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Abstract
There exist two types of Data Envelopment Analysis (DEA) approaches to the Olympic
Games: conventional and fixed-sum outputs (FSO). The approach proposed in this paper
belongs to the latter category as it takes into account the total number de medals of each type
awarded. Imposing these constraints requires a centralized DEA perspective that projects all
the countries simultaneously. In this paper, a multiobjective FSO approach is proposed, and
the Weighted Tchebychef solution method is employed. This approach aims to set all output
targets as close as possible to their ideal values. In order to choose between the alternative
optima, a secondary goal has been considered that minimizes the sum of absolute changes in
the number of medals, which also renders the computed targets to be as close to the observed
values as possible. These targets represent the output levels that could be expected if all
countries performed at their best level. For certain countries, the targets are higher than the
actual number of medals won while, for other countries, these targets may be lower. The
proposed approach has been applied to the results of the Tokyo 2020 Olympic Games and
compared with both FSO and non-FSO DEA methods.

Keywords Fixed-sum outputs · Centralized DEA · Target setting · Weighted Tchebychef
method · Tokyo 2020

1 Introduction

Data Envelopment Analysis (DEA) is a non-parametric methodology for the assessment of
the relative efficiency of a set of homogeneous operating units for which the term Decision-
Making Unit (DMU) is generally used. These DMUs are assumed to consume inputs in
order to produce outputs. Data Envelopment Analysis can compute the relative efficiency
of a DMU by looking if it is feasible to reduce its input consumption (without reducing its
outputs), or whether it is feasible to increase its outputs (without increasing its inputs). If
that is the case, then the DMU is said to be inefficient, and an efficiency score that takes into
account the excess input consumption and the shortfall in output production is computed.
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Furthermore, a target that reflects the estimated input and output improvements is provided
for each DMU. This is the basic DEA methodology, which, depending on the application,
may have specific refinements. In particular, in the case of applying DEA to the Olympic
Games, the inputs usually considered are the Population and the Gross Domestic Product
(GDP) of the participating nations. These inputs are considered non-discretionary and hence
cannot be reduced (see Banker & Morey, 1986). Another feature that needs to be taken into
account in DEA Olympics applications is the higher value of gold medals with respect to
silver medals and of silver medals with respect to bronze medals. In this respect, note that the
official ranking of participating National Olympic Committees (NOCs) is of lexicographic
type whereby NOCs are ranked based on the number of gold medals won, using silver
medals and bronze medals, in that order, to break ties. This lexicographic approach is non-
compensatory and implicitly means that a gold medal is worth more than any number of
silver medals and that a silver medal is worth more than any number of bronze medals.

Another drawback of the official ranking is that it is based on the absolute results, not on
the relative efficiency of the countries, that is, it fails to take into account the size and the
wealth of the countries. Data Envelopment Analysis approaches carry out a more objective
assessment of NOC performance by bearing these factors in mind, thereby estimating their
efficiency in relative terms.

As can be observed in the literature review presented in the next section, a number of
DEA approaches have been proposed to analyse the efficiency of NOCs in Olympic Games.
They can be divided into two categories: those that take into account that the total number of
medals is fixed and those that donot. The latter generally result inDEAprojections (i.e., output
targets) that greatly exceed the total number of medals available. This problem is not unique
to Olympic Games and affects not only DEA. Collier et al., (2011) argue that all deterministic
methods that measure technical efficiency in sports using the distance to the efficient frontier
of the production technology inferred from the observations suffer from serial correlation, that
is, the efficiency estimates are biased downward. This also happens in football and basketball
competitions, for example. Assuming that certain teams are inefficient, the removal of their
inefficiency would result in increasing their number of wins, but if that happened, then the
most efficient teams would be unable to maintain their total number of wins that were partly
due to the inefficient performance of their rivals. Collier et al., (2011) proposes a correction
that downwardly adjusts the efficient frontier to account for this serial correlation. They
argue that additive DEA models are preferable to multiplicative or proportional adjustment
approaches. Their model, however, considers that only one of the outputs (e.g., number of
wins) is serially correlated while the other outputs are not. In Olympic Games, however,
all three outputs generally considered, namely number of gold, silver, and bronze medals
won, are fixed-sum outputs (FSO). The imposition of these three FSO constraints leads to
centralized DEAmodels (when an envelopment formulation is used) or to DEAmodels with
a common set of weights (CSW) (in the case of multiplier formulations).

In this paper, a multiobjective FSO DEA approach is proposed. Recall that in multiob-
jective optimization, the different objective functions are in conflict with each other, that
is, improving one generally implies worsening another. By definition, this is what happens
in the corresponding Pareto optimal set. Hence, in the case of Olympic Games efficiency
analysis, a multiobjective perspective seems appropriate since all countries want to increase
their number of medals but, since the total number of these is fixed, if one country wins more
medals then another must win fewer. Moreover, we consider each type of medal won by a
country as a different objective function. In this regard, note that the number of medals won
of each type are also in conflict with each other. Thus, it is assumed that a country aspires to
win a medal in a certain sport. If it wins a gold medal, then it cannot win a silver or a bronze
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medal and vice versa. Therefore, if a country wins more gold medals, it can win fewer silver
and bronze medals and vice versa.

There are many multiobjective DEA approaches in the literature (e.g., Ebrahimnejad &
Tavana, 2014; Estellita Lins et al., 2004; Korhonen et al., 2003; Malekmohammadi et al.,
2011). The proposed multi-objective FSO DEA approach is of centralized DEA type in
the sense that all the DMUs are jointly projected in a single model that imposes the three
FSO constraints. In order to solve this multiobjective optimization model, the Weighted
Tchebychef Method (WTM), is used, which has been used in several multiobjective DEA
approaches (e.g.,Arana-Jiménez et al., 2020;Despotis et al., 2016;Gutiérrez&Lozano, 2016;
Lozano & Adenso-Díaz, 2018). The WTM is a common solution method in multiobjective
optimization. It is based on the concept of the ideal point, that is, the point whose components
are the optimal value of each of the objective functions when optimized separately. The
idea behind WTM involves finding a solution whose objective function vector is as close
as possible to the ideal point, using the Tchebychef metric. The WTM only guarantees a
weak Pareto optimal solution but there are several extensions, such as the AugmentedWTM,
Modified WTM, and Lexicographic WTM (see Marler & Arora, 2004). Aiming to get all
outputs as close as possible to their respective ideal values involves a fairness principle
that acknowledges that all countries can aspire to reach their maximum potential in every
type of medal. However, this has to be carried out taking into account the FSO constraints
as well as the integrality of the targets. The Tchebychef metric used by the WTM implies
that it focuses on the cases that remain most distant from their ideal values, in an effort to
prevent any country from being left behind in any type of medal. Since WTM can generally
only guarantee a weak Pareto optimal solution, it is common to use a secondary objective
function that maximizes the sum of the different objective functions. However, since in our
application that sum is constant, we use another, more appropriate, secondary goal, namely
that of minimizing the sum of the absolute value of the changes in the number of medals of
the different NOCs. The idea is that, although the targets of some countries will involve more
medals and those of other countries will involve fewer, the absolute sizes of those changes
are minimized, subject, of course, to the optimal value of the maximum distance to the ideal
values computed by the WTM.

The main contribution of the paper is, therefore, the introduction of an innovative central-
ized multiobjective perspective that focuses on setting fair FSO output targets from which
performance indices and corresponding efficiency ranking are derived ex post. Almost all
existing DEA approaches to the Olympic Games, regardless of whether they consider FSOs
or not, use an output-oriented radial metric and focus on computing efficiency scores, not
on output targets. The output targets computed by the proposed approach lie on the FSO
efficient frontier, which is below the conventional efficient frontier and represent a fairer
assessment of the performance of each NOC since this is what each country could aspire to
obtain if all countries were efficient. Obtaining better results than these targets is possible
(because in reality not all countries perform efficiently) but that should be interpreted as a
sort of super-efficient performance.

As regards the novelty of the proposed approach, note that there is no FSODEA approach
that provides targets for the DMUs in this Olympic Games application. Thus, on one hand,
non-FSO DEA approaches (such as those found in Lozano et al., 2002 & Wu et al., 2010)
can compute efficiency scores as well as targets but experience the problem that the total
number of medals of those targets exceeds the actual number of medals that are awarded
in the Games. On the other hand, existing FSO DEA approaches take into account the FSO
character of the problem, but they aim at only efficiency estimation. They use variables
that represent the changes in the number of medals of the DMUs (they have to, in order to
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impose the FSO constraints) but they do not compute targets as such. The proposed approach,
instead of focusing on the computation of efficiency scores, focuses on computing sound and
fair targets, and determines efficiency scores ex-post based on those targets. Note also that,
although a FSO DEA target setting approach based on Nash Bargaining has been recently
proposed (Lozano, 2023), it cannot be used to compute integer targets as required in this
application.

The structure of the paper is as follows. In Sect. 2, a literature review of DEA applications
toOlympicGames is presented. Subsequently, in Sect. 3, the proposed approach is formulated
anddiscussed. InSect. 4, the proposed approach is applied to the recentTokyo2020Olympics,
and its results are comparedwith those of othermethods from the literature. Finally, in Sect. 5,
conclusions are drawn and further research is outlined.

2 Literature review

The first paper applying DEA to Olympic Games was that by Lozano et al., (2002), which
considered the aforementioned basic features (non-discretionary inputs and weight restric-
tions). It set the default of using a radial output orientation. Certain refinements, such as
the imposition of the integrality of the output targets, have also been proposed (e.g., Wu
et al., 2010). Intended for ranking the NOCs more than for target setting, Zhang et al., (2009)
proposed a lexicographic approach that ranks the NOCs first by their relative efficiency in
winning gold medals, while using the relative efficiency in winning silver and bronze medals
(in that order) to break ties. Their approach was output-oriented but non-radial in that only
one output was increased at a time.

