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Abstract 

This research addresses the sustainability and safety related challenges associated with the 

complex, practical and real time maritime transportation problem and proposes a multi-

objective mathematical model integrating different shipping operations. A mixed integer non-

linear programming (MINLP) model is formulated considering different maritime operations 

such as routing and scheduling of ships, time window concept considering port’s high tidal 

scenario, discrete planning horizon, loading/unloading operation, carbon emission from the 

vessel and ship’s draft restriction for maintaining the vessel’s safety at the port. The 

relationship between fuel consumption and vessel speed optimization is included in the model 

for the estimation of the total fuel consumed and carbon emission from each vessel. Time 

window concept considered in the problem aims to improve the service level of the port by 

imposing different penalty charges associated with the early arrival of the vessel before the 

starting of the time window and vessel failing to finish its operation within the allotted time 

window. Another practical aspect of the maritime transportation such as high tide scenario is 

included in the model to depict the vessel arrival and departure time at a port. Two novel 

algorithms - Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective 

Particle Swarm Optimization (MOPSO) have been applied to solve the multi-objective 

mathematical model. The illustrative examples inspired from the real-life problems of an 

international shipping company are considered for application. The experimental results, 

comparative and sensitivity analysis demonstrate the robustness of the proposed model. 

 

1. INTRODUCTION 

The United Nations Conference on Trade and Development (UNCTAD)[2] stated that 

international shipping carries 80% of world trade. In 2013, the total volume of world trade 

increased by 4.6% and reached up to 160 million twenty-foot equivalent units (TEUs) [3], 

and, by 2014, global containerized trade grew by 5.3% and reached 171 million TEUs [4]. 

Containerized cargos (containers) are transported on regularly scheduled service routes of 

shipping companies. Standardized sea containers transport manufactured goods, dry 

commodities (coffee, tea, etc.) and refrigerated cargo (meat, fruit, fish, etc.). As global trade 

grows, there is increasing interest among researchers about the real and complex problems 

associated with routing and scheduling of containerized vessels. Most of the past research has 

focused primarily on ship routing and scheduling, bunker fuel consumption or ship draft 

restrictions.  



Despite the growing demands on the industry, only a minor proportion of the literature 

related to shipping logistics has taken into consideration the environmental sustainability 

issues pertaining to the mitigation of fuel consumption and carbon emissions. Due to climate 

change, there is a greater need than ever before to incorporate environmentally sustainable 

practices into the domain of maritime logistics. 

This research aims to bridge the research gap and presents a mathematical model with 

multiple objectives addressing the intricacies of ship routing and scheduling, the time 

window concept and also considers the effects of carbon emissions as well as draft 

restrictions on vessels at different ports. The slow steaming policy is an important operational 

strategy incorporated to compute the total fuel consumption of a ship. Vessel draft restrictions 

are designed to prevent ships from travelling to ports during low tide for safety reasons. The 

multi-objective mathematical formulation developed in this paper is solved using Non-

dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm 

Optimization (MOPSO). 

This paper is organised as follows: Section 2 discusses background information and presents 

a literature review; Section 3 entails the problem description and also formulate the 

mathematical model; Section 4 contains the proposed solution methodology; Section 5 

presents the results and a discussion; and Section 6 concludes this research paper and outlines 

the future scope of research. 

 

2. BACKGROUND and LITERATURE REVIEW 

This section provides relevant background information and a literature review covering areas 

including shipping emissions, slow streaming strategy, ship routing and scheduling, the time 

window concept and ship draft restrictions.  

2.1. SHIPPING EMISSIONS  

In the domain of maritime logistics, air pollution from vessels is a critical research topic. 

Kontovas et al. [5] reported that container ships are among the biggest air polluters as these 

emit a significant amount of carbon. Buhaug et al. [6] mentioned that of 4,100 registered 

vessels operating throughout the world, 4% are container carrying ships. In 2007, 230 million 

metric tons (Mmt) of CO2 was emitted and 70 Mmt of fuel was consumed by registered 

vessels [6]. The International Maritime Organization (IMO) has performed several 

comprehensive analyses to estimate the level of carbon emissions in international shipping. It 

observed that the container vessels emitted around 205 million tons of CO2 in 2012, nearly 

40 and 80 million tons more than bulk carriers and oil tankers, respectively [6]. Cullinane et 

al. [7] reported that the total fuel consumed in maritime transportation ranges from 279-400 

million tons per year. Hence, the IMO has stressed the importance of addressing possible 

measures to reduce carbon emissions in maritime shipping.  

 



2.2. SLOW STEAMING STRATEGY 

The slow steaming policy is an important operational measure for mitigating fuel 

consumption and carbon emissions to deal with decarbonisation and increasing fuel prices. 

Sustainability has a significant influence on the design of a company’s business model when 

it comes to addressing environmental issues [1]. Maersk Line, a global container shipping 

company, implemented a slow steaming policy in 2009 and has since benefitted from a 

carbon emissions reduction as well as fuel savings of 22% [8]. Fagerholt et al. [9] 

emphasised the importance of reducing fuel consumption costs which can amount to around 

50% of the operating costs of a global shipping company. Other container shipping 

companies have also started adopting a speed optimization strategy to reap environmental 

benefits by lowering their carbon emissions. Yao et al. [10] studied the non-linear 

relationship between fuel consumption and vessel speed for different sizes of containerships. 

Several research works [11 and 12] have considered the speed optimization strategy in vessel 

routing models to mitigate carbon emissions and fuel consumption. Norstad et al. [13] 

presented a formulation to deal with a problem pertaining to tramp ship routing and 

scheduling considering vessel speed as a decision variable. They adopted the speed 

optimization strategy to estimate the total amount of fuel consumed in port and at sea. Several 

authors have studied the implications of the slow steaming strategy on maritime logistics in 

terms of reducing the environmental effects associated with shipping [14]. In the context of 

maritime transportation, other researchers have also examined the impact of different vessel 

speed models on lowering greenhouse gas emissions [15]. Aydin et al. [16] focused on the 

speed optimization problem, taking into consideration uncertain service time and developed a 

dynamic programming model by discretizing the port arrival times. Recently, Mansouri et al. 

[17] presented a comprehensive review examining sustainability aspects in maritime shipping 

and investigating from the perspective of multiple-objective optimization to maintain a 

proper trade-off concerning economic, environmental and service related aspects. In the 

context of liner shipping services, other researchers have simultaneously dealt with shipping 

emissions, service reliability and expected cost [18]. They have developed a stochastic multi-

objective optimization model depicting the conflicting relationship between service 

effectiveness, cost efficiency and vessel emissions. Other scholars have studied the vessel 

schedule designing problem with the objective of mitigating total fuel consumed (and 

emissions) by considering the relationship between vessel sailing speed and fuel consumption 

[19]. Lindstad et al. [20] examined different effects related to lowering ship speed to 

understand various impacts on maritime transportation costs and greenhouse gas emissions. 

Meanwhile, Psaraftis et al. [21] studied the optimization of vessel speed for different routing 

scenarios and provided useful insights regarding balanced environmental and economic 

performance of shipping logistics. Several researches have been carried out by considering 

the slow steaming strategy yet majority of the works overlooked the need to integrate the 

slow steaming policy with ship routing and scheduling problem for estimating the fuel 

consumption on different sailing legs while designing the vessel routes. 

