
2912 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 8, AUGUST 2019

Multiobjective Cloud Workflow Scheduling:
A Multiple Populations Ant Colony System

Approach
Zong-Gan Chen, Student Member, IEEE, Zhi-Hui Zhan , Member, IEEE, Ying Lin, Member, IEEE,

Yue-Jiao Gong, Member, IEEE, Tian-Long Gu, Feng Zhao, Hua-Qiang Yuan,

Xiaofeng Chen, Senior Member, IEEE, Qing Li, Senior Member, IEEE,

and Jun Zhang , Fellow, IEEE

Abstract—Cloud workflow scheduling is significantly challeng-
ing due to not only the large scale of workflow but also the
elasticity and heterogeneity of cloud resources. Moreover, the
pricing model of clouds makes the execution time and exe-
cution cost two critical issues in the scheduling. This paper
models the cloud workflow scheduling as a multiobjective
optimization problem that optimizes both execution time and
execution cost. A novel multiobjective ant colony system based
on a co-evolutionary multiple populations for multiple objec-
tives framework is proposed, which adopts two colonies to deal
with these two objectives, respectively. Moreover, the proposed
approach incorporates with the following three novel designs
to efficiently deal with the multiobjective challenges: 1) a new
pheromone update rule based on a set of nondominated solu-
tions from a global archive to guide each colony to search its
optimization objective sufficiently; 2) a complementary heuristic
strategy to avoid a colony only focusing on its corresponding
single optimization objective, cooperating with the pheromone
update rule to balance the search of both objectives; and

Manuscript received September 5, 2017; revised February 6, 2018;
accepted April 20, 2018. Date of publication May 18, 2018; date of
current version May 7, 2019. This work was supported in part by the
National Natural Science Foundation of China under Grant 61772207 and
Grant 61332002, in part by the Natural Science Foundation of Guangdong
Province for Distinguished Young Scholars under Grant 2014A030306038, in
part by the Project for Pearl River New Star in Science and Technology
under Grant 201506010047, in part by GDUPS (2016), in part by the
Fundamental Research Funds for the Central Universities, and in part by the
Science and Technology Planning Project of Guangdong Province under Grant
2015B010130002. This paper was recommended by Associate Editor S. Yang.
(Corresponding authors: Zhi-Hui Zhan; Jun Zhang.)

Z.-G. Chen, Z.-H. Zhan, Y. Lin, Y.-J. Gong, and J. Zhang are with
the School of Computer Science and Engineering, South China University
of Technology, Guangzhou 510006, China, and also with the Guangdong
Provincial Key Laboratory of Computational Intelligence and Cyberspace
Information, South China University of Technology, Guangzhou 510006,
China (e-mail: zhanapollo@163.com; junzhang@ieee.org).

T.-L. Gu is with the School of Computer Science and Engineering, Guilin
University of Electronic Technology, Guilin 541004, China.

F. Zhao is with the Guangxi Colleges and Universities Key Laboratory
of Complex System Optimization and Big Data Processing, Yulin Normal
University, Yulin 537000, China.

H.-Q. Yuan is with the School of Computer Science and Network Security,
Dongguan University of Technology, Dongguan 523808, China.

X. Chen is with the State Key Laboratory of Integrated Service Networks,
Xidian University, Xi’an 710126, China.

Q. Li is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2018.2832640

3) an elite study strategy to improve the solution quality of
the global archive to help further approach the global Pareto
front. Experimental simulations are conducted on five types of
real-world scientific workflows and consider the properties of
Amazon EC2 cloud platform. The experimental results show
that the proposed algorithm performs better than both some
state-of-the-art multiobjective optimization approaches and the
constrained optimization approaches.

Index Terms—Cloud computing, evolutionary approach,
multiobjective optimization, workflow scheduling.

I. INTRODUCTION

C
LOUD computing has developed rapidly in recent years,

whose computing resources (e.g., servers and storage)

are accessed through network [1], [2]. The infrastructure as

a service (IaaS) is the most basic and common service model

that makes the cloud resources be utilized efficiently. In this

way, clouds can offer a resource pool for users to lease

resources and have shown promising performance on execut-

ing large-scale workflow applications [3]–[5]. Therefore, with

its powerful computing capability, cloud computing has been

widely applied to solve problems with massive amounts of

data and complex workflows in various fields, such as biology,

physics, and astronomy [6]–[10].

Workflow, containing a set of tasks with data dependence

between each other, is a typical type of application on clouds.

The workflow scheduling problem, which aims to find the

most suitable resource for each task of the workflow to

meet user defined quality of service (QoS), has been exten-

sively researched over past years on distributed environment

like grids [11]. Since the workflow scheduling is an NP-hard

problem, the traditional methods such as dynamic program-

ming or greedy algorithm are inapplicable on large scale

workflow scheduling. Driven by the good performance of evo-

lutionary computation algorithms on complex optimization

problems [12]–[17], particle swarm optimization (PSO) [18]

and differential evolution [19] have been proposed to deal with

the workflow scheduling on grids.

However, workflow scheduling on clouds becomes more

promising and popular in recent years [20], but is also more

2168-2267 c© 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0862-0514
https://orcid.org/0000-0001-7835-9871

CHEN et al.: MULTIOBJECTIVE CLOUD WORKFLOW SCHEDULING: MULTIPLE POPULATIONS ACS APPROACH 2913

challenging. The existing workflow scheduling approaches on

traditional distributed systems like grids may be not sufficient

in cloud computing environment due to the distinct features of

cloud computing like elasticity, heterogeneity, and the pricing

model [21]. On the one hand, unlike the static and limited

resource pool of grid computing, the computing resource of

cloud computing is elastic and heterogeneous. In other words,

resources in cloud computing are almost unlimited for users

and can be leased in any amount at any time [22], while

the variety of resources is far more than grid computing. On

the other hand, it would lead to unexpectedly high charges

if the workflow scheduling does not take the cloud pricing

model into consideration. Thus, it is quite indispensable to

design an appropriative workflow scheduling approach for

cloud computing platform.

Recently, increasing number of researches focused on

the workflow scheduling on clouds. The workflow exe-

cution time (WET) is a common optimization objective.

Raghavan et al. [23] proposed a novel bat algorithm and

Liang et al. [24] applied artificial bee colony to optimize

the WET on cloud. However, as cloud computing is mainly

used for commercial applications, the execution cost is also an

important factor for users. Pandey et al. [25] proposed a novel

PSO-based approach to optimize the execution cost. However,

the cost and the time often conflict with each other, the

scheduling scheme that completes the task faster often requires

a larger investment and higher cost, while a low investment

often results in poor time efficiency. Therefore, it is essential

to take execution time and cost into account at the same time.

Based on the considerations mentioned above, one possible

solution is to model the workflow scheduling as a constrained

optimization problem that considering both execution time and

cost. The model that optimizes the workflow execution cost

(WEC) under the constraint of deadline is highly practical

since for commercial organizations, tasks need to be com-

pleted before a deadline rather than as quick as possible so that

minimizing cost under deadline constraint can maximize the

profit. Lin et al. [26] proposed a heuristic algorithm based on

the partial critical paths to solve this constraint based model.