Lei et al., (2015) proposed a shared-input, parallel network DEA (NDEA) approach with
two stages corresponding to the Summer and Winter Olympic Games, respectively. This
approach used a multiplier formulation, weight restrictions, and an output orientation. Li
et al., (2012) also used a multiplier DEA formulation, weight restrictions, and an output
orientation but on a two-stage configuration that considered two inputs (Population and GDP
per capita), an intermediate product (Number of athletes integrating the NOC team) and the
usual three outputs (Number of gold, silver, and bronze medals won). Jablonsky (2018) used
a similar approach, except for the inclusion of an additional input (Number of medals won
in the previous Olympics). In the same way as Lei et al., (2015), Jablonsky (2018) computes
efficiency scores but not output targets.

Although not a strictly DEA approach, Calzada-Infante & Lozano (2016) used a Domi-
nance Network (DN) for the efficiency analysis of Olympic Games. The nodes of a DN are
the DMUs, and an arc exists from DMU i to DMU j if the latter dominates the former, that
is, if DMU j consumes less input and produces more output than DMU i. Using complex
network analysis tools, a number of local and global indicators can be computed to assess
and visualize the relative performance of the different countries.

Recently, Sekitani and Zhao (2021) have presented a complex restricted multiplier DEA
approach in which the minimum sum of the absolute deviation of an affine function fitting of
the total number ofmedals is imposed as a constraint.Apart fromestimating and decomposing
the efficiency scores, the method provides a regression function that predicts the total number
of medals based on three inputs (Population, GDP, and Total number of medals won at
the previous Olympic Games). Furthermore, from the corresponding dual formulation, a
production possibility set is implied and can be employed to predict the number of medals
won by a certain country. Indeed, the number of medals predicted for Japan in Tokyo 2020
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(26 gold, 15 silver, 22 bronze) is very close to the actual number of medals won (27 gold,
14 silver, 17 bronze). Note, however, that this type of prediction differs from the concept
of efficient FSO targets considered in this paper, which assumes that all countries perform
efficiently.

Other input variables, apart from GDP and Population, have also been considered. Thus,
for example, Soares de Mello et al., (2012) uses Population and Number of athletes of each
NOC as input variables (as a proxy for the country investments in sports). The latter input
is considered discretionary, and an input orientation is used in that paper which means that
it does not suffer from the drawback of all the output-oriented approaches mentioned so far,
which is that they compute efficiency scores (and corresponding rankings) for each NOC
separately which leads to output targets whose sum exceeds the total number of medals
of each type to be awarded in the Games. Flegl & Andrade (2018) use three inputs (GDP,
Economic Active Population, and Corruption Perception Index) and as outputs, apart from
the weighted number of gold, silver, and bronze medals won, a fourth input is considered
that represents the aggregated weighted number of 4th to 8th positions. The DEAmodel used
was of a Constant Returns to Scale (CRS) cross-efficiency approach. Wu et al., (2009b) also
proposed a CRS cross-efficiency approach, using an aggressive formulation and Assurance
Region (AR) constraints to reflect the different valuation of the medals. They utilized a
hierarchical clustering algorithm to identify similar groups of countries based on their cross-
efficiency scores. Wu et al., (2009a) also computed cross-efficiency scores but under a game
theory approach and assumed Variable Returns to Scale (VRS).

OthermultiplierDEAformulations include the context-dependentARapproachofLi et al.,
(2008), the separation vector approach of Chiang et al., (2011), and the interval efficiency
approach of Azizi and Wang (2013). Churilov & Flitman (2006) used a standard CRS DEA
ratio formulation (without AR constraints), and considered four inputs (Population, GDP per
capita, Disability Adjusted Life Expectancy Index, and Index of Equality of Child Survival)
and four outputs, corresponding to aggregating the medals won by a given country using four
different sets of weights. Soares de Mello et al., (2009) used a pure-output multiplier DEA
formulation with AR constraints, and averaged the computed weights of the medal across
the different countries that won medals in each cluster of sports. These average weights are
employed to compute the efficiency index (and rank) of the participants in each cluster. The
efficiency in the different clusters is aggregated to obtain an overall performance index. The
idea behind considering these clusters is to distinguish between sports that have numerous
different competitions (e.g., athletics, gymnastics, swimming) and those with a fewer number
(e.g., baseball, football, volleyball).

Of all the approaches reviewed above, the only one that takes into account the FSO
character of the output variables is that of Soares deMello et al., (2012). They do so, however,
in an implicit way, that is, by using an input-oriented approach. Another approach that
takes FSO into account in an implicit way (by projecting each DMU assuming a certain
output reduction strategy on the part of the other DMUs) is the Zero-Sum Gains (ZSG)
model of Lins et al., (2003). Although Lins et al., (2003) considers a single output that is
a weighted aggregation of the number of gold, silver, and bronze medals won, the ZSG
approach has been extended in Bi et al., (2014) to handle multiple outputs. These ZSG
approaches use envelopment DEA formulations and do not impose the FSO constraints
explicitly. Indeed, Bouzidis &Karagiannis (2022) have argued that the ZSG efficiency scores
of Lins et al., (2003) are not really comparable across DMUs and proposed an alternative
performance metric that is consistent with the FSO constraints (which they label as output
interdependency). The explicit imposition of FSO constraints that establish that the total
number of medals of each type is fixed requires a centralised DEA approach or its equivalent
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dual, a CSW DEA model. The Equilibrium Efficient Frontier (EEF) approach used in Yang
et al., (2011), despite considering the FSO constraints explicitly does not consider CSWwhen
computing the EEF and hence the efficiency assessment is not carried out using a common
platform. This issue was corrected in Yang et al., (2015), whose Generalized Equilibrium
Efficient Frontier (GEEF) approach uses FSO constraints as well as CSW. Moreover, GEEF
has also been extended by Li et al., (2021) to a two-stage NDEA configuration similar to
that in Li et al., (2015), although applied to the Winter Olympic Games. Although there are
other GEEF approaches (e.g., Amirteimoori et al., 2017; Zhu et al., 2020) they have not been
applied to the Olympic Games. Note, finally, that neither the ZSG nor the GEEF approaches
take into account the integrality of the Olympic Games output variables or compute output
targets, but instead compute only efficiency scores and rankings. This is the research gap we
identified: a DEA approach able to compute fair, FSO-compliant targets for the DMUs.

Table 1 summarizes the main features of the aforementioned DEA applications to the
Olympic Games. It can be observed that no FSO-explicit envelopment approach, such as the
one proposed in this paper, aimed at computing output targets, has been proposed. Further-
more, although this is, in some respect, a secondary consideration, instead of the usual radial
approach, the proposed centralized DEA approach is multiobjective and uses a non-radial
solution method that includes a secondary goal.

3 Proposedmultiobjective FSO approach

Before formulating the proposed approach, let us introduce the notation to be used.

3.1 Data

j, r ∈ {1, 2, ..., n} indices on the set of DMUs.
x j = (

x1 j , x2 j , ..., xmj
)
inputs of DMU j .

y j = (
yGj , ySj , yBj

)
number of medals won by DMU j (G = Gold, S = Silver, B =

Bronze).
ytotalk = ∑n

j=1 yk j total amount of medals of type k ∈ {G, S, B}.
w = (wG , wS, wB) relative weight/value of medals of type k.

3.2 Decision variables

(λ1r , λ2r , ..., λnr ) intensity variables utilized to compute the target of DMU r .
ŷr = (

ŷGr , ŷSr , ŷBr
)
target of the number of medals to be won by DMU r .

sr = (sGr , sSr , sBr ) shortfall (i.e., output slacks) in the number of medals won by DMU
r .

σr inefficiency score of DMU r .
Assuming VRS, taking into account the non-discretionary character of the input variables

and the integrality of the output variables, and considering a weighted additive (WA) metric
(e.g., Cooper et al., 2011; Lovell & Pastor, 1995), the following conventional DEAmodel can
be employed to compute an efficient target (and associated inefficiency score) for a certain
DMU r
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σr = Max
∑

k

wkskr

s.t .
∑

j

λ jr xi j ≤ xir ∀i
∑

j

λ jr yk j ≥ ŷkr = ykr + skr ∀k
∑

j

λ jr = 1

λ jr ≥ 0 ∀ j skr ≥ 0 ∀k
ŷkr integer ∀k ⇔ skr integer ∀k

(1)

This VRS DEA model maximizes the weighted sum of the output shortfalls. The cor-
responding input constraints take into account their non-discretionary character. The output
targets are forced to be integers. Indeed, the integrality of the output variables can be imposed
either on the output targets ŷkr themselves or, alternatively, on the associated slack variables
skr . Moreover, note that the latter are assumed to be non-negative. This is a key feature of
conventional DEA models of technical efficiency: the DMUs are always projected onto effi-
cient targets that dominate them. The problem with this approach is that, in the case that the
sum of the outputs is fixed, the targets computed in this way violate the corresponding FSO
constraints, that is,

∑n
r=1 ŷkr > ytotalk , rendering them invalid.

As regards the inefficiency scoresσr , they are non-negative,whereby a zero value indicates
relative efficiency. Let E = {r : σr = 0} be the set of efficient DMUs. For the inefficient
DMUs, σr > 0 indicates technical inefficiency and represents the potential improvement in
the number of medals of DMU r , and values the corresponding medals according to the given
weights w = (wG , wS, wB) .