 

 



2.3. SHIP ROUTING AND SCHEDULING 

Vessel speed reduction increases the sailing time of ships between different ports, thereby 

leading to a higher transportation cost for the shipping company. Hence, it is necessary to 

address the possible ways of improving the service level and simultaneously reducing the 

voyage cost of the vessel. The routes of each ship should be designed to satisfy the demand at 

different ports, to lower the transportation cost and to maximise the total revenue generated 

by the shipping company. Several researchers have studied routing and scheduling problems 

for maritime logistics companies with the aim of reducing the transportation cost [22]. They 

have addressed the complexities associated with the designing of vessel routes and their 

schedules within a particular planning horizon and have presented a mathematical 

formulation accordingly. Figure 1 shows an example of a ship routing and scheduling 

network including three ships and seven ports for a specific planning horizon. The first ship 

starts its journey from port 1 in time period 1 and sails to port 2, reaching there within time 

period 2. It sails from port 2 and arrives at port 3 in time period 4, and later ends its route at 

port 1 in time period 5. Routes corresponding to vessels 2 and 3 are mentioned in the figure. 

Grønhaug et al. [23] and Ronen [24] dealt with ship routing problems for a discrete planning 

horizon and accordingly presented their mathematical formulations. Siswanto et al. [25] 

investigated ship routing and scheduling problems, focusing on vessel route selection and 

loading/unloading operations at port. They addressed the complex issue of meeting the 

demand for different non-mixable liquid products at various ports. In the context of Liquefied 

Natural Gas (LNG) distribution, several authors have studied the problem of routing and 

scheduling of vessels and have presented optimal schedules within the planning horizon [26], 

[27]. Stålhane et al. [28] investigated a maritime pickup and delivery problem and presented 

a path-flow formulation to maximise the revenue earned and mitigate the overall travelling 

cost. Agra et al. [29] dealt with a ship routing problem for distribution of fuel oil products to 

several loading and unloading ports and accordingly presented a mixed integer formulation. 

In the context of shipping logistics, other researchers have dealt with real-life case studies of 

oil companies and have developed mathematical models capturing the intricacies associated 

with the designing of routes and schedules of vessels between different ports [30]. The time 

window concept is considered in their work to improve the service level and to minimise the 

cost related to service time. 



 
Figure 1: Shipping network with three ships routes in overall planning horizon 

 

2.4. TIME WINDOW CONCEPT 

Each port has a particular time window for providing services to each containership. 

Deciding upon an appropriate time window to perform the loading/unloading operations is 

one of the most complex issues within the ship routing and scheduling domain. A time 

window exists for each period (day) and its corresponding timings (start and end of the time 

window) may vary for different ports. A ship arriving early at a port has to wait until the start 

of the time window to initiate its operations. Sometimes, the port operations of a vessel finish 

after the completion of the time window, thereby violating the time window. Agra et al. [29] 

considered the time window concept in their model and incorporated certain penalty charges 

per hour to deal with violations of the time window. However, their model did not consider 

the waiting time before the start of the time window for ships arriving early. Figure 2 

illustrates the concept of the time window for two different scenarios. Several pieces of 

research have been carried out to improve the service level at ports by taking into 

consideration a penalty charge for operation not finishing within the time window [22], [31] 

and [32]. It is essential to incorporate certain measures to reduce the waiting time and time 

spent outside the time window. Penalty charges are incurred if the vessel arrives early, before 

the start of the time window. If a ship fails to finish its operations within the port’s working 

hours, then a demurrage charge is imposed on the number of hours operated after the 

completion of the time window. More robust ship schedules consider penalties to avoid 

waiting times due to certain unexpected delays. Fagerholt [33] studied a pickup and delivery 

problem encountered by multiple vessels and incorporated the time window concept. The 

strict time windows are relaxed by including certain penalty charges to counter the violation 

of the time window. Other authors have integrated the time window concept in a short sea 

inventory routing problem and presented a mathematical formulation considering several 



real-time constraints, capturing the intricacies associated with the time window [30]. Armas 

et al. [34] introduced a routing and scheduling problem for shipping logistics and 

incorporated the discretized time window concept. The majority of researchers have 

overlooked the relationship between  high tidal condition and the arrival and departure time 

of the vessel while considering the time window concept at a port. 

 

Figure 2: Time window at port: waiting time, operating time inside and outside 

2.5. SHIP’S DRAFT RESTRICTIONS 

In maritime logistics, decisions related to ship routing and scheduling are affected by a 

vessel’s draft restrictions. Rakke et al. [35] dealt with the travelling salesman problem with 

regard to draft restrictions and proposed two mathematical models for determining the 

optimal sequence of port visits. A ship’s draft restrictions play a significant role in maritime 

transportation as it determines the number of containers to be loaded onto the vessel. A ship’s 

draft is the distance between the bottom of the vessel and the waterline, and each port has 

specific safety limits associated with the draft of each ship to reduce the risk of a vessel with 

deep-draft running in shallow water. As a result, draft restrictions prevent vessels from 

entering certain ports fully loaded and may affect the sequence of port visits made by a ship. 

Figure 3 depicts the factors influencing the under-keel clearance of a vessel. Some of the 

important factors determining the draft of a ship are the depth of the water, tide height at a 

particular time in a port, ship squat, and the stability of the vessel and its safety margin. Ship 

squat effect is a phenomenon caused when a ship moves quickly through shallow water. As a 

result, it creates an area of low pressure in the water causing the vessel to be closer to the 

seabed. Vessel stability depends upon heel, wave response and wind strength. The heel is an 

effect of leaning of the ship under the influence of wave or wind strength causing the ship to 

sit lower in the water, thereby decreasing the under-keel clearance. Ports have certain 



additional safety margins that restrict ships to travel with a high draft through the water. 

Furman et al. [36] developed a mathematical model considering different draft restrictions for 

various load and discharge ports. Draft restrictions played an interesting role in their 

optimization problem as these affect the number of products to be loaded or unloaded. 

Battarra et al. [37] dealt with the traveling salesman problem in the context of maritime 

transportation, taking into account draft restrictions. They proposed an exact algorithm based 

on three mathematical models and compared the performances.  

 
Figure 3: Factors affecting the under-keel clearance of a ship 

Several researchers have integrated the time window concept into numerous problems 

associated with routing and scheduling of vessels but have overlooked the importance of 

sustainability aspects and vessels’ draft restrictions [28], [29], [30], [34]. The time window 

concept is considered in some of the earlier research to improve the service level of a port by 

imposing penalty charges when a vessel fails to finish its operations within the allotted time 

window. Although penalizing vessels for early arrival is essential, the majority of researchers 

including Agra et al. [29] and De et al. [32] did not consider this in the maritime 

transportation domain. Multiple vessels arriving before their time window increases 

congestion and hampers the service level of a port. With this in mind, several measures are 

incorporated in this research to tackle the early arrival of vessels. Some of the researchers 

have employed a slow steaming policy in maritime transportation to reduce the total fuel 

consumption and fuel cost of shipping companies [10], [11], [13]. They have focused 

primarily on computing bunkering fuel consumption, neglecting the impact of carbon 

emissions. Kontovas et al. [5] addressed the significance of carbon emissions and presented 

different mathematical equations to realise the same. In the context of maritime 

transportation, few researchers have considered a ship’s draft restrictions with regard to the 

travelling salesman problem to ensure safety at a port [35], [37]. However, earlier research 

works did not capture the complexities associated with routing and scheduling in maritime 

transportation and also overlooked the significance of addressing sustainability aspects in 

shipping operations. The contribution of this paper lies in incorporating different real-time 

and practical maritime operations such as ship routing and scheduling, loading/unloading 

operations, the time window concept at a port, vessel draft restrictions and carbon emissions. 