Rodriguez and Buyya [27] applied PSO-based approach for

the model while Chen et al. [28] proposed a novel dynamic

objective GA (DOGA) approach. Nevertheless, it is difficult to

define a deadline for the constrained optimization model since

users do not know the range of the execution time in advance.

Another efficient way to consider both execution time and

cost is to model the problem as a multiobjective optimization

problem (MOP). Durillo and Prodan [29] extended the hetero-

geneous earliest-finish-time (HEFT) approach [30] to a novel

multiobjective HEFT (MOHEFT) to optimize both the exe-

cution time and cost. But as an enumeration-based approach,

MOHEFT suffers from very poor efficiency when dealing with

large-scale workflows. Therefore, evolutionary multiobjective

optimization (EMO) approaches are proposed. Zhu et al. [31]

proposed a novel EMS-C approach based on the well-

known NSGA-II framework to optimize the execution time

and cost. In fact, the workflow scheduling model aims

to establish a mapping from tasks to resources, which is

a discrete combinatorial optimization problem. In this case,

the ant colony optimization (ACO) [32]–[36] and its vari-

ants that inspired by the foraging behavior of ants are

promising solvers. In our preliminary study [37], our ant

colony system (ACS)-based approach to solve the constraint

based cloud workflow scheduling problem showed that ACS

can provide good guidance for the search of scheduling

scheme owing to the pheromone and heuristic information.

Therefore, this paper further studies the ACS-based EMO

approach for solving the multiobjective scheduling problem.

Multiobjective ACOs are widely studied [38]–[40].

However, it is difficult to apply the existing multiobjective

ACOs since the cloud workflow scheduling model has its

own unique features and very few multiobjective ACOs

are specifically designed for cloud workflow schedul-

ing. In order to extend the advantages of ACS to solve

the cloud workflow scheduling problem, in this paper,

we adopt the efficient multiple populations for multiple

objectives (MPMOs) framework [41], and propose a novel

multiobjective ACS (MOACS) to solve the multiobjective

cloud workflow scheduling problem.

The novelties of our MOACS approach are as follows. First,

MOACS, based on the MPMO, adopts two colonies with one

optimizing WET and the other optimizing WEC, being effi-

cient to search both objectives sufficiently. Note that, for each

colony, the objective it optimizes is named as optimization

objective, while the other is named as external objective.

Second, a new pheromone update rule based on the guidance

of a set of nondominated solutions from a global archive is

designed to help each colony search its optimization objective

sufficiently. Third, in order to avoid a colony only focusing

on its own optimization objective and performing unsatisfac-

torily on the external objective, a complementary heuristic

strategy (CHS) that provides the guidance information of the

external objective is proposed. The CHS cooperates with the

pheromone update rule to balance the search of both objec-

tives. Fourth, an elite study strategy (ESS) is performed to

help the archive update process for further approaching the

global Pareto front (PF). Fifth, a novel encoding scheme that

reflects the elasticity and heterogeneity of the cloud comput-

ing platform is proposed. Sixth, MOACS can generate a set of

scheduling schemes so that users can choose a suitable scheme

according to their preference. Compare with the constrained

optimization approaches, MOACS can give users more choices

and better meet the QoS of users.

The rest of this paper is organized as follows. Section II

presents the cloud workflow scheduling model. Section III

presents the framework of MOACS and its novelties in

detail. Section IV presents the experimental results and finally,

Section V presents the conclusion.

II. CLOUD WORKFLOW SCHEDULING MODEL

A. Cloud Platform

Cloud platform provides computing resources usually

via virtual machines (VMs) in IaaS. In this way, users can

lease resources like VMs to execute the workflow tasks. There

are several basic principles of cloud computing as follows.

First of all, the resource on clouds is elastic, which means

2914 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 8, AUGUST 2019

Fig. 1. Sample workflow with ten tasks.

the resource pool is nearly unlimited and users can lease

resources in any amount at any time. Heterogeneity is another

distinct feature that means there are various types of resource

on clouds. In addition, cloud providers adopt a basic pricing

model that any partial utilization of the resource is charged as

a full time period. Amazon EC2 platform sets 1 h as a min-

imum unit of lease time while Microsoft Azure sets 1 min.

The set R = {r1, r2, r3, . . . , r|R|} represents the resources that

are leased for the workflow execution. We define a lease pro-

cess LP = (LS, LF, LD) where LS represents the lease start

time, LF represents the lease finish time, and LD represents

the lease duration time. The calculation of the cost to lease

the resource rj for the execution of the task ti is shown in (1),

where P represents the lease price of a resource for a unit of

lease time and u represents the unit of lease time

Cost
rj

ti = Prj ×
⌈

LD
rj

ti /u
⌉

. (1)

B. Workflow Model

Workflow application on cloud platform with a set of

interdependent tasks can be modeled as a directed acyclic

graph, formulated as a tuple (T, E). T = {t1, t2, t3, . . . , t|T|} is

a set of nodes representing the tasks while E = {. . . , eij, . . .}

is a set of edges where eij represents that ti is the parent task

of tj, which means that ti and tj has data dependency. That

is to say, the child task tj cannot be executed until the end

of execution of its parent task ti. A sample workflow with

ten tasks is shown in Fig. 1.

The execution time (ET) of a task is calculated by (2), where

fpo(ti) represents the floating point operations of ti, which is

usually used to represent the computational size of a task;

pc(rj) represents the processing capacity of the resource rj.

Equation (3) shows the calculation of the data transmission

time between ti and its child task tj, where datasize(ti, tj) is

the size of transmission data, bandwidth is the bandwidth of

the network connection, while rti and rtj are the resources

that execute ti and tj, respectively. Note that, if the parent

task and the child task are executed on the same resource,

the data transmission time is ignorable and is set as 0. The

data transmission time (TT) of a task, calculated by (4), is

to sum the time needed for the data transmission to all its

child tasks

ET
rj

ti =
fpo(ti)

pc
(

rj

) (2)

transmit
(

ti, tj
)

=

{

datasize(ti,tj)
bandwidth if

(

rti �= rtj

)

0 otherwise
(3)

TTti =
∑

tj∈child(ti)

transmit
(

ti, tj
)

. (4)

TABLE I
EXAMPLE OF EXECUTION TIME BASED ON THE WORKFLOW IN FIG. 1

TABLE II
EXAMPLE OF TRANSMISSION TIME BASED ON THE WORKFLOW IN FIG. 1

Fig. 2. Sample workflow scheduling scheme on cloud platform.

Fig. 3. Process diagram for the execution of the workflow in Fig. 1 according
to the scheduling scheme in Fig. 2.

Tables I and II show examples of execution time and

data transmission time, respectively, based on the workflow

in Fig. 1. In Table II, if there is no data dependency between

two tasks, the data transmission time is 0.

C. Workflow Scheduling

Workflow scheduling on clouds is to schedule the tasks

of the workflow to the resources on the cloud platform. In

essence, workflow scheduling establishes a mapping between

tasks and resources. Fig. 2 shows a sample scheduling scheme

of the workflow in Fig. 1 that assigns the tasks to the cloud

resources.

With the data in Tables I and II, Fig. 3 shows a process

diagram for the execution of the workflow according to

the scheduling scheme in Fig. 2. In the figure, white grids

represent the execution time while those gray grids represents

the data transmission time. We can see that t1 and t2 have

data dependency but they are executed on the same resource

CHEN et al.: MULTIOBJECTIVE CLOUD WORKFLOW SCHEDULING: MULTIPLE POPULATIONS ACS APPROACH 2915

Fig. 4. Example of pipeline pair tasks.