The aim of this paper is to develop an alternative approach that, by taking into account
the FSO constraints, would lead to valid targets. Since these constraints involve the targets
of all the DMUs, this means that the proposed approach must project all the DMUs at the
same time and, hence, it must use a centralized DEA perspective. The approach must also
enable the number of medals to be won by a country to be increased or decreased. This is
clear. Since the total number of medals is fixed, the only possibility for some countries to
win more medals involves assuming that other countries win fewer medals. Hence, in what
follows, the non-negative slack variables sr = (sGr , sSr , sBr ) are not used. Instead, we will
consider output change variables δr = (δGr , δSr , δBr ) that are taken as free variables (i.e.,
unrestricted in sign).

The main difficulty, however, lies in defining the objective function to be used by this
centralized DEA model. To this end, a multiobjective optimization approach is proposed so
that all DMUs can aim to maximizing the number of medals of every type, that is,
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Max (δG1, δS1, δB1, δG2, δS2, δB2, ..., δGn, δSn, δBn)

s.t .
∑

j

λ jr xi j ≤ xir ∀i ∀r
∑

j

λ jr yk j ≥ ŷkr = ykr + δkr ≥ 0 ∀k ∀r
∑

j

λ jr = 1 ∀r

λ jr ≥ 0 ∀ j ∀r δkr free ∀k ∀r
ŷkr integer ∀k ∀r ⇔ δkr integer ∀k ∀r
∑

r

ŷkr = ytotalk ∀k ⇔
∑

r

δkr = 0 ∀k

(2)

This is a multiobjective optimization problem that uses a centralized DEA approach. This
can be observed since all DMUs are projected at the same time. This is necessary if the FSO
constraints are to be imposed. As in the case of Model (1), VRS, non-discretionary inputs,
and integer output targets are considered. It should also be borne in mind that, in the same
way that the integrality of the output variables can be imposed on the output targets ŷkr or,
alternatively, on the output change variables δkr , the FSO constraints can also be formulated
using the output targets or the output change variables. Apart from projecting all DMUs, there
is also amajor difference betweenModels (1) and (2). Thus, while (1) considers non-negative
output shortfalls skr , in (2) the corresponding output change variables δkr are free, in that
they can be positive or negative. Moreover, for each medal type, the sum of these changes is
fixed to zero.

Among the many multiobjective optimization solution methods, we propose using the
Weighted Tchebychef method, also known as the Weighted min–max method. This is a
well-known multiobjective optimization method that computes a solution whose objective
function vector is as close as possible, using the Tchebychef metric, to the ideal point (see
Marler & Arora, 2004). Since the objective functions are in conflict with one another, the
ideal point cannot be reached in general. Getting as close to it as possible, however, is a
sensible strategy. This is the idea behind several multiobjective optimization methods, such
as Compromise Programming (e.g., Lozano et al., 2020) and the WTM (e.g., Gutiérrez &
Lozano, 2016). As mentioned above, the WTM, in particular, uses the weighted Tchebychef
distance, which, in this context, means the maximum weighted deviation from the output
targets to their corresponding ideal values. This implements a certain fairness principle that
strives to leave no objective function behind with a large deviation from its ideal value. In our
application, this means that all medal types of all countries simultaneously strive to approach
the ideal point, subject to the FSO constraints.

Therefore, in order to apply the WTM to the multiobjective optimization problem (2)
the first step is to compute the corresponding ideal point. The coordinates of the ideal point
are the maximum of each of the objective functions when they are optimized individually.
This involves solving the following single-objective optimization model for each value of
r ′ ∈ {1, 2, ..., n} and k′ ∈ {G, S, B}, that is, for each country and medal type.
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δidealk′r ′ = Max δk′r ′

s.t .
∑

j

λ jr xi j ≤ xir ∀i ∀r
∑

j

λ jr yk j ≥ ŷkr = ykr + δkr ≥ 0 ∀k ∀r
∑

j

λ jr = 1 ∀r

λ jr ≥ 0 ∀ j ∀r δkr f ree ∀k ∀r
ŷkr integer ∀k ∀r ⇔ δkr integer ∀k ∀r
∑

r

ŷkr = ytotalk ∀k ⇔
∑

r

δkr = 0 ∀k

(3)

This Mixed-Integer Linear Program (MILP) model is employed to separately maximize
each of the objective functions of Model (2). In this way, the corresponding components of
the ideal point can be computed. Note that the constraints of Model (3) are the same and have
the same meaning as those of Model (2).

Proposition 1 The optimal solution of Model (3) is always non-negative, that is, δidealk′r ′ ≥
0 ∀k′ ∀r ′.

Proof The solution that projects each DMU onto itself, that is,

λ jr =
{
1 i f j = r
0 otherwise

δkr = 0 ∀k ∀r
ŷkr = ykr + δkr ∀k ∀r

is always feasible inModel (3), for any r ′ ∈ {1, 2, ..., n} and k′ ∈ {G, S, B}, and its objective
function value is zero. This establishes zero as a lower bound on the optimal objective function
value of Model (3).

The above result implies the following corollary, which states that the maximum number
of medals that a country can obtain of a given type yidealk′r ′ = yk′r ′ + δidealk′r ′ is never below the
observed value.

Corollary yidealk′r ′ ≥ yk′r ′ ∀k′ ∀r ′
Note that, in the WTM, the deviations of the different objective functions with respect to

their ideal values are generally weighted, with weights that represent the preferences of the
DMU. In the application presented in this paper, the weights used for the different objective
functions are.

ωkr =
{

wk
yidealkr

i f yidealkr > 0

0 i f yidealkr = 0
(4)
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where wk corresponds, as indicated above, to the relative value of medals of type k. The
interpretation of these weights is that, on the one hand, the different types of medals should
be weighted in proportion to their relative value, and, on the other hand, the deviation of
the number of medals with respect to their optimal values should be measured in relative
terms rather than in absolute terms. Another way of interpreting the denominator is as if
we consider normalized objective functions using yidealkr as normalization coefficients. The
weight ωkr is assigned a zero value if yidealkr = 0 because if yidealkr = 0 then the observed
value must be ykr = 0 and therefore it is known ex ante that ŷkr = 0 and δkr = 0. Hence, in
that case, the value of ωkr plays no role since it is always multiplied by zero.

Furthermore, to help the proposed FSO_WT centralized DEA to choose from among the
large number of alternative optima that may exist, it is useful to include certain additional
constraints that act as cutting planes, and reduce the feasible region, which, due to the FSO
constraints and the integrality of the targets, has a combinatorial structure. Specifically, two
sets of additional constraints are considered. The first set states that the net weighted change
in the number of medals of the efficient DMUs must be negative. This is imposed since, in an
FSO context, these efficient DMUs should reduce their outputs so that the inefficient DMUs
can increase theirs. The net weighted change in the number of medals of any DMU r can be
expressed as

ξr =
∑

k∈{G,S,B}
ωkr δkr =

∑

k∈{G,S,B}
ωkr ŷkr −

∑

k∈{G,S,B}
ωkr ykr (5)

Hence, the first set of additional constraints can be expressed as

ξr ≤ 0 ∀r ∈ E (6)

The second set of additional constraints is that the net weighted change in the number of
medals ξr of the efficient DMUs must be lower (or at least equal) to that of the inefficient
DMUs. The rationale for this is that, as indicated above, efficient DMUs are the first that
should reduce their number of medals (to make room for the most inefficient DMUs to
increase theirs) but this reduction in the number of medals may also occur to some slightly
inefficient DMUs which may therefore also have a negative ξr . The idea is that although
inefficient DMUs may have negative values of ξr these values cannot go below the ξr of the
efficient DMUs. In other words, the reduction in the number of medals (in terms of a net
weighted change) should occur first and mainly to the efficient DMUs. Mathematically, this
second set of additional constraints can be expressed as

ξr ≤ ξr ′ ∀r ∈ E, r ′ /∈ E (7)

Therefore, the proposed FSO_WT centralized DEA model is the following:
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μminmax = Min μ

s.t .

ωkr · (
δidealkr − δkr

) ≤ μ ∀k ∀r
∑

j

λ jr xi j ≤ xir ∀i ∀r
∑

j

λ jr yk j ≥ ŷkr = ykr + δkr ≥ 0 ∀k ∀r
∑

j

λ jr = 1 ∀r

λ jr ≥ 0 ∀ j ∀r δkr free ∀k ∀r
ŷkr integer ∀k ∀r ⇔ δkr integer ∀k ∀r
∑

r

ŷkr = ytotalk ∀k ⇔
∑

r

δkr = 0 ∀k
∑

k∈{G,S,B}
ωkrδkr ≤ 0 ∀r ∈ E

∑

k∈{G,S,B}
ωkrδkr ≤

∑

k∈{G,S,B}
ωkr ′δkr ′ ∀r ∈ E, r ′ /∈ E

(8)

ThisMILPmodel implements theMinmax criterion characteristic of theWTM(seeMarler
& Arora, 2004). In our case, the aim is to minimize the maximumweighted deviation of each
output change variable with respect to its ideal value. As in the previous models, VRS, non-
discretionary inputs, integer output targets and FSO constraints are considered. Asmentioned
above, two additional sets of constraints have been included to reduce the feasibility region
and discard solutions with unwanted features. In particular, these constraints forbid positive
net weighted output changes for efficient DMUs (because these should reduce their outputs
in order to let inefficient DMUs increase theirs). They also prevent inefficient DMUs from
obtaining lower net weighted output changes than efficient DMUs.