The majority of the research in this domain has considered these issues in isolation in their 



model and has not taken into account the aforementioned shipping operations in a single 

mathematical model. 

3. PROBLEM DESCRIPTION and MATHEMATICAL MODEL   

3.1 PROBLEM DESCRIPTION 

Global shipping companies plan vessels’ routes and schedules in a particular planning 

horizon to reduce the overall transportation cost. Ships carry containerized cargo from one 

port to another to meet the demand in a given period. The planning horizon taken into 

account comprises of a number of days, referred to as time periods. Each vessel follows its 

designated trade route comprising many loading and unloading ports. Figure 4 illustrates an 

example of a trade route of a ship in a planning horizon. Each vessel starts from its initial port 

at the commencement of the planning horizon and visits several ports in different periods. In 

the example given, the vessel begins its journey from a particular port in period 1 and visits 

different ports and finally terminates its route in period 6. The vessel starts its voyage in 

period 1 and reaches the next port in period 2. Once the ship finishes its operations, it sails to 

the next port and reaches it in period 4. The ship then departs from the port in period 4 and 

finally arrives at the final port of its journey in period 6. The example covers a planning 

horizon of six periods (corresponding to days) to illustrate the concept of the planning 

horizon within ship routing and scheduling. Multiple vessels can perform their loading or 

unloading operations depending on the number of berths available. Port operations are carried 

out within a specific time window to improve the service level of each port. Different ports 

have different time window restrictions depending upon the man-power and quay cranes 

available to implement the loading or unloading operations of containerized cargo. A ship 

arriving early at a port before the initiation of the time window has to wait until the start of 

the time window to begin its operations. Penalty charges are incurred per hour for arriving 

before the start of the time window. The vessel owner is also penalised, if the vessel fails to 

finish its operations within the time window. Such demurrage charges per hour associated 

with the violation of the time window increase the total operation cost. Hence, it is essential 

to design schedules for ships in a way that minimises the overall penalty cost.  

 



Figure 4: Trade route for a vessel within a planning horizon. 

Decisions pertaining to the routing and scheduling of vessels are affected by the ship’s draft 

restrictions as these determine the total tonnage of containerized cargo carried by a vessel 

entering a certain port. A ship’s draft refers to the vertical distance between the surface of the 

water and the lowest point of the vessel. The draft helps to determine the minimum depth of 

water that a vessel can safely navigate through and also addresses the risks associated with a 

deep-draft vessel sailing in shallow water during low tide. Considering draft restrictions in 

ship routing and scheduling helps to determine the number of containers carried by the ship 

in terms of the vessel’s draft limit and tonnage of containerized cargo per centimetre of draft. 

Draft restrictions also prevent fully loaded vessels from visiting certain ports during a given 

time period, thereby reducing risk and improving the safety of the vessel. A ship enters or 

exits a port through the lock gate only during high tide for reasons of safety. Apart from a 

ship’s draft restrictions, carbon emissions issues and the slow steaming policy are 

incorporated to address sustainability aspects and to determine the total fuel consumption of a 

vessel. As mentioned in Yao et al. [10], the amount of fuel consumed by a vessel depends on 

the ship’s sailing speed. The relationship between vessel speed and fuel consumption is 

considered to estimate the total fuel consumed while travelling from one port to another. 

Heavy Fuel Oil (HFO) is used to run the main engine of a ship while sailing in the sea and the 

auxiliary engine runs on Marine Diesel Oil (MDO) while the vessel performs its operations at 

a port. Carbon emissions are computed for both scenarios by considering the appropriate 

carbon emissions coefficients for different types of fuels used. The problem is formulated as 

a Mixed Integer non-Linear Programming (MINLP) model and is presented in the next 

section, capturing several interactive variables and real-time constraints. 

3.2 MATHEMATICAL MODEL 

The mathematical formulation for the problem described in section 3.1 is considered for a 

planning horizon of equal intervals/ periods (equivalent to days). Different variables are taken 

into account to assess the current status of each ship. The mathematical model takes into 

account the  following:  

1. Available berth at each port for every period is known. 

2. Demand associated with each port is known. 

3. Container loading/unloading time is constant. 

4. Numbers of available berths at each port in every time-period is fixed. 

5. Carbon emission coefficients related to Heavy Fuel Oil (HFO) and Marine Diesel Oil 

(MDO) are considered for estimating the total carbon emitted. 

6. The initial port position of each vessel is known.  

7. Fuel consumed (per hour) at a port by the auxiliary engine of the ship is constant. 

8. Either loading or unloading operation can be performed at a particular port. 

 

We use the following indices in our mathematical model 

v  Vessels  

,i j  Ports 



,t s  Time period 

 

Sets 

V  Set of vessels 

J  Set of ports 

T  Set of time periods 

 

Various parameters used in our mathematical model are described as follows:  

 
S

itC  Penalty cost (per hour) for waiting at port i before the starting of the time window 

in period t 
F

itC  Fixed cost for performing loading/unloading operation at port i in period t 

E

itC  Penalty cost (per hour) incurred at port i for operating after the completion of the 

time window in period t 

vi  Initial port position for vessel v 

vif  Fuel consumption at port i for vessel v (in tonnes per hour) 

2

Sea

COE  Carbon emission coefficient (Tonne of CO2/Tonne of fuel) at sea  

2

Port

COE  Carbon emission coefficient (Tonne of CO2/Tonne of fuel) at port 

Sea

FuelE  Fuel price associated with Heavy Fuel Oil (USD/Tonne of fuel) 

S

itB      Start of time window at port i in period t 

E

itB      End of time window at port i in period t 

vitA      Expected arrival time at port i for vessel v in period t   

,vit vita a    Earliest and latest arrival times of vessel v depending upon the high tide scenario at  

      port i in period t 

,vit vitd d    Earliest and latest departure time of vessel v depending upon the high tide scenario  

      at port i in period t 

ijL      Distance between port i and j 

,ijv ijv      Speed range for ship while sailing from port i to port j 

i      Number of berths available at port i 

Empty

vD      Draft limit for vessel v sailing empty 

vG      Tonnage of containerized cargo per centimetre of draft for vessel v 

R      Revenue generated (USD per tonne of containerized cargo) 

it      Tide height at port i in period t 

it      Depth of water at port i in period t 

vitn      Squat associated with ship v at port i in period t 

vitw      Stability of ship v depending upon heel and wave response at port i in period t 

v



vitSF      Safety factor for vessel v at port i in period t 

h      Hours in a day 

iP      Demand of containerized cargo at port i  

iS      Supply of containerized cargo at port i 

vQ      Maximum capacity (in terms of tonnage of containerized cargo) of vessel v  

i      = 1, if port i is a supplier of containerized cargo 

      = -1, if the port i has a demand of the containerised cargo  

 