Fig. 5. Example of encoded solution.

so that no data transmission time is needed. Similarly, no

data transmission time is needed between t6 and t8. In this

example, assume that the unit of lease time is 2. The tasks

t4 and t7 only need a part of a unit lease time for executing.

But according to the basic pricing model of cloud computing,

a full unit lease time should be charged. Therefore, the black

grids are used to represent the idle time caused by the basic

pricing model.

III. MOACS APPROACH

The MOACS approach is based on the ACS optimizer and

the MPMO framework that uses multiple colonies to optimize

different objectives. A global archive is built to store the non-

dominated solutions during the search process. Moreover, we

propose a new pheromone update rule based on the global

archive, and a novel CHS that provides guidance informa-

tion of the external objective for the colonies. Lastly, an ESS

is adopted during the archive update process to help further

approach the global PF. The complete MOACS approach is

described as follows.

A. Solution Encoding

Before the solution encoding, two preprocessing operations

are executed. The first operation is “pipeline pair” tasks com-

bination proposed in [42]. As shown in Fig. 4, pipeline pair

is a special pair of a parent task and its child task, where

the parent task only has one child task while the child task

only has one parent task. After this combination operation,

the pipeline pair tasks are treated as one task and will be

scheduled on the same resource. This operation can reduce the

search space without breaking the entire topology structure.

The second operation is to carry out a topological sort, which

is performed on the |T| tasks after the pipeline pair tasks com-

bination operation. This operation is to sort the tasks according

to their parental–child relationship topology and assign each

task with an index ranging from 1 to |T| according to the

sorting results.

A solution of MOACS, defined as sol, is a sequence that

encoded by the indexes of the tasks. Fig. 5 shows an example

of encoded solution. The dimension i represents the task ti
and its corresponding value sol[i] is the index of the resource,

meaning that ti is scheduled on the rsol[i]. According to this

principle, t4 and t8 are scheduled on r1; t1 and t7 are scheduled

on r2; and so on. The length of a solution is equal to |T|

while the range of each dimension depends on the scale of

the resource pool. In defining the search range, the elasticity

and heterogeneity of cloud resources should be considered.

On the one hand, the resource pool in cloud computing is

elastic and nearly unlimited for users, but it is quite impossible

to deal with such an infinite search space. A feasible solution

is to adopt a resource pool with fixed number of resource.

However, it is also difficult to define the scale of the resource

pool. If the resource pool is too small, the elasticity of cloud

computing could not be well reflected while a large resource

pool will result in the expansion of the search space, which

will slow down the convergence and increase the difficult to

find a suitable solution.

In MOACS, we use the MPT to represent the maximal par-

allel tasks of the workflow, which means that at most MPT

tasks are run in parallel during the workflow execution. Under

the most extreme condition, these MPT tasks are elastically

scheduled on MPT resources of the same type. Therefore, we

have to assume that one type of resource has MPT available

resources, which can reflect the elasticity of cloud computing

and meanwhile reduce the search space as much as possible.

A naïve way to estimate the value of MPT is to set it as |T|

that all the tasks are executed in parallel. However, due to the

constraint of the workflow’s topology structure, all tasks can-

not be executed in parallel. Therefore, we use the following

method to calculate MPT. First, a special scheduling scheme

is defined by leasing a new resource for each task to encour-

age parallelization as much as possible. In other words, |T|

resources are leased for the |T| tasks, respectively. Second,

we simulate the workflow execution process according to this

scheme and obtain the execution process (e.g., the start time

and finish time) of each task. Finally, according to the start

time and finish time of each task, we can obtain the maxi-

mal number of parallel tasks of this scheduling scheme. This

number is set as the MPT value of the workflow.

On the other hand, we define rtype different types of

resources to reflect the heterogeneity of cloud computing. As

a result, the scale of the resource pool, defined as |Rpool|, is

MPT × rtype, where r1 ∼ rMPT are the first type of resource,

rMPT+1 ∼ rMPT×2 are the second type of resource, and so on.

B. Fitness Evaluation

Two optimization objectives are considered that are the

WET and the WEC, which are formulated as

minmize f = (WET, WEC)T . (5)

The procedure of calculating WET and WEC based on an

encoded solution is shown in Fig. 6. First, we initialize the

set of leased resource R as Ø. Then we iterate every task to

simulate the workflow execution. For a task ti of the workflow,

we can obtain the resource it executed on, named as rti , from

the encoded solution. If rti has not been leased, add rti to R

and initialize the resource free time (RFT) of rti as 0. The

execution of ti should wait until its target resource is free. In

addition, on the basis of the workflow’s topology structure, if ti
has parent tasks, it should also wait until its parent tasks finish

their executions. Therefore, the begin time (BT) of ti is equal

2916 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 8, AUGUST 2019

Fig. 6. Procedure of calculating WET and WEC.

to the maximum of the RFT of rti and the finish time of all its

parent tasks. The execution time and data transmission time

of ti are calculated according to (2) and (4), respectively. TPT

is defined as the total processing time of a task, which is the

summarization of execution time and data transmission time.

After that, the finish time (FT) of ti is obtained by summing

up the begin time and the total process time of ti. Then the

RFT of rti is updated as the finish time of ti because rti is

occupied until the execution of ti finishes. A vector, named

as total lease process (TLP), is defined to store all the lease

process on a resource. The execution of ti creates a new lease

process that the lease start time and the lease finish time are

equal to the begin time and the finish time of ti, respectively,

while the lease duration is the total process time of ti. We

add this new lease process to the total lease process of rti for

calculating WEC later.

After applying the scheduling scheme to simulate the work-

flow execution, we initialize WET and WEC as 0. WET is the

finish time of the total workflow, which is equal to the finish

time of the last task. In detail, WET is the maximum of the

finish time of all tasks of the workflow. In Fig. 3, some tasks

are executed on the same resource successively. In such case

if directly using (1) to calculate the cost of every task’s lease

process, the cost may be inaccurate because some idle time

may actually be exploited. For example in Fig. 3, 1 idle time is

charged if using (1) to calculate the cost of t2’s lease process

because the cloud computing providers adopt a basic pricing

model that the lease of resource has a minimum unit of time.

But actually, t5 is executed successively after the execution

of t2 and utilizes this part of time. Therefore, the duration

of t5’s execution also contain the part that is considered as

idle time in t2’s lease process so that this part of time is

charged again. In order to deal with this problem, we first

apply a MergeAdjacentLeaseProcess operation to merge the

adjacent lease processes on the resource rj before calculat-

ing the lease cost of rj. In more detail, if the start time of

a lease process is before another lease process on the same

resource finishing and running out a complete lease unit, we

merge these two lease processes. Finally, WEC is the sum of

the lease charge of all leased resources.

