ob-

tain a smart Pareto set, showcasing its ability to solve multi-

objective optimization problems in an efficient and effective

manner.
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It is worth noting that all approximation points chosen

produced a smart Pareto solution. Hence, only 10 optimiza-

tion runs, the minimum for the given problem, were required

to obtain the full smart Pareto set (Fig. 5). The same does not

occur when using the original SNC algorithm (Hancock and

Mattson (2013)), as redundant points are produced (Fig. 6).

Figure 6 shows the design domain for the sixth Pareto so-

lution using the original SNC method with the BESO algo-

rithm. The grey zone shows the restricted region enforced

by the normal constraint, with the black line being orthog-

onal to the approximated Pareto curve. The ◦ symbols are

the current approximation points, which the algorithm can

choose from to find a new Pareto solution, whereas the ×
symbols are the previous approximation points from earlier

iterations. The • symbols are current approximation points

that lie inside the PIT of a previously found Pareto solution

and hence are not considered by the algorithm. Pareto solu-

tions that belong to the smart Pareto set are depicted by ✷

symbols in Fig. 6, whereas the Pareto solutions that break

one or more of the criteria in Step 7 (Section 2.2) are de-

picted by ∗ symbols. The solution found using the original

SNC method falls inside the PIT of another Pareto solution.

Therefore, it is a redundant point and has not added to the

smart Pareto set. Hence, this point would be removed. Thus,

the updated SNC-BESO method is more efficient compared

with the original SNC method on this problem. This demon-

strates the benefit of the update made to the SNC algorithm:

namely, that the penalties on the sensitivity function (29)

are no longer monotonic, i.e. they can be increased and de-

creased, whereas without (14) they can only be increased.

This can lead to the constraints dominating the solution and

result in redundant points, as shown by Fig. 6.

Fig. 6 Redundant point obtained by solving the rectangular plate with

roller-supports problem using the original SNC formulation. Redun-

dant points are shown as ∗

Comparatively, the work of Proos et al (2001a) shows

the deficiencies of the weighted sums method: evenly dis-

tributed weights are prescribed, but an even distribution of

points is not obtained (Fig. 7). Furthermore, the points are

concentrated around the knee region of the Pareto curve,

where larger areas of trade-off are observed. Proos et al (2001a)

found that their analysis, for this particular problem, did not

lead to designs that showed any improvement in one crite-

rion leading to a clear trade-off with the others, i.e. increas-

ing the weights of one objective did not necessarily lead to

an improvement in that objective with a corresponding re-

duction in the others. The authors found that the solution

produced with a stiffness criterion weighting of 90% (de-

picted by a • symbol in Fig. 7) had a lower natural frequency

than the solution produced with a stiffness criterion weight-

ing of 100%. However, the mean compliance was lower for

the solution with a stiffness criterion weighting of 100%.

Thus, it is optimal in terms of being the stiffest design; the

authors had found a locally Pareto-optimal solution (Fig. 7),

i.e. a dominated point was produced. This is an example of

how a satisfactory, a priori selection of weights does not

guarantee an acceptable final solution will be obtained (Mar-

ler and Arora (2010)). These problems are not evident for

the SNC-BESO method of this work.

Fig. 7 Normalised Pareto frontier, ◦ samples taken from (Proos et al

(2001a)) and ✷ samples from this study

The final topologies (Fig. 8) produced using the SNC-

BESO method are not affected by numerical instabilities,

such as mesh-dependency and checkerboarding. Clear holes

have been created in each solution, with a uniform transition

between the two anchor points. Conversely, the topologies

produced by Proos et al (2001a) contain some checkerboard-

ing, with several small holes formed and elements connected

at only two corners. This shows the benefits of implement-

ing an updated BESO method compared to the ESO method.

The mesh-independency filter employed in this work spreads

the sensitivities across the entire design domain such that

these instabilities do not occur. Furthermore, the topologies

produced in this work (Fig. 8) are convergent, whereas the

ESO method does not have a rigorous convergence criterion.

The SNC-BESO method is thus better able to find smart

Pareto sets of MOTO problems.
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4.2 Micro fluidic mixer

The authors of the present study analysed a baffled micro

reactor to develop a BESO algorithm for multi-physics opti-

mization with design-dependent pressure loads (Munk et al

(2016b)). The model consists of a tubular vessel fitted with

a fuel inlet tube, located co-axially in the main vessel, and

a multi-holed baffle plate through which the oxidizer is in-

troduced. The fluid domain and layout of the micro-reactor

model are shown in Fig. 9.

(a) Fluid domain (Tsotskas et al (2015))

(b) Layout of micro-reactor model (Tsotskas et al (2015))

(c) Multi-holed baffle plate

Fig. 9 Initial design domain of micro fluidic mixer (Munk et al

(2016b))

The dimensions of the fluid domain (Fig. 9(b)) are given

in LBM nodes, where the dimensions of the lattice are 680×

73×73 lattice units, with additional nodes used for the wall,

in the x, y and z directions, respectively. The baffle is located

60 lattice units downstream of the flow inlet (Fig. 9(b)). The

imposed inlet conditions are the velocities of the flow in the

fuel inlet tube and the annulus area. At the outlet, a convec-

tive boundary condition is applied, based on the velocity.