We use the following decision variables in our mathematical model 

 

itjsvF   Fuel consumption (in tonnes per nautical mile) associated with vessel v sailing from 

port i in period t to port j in period s 

vitz  = 1, if a ship v terminates its voyage at port i in period t 

 = 0, otherwise 

itjsvx  = 1, if ship v operating at port i in period t travels from port i in period t to port j in 

period s  

= 0, otherwise; 

vitK  Tonnage of containerized cargo loaded/unloaded at port i  from vessel v in period t 

vitD  Maximum allowable draft limit at port i for vessel v in period t, 0vitD  ,  

  for 0vitO   

vita  Arrival time of ship v at port i in period t  

vitd  Departure time at port i  of ship v in period t 

vite  Start time of loading/unloading operation for ship v at port i in period t 

E

vite  End time of the loading/unloading operation for vessel v at port i in period t 

vit  Total time operated by vessel v outside the time window at port i in period t  

itjsv  Velocity of vessel v while sailing from port i in period t to port j in period s 

vitM  Total tonnage of containerized cargo available on ship v while departing from port i 

after finishing an operation that started in period t, 0vitM   for 0vitO   

vitO  = 1, if ship v performs loading/unloading operation at port i in period t 

= 0, otherwise;  

 

The following describes the objective function developed for the mathematical model. 
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  (1) 

 

Equation (1) represents the first objective function of the mathematical formulation depicting 

the overall profit incurred for performing different shipping operations within a planning 

horizon. The objective function comprises of five terms. The first term presents the revenue 

generated for carrying the tonnage of containerized cargo between different ports. The second 

term is associated with the fuel cost for the shipping company while operating at sea. The 

third term provides the total fixed cost for carrying out loading/unloading operations. The 

fourth term is related to the overall penalty cost for waiting before the start of the time 

window. The fifth term depicts the penalty cost incurred when the vessel fails to finish its 

operation within the allotted time window.  
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      (2) 

 

Equation (2) presents the second objective function estimating the total carbon emission. The 

first term computes the total carbon emission released in the air while the vessel is sailing in 

the sea. The second term computes the total carbon emission incurred from the fleet of ships 

while operating at the port. We use Carbon emission coefficients for Heavy Fuel Oil (HFO) 

and Marine Diesel Oil (MDO) as 3.082 and 3.021 respectively as mentioned in Kontovas et 

al. [5]. The update of International Maritime Organisation (IMO) 2000 study presented at 58th 

Marine Environment Protection Committee (MEPC) considered the carbon emission 

coefficients for Heavy Fuel Oil (HFO) and Marine Diesel Oil (MDO) as mentioned above 

[6]. The carbon emission factors lies within the range of Intergovernmental Panel on Climate 

Change (IPCC) 2006 guidelines as stated in Buhaug et al. [6]. 

 
3

1 2 ,itjsv itjsvF k k     , ,  , ,  i j J t s T v V         (3) 

,ijv itjsv ijv       , ,  , ,  i j J t s T v V         (4) 

0itjsv       0itjsvfor x       (5) 

 

Equation (3) presents the relationship between fuel consumption and vessel speed for a 

containership. Yao et al. [10] stated that the value of the coefficients k1 and k2 are different 

for different sizes of containerships. For this mathematical model, containership of size 6000 

TEU (TEU refers to Twenty-foot Equivalent Units) is considered. A typical medium size of 

containership of 1000 TEU carries 25000 tons of cargo. So, accordingly tonnage of cargo 



carried by 6000 TEU can be estimated. The value of k1 and k2 for 6000 TEU containership 

are 0.007297 and 71.4 respectively [10]. Equation (4) provides the upper and lower bounds of 

the vessel speed variables. The speed of 6000 TEU containership should lie within the range 

of 14-24 knots [10]. For certain conditions presented in equation (5), the vessel speed 

between two corresponding ports is considered to be zero.   

  0,it it vit vit vit vit vitD n w SF O         ,  ,  i J v V t T       (6) 

 

Equation (6) addresses the under-keel clearance (UKC) constraint for a vessel at a port. A 

ship can be allowed to enter a specified port only if the equation (6) is satisfied. Figure (3) 

presented in the earlier section illustrates different factors affecting the under-keel clearance 

of the vessel. The distance between the ship’s keel and waterline is referred to as the vessel 

draft. It is essential to maintain certain safety restrictions for smooth movement of the vessel 

through the channel at a port. Some of the important factors associated with the safety 

restrictions at a port are the depth of water, height of tide, vessel squat, ship’s draft and 

stability of the ship. The positive UKC factors include depth of water at a port ( it ) and 

height of tide( it ), and negative UKC factors comprises of the draft of the ship ( vitD ), vessel 

squat ( vitn ), and stability of the ship ( vitw ). The positive UKC factors should be greater than 

negative UKC factors by some safety factor ( vitSF ). A vessel squat is the phenomenon 

associated with the fast moving ships through the water creating a lower pressure, which in 

turn pulls down the vessel closer to the seabed. Stability of the ship depends upon wave 

response, wind force and heel of the ship. 

 

jsitv i

j J s T v V

x 
  

    ,  i J t T        (7) 

Equation (7) depicts that for a given time period, the number of vessels performing its 

loading/unloading operation at a port depends upon the total number of berths available.  
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Constraint (8) ensures that the vessel must end its route at a specific port. Constraint (9) 

represents the flow conservation constraint.   

0itjsvx                                   for i j , t s     (10) 

1 1 1,
v vi jsv vi

j J s T

x z
 

        v V       (11) 

Constraint (10) ensures that the binary variable itjsvx  must be zero for the given conditions. 

Constraint (11) depicts that a vessel may travel from its initial port to another port or it may 

end its route at a certain port. 

   0,   vit itjsv

j J s T

O x
 

    ,  i J v V        (12) 



 

Constraint (12) ensures that if a vessel performs its operation at a particular port, then the port 

must belong to the route of the ship. 

0,vit vite A         ,  ,  i J v V t T         (13) 

,vit vite a     ,  ,  i J v V t T         (14a) 

,E

vit vite d     ,  ,  i J v V t T         (14b) 

,vit vit vita a a      ,  ,  i J v V t T         (15a) 

,vit vit vitd d d     ,  ,  i J v V t T         (15b)

,s E

it vit itB e B      ,  ,  i J v V t T         (16) 

 

Constraint (13) ensures that the vessel must start its operation at a port after its expected 

arrival time. Constraint (14a) guarantees that a ship must arrive at the port before the 

commencement of its loading/unloading operation. Constraint (14b) ensures that the vessel 

must depart from the port only after finishing its operation. The time interval within which 

the ship is expected to arrive and depart is given by constraint (15a) and (15b) respectively. 