C. Multiple Colonies Framework

Since it is difficult to assign a suitable fitness value for

an individual under an MOP model, MOACS adopts the con-

cept of the MPMO technique proposed by Zhan et al. [41],

which treats different optimization objectives separately in

different populations. Therefore, two colonies with the same

number of ants are used. These two colonies are named “time

colony” Tcolony and “cost colony” Ccolony, where Tcolony

sets WET as optimization objective while Ccolony sets WEC

as optimization objective. Under the MPMO framework, both

colonies work similar as the traditional ACS to construct solu-

tions by using pheromone and heuristic information, which

will be described in Section III-D. However, Tcolony and

Ccolony use their separate pheromone and heuristic informa-

tion respectively during solution construction.

D. Solution Construction

During the evolutionary process, ants construct their solu-

tions in parallel within their corresponding colonies. In each

step, each ant selects a resource for a task according to

the pheromone τ and the heuristic information η. The solu-

tion construction process is shown as (6) and is described

as follows. For the task ti, a random number q ranging in

[0, 1] is first generated. If q ≤ q0, ant exploits greedily to

select the resource with the highest pheromone and heuris-

tic information, denoted by the resource that has the largest

[τ(i, j)]× [η(i, j)]β value where τ(i, j) and η(i, j) represent the

pheromone and heuristic information deposited between the

task ti and the resource rj, respectively, and β is a param-

eter. Otherwise, ant selects the resource for ti by roulette

wheel selection according to the probability defined in (7). The

designs of pheromone and heuristic information are described

in Sections III-E and III-F, respectively,

rti =

{

argmax
{

[

τ(i, j)
]

×
[

η(i, j)
]β

}

if q ≤ q0

Roulette Wheel Selection otherwise
(6)

p(i, j) =

[

τ(i, j)
]

×
[

η(i, j)
]β

∑|Rpool|
k=1 [τ(i, k)] × [η(i, k)]β

. (7)

E. Pheromone Update

1) Initialization: In MOACS, the initial pheromone value

τ0 of Tcolony and Ccolony are defined as (8) and (10), respec-

tively. In Tcolony, the time greedy solution (TGS) is generated

by (9) that selects the most efficient (fastest) resource for each

CHEN et al.: MULTIOBJECTIVE CLOUD WORKFLOW SCHEDULING: MULTIPLE POPULATIONS ACS APPROACH 2917

task. In Ccolony, the cost greedy solution (CGS) is generated

by (11) that selects the most economical (cheapest) resource

Tcolony: τ0 = 1/(|T| × WETTGS) (8)

TGS[i] = arg min
(

ET
rj

ti

)

j =
{

1, 2, . . . ,
∣

∣Rpool

∣

∣

}

(9)

Ccolony: τ0 = 1/(|T| × WECCGS) (10)

CGS[i] = arg min
(

Cost
rj

ti

)

j =
{

1, 2, . . . ,
∣

∣Rpool

∣

∣

}

. (11)

2) Local Update: The local update of pheromone occurs

during the solution construction process. The local update rule

is shown as

τ(i, j) = (1 − ρ) × τ(i, j) + ρ × τ0 (12)

where ρ is a parameter. When an ant selects rj to execute ti, the

pheromone τ(i, j) is updated immediately. From (8) and (10),

we can see that τ0 is equal or less than τ(i, j) in most cases

so that the pheromone τ(i, j) often decreases by using (12),

which reduces the probability that other ants still schedule

ti to rj. Thus other ants will be more likely to schedule ti
to the other resources different from rj. The local update of

pheromone can greatly improve the search diversity and avoid

premature convergence. Since the local update is only adopted

to evaporate the pheromone to enhance the search diversity and

is not related to colonies’ optimization objective, two colonies

follow the same local update rule as (12). However, it should

be noted that the τ0 in two colonies are different, which are

defined in (8) and (10), respectively.

3) Global Update: In traditional single objective ACS, the

historically best solution is selected for the global update of

pheromone. However, when deal with MOPs, there are a set

of nondominated solutions in the global archive that contain

the elite experience (see Section III-G for the global archive),

which may all be able to provide useful guidance for the search

process. Some researchers proposed to randomly select a non-

dominated solution from the archive [41]. Random selection

can well maintain the diversity of the population but it may

also lead to poor efficiency of search guidance.

Since Tcolony and Ccolony minimize WET and WEC,

respectively, the solutions with low value of its optimization

objective can provide useful guidance. But if we directly

select the solution with the smallest value of the optimization

objective for the pheromone global update, which means

that Tcolony and Ccolony select the solution with the small-

est WET and WEC from the global archive, respectively, it

may easily be trapped into local optima and cause premature

convergence.

Therefore, random selection may lack of search guidance

while totally greedy selection may cause premature conver-

gence. In order to balance the search efficiency and the

diversity, we propose the procedure shown in Fig. 7 to select

a solution for pheromone global update and define this solu-

tion as global update solution (GUS). First, the solutions in the

global archive are sorted in ascending order according to the

WET value and the number of solutions in the global archive

is recorded as K. Then a selection rate sr in range of (0, 1) is

defined. A random solution from the first K × sr solutions

of the global archive, which has small WET, is selected as

Fig. 7. Procedure of GUS selection.

the GUS for Tcolony while a random solution from the last

K × sr solutions, which has small WEC, is selected as the

GUS for Ccolony. The sr is used to control the diversity of the

population and guarantee the convergence speed of MOACS.

After selecting the GUS, the pheromone global update

is conducted according to (13), where ε is the pheromone

enhancement parameter and the calculation of �τb(i, j) is

shown in (14) and (15) for Tcolony and Ccolony, respectively.

Note that the GUS of these two colonies are not the same. The

global update is only conducted on the colony’s selected GUS

solution. After the pheromone global update, the pheromone

on the selected GUS increases and in this way the knowledge

for the optimization objective accumulates

τ(i, j) = (1 − ε) × τ(i, j) + ε × �τb(i, j),∀(i, j) ∈ GUS

(13)

Tcolony : �τb(i, j) = 1/WETGUS (14)

Ccolony : �τb(i, j) = 1/WECGUS. (15)

F. Complementary Heuristic Strategy

With the update of pheromone, the knowledge for Tcolony

and Ccolony to optimize their separate optimization objective

continually accumulates so that Tcolony and Ccolony perform

well in optimizing WET and WEC, respectively. However, if

a colony focuses totally on its optimization objective, it suffers

from the poor performance on the external objective. That is

to say, Tcolony may find those solutions with small WET but

very high WEC while Ccolony may find those with small WEC

but very high WET, which locate on only the margins of the

PF. To address this problem, we propose the CHS as in (16)

and (17) that provides guidance information of the external

objective, which will be used during the solution construction,

i.e., used in (6) and (7). Specially, the heuristic information

for assigning task ti on resource rj in Tcolony considers the

execution and data transmission cost, as

ηTcolony(i, j)

=
1

Prj × ET
rj

ti +
∑

tk∈parent(ti)

(

Prtk
× transmit(tk, ti)

) (16)

while the heuristic information for assigning task ti on resource

rj in Ccolony considers the execution and data transmission

time, as

ηCcolony(i, j) =
1

ET
rj

ti +
∑

tk∈parent(ti)
transmit(tk, ti)

. (17)

2918 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 8, AUGUST 2019

Herein, we use the reciprocal in (16) and (17) so that smaller

cost and time will result in larger heuristic information val-

ues, which are more preferable according to (6) and (7) in the

solution construction. One notice is that the heuristic informa-

tion for assigning task ti on resource rj may be different in

different ants because their scheduling scheme for ti’s parent

tasks may be different. Therefore, each ant calculates its own

heuristic information for assigning task ti on resource rj.