The WTM generally uses a second-phase model. The reason for this is twofold. One is
that, in general, the WTM only guarantees weak Pareto optimality, and the other is that there
may be alternative optima. In our application, the first reason does not apply since, due to the
FSO constraints, the optimal solution of Model (4) (in fact any feasible solution) is Pareto
optimal. There remains, however, the possibility of alternative optima. In other words, in this
application, the use of a lexicographic approach (i.e., a secondary goal) is not to guarantee
Pareto optimality but to choose from among the alternative solutions of Model (4). The
standard secondaryobjective functionused in theAugmentedWTMandLexicographicWTM
variants (see, for example, Marler & Arora, 2004) corresponds to maximizing the sum of the
objective functions considered, that is,

∑n
r=1

∑
k∈{G,S,B} δkr . However, in our application,

this objective function value is zero (not only for the alternative optima but also for all feasible
solutions) since

∑n
r=1

∑
k∈{G,S,B} δkr = ∑

k∈{G,S,B}
∑n

r=1 δkr and
∑n

r=1 δkr = 0 ∀k.
Therefore, a different secondary goal needs to be employed. The secondary goal proposed in
this paper involves minimizing the absolute change from the observed values. The rationale
for choosing this criterion to set the final FSO_WT efficient targets is that, regardless of
whether the DMUs need to increase their outputs or to reduce them, the closer they are to
the observed values, the more acceptable and reasonable they become. Mathematically, the
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second-phase model is, therefore

Min
∑

r=1

∑

k∈{G,S,B}
|δkr |

s.t .

ωkr · (
δidealkr − δkr

) ≤ μminmax ∀k ∀r
∑

j

λ jr xi j ≤ xir ∀i ∀r
∑

j

λ jr yk j ≥ ŷkr = ykr + δkr ≥ 0 ∀k ∀r
∑

j

λ jr = 1 ∀r

λ jr ≥ 0 ∀ j ∀r δkr free ∀k ∀r
ŷkr integer ∀k ∀r ⇔ δkr integer ∀k ∀r
∑

r

ŷkr = ytotalk ∀k ⇔
∑

r

δkr = 0 ∀k
∑

k∈{G,S,B}
ωkrδkr ≤ 0 ∀r ∈ E

∑

k∈{G,S,B}
ωkrδkr ≤

∑

k∈{G,S,B}
ωkr ′δkr ′ ∀r ∈ E, r ′ /∈ E

(9)

This MILP model selects, from among the alternative optima of Model (8), that in which
the targets of the DMUs are closet to their observed values. The idea is to facilitate and reduce
the effort for each DMU to reach its target. In other words, this increases the likelihood of the
DMUs achieving their targets. Apart from the constraint that guarantees the optimal objective
function value of Model (8), the other constraints in Model (9) are the same and have the
same meaning as those of Model (8).

The absolute value function of the objective function of Model (9) can be linearized
through the usual change of variables, that is,

δkr = δ+
kr − δ−

kr

δ+
kr , δ−

kr ≥ 0

|δkr | = δ+
kr + δ−

kr

(10)

The final targets computed by the proposed approach, after solving Models (6)-(7), are
thus

(
ŷkr

)∗ = ykr + (δkr )
∗ = ykr + (

δ+
kr

)∗ − (
δ−
kr

)∗ ∀k ∀r (11)

It is clear that these targets respect the FSO constraints. In certain cases, that is, for certain
DMUs and certain medal types, the target exceeds the observed value while in others the
target remains below the observed value. The final net weighted change computed for each
DMU r

ξr =
∑

k∈{G,S,B}
ωkr · (δkr )

∗ =
∑

k∈{G,S,B}
ωkr ·

[(
δ+
kr

)∗ − (
δ−
kr

)∗]
(12)
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can be used as the performance index of DMU r and can be positive, negative, or zero.
A positive value indicates underperformance, that is, there is a clear potential increase in
the weighted value of the number of medals won. A negative value, in contrast, indicates
super-efficient performance, that is, the DMU has obtained a greater number of medals than
those that could be expected/reasonable if all DMUs performed at their best level. A zero
value indicates efficiency, that is, the number of medals won are in line with what could be
expected if all DMUs performed at their best level. This classification resembles, but is not
equivalent to, the classification of high performers, average performers, and low performers
in Bouzidis and Karagiannis (2022).

One clarification is in order: in this paper, we distinguish between efficient targets and
FSO_WT efficient targets. The former are those computed by the non-centralized DEA
model (1), which lie on the efficient frontier of the conventional VRS DEA technology
(in this case, of the corresponding integer VRS DEA technology). Conversely, the targets
computed by the proposed centralized DEA approach, which considers the FSO character
of the problem, are jointly determined and are efficient in a Pareto optimality sense. For
these, the term FSO_WT efficient targets is applied. These targets do not generally lie on the
efficient frontier of the conventional VRS DEA technology because that would violate the
FSO constraints. Instead, certain efficient DMUs will have to reduce their number of medals
(and therefore their target would be below the conventional VRS DEA technology) while
certain inefficient DMUs would need to increase their number of medals (but not by so many
as to reach the conventional VRS DEA technology).

In Fig. 1, we aim to convey an abstract, simplified representation of the proposed approach,
by assuming constant inputs and only two outputs, while ignoring the integrality of the
variables and considering only a few DMUs (to prevent clutter). Panel a) represents the
calculation of the ideal point δidealkr (shown as an individual ideal point for each DMU). Panel
b) represents Model (4), in which the ideal point is used as a reference so that the weighted
Tchebychef distance of all output targets of all DMUs to their corresponding ideal values
is minimized. This is represented by the rectangles centred in each of the individual ideal
points. The size of the maximum of these rectangles is minimized in Model (4). Since Model
(4) explicitly imposes the FSO constraints, the targets computed by that model belong to
the FSO efficient frontier. However, there are alternative optima, some of which may be far
from the observed values. That is why, following the idea that inspires the approaches for the
closest target and the smallest improvement (e.g., Aparicio et al., 2007; Lozano & Khezri,
2021), a secondary goal that involves minimizing the rectangular distance from the observed
DMUs to the corresponding targets is considered in Model (9). This is represented by the
rhombi centred in the observed DMUs in Panel c). The sum of the sizes of those rhombi is
minimized in Model (9). The final changes δkr associated to the computed targets are shown
in Panel d).

Note that one may be tempted to draw lines connecting the FSO efficient targets in panel
c) or d) as if defining a type of “interior frontier”. However, apart from that oxymoron being
a confusing concept, such lines (which probably do not define a convex region) do not mean
anything; they most certainly do not represent the FSO efficient frontier. In this regard, note
that a point in the FSO efficient frontier corresponds to n operating points in this type of plot.
In other words, the whole set of targets computed by the proposed approach for the n DMUs
is just one point in the FSO efficient frontier. Therefore, the FSO efficient frontier cannot
be drawn in this type of plot. The only certainty is that the n operating points of any FSO
efficient frontier must lie within the conventional VRS technology and that their coordinates
must respect the FSO constraints.
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Fig. 1 Abstract representation of the proposed FSO_WT approach

Therefore, summarizing, a two-step lexicographic approach is proposed so that the first
step aims at getting all outputs of all DMUs as close to their ideal values as possible (using a
Minmax criterion) thereby implicitly defining a subset of the FSO efficient frontier (whichwe
call the FSO_WT efficient frontier). The second step computes specific FSO_WT efficient
targets by minimizing the magnitude of the total weighted effort required to reach them from
the set of observed DMUs. Note that the two steps of the proposed approach use a centralized
DEA perspective which, although not shown in Fig. 1, always maintains the FSO and the
integrality constraints.

4 Application to Tokyo 2020

In this section, the application of the proposed approach to the results of the Tokyo
2020 Olympics is presented. The 93 NOCs that won at least one medal according to the
Tokyo 2020 official website (https://olympics.com/en/olympic-games/tokyo-2020/medals)
have been considered. Table 2 shows the number of medals won by each NOC as well
as their corresponding Population and GDP inputs. The sources of the input data include
the 2019 Revision of World Population Prospects of the UN Population Division (https://
population.un.org/wpp/) and TheWorld Factbook (https://www.cia.gov/the-world-factbook/
field/real-gdp-purchasing-power-parity/country-comparison), respectively.
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Table 2 Inputs and outputs for Tokyo 2020

NOC Population GDP (103 US$) Gold (#) Silver (#) Bronze (#)

Argentina (ARG) 45,195,777 991,523 0 1 2

Armenia (ARM) 2,963,234 40,384 0 2 2

Australia (AUS) 25,499,881 1,264,514 17 7 22

Austria (AUT) 9,006,400 498,780 1 1 5

Azerbaijan (AZE) 10,139,175 144,374 0 3 4

Bahamas (BAH) 393,248 14,450 2 0 0

Bahrain (BRN) 1,701,583 73,870 0 1 0

Belarus (BLR) 9,449,321 181,286 1 3 3

Belgium (BEL) 11,589,616 596,414 3 1 3

Bermuda (BER) 62,273 5,228 1 0 0

Botswana (BOT) 2,351,625 40,928 0 0 1

Brazil (BRA) 212,559,409 3,092,216 7 6 8

Bulgaria (BUL) 6,948,445 161,654 3 1 2

Burkina Faso
(BUR)

20,903,278 44,266 0 0 1

Canada (CAN) 37,742,157 1,843,053 7 6 11

China (CHN) 1,439,323,774 22,526,502 38 32 18

Chinese Taipei
(TPE)

23,816,775 1,143,277 2 4 6

Colombia (COL) 50,882,884 741,099 0 4 1

Côte d’Ivoire
(CIV)

26,378,275 134,048 0 0 1

Croatia (CRO) 4,105,268 126,625 3 3 2

Cuba (CUB) 11,326,616 137,000 7 3 5

Czech Republic
(CZE)

10,708,982 435,987 4 4 3

Denmark (DEN) 5,792,203 336,335 3 4 4

Dominican
Republic (DOM)