Constraint (16) presents the time window range. 
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Constraint (17) depicts the relationship between arrival time of the vessel at a port with the 

departure time of the ship from previous port and the sailing time between two ports.  
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The penalty cost incurred for operation outside the time window is realized using constraint 

(18). Equation (19) represents the scenario of a vessel starting its port operation in a given 

period only after it finishes its operation in the previous period.  
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Equation (20) states that the number of containers on a vessel while leaving a particular port 

plus the number of container loaded/unloaded on the next port should be equal to the number 

containers on vessel while departing from the second port. Equation (21) depicts that the 

number of containers loaded/unloaded should be less than the maximum capacity of the 

vessel. Upper bound on the number of containers loaded/unloaded is given by the equation. 

Equation (22) presents the upper bound of the total number of containers carried by the 

vessel. Equation (23a) and (23b) makes sure that the demand and supply of containerized 

cargo at each port is satisfied. 

{0,1},  itjsvx      , ,  ,  , ,  ,  i j J i j t s T t s v V         (24) 

{0,1},   vitz      ,  ,  i J v V t T         (25) 

{0,1},vitO      ,  ,  i J v V t T         (26) 

 ,  ,  ,   , 0,    E

vit vit vit vit vite e a d   ,  ,  i J v V t T         (27) 

,  0,itjsv itjsvF       , ,  , ,  ,  i j J t s T i j v V         (28) 

Equations (24), (25) and (26) represent the binary variables. Equations (27) and (28) 

represent the non-negativity constraints. 

Equation (20) can be linearized as mentioned in Al-Khayyal et al. [22] and Agra et al. [29]. 

Therefore, equation (20) can be replaced with the following sets of equations, 

,vit j vjs vjs v itjsv vM K M Q x Q     , ,  , ,  i j J t s T v V         (29) 

,vit j vjs vjs v itjsv vM K M Q x Q      , ,  , ,  i j J t s T v V         (30) 

Now, equation (31) presents the number of containers carried by the vessel from a specific 

port in a given time period. 

 Empty

vit vit v vM D D G          (31) 

The number of containers carried by the ship can be expressed in terms of the maximum 

allowable draft limit of the vessel and tonnage of containerized cargo per centimetre of the 

draft of the ship. 

Therefore, using equation (31), equations (29) and (30) can be restructured in the following 

ways, 

   Empty Empty

vit v v j vjs vjs v v v itjsv vD D G K D D G Q x Q       

or, 
Empty Empty

vit v v v j vjs vjs v v v v itjsv vD G D G K D G D G Q x Q       

or, vit v j vjs vjs v v itjsv vD G K D G Q x Q     , ,  , ,  i j J t s T v V        (32) 

Similarly, equations (33) and (34) can be obtained using equations (30), (31) and equations 

(31), (22) respectively, 

vit v j vjs vjs v v itjsv vD G K D G Q x Q      , ,  , ,  i j J t s T v V        (33) 
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,  0vit vitK M       ,  ,  i J t T v V        (36) 

Equation (35) and (36) represents the non-negativity constraints. 

 



The mathematical formulation comprises of two objective functions presented in equations 

(1) and (2). The constraints are depicted in equations (3) – (19), (21), (23a), (23b), (24) – 

(28), (32), (33) (34), (35) and (36). The mathematical model presented in this section consists 

of different variables associated with loading/unloading operations, ship routing and 

scheduling, vessel speed, time window concept and ship’s draft restriction. For such a 

complex mathematical formulation, the number of continuous and binary variables as well as 

equality and inequality constraints increases exponentially for every problem instances 

considered for computational experiment purpose. Computational efficiency for solving such 

a complicated problem deteriorates for every test case. Research work of Mirhassani et al. 

[38] and Repoussis et al. [39] stated that an exact heuristic takes a long and unrealistic time to 

solve even a moderate sized problem. Moreover, they mentioned that the limitation of 

operations research based solvers to solve a medium size problem instance. Therefore, it is 

essential to apply evolutionary algorithms such as the one used in this research including 

NSGA-II (non-dominated sorting genetic algorithm II) and MOPSO (multi-objective particle 

swarm optimization) to deal with the computational complexity of multi-objective problem in 

this research.  

4. SOLUTION METHODOLOGY 

With an increasing number of time periods, ships and ports, the number of decision variables 

and constraints for a mathematical model also escalates, and the computational complexity in 

solving such a problem becomes time-consuming. Such a multi-objective mathematical 

model requires meta-heuristic techniques to solve large problems and to obtain a near-optimal 

solution. Two multi-objective techniques - Non-Dominated Sorting Genetic Algorithm II 

(NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO) - are employed to 

solve the aforesaid mathematical formulation.   

4.1. INITIAL SOLUTION 

NSGA-II and MOPSO algorithms need to generate an initial solution to initiate their 

respective searching procedures. The initial solution comprises all of the independent and 

dependent variables associated with the mathematical model. The problem mentioned above 

consists of different types of variables depicting the time window concept, ship routing and 

scheduling, vessel speed and loading/unloading operations. The initial feasible solution is 

generated considering different sets of constraints given in the mathematical formulation and 

assessing the interaction between dependent and independent variables. The values of the 

routing variables itjsvx  and 
vitz  are generated by satisfying equations (7) and (8) respectively. 

The feasibility of the values obtained is validated using equation (9) representing the flow 

conservation constraint. Infeasible values are discarded and feasible values of the binary 

variables are stored for further processes. The vessel speed variables are generated within a 

range of 14-24 knots as mentioned in Yao et al. [10] for 6000 TEU containerships.  

The value of itjsv  is assumed to be zero when the routing variable itjsvx  takes the value zero as 

mentioned in equation (5). The value obtained for the vessel speed is fed into equation (3) to 

estimate the fuel consumed by each vessel while sailing between the two ports. 



Loading/unloading variable vitO  is calculated using equation (12) and the value of routing 

variable 
itjsvx . Initially, the value of vitM  is obtained within a given range and later using the 

value of the binary variable 
itjsvx  and equation (22), vitM  is updated. If no loading/unloading 

operation takes place at a particular port in a given period ( vitO = 0), then the value of vitM  for 

the corresponding port is assigned as zero. The maximum allowable draft limit for a vessel at 

a particular port, vitD  is computed using the value of vitM  and equation (31). The tonnage of 

containerized cargo loaded/unloaded from a ship at a specific port vitK  is estimated within a 

particular range. Considering the binary variable corresponding to the loading/unloading 

operation and maximum containerized cargo carrying capacity of a vessel (in terms of 

tonnage), the value of vitK  is updated using equation (21). Starting time of an operation for a 

ship at a port, 
vite  is computed using the range given in equation (16). Arrival time for a 

vessel at a port, vita  is estimated within a range presented in equation (15). The feasibility of 

the decision variables 
vite  and vita  is checked using equation (14) and infeasible values are 

discarded in this process.  Ending time of operation for a certain vessel at a port, E

vite  is 

computed by using the values of the arrival time of a ship ( vita ), vessel speed ( itjsv ) and route 

variables ( itjsvx ) in equation (17). The value of the penalty variable, vit  associated with the 

violation of the time window for a ship is calculated using equation (18) and the values 

pertaining to the ending time of the operation for the vessel, E

vite  and the closing time of the 

time window. Initialization of the solution is presented in a way as mentioned in the literature 

for different nature of problems such as routing, scheduling, etc. The initial solution 

generated is fed into each of the algorithms to start their respective procedures.  