With such a complementary heuristic information guid-

ance during solution construction, colonies can optimize their

own optimization objective while ensuring the quality of the

external objective.

G. Global Archive

During the evolutionary process of MOACS, we adopt

a global archive, defined as globalArchive, to store those

nondominated workflow scheduling solutions that have been

found by ants from both Tcolony and Ccolony. The global

archive collects the elite experiences, which can also help the

pheromone global update as described in Section III-E.

1) Archive Initialization: In order to help pheromone have

a good guidance in the beginning of the search, we initialize

the globalArchive with some predefined solutions. Two special

types of solutions are defined. For the first type, a solution is

to schedule all the tasks on only one resource of a specific

type. As there are rtype types of resource, rtype predefined

scheduling solutions are generated. For the second type, a solu-

tion is to schedule all the tasks on the resources of the same

type, which means for every type of resource, a solution is

constructed by randomly selecting a resource of this type for

each task. There are also rtype predefined scheduling solu-

tions generated for this case. In addition, the solution found

by HEFT are also added to globalArchive. Therefore, there are

totally 2× rtype+1 predefined scheduling solutions generated

and added to globalArchive at the beginning of the MOACS

approach.

2) Archive Update: During an evolutionary generation,

once the solution construction processes in both Tcolony and

Ccolony have finished, the globalArchive is updated. First, we

calculate the WET and WEC of the solutions that obtained by

the ants in the two colonies. The next step is to add the solu-

tions from Tcolony and Ccolony to globalArchive and then

eliminating those dominated solutions from globalArchive.

Lastly, an ESS is applied on globalArchive. Herein, the ESS

applied on globalArchive is to improve the quality of solu-

tions in globalArchive so as to help further approach the global

PF. The motivation and process of the ESS are described as

follows.

3) Elite Study Strategy: The nondominated solutions that

carry the elite knowledge are collected in globalArchive dur-

ing the evolutionary process, which have great potentials to

generate good solutions. Therefore, we propose an ESS to deal

with the solutions in globalArchive to help further approach the

global PF. The procedure of ESS is shown in Fig. 8. Herein, we

define two kinds of ESS to generate new solution from an elite

solution in globalArchive. The first one is small-scope ESS,

which is to randomly select a task tind1 and a new solution is

Fig. 8. Procedure of ESS.

generated by randomly selecting a new resource for tind1. The

small-scope ESS searches around an elite solution to exploit

the local area of the PF. The second one is large-scope ESS,

which is to randomly select a task’s corresponding resource

rind2, and a new solution is generated by randomly selecting

a new resource that has a different type from rind2, and all

tasks that are on rind2 are scheduled on the new resource. The

large-scope ESS enhances the global search ability, exploring

the other area of the PF. These two ESS methods cooperatively

help further approach the global PF.

Since it is quite inefficient to apply the ESS for all solutions

in globalArchive, particularly when the globalArchive is large.

Therefore, if the size of globalArchive exceeds a parameter

ess_num, we first sort the globalArchive in descending order

according to the crowding distance [43] and select the first

ess_num solutions from globalArchive. Each selected solution

selects one of the two ESSs according to a predefined probabil-

ity ess_rate. The next step is to calculate the WET and WEC

of the new solution and add it into the globalArchive. Lastly,

the dominated solutions in globalArchive are eliminated and

a new globalArchive is formed for the next generation.

H. Flowchart of MOACS

Fig. 9 shows the flowchart of the MOACS approach. At

first, the global archive is initialized. Then two colonies named

Tcolony and Ccolony run in parallel. These two colonies have

independent pheromone and heuristic information. Moreover,

the solution construction processes of these two colonies are

CHEN et al.: MULTIOBJECTIVE CLOUD WORKFLOW SCHEDULING: MULTIPLE POPULATIONS ACS APPROACH 2919

Fig. 9. Flowchart of MOACS.

independent. After the pheromone initialization for Tcolony

and Ccolony by (8) and (10), respectively, the evolution begins.

In every generation, ants construct their solutions in paral-

lel by (6) and (7). During the solution construction process,

the CHS is adopted and the pheromone local update is car-

ried out. After all ants have finished the solution construction,

the archive update process is conducted. Note that the ESS is

included in the archive update process. Then the pheromone

global update for Tcolony and Ccolony is carried out. Also

note that although Tcolony and Ccolony select their GUS

from the same global archive, their update processes are inde-

pendent within the two colonies. MOACS terminates until

reaching a maximum function evaluations, and output a set

of nondominated solutions in the global archive and their

corresponding WET and WEC.

I. Complexity Analysis

The time complexity of MOACS is related to the number

of evolutionary generations G, the colony size N, the global

archive size K, the number of tasks |T|, and the scale of the

resource pool |Rpool|. For each ant during the solution con-

struction in an evolutionary generation, calculating a task ti’s

heuristic information [i.e., η(i, j)], according to (16) and (17),

need to scan ti’s parent tasks, so the time complexity is O(|T|).

In addition, the [τ(i, j)] × [η(i, j)]β value should be calculated

TABLE III
FEATURES OF THE RESOURCE ON AMAZON EC2

for each resource with the time complexity of O(|Rpool|)

when scheduling ti according to (6) and (7). Therefore, an

ant’s solution construction for all the tasks needs the time

complexity of O(|T|2|Rpool|) and therefore the overall time

complexity of a colony’s solution construction in each gen-

eration is O(N|T|2|Rpool|). Note that the time complexities

of the solution construction in two colonies are the same.

Moreover, in each generation, the crowding distance based

sorting and the process of eliminating dominated solutions in

archive update have the same time complexity as O(K log K).

Also, the pheromone global update requires a sorting of the

global archive so the time complexity is also O(K log K).

Therefore, the overall time complexity of MOACS in all the

G generations is O(GN|T|2|Rpool| + GK log K).

The space complexity of MOACS is measured by the

storage of pheromone, heuristic information, and the global

archive. The pheromone is deposited between each task and

each resource, which is shared by all the ants in the same

colony, so the space complexity of the pheromone in two

colonies is O(2|T||Rpool|). The heuristic information is also

deposited between each task and each resource. However,

each ant stores its own heuristic information, so the space

complexity of the heuristic information in two colonies is

O(2N|T||Rpool). The global archive has K solutions and each

solution is a |T|-length sequence, so the space complexity of

the global archive is O(K|T|). Therefore, the overall space

complexity of MOACS is O(2|T||Rpool|+2N|T||Rpool|+K|T|),

which can be reduced to O(N|T||Rpool| + K|T|).

IV. EXPERIMENTS AND COMPARISONS

A. Experimental Environment

The experiments are conducted on six different types of

resource on the current Amazon EC2 cloud platform. The pro-

cessing capacity of a resource is represented in million floating

point operations per second (MFLOPS) according to the num-

ber of EC2 computing units that estimated by the previous

research of Ostermann et al. [44]. The lease unit of time is

set as 1 h, the same as the Amazon EC2 cloud platform.

The detailed features of the six types of resource are listed

in Table III.

Five different types of real-world workflows, Montage,

Epigenomics, CyberShake, LIGO Inspiral Analysis, and

SIPHT, are applied in the experiments. These workflows

have different characteristics and are widely used to evalu-

ate the performance of the workflow scheduling approaches.