The no-slip boundary condition is implemented at the walls,

by modelling them as full-way bounce back in the LBM.

The mass flow rate between the inner tube and annulus is set

to 5% to mimic the experiments performed by Moghtaderi

et al (2006).

In this section, the SNC-BESO algorithm is applied to

the multi-holed baffle plate simultaneously to maximize its

stiffness and the vorticity of the two flows for a given vol-

ume fraction, V = 0.58, and Reynolds number, Re = 100,

chosen to match the previous single-objective optimisation

runs (Munk et al (2016a,b)). The baffle is modelled by four-

node quadrilateral plate elements with all six degrees-of-

freedom active. Hence, membrane, bending and transverse

shear stresses are present. A clamped boundary condition,

i.e. all six degrees of freedom are restrained, is applied along

the boundary of the baffle. The boundary of the central hole

is designated as non-designable material for the topology

optimization, since this is determined by the fuel line and

inlet conditions, which have been constrained in the fluid do-

main (Fig. 9(a)) to be identical to previous numerical (Munk

et al (2016b)) and experimental (Moghtaderi et al (2006))

studies. The amount of change in either objective that would

constitute a significant difference between two points if all

other objectives remain practically unchanged is set to 5%.

The amount of curvature of the PIT region is defined as

p= 0.4. The corresponding Pareto curve of the negative vor-

ticity of the flow and the mean compliance of the structure

is presented in Fig. 10. Points marked (a)–(g) correspond

to the topologies shown in Fig. 11. The dashed lines cor-

respond to the limits of both objectives, found by solving

a single-objective topology optimization problem for each

objective.

Fig. 10 Pareto frontier of negative vorticity and mean compliance for

the micro fluidic mixer baffle plate found using the SNC-BESO method
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For this multiobjective and multi-physics problem, it is

clear that there are two Pareto fronts, separated by a small

gap, between solutions (d) and (e) (Fig. 10). This suggests

that, for this problem, the Pareto front is discontinuous. This

conclusion is further supported by the resulting topologies,

which portray a rapid change between solutions (d) and (e)

where they become progressively similar to their respective

single-objective solutions. This is not surprising since the

two objectives produce very different final topologies and

are based on different physical models, structures and fluids.

The authors of this paper found in a previous study that

certain topological features resulted from the physics of the

two single-objective problems (Munk et al (2016b)). For the

compliance minimization problem, the structural symmetry

about the x- and y-axes becomes identical (Fig. 11(a)). It

was shown that this is physically reasonable, since there is

no physical difference about the horizontal and vertical axes.

Therefore, there is nothing physically present to introduce

asymmetry into the topology, and it makes physical sense

for the compliance SOO problem to exhibit 4-fold rotational

symmetry, SO(4), about the center point of the baffle. Con-

versely, it was shown that vorticity is not a symmetrical phe-

nomenon (Munk et al (2016b)). Therefore, for the vorticity

SOO solution the topology is not SO(4), but displays some

symmetry about the ±45◦ diagonals. Hence, the topologies

produced by the two SOO problems are considerably differ-

ent. The change in the topology from being SO(4) to sym-

metric about the ±45◦ diagonals is clearly noticeable in the

different geometries shown in Fig. 11.

The strain energy distributions for the different Pareto

solutions are given in Fig. 12. Moving progressively from

solution (a) to solution (g), clear strain energy concentra-

tions begin to appear around solution (d). Solutions (a)–(c)

show comparatively low strain energy distributions, with an

almost uniform distribution, especially considering that the

centre hole is non-designable. Solution (g) has large regions

of relatively high strain energy due to the large pressure dif-

ference present across the baffle.

The efficiency for each baffle design in mixing can be

seen by the velocity and streamline plots (Fig. 13). Clearly,

the latter solutions ((e)–(g)) promote mixing by increasing

the velocity of the flow. The flow characteristics of the ear-

lier designs ((a)–(c)) are difficult to distinguish for the cho-

sen scale. This is because the low compliance designs try to

minimise the pressure difference across the baffle, and hence

the velocity increase is low compared with the high vortic-

ity designs. Furthermore, by comparing the streamlines, it

is apparent that the low compliance designs do not produce

significant mixing. The streamlines show small circulation

zones immediately after the baffle. However, by looking at

solutions (e)–(g), it is seen that mixing is significantly pro-

moted by large areas of circulation downstream of the baffle.

For the high vorticity designs ((e)–(g)), mixing occurs

mainly along the 45◦ diagonal that does not contain the holes,

whereas, in the low compliance designs ((a)–(d)), mixing

occurs around the holes. The area of mixing is larger in the

high vorticity designs, as the spacing between the two/four

holes is larger than that between the six holes of the low

compliance designs. By comparing the flow paths (Fig. 13)

of the Pareto solutions, it is seen that solutions (e)–(g) have

considerably higher recirculation zones, indicating a big-

ger mixing zone. Conversely, the six smaller holes reduce

the compliance of the structure, spreading the strain energy

more evenly over the baffle. However, the larger holes re-

sult in increased strain energy concentrations, resulting in a

structure with a high compliance.