10,847,904 197,735 0 3 2

Ecuador (ECU) 17,643,060 197,631 2 1 0

Egypt (EGY) 102,334,403 1,180,890 1 1 4

Estonia (EST) 1,326,539 48,987 1 0 1

Ethiopia (ETH) 114,963,583 248,972 1 1 2

Fiji (FIJ) 896,444 12,178 1 0 1

Finland (FIN) 5,540,718 268,662 0 0 2

France (FRA) 65,273,512 3,097,061 10 12 11

Georgia (GEO) 3,989,175 55,776 2 5 1

Germany (GER) 83,783,945 4,482,448 10 11 16

Ghana (GHA) 31,072,945 164,640 0 0 1
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Table 2 (continued)

NOC Population GDP (103 US$) Gold (#) Silver (#) Bronze (#)

Great Britain
(GBR)

67,886,004 3,118,396 22 21 22

Greece (GRE) 10,423,056 319,334 2 1 1

Grenada (GRN) 112,519 1,908 0 0 1

Hong Kong (HKG) 7,497,000 449,299 1 2 3

Hungary (HUN) 9,660,350 321,869 6 7 7

India (IND) 1,380,004,385 9,155,083 1 2 4

Indonesia (INA) 273,523,621 3,196,682 1 1 3

Iran (IRI) 83,992,953 1,027,238 3 2 2

Ireland (IRL) 4,937,796 428,825 2 0 2

Israel (ISR) 8,655,541 363,448 2 0 2

Italy (ITA) 60,461,828 2,562,135 10 10 20

Jamaica (JAM) 2,961,161 28,779 4 1 4

Japan (JPN) 126,476,458 5,231,066 27 14 17

Jordan (JOR) 10,203,140 101,738 0 1 1

Kazakhstan (KAZ) 18,776,707 487,868 0 0 8

Kenya (KEN) 53,771,300 227,638 4 4 2

Kosovo (KOS) 1,767,881 20,396 2 0 0

Kuwait (KUW) 4,270,563 209,738 0 0 1

Kyrgyzstan (KGZ) 6,524,191 33,918 0 2 1

Latvia (LAT) 1,886,202 59,102 1 0 1

Lithuania (LTU) 2,722,291 103,756 0 1 0

Malaysia (MAS) 32,365,998 906,239 0 1 1

Mexico (MEX) 128,932,753 2,525,481 0 0 4

Mongolia (MGL) 3,278,292 39,723 0 1 3

Morocco (MAR) 36,910,558 279,295 1 0 0

Namibia (NAM) 2,540,916 24,040 0 1 0

Netherlands
(NED)

17,134,873 986,847 10 12 14

New Zealand
(NZL)

4,822,233 210,877 7 6 7

Nigeria (NGR) 206,139,587 1,032,048 0 1 1

North Macedonia
(MKD)

2,083,380 34,333 0 1 0

Norway (NOR) 5,421,242 340,303 4 2 2

Philippines (PHI) 109,581,085 963,121 1 2 1

Poland (POL) 37,846,605 1,261,433 4 5 5

Portugal (POR) 10,196,707 358,344 1 1 2

Puerto Rico (PUR) 2,860,840 110,238 1 0 0
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Table 2 (continued)

NOC Population GDP (103 US$) Gold (#) Silver (#) Bronze (#)

Qatar (QAT) 2,881,060 255,010 2 0 1

Republic of
Moldova (MDA)

51,269,183 34,680 0 0 1

Romania (ROU) 19,237,682 579,549 1 3 0

Russia (ROC) 145,934,460 3,968,180 20 28 23

San Marino (SMR) 33,938,000 2,008 0 1 2

Saudi Arabia
(KSA)

34,813,867 1,609,323 0 1 0

Serbia (SRB) 8,737,370 116,339 3 1 5

Slovakia (SVK) 5,459,643 178,513 1 2 1

Slovenia (SLO) 2,078,932 81,614 3 1 1

South Africa
(RSA)

59,308,690 730,913 1 2 0

South Korea
(KOR)

51,269,183 2,211,315 6 4 10

Spain (ESP) 46,754,783 1,925,576 3 8 6

Sweden (SWE) 10,099,270 547,595 3 6 0

Switzerland (SUI) 8,654,618 588,472 3 4 6

Syria (SYR) 17,500,657 50,280 0 0 1

Thailand (THA) 69,799,978 1,285,287 1 0 1

Tunisia (TUN) 11,818,618 125,783 1 1 0

Turkey (TUR) 84,339,067 2,371,374 2 2 9

Turkmenistan
(TKM)

6,031,187 86,858 0 1 0

Uganda (UGA) 45,741,000 96,838 2 1 1

Ukraine (UKR) 43,733,759 538,388 1 6 12

United States
(USA)

331,002,647 20,524,945 39 41 33

Uzbekistan (UZB) 33,469,199 235,021 3 0 2

Venezuela (VEN) 28,435,943 269,068 1 3 0

Total - - 340 338 402

The first thing onemay do is to compute the conventionalWADEA targets
(
ŷGr , ŷSr , ŷBr

)

and inefficiency scores σr as per Model (1). These are shown in Table 3, where it is apparent
that, for each type of medal, the sum of the targets greatly exceeds the total number of medals
awarded. As regards the medal weights utilized to obtain these results, (wG , wS, wB) =
(0.5714286, 0.2857143, 0.1428571), they correspond to the assumption that wG = βwS =
β2wB , where β = 2, that is, one gold medal is worth two silver medals and one silver medal
is worth two bronze medals. Note that, according to the conventional DEA approach, there
are 16 efficient NOCs, namely AUS, BAH, BER, CUB, GEO, GBR, GRN, HUN, JAM, JPN,
NED, NZL, ROC, SMR, UKR, and USA. The most inefficient NOCs are those of IND, INA,
MEX, TUR, KSA, BRA, and THA. Interestingly, in spite of the high number of medals won
by CHN, it is still labelled as inefficient according to the conventional DEA approach.
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Table 3 Targets and efficiency scores computed by WA DEA model (1)

NOC r ŷG,r ŷS,r ŷB,r σr Rank

Argentina (ARG) 14 7 17 11.857 82

Armenia (ARM) 3 2 3 1.857 22

Australia (AUS) 17 7 22 0.000 1

Austria (AUT) 9 6 10 6.714 68

Azerbaijan (AZE) 6 4 5 3.857 43

Bahamas (BAH) 2 0 0 0.000 1

Bahrain (BRN) 3 2 2 2.286 28

Belarus (BLR) 7 4 6 4.143 44

Belgium (BEL) 10 6 11 6.571 67

Bermuda (BER) 1 0 0 0.000 1

Botswana (BOT) 3 1 3 2.286 28

Brazil (BRA) 21 21 22 14.286 88

Bulgaria (BUL) 6 5 5 3.286 38

Burkina Faso (BUR) 4 1 4 3.000 33

Canada (CAN) 18 11 22 9.286 72

China (CHN) 39 41 33 5.286 55

Chinese Taipei (TPE) 15 7 20 10.286 78

Colombia (COL) 12 6 14 9.286 72

Côte d’Ivoire (CIV) 6 3 5 4.857 51

Croatia (CRO) 5 4 5 1.857 22

Cuba (CUB) 7 3 5 0.000 1

Czech Republic (CZE) 9 6 10 4.429 48

Denmark (DEN) 7 6 7 3.286 38

Dominican Republic (DOM) 7 5 6 5.143 53

Ecuador (ECU) 7 5 6 4.857 51

Egypt (EGY) 16 7 20 12.571 86

Estonia (EST) 2 1 3 1.143 20

Ethiopia (ETH) 7 6 7 5.571 58

Fiji (FIJ) 1 1 2 0.429 17

Finland (FIN) 7 6 7 6.429 65

France (FRA) 21 20 22 10.143 77

Georgia (GEO) 2 5 1 0.000 1

Germany (GER) 23 22 22 11.429 81

Ghana (GHA) 7 4 5 5.714 60

Great Britain (GBR) 22 21 22 0.000 1

Greece (GRE) 8 6 8 5.857 61

Grenada (GRN) 0 0 1 0.000 1

Hong Kong (HKG) 8 6 8 5.857 61

Hungary (HUN) 6 7 7 0.000 1
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Table 3 (continued)

NOC r ŷG,r ŷS,r ŷB,r σr Rank

India (IND) 26 31 26 25.714 93

Indonesia (INA) 22 21 22 20.429 92

Iran (IRI) 14 7 18 10.000 76

Ireland (IRL) 7 6 7 5.286 55

Israel (ISR) 8 6 9 6.143 63

Italy (ITA) 20 17 21 7.857 71

Jamaica (JAM) 4 1 4 0.000 1

Japan (JPN) 27 14 17 0.000 1

Jordan (JOR) 6 2 4 4.143 44

Kazakhstan (KAZ) 9 7 10 7.429 69

Kenya (KEN) 7 6 7 3.000 33

Kosovo (KOS) 2 1 3 0.714 19

Kuwait (KUW) 6 5 6 5.571 58

Kyrgyzstan (KGZ) 3 2 3 2.000 24

Latvia (LAT) 3 1 3 1.714 21

Lithuania (LTU) 4 3 4 3.429 40

Malaysia (MAS) 13 7 16 11.286 80

Mexico (MEX) 20 16 22 18.571 91

Mongolia (MGL) 4 1 4 2.429 30

Morocco (MAR) 7 6 7 6.143 63

Namibia (NAM) 3 1 3 2.143 26

Netherlands (NED) 10 12 14 0.000 1

New Zealand (NZL) 7 6 7 0.000 1

Nigeria (NGR) 14 7 18 12.143 85

North Macedonia (MKD) 3 1 3 2.143 26

Norway (NOR) 7 6 7 3.571 41

Philippines (PHI) 14 6 17 10.857 79

Poland (POL) 16 8 20 9.857 75

Portugal (POR) 8 6 9 6.429 65

Puerto Rico (PUR) 4 3 4 3.143 36

Qatar (QAT) 4 3 4 2.429 30

Republic of Moldova (MDA) 4 1 4 3.000 33

Romania (ROU) 10 6 12 7.714 70

Russia (ROC) 20 28 23 0.000 1

San Marino (SMR) 0 1 2 0.000 1

Saudi Arabia (KSA) 17 10 21 15.286 89

Serbia (SRB) 6 2 5 2.000 24

Slovakia (SVK) 6 5 6 4.429 48

Slovenia (SLO) 3 2 3 0.571 18

South Africa (RSA) 12 6 14 9.429 74

123



900 Annals of Operations Research (2023) 322:879–919

Table 3 (continued)