Fig. 10 shows the structures of these five workflow types. More

details of these workflows can be referred to [45] and [46].

2920 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 8, AUGUST 2019

(a) (b) (c)

(d) (e)

Fig. 10. Structures of the real-world workflows used for the experiments.
(a) Montage. (b) Epigenomics. (c) CyberShake. (d) LIGO inspiral analysis.
(e) SIPHT.

B. Experimental Settings

The following experiments are divided into three parts.

We first compare MOACS with HEFT [30] about the

capacity to optimize WET. Second, we compare MOACS

with five multiobjective optimization approaches, including

ECMSMOO [47], MOHEFT [29], NSGA-II [43], EMS-

C [31], and MODE [19]. Among them, NSGA-II is a classic

EMO framework. MODE is originally designed for the

grid computing platform while the other three are recently

proposed approaches well-designed for cloud computing

platform. Third, constrained optimization model is another

common method to solve the cloud workflow scheduling

problem, with some well performed approaches based on

PSO [27] and DOGA [28] that set WET as the constraint and

WEC as optimization objective in the literature. Therefore,

we compare MOACS with these two approaches.

The parameter configurations of the compared algorithms

are all based on the suggestions in the corresponding ref-

erences. The details of the parameter setting are shown as

follows. HEFT and MOHEFT are heuristic approaches and do

not need a population while the population size of the other

compared approaches are all 50.

In ECMSMOO, inertia weight ω linearly decreases from

0.9 to 0.4 with the generation increases, acceleration

coefficients is set as c1 = c2 = c3 = c4 = 1. In

MOHEFT, the number of tradeoff solutions is set as 50. In

NSGA-II, the simulated binary crossover operator and poly-

nomial mutation operator in continuous space search are not

suitable to solve the multiobjective cloud workflow schedul-

ing model. Therefore, the one-point crossover and random

mutation are adopted instead. The crossover rate is set as

1 and the mutation rate is set as 1/|T|, where |T| repre-

sents the number of tasks in the workflow due to their good

performance in the parameter test. In EMS-C, the crossover

rate and mutation rate are set as 1 and 1/|T|, respectively. In

PSO, the inertia weight ω = 0.5 and acceleration constants

TABLE IV
COMPARISONS OF MOACS WITH HEFT ON WET

c1 = c2 = 2.0. In DOGA, the crossover rate Pc = 0.8 and the

mutation rate Pm = 0.002 during the process to meet dead-

line constraint, while Pc = 0.15 and Pm = 0.008 during the

process to minimize WEC.

ACOs do not need a large population that the population size

set as 10 is commonly used [33]. Therefore, the Tcolony and

Ccolony each has 5 ants in our MOACS approach. In addition,

β is 5 while q0 is 0.9. The parameter ρ in pheromone local

update and the parameter ε in pheromone global update are

set to 0.1. The selection rate sr during the pheromone global

update is set to 0.1. The ess_num and ess_rate during the

archive update are set to 30 and 0.2, respectively.

For fair comparison, the maximum function evaluations

(the procedure to calculate WET and WEC of a schedul-

ing scheme) is set to 60 000. In order to avoid the

stochastic influence, ten independent runs are conducted

except HEFT and MOHEFT since they are not evolutionary

approaches.

C. Experimental Results

1) Comparison With Non-Metaheuristic HEFT: HEFT is

an effective single-objective non-metaheuristic approach to

optimize WET. As MOACS is a multiobjective approach, it

obtains a set of solutions with both WET and WEC in each

run. Herein, we use the solution with minimal WET in each

run and calculate their average value for comparison. Table IV

shows the comparison of MOACS with HEFT. The results are

represented by (WET(HEFT)/WET(MOACS) − 1) × 100%,

meaning the improvement percentage of MOACS than HEFT

in optimizing WET. The results show that the improvement

is slight in some small-scale workflows, such as Epigenomics

46 and Inspiral 30. However, as the workflow scale becomes

large, the improvement of MOACS becomes much significant,

particularly in the Inspiral 1000 and Montage 1000 cases. This

may be due to that HEFT is a greedy heuristic so it may easily

fall into local optima in large scale problems, while MOACS

maintains diversity well to explore the search space.
2) Comparison With Multiobjective Optimization

Approaches: Since the cloud workflow scheduling problem

is a real-world application, we do not know the true PF in

advance. As a result, the popular performance metric like

inverted generational distance indicator is not applicable in

the experiments. Therefore, we adopt two other performance

metrics, hypervolume (HV) and C(A, B) [48], to evaluate the

performance of these six approaches.

CHEN et al.: MULTIOBJECTIVE CLOUD WORKFLOW SCHEDULING: MULTIPLE POPULATIONS ACS APPROACH 2921

TABLE V
COMPARISONS OF MOACS WITH THE OTHER MULTIOBJECTIVE

OPTIMIZATION APPROACHES ON HYPERVOLUME [(HV (MOACS)/HV
(OTHER APPROACHES) − 1)×100%]

HV represents the diversity and convergence by calculating

the volume among a set of solutions and a reference point.

A larger HV is preferable as it represents better quality and

distribution of the obtained solutions. We first combine the

solutions that all the approaches found in 10 runs into a set.

Then the combination of the worst objective values of WET

and WEC (the highest WET and WEC) among all these solu-

tions, is selected as the reference point. The HV of the solution

set obtained in 10 runs is calculated independently and the

average HV value among 10 runs is reported.

C(A, B) compares the dominance relationship between two

solution sets. C(A, B), calculated by (18), represents the ratio

of solutions in B that are dominated by solutions in A. The

range of C(A, B) is within [0, 1]. When C(A, B) is 0, it means

that all solutions found by B is not dominated by any solution

found by A. When C(A, B) is 1, it represents that for each

solution found by B, there are at least one solution found by A

that dominate or equal to it. All nondominated solutions found

in 10 runs are collected to calculate the C(A, B) value as

C(A, B) =
|{b ∈ B, ∃a ∈ A, a dominates or equal to b}|

|B|
.

(18)

Table V shows the comparisons of MOACS with

ECMSMOO, MOHEFT, NSGA-II, EMS-C, and MODE on

HV. The results are represented by (HV (MOACS)/HV (other

approaches) − 1) × 100%, which means the improvement

percentage of MOACS than the other five approaches. A pos-

itive number represents MOACS is better. From Table V, we

can see that the performance of MOACS is far better than

ECMSMOO, NSGA-II, and MODE. Since MOHEFT has very

high time complexity so that it cannot finish execution in an

acceptable time for large-scale workflows, we mark them as

“N/A.” MOACS performs better than MOHEFT in most of

the workflows except SIPHT100 where MOHEFT is slightly

better, while in some workflows such as Epigenomics 100

and Inspiral 50, the advantage of MOACS is very obvious.

Moreover, in the large-scale workflows, MOACS performs bet-

ter distinctly, particularly in Inspiral 1000 and Montage 1000.