To further verify the Pareto solutions found for the mul-

tiobjective and multi-physics micro fluidic baffle plate op-

timization problem, a Tabu Search (TS) algorithm (Jaeggi

et al (2008)) was applied to the problem. The TS algorithm

used a level-set parametrisation to maximize the vorticity

and minimize the pressure difference of the flow. While min-

imizing the pressure of the flow is not identical to the min-

imum compliance objective, it is similar to maximizing the

stiffness of the baffle, albeit, as a fluid objective. This is be-

cause it reduces the fluid loads on the baffle and hence also

the compliance of the baffle. Again, the center hole is desig-

nated as non-designable material. The resulting Pareto front

is displayed in Fig. 14.

Fig. 14 Pareto frontier of pressure difference and negative vorticity for

the micro fluidic mixer baffle plate found using the TS algorithm (data

produced by Dr Tiziano Ghisu)

The Pareto front found (Fig. 14) is again found to be dis-

continuous. There is, however, a small difference between

the optimization algorithms used: the volume fraction of the

baffle can change in the TS algorithm, but not in the SNC-

BESO algorithm. Therefore, the results are not comparable

below a vorticity of 5400 s−1, as this region does not fall into

the design space of the topology optimization problem of



18 David J. Munk et al.

this paper. As was shown by Munk et al (2016b), the topol-

ogy optimization algorithm is able to find a more optimal

solution to the vorticity maximization problem, thereby in-

creasing the design space slightly at the maximum vorticity

end.

The Pareto front found using the SNC-BESO algorithm

of this work is able to identify the different options avail-

able to the designer for the multiobjective and multi-physics

optimization problem. These results indicate that the SNC-

BESO method is capable of producing smart Pareto sets

to industrial problems, which, to the best of the authors’

knowledge, has not been shown before in the BESO liter-

ature.

5 Conclusions

A novel multiobjective topology optimization algorithm, termed

SNC-BESO, which uses an updated smart constraints method

combined with a bi-directional evolutionary optimization al-

gorithm, has been presented. The literature survey showed

that, thus far, topology optimization methods have mainly

focused on single-objective problems. For BESO/ESO type

algorithms adapted for multiobjective optimization, only the

weighted sums and global criterion methods have been in-

corporated. It is known that such methods are unable to pro-

duce smart Pareto sets. Two MOTO problems were solved

using the SNC-BESO method, the first taken from the lim-

ited MOTO literature and the second an industrial problem

concerning the design of a micro fluidic mixer.

The first test-case was purely a structural design prob-

lem, with stiffness and dynamic design criteria. The problem

had previously been solved in the literature using a weighted

sums ESO method (Proos et al (2001a)). The Pareto front

determined by the SNC-BESO method was found to consti-

tute a smart Pareto set, while the same cannot be said for the

Pareto front found using the weighted sums method (Proos

et al (2001a)). It was found that the updates made to the SNC

method avoided redundant points being produced, a problem

that occurs when using the original SNC method. Thus, the

updated SNC method is more efficient than the original SNC

method when used in topology optimization, and the SNC-

BESO method proposed in this work is able to solve MOTO

problems in an efficient and effective manner.

The second problem tackled is multi-physics as well as

multiobjective, having stiffness (structural) and vorticity (flu-

ids) objectives. To the best of the authors’ knowledge, such

a problem has not been solved before in the BESO liter-

ature. Therefore, a comparison to a similar problem solved

using a TS algorithm was given. It was shown that the Pareto

front for this problem had a discontinuity present, where the

physics of the problem drove the solutions closer towards

the anchor points of the Pareto front. This is expected when

the objectives counteract each other completely. The SNC-

BESO method was able to identify this discontinuity and

find a range of solutions, which displayed the different de-

sign options for the problem.

The work presented here adds to the literature on us-

ing high-fidelity methods, such as Lattice Boltzmann flow

simulations, in topology optimization algorithms at the con-

ceptual/preliminary design stages. Furthermore, a topology

optimization algorithm that can handle multiple objectives,

as well as disciplines, to better optimize real-world applica-

tions was demonstrated. This type of analysis is instrumen-

tal for the further application of topology optimization to

industrial design problems, where the consideration of mul-

tiple objectives, as well as disciplines, is a very frequent re-

quirement. Finally, it was mentioned that multiple constraint

problems are unavoidable in real-world engineering design.

Therefore, extending the SNC-BESO method to also handle

multiple constraints is left for planned future work.
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Fig. 8 Optimal designs of the roller-supported rectangular plate found using the SNC-BESO method
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Fig. 11 Optimal micro fluidic mixer baffle plate designs found using the SNC-BESO method
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Fig. 12 Strain energy density for optimal micro fluidic mixer baffle plate designs.
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Fig. 13 Streamlines for the optimal micro fluidic mixer baffle plate designs.