NOC r ŷG,r ŷS,r ŷB,r σr Rank

South Korea (KOR) 19 14 22 12.000 83

Spain (ESP) 18 12 22 12.000 83

Sweden (SWE) 9 7 10 5.143 53

Switzerland (SUI) 8 7 9 4.143 44

Syria (SYR) 4 2 3 3.143 36

Thailand (THA) 17 7 22 14.143 87

Tunisia (TUN) 6 3 5 4.143 44

Turkey (TUR) 19 16 21 15.429 90

Turkmenistan (TKM) 5 2 4 3.714 42

Uganda (UGA) 5 3 4 2.714 32

Ukraine (UKR) 1 6 12 0.000 1

United States (USA) 39 41 33 0.000 1

Uzbekistan (UZB) 7 6 7 4.714 50

Venezuela (VEN) 7 6 7 5.286 55

Total 912 687 968 – –

In order to obtain valid FSO targets and associated performance indices of the DMUs, the
proposed FSO_WT approach is used. This implies:

1. Solving Model (3) for each NOC r ′ and each medal type k′, thereby obtaining the corre-
sponding ideal values δidealk′r ′ and yidealk′r ′ = yk′r ′ + δidealk′r ′ .

2. Solving FSO_WT model (8) using weights as per (4), thereby obtaining the Minmax
distance to the ideal point μminmax.

3. Solving the secondary-goal model (9)-(10), thereby obtaining the FSO_WT efficient
targets (11) and the corresponding performance indices (12).

As regards the solution method of all the models in this paper, including Models (1),
(3), (8), and (9), these have been solved using Gurobi Optimizer (version 9.1.2), which uses
Branch and Cut to solve such MILP problems. Non-centralized DEAmodels, such as Model
(1), have very few (in fact, just three) integer variables and hence are solved very easily.
Centralized DEA models, such as Models (3), (8), and (9), have more integer variables
(namely three times the number of DMUs) and hence can take somewhat longer to compute.
In any case, the computation times in a conventional laptop (with 8 Gb RAM and an i7
processor) are negligible (less than 2 s).

Another important point, raised by one of the reviewers, is the uniqueness of the targets
computed. We knew beforehand that the FSO_WT model (8) can have alternative optima,
which is the reasonwhy a secondary goal or phase-IImodelwas proposed. However, although
unlikely, it is theoretically possible that the secondary-goal model (9)-(10) might also have
multiple optimal solutions. Fortunately, this has not been the case, and it could therefore be
verified (ex post) that the optimal solution of Models (9)-(10) reported below was unique.

Table 4 shows the ideal values yidealkr for all types of medals of all NOCs, the FSO_WT
targets

(
ŷkr

)∗, performance indices ξr , and the corresponding ranking. The optimum of the
FSO_WT model (8) is μminmax = 0.4155844. Note that, as indicated in Corollary 1, the
ideal values never fall below the observed values. Indeed, for most countries, the ideal value
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Table 4 Ideal point, FSO_WT targets, and performance indices computed by proposed approach

NOC r ŷidealGr ŷidealSr ŷidealBr

(
ŷG,r

)∗ (
ŷS,r

)∗ (
ŷB,r

)∗
ξr Rank

Argentina
(ARG)

14 12 18 4 0 2 0.139 67

Armenia
(ARM)

4 3 4 2 2 2 0.286 89

Australia
(AUS)

17 13 22 5 6 22 − 0.425 2

Austria (AUT) 9 8 10 3 0 5 0.091 58

Azerbaijan
(AZE)

6 5 5 2 0 4 0.019 45

Bahamas
(BAH)

2 1 2 1 0 0 − 0.286 9

Bahrain
(BRN)

3 2 3 1 0 0 0.048 50

Belarus
(BLR)

7 5 6 2 3 3 0.082 55

Belgium
(BEL)

10 9 11 3 1 3 0.000 13

Bermuda
(BER)

1 1 2 1 0 0 0.000 13

Botswana
(BOT)

3 3 3 1 0 1 0.190 83

Brazil (BRA) 21 23 23 7 6 8 0.000 13

Bulgaria
(BUL)

6 5 6 3 1 2 0.000 13

Burkina Faso
(BUR)

4 4 4 2 0 1 0.286 89

Canada
(CAN)

18 15 22 6 8 11 0.006 39

China (CHN) 39 41 33 38 32 18 0.000 13

Chinese
Taipei
(TPE)

15 12 20 5 4 6 0.114 63

Colombia
(COL)

12 10 14 4 4 1 0.190 84

Côte d’Ivoire
(CIV)

6 5 5 2 0 1 0.190 84

Croatia
(CRO)

5 5 5 3 3 2 0.000 13

Cuba (CUB) 7 5 5 2 3 5 − 0.408 3

Czech
Republic
(CZE)

9 7 10 3 6 3 0.018 44
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Table 4 (continued)

NOC r ŷidealGr ŷidealSr ŷidealBr

(
ŷG,r

)∗ (
ŷS,r

)∗ (
ŷB,r

)∗
ξr Rank

Denmark
(DEN)

7 6 7 3 4 4 0.000 13

Dominican
Republic
(DOM)

7 6 6 2 3 2 0.163 77

Ecuador
(ECU)

7 6 6 2 1 0 0.000 13

Egypt (EGY) 16 13 20 5 1 4 0.143 69

Estonia (EST) 2 2 3 1 0 1 0.000 13

Ethiopia
(ETH)

7 6 7 2 0 2 0.034 47

Fiji (FIJ) 1 1 2 1 0 1 0.000 13

Finland (FIN) 7 6 7 2 0 2 0.163 77

France (FRA) 21 20 23 6 20 11 0.005 38

Georgia
(GEO)

4 5 4 2 5 1 0.000 13

Germany
(GER)

23 22 23 7 17 16 0.003 37

Ghana (GHA) 7 5 6 2 0 1 0.163 77

Great Britain
(GBR)

22 21 23 7 21 22 − 0.390 7

Greece (GRE) 8 6 8 3 0 1 0.024 46

Grenada
(GRN)

0 0 1 0 0 1 0.000 13

Hong Kong
(HKG)

8 7 8 3 0 3 0.061 52

Hungary
(HUN)

8 7 8 3 7 7 − 0.214 11

India (IND) 30 32 26 9 2 4 0.152 75

Indonesia
(INA)

22 23 23 7 1 3 0.156 76

Iran (IRI) 14 12 18 4 1 2 0.017 43

Ireland (IRL) 7 6 7 2 0 2 0.000 13

Israel (ISR) 8 7 9 3 0 2 0.071 53

Italy (ITA) 20 18 22 6 18 20 0.013 40

Jamaica
(JAM)

4 2 4 2 0 4 − 0.429 1

Japan (JPN) 27 26 24 8 14 17 − 0.402 5

Jordan (JOR) 6 5 5 2 0 1 0.133 65

Kazakhstan
(KAZ)

10 8 11 3 0 8 0.171 80
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Table 4 (continued)

NOC r ŷidealGr ŷidealSr ŷidealBr

(
ŷG,r

)∗ (
ŷS,r

)∗ (
ŷB,r

)∗
ξr Rank

Kenya (KEN) 7 6 7 3 6 2 0.014 41

Kosovo
(KOS)

2 2 3 2 0 0 0.000 13

Kuwait
(KUW)

6 5 6 2 0 1 0.190 84

Kyrgyzstan
(KGZ)

4 3 4 2 2 1 0.286 89

Latvia (LAT) 3 2 3 1 0 1 0.000 13

Lithuania
(LTU)

4 3 4 2 0 0 0.190 84

Malaysia
(MAS)

13 11 17 4 0 1 0.150 74

Mexico
(MEX)

20 20 22 6 0 4 0.171 80

Mongolia
(MGL)

4 3 4 2 0 3 0.190 84

Morocco
(MAR)

8 6 8 3 0 0 0.143 69

Namibia
(NAM)

3 2 3 1 0 0 0.048 50

Netherlands
(NED)

12 12 15 4 12 14 − 0.286 10

New Zealand
(NZL)

7 6 7 2 6 7 − 0.408 3

Nigeria
(NGR)

14 12 18 4 0 1 0.139 67

North
Macedonia
(MKD)

3 3 3 1 0 0 0.095 59

Norway
(NOR)

7 6 7 2 5 3 0.000 13

Philippines
(PHI)

14 11 17 4 0 1 0.071 53

Poland (POL) 16 13 21 5 5 5 0.036 48

Portugal
(POR)

8 7 9 3 0 2 0.102 62

Puerto Rico
(PUR)

4 3 4 2 0 0 0.143 71

Qatar (QAT) 4 3 4 2 0 1 0.000 13

Republic of
Moldova
(MDA)