Table VI shows the comparison results of C(A, B). We

bold those C(MOACS, –) higher than 90%, which means the

obtained set of MOACS dominates or equal to most of the

solutions obtained by the other approaches, and those C(–,

MOACS) less than 10%, which means that the obtained set of

the other approaches can only dominate or equal to very few

solutions obtained by MOACS. Compare with ECMSMOO,

NSGA-II, and MODE, the values of C(MOACS, –) and

C(–, MOACS) in most cases are bolded and many of them are

100% and 0, respectively, which means that the obtained set

of MOACS totally dominates those of ECMSMOO, NSGA-

II, and MODE. It is interesting that in some cases such as

CyberShake 50, the C(MOACS, EMS-C) value is smaller than

C(EMS-C, MOACS) but the HV value of MOACS is better.

That is because C(A, B) metric only shows the dominance rela-

tionship, but does not show the “intensity” of the dominance.

In detail, those solutions of EMS-C that dominate MOACS’s

just have slight improvement but in turn, those solutions of

MOACS that dominates EMS-C’s have great advantage.

In order to observe the performance intuitively, we illus-

trate the solutions found by ECMSMOO, MOHEFT, NSGA-II,

EMS-C, MODE, and MOACS. Except MOHEFT, we curve all

the solutions found in 10 runs. Fig. 11 shows some experimen-

tal results on the tested five types of real-world workflow with

different scale.

From these figures, we can see that the overall performance

of MOACS is better than the other five approaches and is sig-

nificantly superior to ECMSMOO, NSGA-II, and MODE. In

small-scale workflows such as Montage 25, MOHEFT, and

EMS-C’s performance are still close to MOACS. But with

the growth of the workflows’ scale, MOACS’s superiority

becomes more and more obvious. Particularly, in those large-

scale workflow such as CyberShake 1000, Epigenomics 997,

and Inspiral 1000, MOHEFT cannot be completed within an

acceptable time while MOACS can generate the well-diversity

solutions with lower WEC under the similar WET compare

with EMS-C. On the one hand, the new pheromone update

rule and the CHS provide good guidance during the search

process and help MOACS approach the PF gradually. On the

other hand, with the ESS that utilizes the elite knowledge in

the global archive to improve the solution quality, MOACS

can further approach the global PF. These advantages help

MOACS to generate a solution set that has better quality than

the other approaches.

Since MOACS is a stochastic approach, further statistical

tests are needed to validate its performance. Herein, the HV

values in 10 runs are adopted for statistical tests. MOHEFT

is not included in statistical tests since it is not a stochas-

tic approach. Both ANOVA and Wilcoxon rank-sum test (also

known as Mann–Whitney U test) are used in the statistical

tests. The results are shown in Table VII, where the “A” col-

umn represents the results of ANOVA and the “W” column

represents the results of Wilcoxon rank-sum test. In the A

column, if MOACS and the compared approaches are signifi-

cantly different, the result is “S,” otherwise the results is “NS.”

In the W column, if MOACS is significantly better than the

compared approaches, the result is “>”; if MOACS is sig-

nificantly worse, the result is “<.” The results show that in

2922 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 8, AUGUST 2019

TABLE VI
COMPARISONS OF MOACS WITH THE OTHER MULTIOBJECTIVE OPTIMIZATION APPROACHES ON C(A, B) VALUE

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Performance of ECMSMOO, MOHEFT, NSGA-II, EMS-C, MODE, and MOACS on some tested workflows. (a) Montage 25. (b) Montage 50.
(c) SIPHT 60. (d) CyberShake 100. (e) Inspiral 100. (f) CyberShake 1000. (g) Epigenomics 997. (h) Inspiral 1000.

most of the cases, MOACS is significantly different from the

compared approaches according to ANOVA, and is signifi-

cantly better than them according to Wilcoxon rank-sum test.

One notice is that in Epigenomics 24, EMS-C is significantly

better than MOACS according to Wilcoxon rank-sum test but

ANOVA shows that the performance of EMS-C and MOACS

are not significantly different.

Efficiency is also an important criterion. Table VIII shows

the comparison of MOACS with the other five approaches

on the run time. The results are represented by RunTime

(other approaches)/RunTime (MOACS). A number greater

than 1 shows that MOACS is more efficient. The larger the

number is, the more obvious of the advantage. In most of

the small-scale workflows, MOACS outperforms the other five

approaches. With its high time complexity, the efficiency of

MOHEFT drops rapidly with the increase of the workflow

scale. The SIPHT workflow has more parallelable tasks, as

we can see intuitively in Fig. 10, which results in the large

resource pool according to the solution encoding of MOACS

(detail in Section III-A). Since MOACS should maintain

pheromone and heuristic information for every resource, more

time should be spent when dealing with SIPHT workflow.

Therefore, the advantage of MOACS’s efficiency is weak-

ened in SIPHT workflow and even EMS-C has slightly better

efficiency in this case. However, MOACS’s efficiency still out-

performs EMS-C distinctly in those large-scale workflows. The

operators of ECMSMOO and NSGA-II are simple so that with

the scale of workflow grows, these two approaches can still

complete execution quickly, but the execution results of them

are quite unsatisfying according to the previous analysis.

3) Comparison With Constrained Optimization

Approaches: Table IX shows the comparison of the WEC

CHEN et al.: MULTIOBJECTIVE CLOUD WORKFLOW SCHEDULING: MULTIPLE POPULATIONS ACS APPROACH 2923

TABLE VII
ANOVA AND WILCOXON RANK-SUM TEST ON THE HV RESULTS OF

MOACS AND THE OTHER STOCHASTIC MULTIOBJECTIVE OPTIMIZATION

APPROACHES

TABLE VIII
COMPARISONS OF MOACS WITH THE OTHER MULTIOBJECTIVE

OPTIMIZATION APPROACHES ON RUN TIME [RUNTIME (OTHER

APPROACHES)/RUNTIME (MOACS)]

of the solutions found by PSO, DOGA, and MOACS under

the same deadline constraint. For PSO and DOGA, we use

the average WEC in 10 runs for comparison. For MOACS,

we use the average WEC of those solutions that have the

minimal WEC under the deadline constraint in each run for

comparison. The value of WEC (other approaches)/WEC

(MOACS) can represent the comparison of PSO, DOGA, and

MOACS directly. A number greater than 1 represents that

MOACS’s performance is better. The larger the number is,

more obvious of the advantage. The table shows that MOACS

can find a solution with smaller WEC. With the workflow

scale grows, the superiority of MOACS is more distinct.

For constrained optimization approaches, we set a series of

deadlines, beginning with a large enough deadline, in descend-

ing order until the approaches cannot find a feasible solution.

In this way, PSO and DOGA can also generate a series of

feasible solutions. We curve the solutions found by PSO,

DOGA, and MOACS in 10 independent runs and some of

the experimental results are shown in Fig. 12.

TABLE IX
COMPARISONS OF WEC OF THE SOLUTIONS FOUND BY PSO, DOGA,

AND MOACS UNDER THE SAME DEADLINE CONSTRAINT [WEC (OTHER

APPROACHES)/WEC (MOACS)]

In these figures, we can see that the performance of MOACS

is better than both PSO and DOGA. First of all, comparing

the solutions with the similar WET, MOACS can generate

solutions with lower WEC. Second, with the growing scale of

the workflow, MOACS’s advantage becomes more and more

obvious. Particularly, in the large-scale workflows such as

CyberShake 1000 and Inspiral 1000, PSO and DOGA do not

have well global search ability to deal with the large search

space, resulting in very poor performance. While the new

pheromone update rule and the CHS in MOACS maintain good

global search ability, and the ESS helps further approach the

global PF. More interesting, the solutions found by DOGA

and PSO in different runs often have different distributions,

while the solutions found by MOACS distribute more stable

along the PF. Therefore, MOACS may be more preferred due

to its stable search ability.