4.2. NSGA-II (Non-dominated Sorting Genetic Algorithm II) 

Deb et al. [40] proposed NSGA-II as an effective and efficient multi-objective evolutionary 

algorithm. Repoussis et al. [39] and Li et al. [41] employed NSGA-II for resolving their 

respective multiple objective optimization problems. Over the past decades, several 

algorithms are proposed such as multi-objective genetic algorithm, NSGA, Pareto 

evolutionary algorithm and NSGA-II, etc. Among all these multi-objective optimization 

algorithms, NSGA-II is the most efficient algorithm as it provides a better solution with high 

accuracy and convergence speed on most of the benchmark problems[41-42]. NSGA-II 

performs better than other existing algorithms in terms of searching a diverse set of solutions 

and converging near the true Pareto-optimal set [43]. Other researchers compared their 

proposed multi-objective algorithms with NSGA-II to justify the performance pertaining to 

solution quality and computational time [44], [45]. Genetic algorithm based meta-heuristic 

techniques are quite popular among researchers for resolving different combinatorial 

optimization problems as it provides superior performance when compared with other 

optimization techniques [49], [50], [51] and [57]. Based on the abovementioned justification, 

NSGA-II is employed to resolve the proposed mathematical model presented in the preceding 

section. 



NSGA-II algorithm is comprised of following operators: selection, crossover, mutation, non-

dominated sorting technique and crowding distance. The algorithm starts with an initial 

population of chromosomes. All the decision variables present in the mathematical model are 

properly arranged to form a single chromosome. Figure 5 depicts the basic structure of a 

chromosome. Non-dominated sorting technique assigns a rank to each chromosome of the 

population. Figure 6 presents the flowchart of the non-dominated sorting technique. 

Crowding distance is calculated for each chromosome with the same rank. Figure 7 depicts 

the pseudo-code for the crowding distance computation algorithm. So, the operators (non-

dominated sorting and crowding distance) are employed to rank and select the population 

fronts.  

 

Figure 5: Structure of a chromosome consisting of all the variables 

Offspring populations are generated after performing the following techniques on the parent 

population - tournament selection, crossover and mutation. Figure 8 presents the flowchart of 

the NSGA-II algorithm based on Deb et al. [40]. The population containing the offspring 

combines with the parent population to form an overall population of 2N (population size = 

N) size. The combined population is presented in different fronts using the non-dominated 

sorting technique. If the number solution in the first front is less than N, then all the 

chromosomes present in the first front is added to the new population. If the solutions are not 

enough, then chromosomes are selected from the second front. If the numbers of individuals 

accepted from the last front are more than the number required, then the chromosomes 

present in the front are sorted on the basis of the crowding distance, and exact numbers of 

individuals required are chosen. The best chromosomes are selected as the solutions on the 

basis of the diversity and non-dominance. The new population formed is used for selection, 

crossover and mutation operators.  

 

Figure 6: Flowchart of non-dominated sorting technique  
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Figure 7: Pseudo code of the crowding distance computation operator 

NSGA-II uses the crowded comparison operator to select an individual between two solutions 

with lesser domination rank when both the individual belong to different fronts. But when 

both the solutions lie on the same front, then the individual in the less dense region (having 

higher crowding distance) is preferred over the other. CD refers to a Pareto front comprised 

of M individuals. CD[m].j depicts the jth objective of the mth individual in the front CD. fmaxj 

and fminj represents the maximum and minimum value of objective j. Crowding distance of 

every individual is initialized to zero. The solutions are sorted in ascending order of their 

objective value for every objective j. Infinite crowding distance value is assigned to all the 

boundary solutions with minimum and maximum crowding distance. 

 



Figure 8: NSGA-II algorithm based on Deb et al. [40] 

 

4.3. MOPSO (Multi-Objective Particle Swarm Optimization) 

Multi-objective particle swarm optimization (MOPSO) algorithm is commonly used in the 

literature for numerous optimization problems [46], [47] and [48]. Non-dominated Sorting 

and Crowding Distance techniques presented in the earlier section are also considered in this 

algorithm. Particle swarm optimization based algorithms are simpler computational 

calculation than other intelligent search heuristics. Majority of the researchers highlighted the 

robustness of PSO-based algorithms in adapting to several benchmark problems without 

changing the values of the algorithmic parameters [46]. Recently, researchers considered 

MOPSO algorithms due to its straightforward and simplistic concept in resolving 

computationally intractable optimization problems [46], [47] and [48]. Hence, MOPSO 

algorithm is used in this research as it provides superior performance than other on-par 

stochastic optimization methods. 

In MOPSO algorithm, the personal best and the global best behaviour of each individual 

referred to as “particle” help in converging to a near-optimal position.  All the particles are 

together called swarm looks for an optimum solution in the search space. Particle’s position 

is a point in the solution space considering the values of all the attributes present in the 

problem. Figure 9 provides the swarm representation for the aforementioned mathematical 

model. A simple example of three ports, three periods and two ships is considered to illustrate 

the arrangement of 100 particles in the swarm. The decision variables present in the 

mathematical formulation is organized in the following manner as shown in figure 9.  

 
Figure 9: Swarm representation for MOPSO algorithm 

Each particle is updated by adding it’s velocity in equation (37). Here, t

ix  denotes the particle 

i at tth iteration and t

iv  represent the velocity of the particle i at tth iteration.  

1t t t

i i ix x v             (37)  

The velocity of each particle drives the optimization and considers both social and personal 

experiences and the particle velocity is updated using equation (38). Here, t

ipbest  denotes the 

best personal position of a particle i at tth iteration and t

igbest  represent global best position at 



tth iteration. w is the inertia weight, c2 and c2 are the acceleration coefficients, r1 and r2 are 

two random vectors in the range [0,1]. 

 1

1 1 2 2( ) ( )t t t t t t

i i i i iv wv c r pbest x c r gbest x           (38) 

The ranks of the new particles are determined using non-dominated sorting and crowding 

distance techniques. Here, the newly generated swarm is combined with the earlier swarm. 

When a maximum number of iteration (convergence criteria) is reached, the algorithm stops 

and retrieves the Pareto Front. Figure 10 presents the flowchart of MOPSO algorithm. 

 
Figure 10: Flowchart of MOPSO algorithm 

 

5. RESULT AND DISCUSSIONS 

The computational experiments are performed on the problem instances to verify the 

proposed mathematical model mentioned in the preceding sections. The small, medium and 

large sized problem instances are developed by varying the number of ports, time periods and 

ships. Problem instances considered for experimental purposes are designed after taking 

inspiration from some of the real-world problems encountered by international shipping 

companies. 

 

5.1. EXPERIMENTAL SETTINGS 

All of the computational experiments are conducted on MATLAB R2014a software having 8 

GB RAM with Intel Core i7 1.8 GHz processor and 64-bit Operating System of Windows 8. 