4 3 4 2 0 1 0.286 89

Romania
(ROU)

10 8 12 3 3 0 0.114 63

123



904 Annals of Operations Research (2023) 322:879–919

Table 4 (continued)

NOC r ŷidealGr ŷidealSr ŷidealBr

(
ŷG,r

)∗ (
ŷS,r

)∗ (
ŷB,r

)∗
ξr Rank

Russia (ROC) 24 28 23 7 28 23 − 0.310 8

San Marino
(SMR)

0 1 2 0 1 2 0.000 13

Saudi Arabia
(KSA)

17 14 22 5 0 0 0.148 73

Serbia (SRB) 6 5 5 3 1 5 0.000 13

Slovakia
(SVK)

6 5 6 2 2 1 0.095 59

Slovenia
(SLO)

3 3 4 3 1 1 0.000 13

South Africa
(RSA)

12 10 14 4 0 0 0.086 56

South Korea
(KOR)

19 17 22 6 4 10 0.000 13

Spain (ESP) 18 16 22 6 8 6 0.095 59

Sweden
(SWE)

9 8 10 3 6 0 0.000 13

Switzerland
(SUI)

8 7 9 3 4 6 0.000 13

Syria (SYR) 4 4 4 2 0 1 0.286 89

Thailand
(THA)

17 13 22 5 0 1 0.134 66

Tunisia
(TUN)

6 5 5 2 0 0 0.038 49

Turkey (TUR) 19 19 22 6 0 9 0.090 57

Turkmenistan
(TKM)

5 5 4 2 0 0 0.171 80

Uganda
(UGA)

5 5 5 2 1 1 0.000 13

Ukraine
(UKR)

10 8 12 3 3 11 − 0.005 12

United States
(USA)

39 41 33 12 41 33 − 0.396 6

Uzbekistan
(UZB)

7 6 7 2 2 2 0.014 41

Venezuela
(VEN)

8 6 7 3 3 0 0.143 71

Total 940 848 1,006 340 338 402 – –

is much higher. The exception is USA, whose ideal values are equal to the observed values.
Hence, for each medal type, the sum of the ideal values of all the DMUs exceeds the total
number of medals awarded. In other words, the ideal point is not a valid FSO target. The
computed FSO_WT targets are valid FSO targets that are as close to the ideal point as possible
(measured by theweighted Tchebychef distance) and, moreover, as a secondary goal, as close
to the observed values as possible (measured by the weighted rectilinear distance). As regards
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the performance index ξr , this is negative for 12 NOCs. These are the NOCs that won more
medals than would have been expected if all NOCs had performed at their best level. Hence,
to compensate for the increase in the number of medals that the inefficient NOCs would
win if they performed at their best level, these super-efficient NOCs must lower the number
of medals they would obtain. This is necessary since the total number of medals of each
type awarded in the Games is fixed. In particular, the super-efficient NOCs are JAM, AUS,
CUB, NZL, JPN, USA, GBR, ROC, BAH, NED, HUN, and UKR. Not surprisingly, all
these countries belong to the set E of efficient NOCs according to the conventional DEA
approach. In this list, we can find NOCs that always perform well in the Olympic Games, in
certain cases surprisingly well, given their relatively small size. This list also includes JPN,
which performed exceptionally well in Tokyo 2020 (Ramchandani 2020). This so-called
home advantage effect has also been observed in other Olympic Games (e.g., Lozano et al.,
2002).

There are also a number of countries whose target coincides with the observed values (and
therefore have ξr = 0.000), namely CHN, BRA, KOR, NOR, SUI, BEL, BER, BUL, CRO,
ECU, EST, FIJ, GEO, GRN, IRL, KOS, LAT, QAT, SLO, SMR, SRB, SWE, DEN, UGA.
Note that the closest-target criterion adopted for the secondary goal incentivizes DMUs to
maintain their number of medals and thus join this neutral-performance group, which acts
as a sort of effective reference frontier, generally below the conventional efficient frontier
(although three of these countries, namely BER, GRN, and SMR belong to the set E of
efficient NOCs). Note that most of NOCs are labelled as underperformers, (i.e., they have
ξr > 0.000), with ARM, BUR, KGZ, MDA, SYR, BOT, CIV, COL, KUW, LTU, and MGL
obtaining the worst performance indices.

Before proceeding further with the presentation and discussion of the results, it may be of
interest to clarify a question rightly raised by one of the reviewers and it is that the computed
targets do not necessarily comply with the expected monotonicity in inputs and outputs.
Thus, for example, it should be expected that since Thailand (THA) consumes more inputs
than Australia (AUS) its target outputs should be larger than (or at least equal to) those of
AUS. As it can be seen in Table 4, this not what happens, with the target of AUS (5, 6,
22) being larger than that of THA (5, 0, 1). To understand why this may happen one more
piece of information needs to be considered and that is the number of medals actually won
by THA and AUS and which are (1, 0, 1) and (17, 7, 22), respectively. Hence, AUS would
probably not complain for having a target that is more ambitious than that of THA. On the
contrary, AUS might feel that its target is not ambitious enough as it implies winning fewer
medals than they have won. Hence, target setting in FSO DEA is very different and more
challenging than in conventional DEA. In FSO DEA, the limitation on the total amount of
outputs greatly constraints and distorts the target setting process. Thus, apart from the large
number of alternative FSO efficient targets, some DMUs (labelled super-efficient) cannot
be allocated as many medals as they have actually won, i.e., their targets are set below the
observed performance. This is contrary to what occurs in conventional DEA and that is why
sound concepts like the monotonicity between input and output are less important in this
context than, for example, the distance to the observed outputs. This paradoxical reduction
in outputs expected of some DMUs, which is unthinkable in conventional DEA, is however
required in FSO DEA in order for underperforming DMUs to be able to raise their output
targets.

Figures 2 and 3 show the number of medals of the different types that are transferred from
super-efficient NOCs to underperforming NOCs. It can be observed that most such transfers
are carried out in gold medals and by some countries (e.g., USA, JPN, GBR, ROC, and
AUS). The corresponding increases in the number of medals is less concentrated, with many
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Fig. 2 Changes (reductions and increases) in the number of gold medals computed by proposed approach
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Fig. 3 Changes (reductions and increases) in the number of silver and bronze medals computed by proposed
approach
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underperformers benefitting from the medals released by the super-efficient countries. Note
also that the countries that reduce their number of gold medals do not need to additionally
reduce their number of medals of the other types. In total, 125 gold medals should change
hands versus only 33 silver medals and just 1 bronze medal.

Figures 4 and 5 show the weighted value of medals actually won by each NOC (horizontal
axis) versus the weighted value of the corresponding FSO_WT target (vertical axis). Figure 5
is a zoom-in of the bottom left-hand corner of Fig. 4, that is, the region corresponding to
low values of both the observed weighted number of medals and the weighted output targets.
Most NOCs actually lie in this region. In Fig. 5, it can be more clearly observed how there are
several overlapping NOCs (e.g., GHA, CIV, BUR, KUW, SYR, andMDA). This corresponds

Fig. 4 Weighted observed outputs versus weighted target outputs
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Fig. 5 Weighted observed outputs versus weighted target outputs (Zoom in)
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to countries that won the same number of medals and are also projected on the same target.
This type of coincidence is a result of the fairness criterion employed in projecting the NOCs,
which treats similar countries in a similar way as regards their targets, taking into account,
also, their Population and GDP. This does not necessarily mean that the same performance
index is assigned to these countries though.

For both Figs. 4 and 5, since, according to (10), the corresponding performance index of
a NOC is proportional to the difference between its vertical and its horizontal coordinates,
the NOCs that lie above the bisector line are therefore underperformers while those that lie
below are super-efficient. The NOCs on the bisector are neutral in terms of performance, that
is, ξr = 0.000. The further the vertical distance of a country to the bisector line, the greater
the weighted change needed in the number of medals to achieve the target. This change
can actually be an increase, that is, winning more medals or medals of higher value, or it
can be a decrease, that is, winning fewer medals or medals of lower value. The managerial
implications of the former case, that is, an underperformer NOC that needs to improve its
performance, is the usual case except that the computed targets are much more realistic
and achievable than the targets computed by the conventional non-FSO DEA approach.
The other two scenarios are more innovatory. Thus, for NOCs of neutral performance, the
proposed approach implies amaintenance objective, that is, the current level of performance is
acceptable andmaintaining it should be the priority. Finally, the target reduction prescribed for
super-efficient countries should not be interpreted to mean that the country should not strive
to win as manymedals as possible, but rather that the observed super-efficient performance is
above what can reasonably be expected. This leads to a strategy that identifies and prioritizes
those sports where their performance was strongest in order to secure those medals.

The reasons and explanations behind the results of the performance assessment (super-
efficient, neutral, underperformer) carried out by the proposed approach are not straight-
forward. It must first be taken into account that the performance index is derived from the
computed targets, and, second, that these are determined using a centralized FSO perspec-
tive, that is, the target of any single country cannot be determined independently of those
of the other countries. The combinatorial character of the corresponding Pareto optimal set
requires the specification of suitable criteria for the selection of those targets. The proposed
approach uses a lexicographic approach with two criteria. The main criterion is a Minmax
criterion that guarantees that no country is left behind (i.e., treated unfavourably) in terms
of the weighted relative distance to its ideal point. This ideal point represents the maximum
number of medals of each type that a country could aspire to win in the best possible scenario
and takes into account both its population andGDP. The secondary criterion used is an overall
closest-target projection, that is, regardless of whether a country is either super-efficient and
should reduce its number of medals or an underperformer that should increase its number of
medals, the sum of these medal changes should be minimized, and remain lexicographically
subject to the optimality of the main criterion.