Data associated with the model parameters are borrowed from several sources [5], [7], [32], 

[37], [52], [53] and [56]. NSGA-II and MOPSO are employed to solve and validate all of the 

problem instances of the aforementioned mathematical model. The best parameters settings 

pertaining to NSGA-II and MOPSO algorithms for effectively solving the proposed multi-

objective model are obtained after performing certain preliminary test runs. The following 



parameters are set for NSGA-II: population size = 200, crossover rate = 0.80, mutation rate = 

0.70, and the number of generations = 100. The parameters of MOPSO are appropriately 

tuned to obtain near-optimal solutions for each of the problem instances. Values of the 

parameters of MOPSO are given as: swarm size = 200, inertia weight = 0.9, acceleration 

coefficients = 0.1 and 0.98, and number of iterations = 100. 

5.2. COMPUTATIONAL COMPLEXITY AND EFFICIENCY 

The NSGA – II algorithm examines (population size   number of generations = 300 100 

=) 30,000 solutions. Identically, the number of solutions explored by MOPSO is (swarm size 

  number of iterations = 300 100 =) 30,000. The performances of both the algorithms are 

assessed based upon the same number of solutions searched. Table 1 presents five problem 

instances and highlights their complexities pertaining to the number of constraints and 

variables evaluated. Table 1 also depicts the computational efficiency required to solve 

different problem instances using NSGA-II and MOPSO algorithms. Insights are drawn from 

the table pertaining to the competency of the algorithms regarding the computational time 

required to solve each of the problem instances. From Table 1, it can be summarised that the 

computational efficiency of NSGA-II is superior when compared with MOPSO for large 

problem instances. Dealing with such complexities associated with each of the problem 

instances and exploration of large number of solutions justifies the robustness of the 

algorithms. 

Table 1: Different problem instances and computational time required to solve them 

Serial 

No. 

Problem instances 

(ports, periods, ships) 

Total number 

of variables 

Total number 

of constraints 

Computational 

time required for 

NSGA-II (sec) 

Computational 

time required for 

MOPSO (sec) 

1 (3, 3, 2) 666 766 15.30 17.87 

2 (5, 3, 3) 2475 2766 22.35 28.93 

3 (8, 6, 4) 29,568 30,600 168.31 232.67 

4 (10, 8, 6) 1,20,000 1,22,392 758.67 1065.31 

5 (14, 10, 8) 4,81,600 4,87,384 3395.3 4797.7 

 

5.3. EXPERIMENTAL RESULTS AND SENSITIVITY ANALYSIS 

For all of the problem instances, one of the Pareto solutions pertaining to carbon emissions 

(incurred in terms of Tonne of CO2) and profit (USD) is presented in Table 2. Carbon 

emissions incurred for problem instance (3-3-2) employing NSGA-II and MOPSO are 1.458 

x103 Tonne of CO2 and 1.503 x103 Tonne of CO2 respectively. Figures 11 and 12 present the 

(3-3-2) problem instance’s Pareto front consisting of the non-dominated solutions with 

ranking 1 and 2 obtained using both the algorithms. Two Pareto fronts are selected based on 

the ranks, and the best solutions fall under rank 1 while rank 2 contains the second best 

solutions. Visual illustrations of the Pareto fronts for the problem instance (5-3-3) generated 

by the algorithms are depicted in figures 13 and 14. Non-dominated solutions presented in the 

Pareto front preserve both the quality and diversity of the solution. Out of all the non-



dominated solutions of the problem instance (5-3-3) present in the Pareto front in rank 1, one 

solution is considered and mentioned in Table 2. The Pareto fronts pertaining to the problem 

instance (8-6-4) for both the algorithms are illustrated in figures 15 and 16. The figures 

highlight that excess carbon emissions are incurred when shipping companies look for more 

profit. Figures 17 and 18 present the points in the final near-optimal Pareto front for the 

problem instance (10-8-6) when solved using NSGA-II and MOPSO. Figures 19 and 20 

provide the Pareto front for both the algorithms pertaining to problem instance (14-10-8). The 

solutions of the Pareto front relating to problem instances (10-8-6) and (14-10-8) are 

mentioned in Tables 3 and 4. Pareto front solutions help decision makers to explore different 

possibilities and find the ideal combination of both objectives according to their 

requirements. The Pareto front provides diverse solutions with different values associated 

with both of the objective functions while it also gives the decision maker more options to 

consider. A sensitivity analysis is performed on three problem instances - (14,10,8), (10,8,6) 

and (8,6,4) by increasing and decreasing the tonnage of containerized cargo per centimetre of 

the draft and the values obtained are presented in Table 5. Tonnes of containerized cargo 

loaded per centimetre of the draft can vary for different ports as this depends upon the density 

of water in the particular location. It is observed that with the increment or decrement in 

tonnes of containerized cargo per centimetre of vessel draft, the profit associated with the 

shipping company increases or decreases. From Table 5, it is also revealed that the carbon 

emissions remain unchanged for any change in tonnes per centimetre of the draft.  

 
Figure 11: Pareto front generated using NSGA-II for problem instance (3-3-2) 

 

 



 
Figure 12: Pareto front generated using MOPSO for problem instance (3-3-2) 

 

 
Figure 13: Pareto front generated using NSGA-II for problem instance (5-3-3) 

 

 



 
Figure 14: Pareto front generated using MOPSO for problem instance (5-3-3) 

 

 

 
Figure 15: Pareto front generated using NSGA-II for problem instance (8-6-4) 

 

 

 



 
Figure 16: Pareto front generated using MOPSO for problem instance (8-6-4) 

 

 
Figure 17: Pareto front generated using NSGA-II for problem instance (10-8-6) 

 

 

 

 



 
Figure 18: Pareto front generated using MOPSO for problem instance (10-8-6) 

 

 

 
Figure 19: Pareto front generated using NSGA-II for problem instance (14-10-8) 

 

 

 



 
Figure 20: Pareto front generated using MOPSO for problem instance (14-10-8) 

 

Table 2: Carbon emission incurred and revenue generated for each of the problem instances 

Serial 

No. 

Problem instances 

(ports, periods, 

ships) 

Carbon Emission 

incurred using NSGA 

– II  

(Tonne of CO2) 

Carbon Emission 

incurred using 

MOPSO 

(Tonne of CO2) 

Profit obtained by 

NSGA-II (USD) 

Profit obtained by 

MOPSO (USD) 

1 (3, 3, 2) 1.503 x103 1.458 x103 2.377 x106 2.377 x106 

2 (5, 3, 3) 1.023 x104 9.838 x103 5.225 x106 5.389 x106 

3 (8, 6, 4) 2.192 x105 2.205 x105 15.598 x106 16.716 x106 

4 (10, 8, 6) 1.034 x106 1.058 x106 41.054 x106 43.850 x106 

5 (14, 10, 8) 4.529 x106 4.523 x106 95.092 x106 91.592 x106 

 

 

Table 3: Pareto solutions for the instances (10, 8, 6) obtained using NSGA-II and MOPSO 

Number of 

Pareto 

solutions 

Problem instance (10, 8, 6), NSGA-II results Problem instance (10, 8, 6), MOPSO results 

Carbon Emission  

(Tonne of CO2) 

Profit  

(USD) 