Figure 6 shows the conventional WADEA efficiency score σr versus the proposed perfor-
mance index ξr . Note that the former is non-negative (zero for technically efficient countries)
while the latter can be negative (super-efficient NOCs), positive (underperforming NOCs), or
exactly zero (neutral-performance NOCs). The super-efficient countries therefore lie on the
lower side of the left-hand vertical axis. There are also some points on the (0,0) coordinates,
that is, technically efficient countries whose performance is neutral. All the other points on
the horizontal axis are also neutral-performance countries, even though some of them (such
as BRA and KOR) have relatively large values of the inefficiency scores. Finally, note that,
to improve the visibility of the figure, this does not include the data corresponding to MEX,
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Fig. 6 WA efficiency score (σr ) versus proposed performance index (ξr )

INA, and IND, whose inefficiency score σr is around or above 20 (with performance index
ξr around 0.15).

It can be observed above that the efficiency ranking computed by the proposed FSO_WT
approach clearly differs from that of the conventional WA DEA approach (Spearman’s rank
correlation coefficient= 0.462). This indicates that the FSO efficiency assessment, while tak-
ing into account the FSO constraints, has an influence. This is confirmed in Table 5, which
shows the inverse efficiency scores and associated ranking of the radial non-FSO approaches
of Lozano et al., (2002) and Wu et al., (2010), labelled BCC_AR and BCC_AR_Int, respec-
tively. Spearman’s rank correlation coefficients of the proposed FSO_WT approach with
these two non-FSO methods are 0.852 and 0.794, respectively. Note that the NOCs in Table
5 are ordered according to their FSO_WT rank.

For comparison, Table 5 also shows the inverse efficiency scores and associated ranking
of the ZSG DEA approaches (with proportional output reduction strategy) of Lins et al.,
(2003), Bi et al., et al., et al., (2014), and Bouzidis and Karagiannis (2022), labelled ZSG-
Lins, ZSG-Bi, and ZSG-BK, respectively. In all three cases, the same relative weights of
the medals (i.e., wG = βwS = β2wB with β = 2) have been used. Note that, although the
efficiency scores of ZSG-Lins and ZSG-BK fail to coincide, they lead to the same ranking of
the DMUs. Spearman’s rank correlation coefficient of the proposed FSO_WT approach with
these two FSO methods is 0.835, larger than Spearman’s rank correlation of FSO_WT with
ZSG-Bi (0.620). It can therefore be observed that the proposed approach differs from ZSG
DEA approaches, even though they do take the FSO constraints into account. This difference
is caused by the different way in which this is carried out in ZSG DEA and in the proposed
FSO_WT. For example, ZSG DEA uses a radial metric and computes neither ideal values
nor FSO targets. For the sake of comparison, the rank correlation coefficient of the proposed
FSO_WT approach with the official Lexicographic ranking is 0.675.

Figure 7 shows theNOCs ranked in increasing order of their performance index. First, with
negative ξr values, are the super-efficient NOCs. Interestingly, no ties occur in this group.
There is large group of neutral-performance NOCs that together define a sort of neutral-
reference frontier that separates the super-efficient NOCs from the underperforming NOCs.
Among the latter there are also several ties, especially in the last positions, that is, among the
NOCs that have underperformed most significantly.

Finally, a sensitivity analysis of the results of the proposed approach with respect to the
value of parameter β has been carried out and it was found that, on the condition that beta
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Fig. 7 NOCs ranked in increasing order of performance index ξr

is not too close to unity (which would correspond to giving the same weight to all medal
types), the results are not very sensitive.

5 Conclusions

In this paper, an innovative way is proposed of assessing the efficiency, ranking, and setting
targets in the Olympic Games. It uses a centralized DEA perspective that takes into account
the FSO character of the total number of medals won by all the NOCs. The problem is
formulated in a multiobjective optimization framework, and utilizes the ideal-point concept
and the WTM solution. Since the latter generally has alternative optima, a secondary goal is
proposed to project the DMUs onto their closest targets. In this second step, a rectangular
distance is applied. The final targets thus computed involve winning more medals in the case
of inefficient NOCs and, in order to compensate, winning fewer medals in the case of other
NOCs that have performed super-efficiently. The proposed performance index is simply a
weighted sum of the changes in the number of medals, and it can be positive, negative, or
zero, depending on the NOC.

As strengths of the proposed method, its FSO character should be highlighted (i.e., the
total number of medals available is respected), as should the fairness principle implied by the
WTM solution (i.e., for all NOCs and all medal types, the targets become as close as possible
to their ideal values) and the closest-target principle implied by the secondary goal (i.e., from
among the alternative FSO_WT efficient targets, the target that minimizes the rectangular
distance to the observed outputs is determined). Another feature of the proposed approach is
that, unlike all previous approaches, it computes not only performance indices (akin to a type
of FSO super-efficiency score) but also, and more importantly, FSO_WT efficient targets.
Furthermore, the computed performance indices enable the NOCs to be classified into three
categories corresponding to underperforming, neutral, and super-efficient DMUs. The latter
category refers to those NOCs that have won more medals than they would have done if all
the NOCs had performed at their best level.
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Apart from themathematicalmodelling aspects, the proposed approach represents a signif-
icant departure from existing FSODEA approaches, whose sole objective is that of efficiency
estimation. These approaches employ variables that represent the changes in the number of
medals of the DMUs (a necessity in order to impose the FSO constraints) but they fail to
report the corresponding targets. This is due to the existence ofmany alternative FSO efficient
targets and, for those only interested in computing efficiency scores, unrealistic and indefen-
sible targets may result. The proposed approach follows a different path whereby, instead of
ignoring the existence of alternative FSO efficient targets, it tackles the challenging prob-
lem of computing reasonable targets for the DMUs. In other words, instead of focusing on
computing efficiency scores, we focus on computing targets, and determine the performance
indices of the DMUs ex post, based on those targets.

These performance indices ξr are derived as a subproduct of the computed targets and
represent an empirical way of measuring the distance of a DMU to its corresponding target
and, as such, of the effort to reach said target. Therefore, ξr > 0 implies winning more
medals or medals of a more valuable type: more effort in either case. In contrast, ξr < 0
means that the number and/or value of the medals won exceeds what could be expected given
the inputs (i.e., the resources) of the country. In other words, such a strong performance is
unsustainable in the event that all DMUs perform at their best level. Finally, ξr = 0 indicates
a neutral performance, in line with expectations.

The proposed approach has been applied to the Tokyo 2020OlympicGames and compared
with conventional (i.e., non-FSO) DEA approaches as well as with other FSO approaches.
Although there is a certain ranking similarity with the alternative approaches (higher in the
case of BCC_AR, BCC_AR_Int, ZSG-Lins, and ZSG-BK and lower in the case of ZSG-Bi,
Lexicographic ranking, and WA DEA), it is clear that, due to its differentiated character, the
proposed approach provides a ranking distinct from the other methods. The NOCs that are
ranked highest by the proposed approach are JAM, AUS, CUB, NZL, JPN, USA, GBR, ROC,
BAH, NED, HUN, and UKR. All of them are super-efficient and have to reduce the number
of medals won by a significant percentage which, for example, in the case of USA amounts
to 27 fewer gold medals, and in the case of JPN and GBR, this entails 15 and 13 fewer gold
medals, respectively. These reductions in the number ofmedalswon corresponds to correcting
the serial correlation that complicates efficiency assessment in this type of competition. As
regards the countries that exhibited theworst relative performance in Tokyo 2020 according to
the proposed approach, these are ARM, BUR, KGZ,MDA and SYR. In addition to these two
extremes of most- and least-performing countries, it is important to identify a set of neutral-
performance countries that can be said to have matched their expectations, while taking into
account their Population and GDP as well as the FSO character of the competition.

As regards the managerial implications of the proposed approach, information regarding
the ideal number of medals a country could aspire to win based on its size and wealth is of
interest. Moreover, the rationale that states that the attainment of the ideal number of medals
is generally impossible leads to targets of a more realistic nature being set, which take into
account the FSO character of the Games. Furthermore, since the proposed approach uses
the current situation as a reference, the computed target could be considered as a first step
towards the ideal target.

As a continuation of this research, we envisage its extension to include NDEA approaches
towards the Olympic Games. Furthermore, other multiobjective optimization methods, par-
ticularly interactive multiobjective optimization methods (e.g., Soltani & Lozano, 2020), can
be applied to this centralized DEA scenario.
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Appendix

This appendix contains the list of the acronyms used in the text.

AR Assurance Region.
BCC_AR Banker, Charnes and Cooper + Assurance Region.

BCC_AR_Int Banker, Charnes and Cooper + Assurance Region + Integer data.
CRS Constant Returns to Scale.
CSW Common set of weights.
DEA Data Envelopment Analysis.
DMU Decision-Making Unit.
DMU Decision-Making Unit.
EEF Equilibrium Efficient Frontier.
FSO Fixed-sum output.
EEF Equilibrium Efficient Frontier.

FSO_WTFixed-sum output + Weighted Tchebychef Method.
GDP Gross Domestic Product.
GEEF Generalized Equilibrium Efficient Frontier.
MILP Mixed-Integer Linear Program.
NDEA Network DEA.
NOC National Olympic Committee.
VRS Variable Returns to Scale.
WTM Weighted Tchebychef Method.
ZSG Zero-Sum Gains approach.

ZSG-Bi Zero-Sum Gains approach proposed by Bi et al., (2014)
ZSG-BK Zero-Sum Gains approach proposed by Bouzidis and Karagiannis (2022)
ZSG-Lins Zero-Sum Gains approach proposed by Lins et al., (2003).
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