Carbon Emission 

(Tonne of CO2) 

Profit 

(USD) 

1 1.040 x106 41.922 x106 1.049 x106 43.759 x106 

2 1.044 x106 41.924 x106 1.039 x106 41.933 x106 

3 1.051 x106 42.964 x106 1.016 x106 36.752 x106 

4 1.047 x106 42.164 x106 1.029 x106 39.696 x106 

5 1.034 x106 41.054 x106 1.062 x106 45.514 x106 

6 1.024 x106 40.327 x106 1.066 x106 45.677 x106 

7 1.016 x106 38.344 x106 1.058 x106 43.850 x106 

8 

  

1.061 x106 44.556 x106 

 

 



Table 4: Pareto solutions for the instances (14, 10, 8) obtained using NSGA-II and MOPSO 

Number of 

Pareto 

solutions 

Problem instance (14, 10, 8), NSGA-II results Problem instance (14, 10, 8), MOPSO results 

Carbon emission 

(Tonne of CO2) 

Profit  

(USD) 

Carbon emission 

(Tonne of CO2) 

Profit  

(USD) 

1 4.529 x106 95.092 x106 4.498 x106 80.483 x106 

2 4.572 x106 98.827 x106 4.513 x106 91.115 x106 

3 4.543 x106 98.054 x106 4.529 x106 92.791 x106 

4 4.519 x106 94.130 x106 4.523 x106 91.592 x106 

5 4.502 x106 91.895 x106 4.507 x106 86.164 x106 

6 4.632 x106 98.855 x106 4.549 x106 96.524 x106 

7 4.654 x106 99.408 x106 4.510 x106 87.118 x106 

8 4.658 x106 99.412 x106   

9 4.665 x106 100.124 x106   

10 4.684 x106 101.508 x106   

 

 

Table 5. Sensitivity analysis conducted with respect to the tonnage of containerized cargo per 

centimetre of draft  

Problem 

Instance 

(ports, 

periods, 

ships) 

Tonnage of 

containerized 

cargo per 

centimetre of 

draft 

NSGA-II results  

Percentage 

increase or 

decrease in 

profit 

MOPSO results  

Percentage 

difference 

in profit 

Carbon emission 

(Tonne of CO2) 

Profit 

(USD) 

Carbon emission 

(Tonne of CO2) 

Profit 

(USD) 

 

 

 

(14,10,8)  

50% increase 4.506 x106 145.036 x106 52.52% 

(increase) 

4.557 x106 145.493 x106 58.84% 

(increase) 

25% increase 4.512 x106 120.224 x106 26.42% 

(increase) 

4.543 x106 120.052 x106 31.07% 

(increase) 

25% decrease 4.490 x106 70.095 x106 26.28% 

(decrease) 

4.511 x106 71.386 x106 22.06% 

(decrease) 

50% decrease 4.539 x106 47.078 x106 50.49% 

(decrease) 

4.522 x106 49.394 x106 46.07% 

(decrease) 

 

 

 

(10, 8, 6)  

50% increase 1.024 x106 64.966 x106 58.24% 

(increase) 

1.044 x106 62.453 x106 42.42% 

(increase) 

25% increase 1.049 x106 53.429 x106 30.14% 

(increase) 

1.052 x106 53.544 x106 22.10% 

(increase) 

25% decrease 1.041 x106 31.838 x106 22.44% 

(decrease) 

1.057 x106 32.975 x106 24.80% 

(decrease) 

50% decrease 1.043 x106 21.12 x106 48.55% 

(decrease) 

1.045 x106 20.367 x106 53.55% 

(decrease) 

(8, 6, 4) 

50% increase 2.155 x105 24.356 x106 56.14% 

(increase) 

2.143 x105 26.500 x106 58.53% 

(increase) 

25% increase 2.189 x105 19.155 x106 22.80% 

(increase) 

2.203 x105 21.048 x106 25.91% 

(increase) 

25% decrease 2.120 x105 12.357 x106 20.77% 

(decrease) 

2.141 x105 13.538 x106 19.01% 

(decrease) 

50% decrease 2.190 x105 8.839 x106 43.33% 

(decrease) 

2.185 x105 8.859 x106 47.00% 

(decrease) 

 

 



5.4. Managerial Implication 

Shipping companies seek more revenue and, in the process, compromise on carbon emissions 

and fuel consumption. However, it is essential to maintain a suitable trade-off between 

carbon emissions incurred and profits earned. From the results, it is interpreted that carbon 

emissions related objectives should be mandatorily incorporated in the mathematical model 

to take into account the sustainability aspects of maritime transportation. There is growing 

awareness about incorporating sustainable practices within the domain of supply chain [54], 

and several companies are aiming to embrace sustainability aspects into their operations [55]. 

The mathematical model presented in the paper will help shipping company managers to 

mitigate carbon emissions from shipping logistics by implementing the slow steaming policy. 

The formulation presented in this paper captures the conflicting nature of the two objectives 

of a shipping company, earning profits while reducing carbon emissions. The result reveals 

the potential of the multi-objective optimization approach in examining the trade-off between 

carbon emissions incurred and profits earned by a shipping company.  

 

6. CONCLUSIONS 

This paper developed a multi-objective mathematical model addressing routing and 

scheduling of vessels in the maritime transportation domain, taking into consideration the 

time window concept, sustainability aspects and vessel draft restrictions. The mixed integer 

non-linear programming (MINLP) model presented takes into account profits earned by a 

shipping company and total carbon emissions incurred in a planning horizon as the two 

objectives. The slow steaming strategy has been employed in the model to compute the 

overall fuel consumed by a shipping company while at sea. Carbon emissions coefficients for 

Heavy Fuel Oil (HFO) and Marine Diesel Oil (MDO) help to estimate the total carbon 

emissions. The time window concept focuses on the improvement of the service level by 

penalizing the early arrival of vessels before the start of the time window and failing to finish 

their operations within the allotted time. A vessel’s arrival and departure from a port depends 

on the high tide conditions. A vessel’s draft restrictions are incorporated in the mathematical 

model to maintain a safety limit while operating at a port. Two efficient and intelligent search 

heuristics, namely Non-Dominated Sorting Genetic Algorithm – II (NSGA-II) and Multi-

Objective Particle Swarm Optimization (MOPSO), are employed to resolve the proposed 

formulation. The model is tested on medium and large sized problem instances and the results 

obtained portray the performance of the algorithms and validate the proposed mathematical 

model. Profits earned and carbon emissions incurred for all of the five problem instances are 

mentioned in the preceding sections. From the findings of the paper, it is clear that a suitable 

trade-off needs to be reached between profits earned and carbon emissions incurred as the 

competency of a shipping company depends on its sustainability. Insights derived from this 

research will help shipping companies to rethink their profit-making policies, bearing in mind 

relevant environmental reforms. 

In future, the stochastic nature of the fuel price can be incorporated in the model to address 

the fuel cost incurred by shipping companies. Some of the assumptions in this model such as 

deterministic demand and single containerized cargo could be relaxed, and the problem could 



be extended to stochastic demand and multiple types of containerized cargo. More effective 

and efficient algorithms can be developed to obtained better results in less computational 

time. 
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