D. Parameter Study

In MOACS, the settings of β, q0, ρ, and ε are the typical

scheme in ACS so we focus on the other three parameters,

ess_num, ess_rate, and sr. Note that when testing a param-

eter, the other parameters of MOACS are set according to

Section IV-B.

Fig. 13 shows the parameter study on ess_num, ess_rate,

and sr. For each figure, the x-axis are several parameter set-

tings and the y-axis are the average HV value in 10 runs

corresponding to these settings. The dashed lines mark the

selected settings. From Fig. 13(a), we can see that our selected

setting “30” for ess_num is the best among the other set-

tings. In Fig. 13(b), the setting “0” for ess_rate represents

that MOACS only employs the large-scope ESS while the set-

ting “1” represents that only the small-scope ESS is employed.

Our selected settings “0.2” has the best performance in most

of the workflows, particularly in SIPHT 100 and Inspiral

1000. In Fig. 13(c), the setting 0 for sr represents that the

colony greedily selects the solution with the smallest value

of its optimization objective for the pheromone global update.

2924 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 8, AUGUST 2019

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Performance of PSO, DOGA, and MOACS on some tested workflows. (a) Montage 25. (b) Montage 50. (c) SIPHT 60. (d) CyberShake 100.
(e) Inspiral 100. (f) CyberShake 1000. (g) Epigenomics 997. (h) Inspiral 1000.

(a) (b) (c)

Fig. 13. Parameter study on (a) ess_num, (b) ess_rate, and (c) sr.

We can see that in SIPHT 60 and SIPHT 100, our selected

setting “0.1” for sr is worse than the other settings like “0.3”

and “0.4.” However, our selected setting still performs better

in the other workflows, particularly in Epigenomics 997.

V. CONCLUSION

In this paper, we propose a novel MOACS approach for

cloud workflow scheduling, with optimization objectives of

WET and WEC. Two ant colonies are adopted to optimize

execution time and execution cost, respectively. MOACS well

considers the features of cloud computing since it adopts

a heterogeneous resource pool and adopts “maximal parallel

tasks” to simulate the elasticity of cloud computing, which

has high capacity to be extended to the actual cloud plat-

form. A new pheromone update rule is designed based on

a set of nondominated solutions from a global archive to main-

tain the diversity and guarantee the search efficiency, which

can guide each colony to search its optimization objective

sufficiently. In order to avoid a colony focusing only on its

own optimization objective, the CHS is proposed to ensure

the quality of the other objective. The pheromone update rule

and the CHS help the algorithm approach the PF gradually.

Moreover, the ESS is performed to improve the solution qual-

ity of the global archive so as to help further approach the

global PF.

Our experiments are simulated based on the data of

Amazon EC2 cloud platform and five types of real-world

workflows from different scientific areas. The experimen-

tal results show that the performance of MOACS in solv-

ing cloud workflow scheduling is better than not only

the multiobjective optimization approaches (ECMSMOO,

MOHEFT, NSGA-II, EMS-C, and MODE) but also those

constrained optimization approaches (PSO and DOGA). First

of all, MOACS can generate a solution with similar WET

but lower WEC than the other approaches. Second, with

the growing scale of the workflows, MOACS’s advantage

is more distinct. Third, MOACS has better global search

ability, particularly when dealing with the large-scale work-

flows, as it can generate more nondominated solutions that

are also widely distributed in the solution space. In the

future work, other cloud environments or even multiclouds

environments should be adopted to test the performance

of MOACS.

CHEN et al.: MULTIOBJECTIVE CLOUD WORKFLOW SCHEDULING: MULTIPLE POPULATIONS ACS APPROACH 2925

REFERENCES

[1] P. Mell and T. Grance, The NIST Definition of Cloud Computing, doc-
ument 800–145, Nat. Inst. Stand. Technol., Gaithersburg, MD, USA,
2011.

[2] K. Mershad, H. Artail, M. A. R. Saghir, H. Hajj, and M. Awad, “A study
of the performance of a cloud data center server,” IEEE Trans. Cloud

Comput., vol. 5, no. 4, pp. 590–603, Oct./Dec. 2017.
[3] M. Armbrust et al., “A view of cloud computing,” Comm. ACM, vol. 53,

no. 4, pp. 50–58, 2010.
[4] H. Yuan et al., “TTSA: An effective scheduling approach for delay

bounded tasks in hybrid clouds,” IEEE Trans. Cybern., vol. 47, no. 11,
pp. 3658–3668, Nov. 2017.

[5] T. Atmaca, T. Begin, A. Brandwajn, and H. Castel-Taleb, “Performance
evaluation of cloud computing centers with general arrivals and ser-
vice,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 8, pp. 2341–2348,
Aug. 2016.

[6] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Netw. Appl.,
vol. 19, no. 2, pp. 171–209, 2014

[7] I. Sadooghi et al., “Understanding the performance and potential
of cloud computing for scientific applications,” IEEE Trans. Cloud

Comput., vol. 5, no. 2, pp. 358–371, Apr./Jun. 2017.
[8] Z.-H. Zhan et al., “Cloudde: A heterogeneous differential evolution algo-

rithm and its distributed cloud version,” IEEE Trans. Parallel Distrib.

Syst., vol. 28, no. 3, pp. 704–716, Mar. 2017.
[9] L. Wang, M. Liu, and M. Q. H. Meng, “A hierarchical auction-

based mechanism for real-time resource allocation in cloud robotic
systems,” IEEE Trans. Cybern., vol. 47, no. 2, pp. 473–484,
Feb. 2017.

[10] G.-P. Liu, “Predictive control of networked multiagent systems via
cloud computing,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1852–1859,
Aug. 2017.

[11] J. Yu, R. Buyya, and K. Ramamohanarao, “Workflow scheduling
algorithms for grid computing,” in Metaheuristics for Scheduling in

Distributed Computing Environments. Berlin, Germany: Springer, 2008,
pp. 173–214.

[12] S.-K. Chou, M.-K. Jiau, and S.-C. Huang, “Stochastic set-based particle
swarm optimization based on local exploration for solving the Carpool
service problem,” IEEE Trans. Cybern., vol. 46, no. 8, pp. 1771–1783,
Aug. 2016.

[13] Y. Zhou, S. Kwong, H. Guo, X. Zhang, and Q. Zhang, “A two-phase
evolutionary approach for compressive sensing reconstruction,” IEEE

Trans. Cybern., vol. 47, no. 9, pp. 2651–2663, Sep. 2017.
[14] Y. H. Li, Z.-H. Zhan, S. J. Lin, J. Zhang, and X. N. Luo, “Competitive

and cooperative particle swarm optimization with information sharing
mechanism for global optimization problems,” Inf. Sci., vol. 293, no. 1,
pp. 370–382, 2015.

[15] Z.-J. Wang et al., “Dual-strategy differential evolution with affinity prop-
agation clustering for multimodal optimization problems,” IEEE Trans.

Evol. Comput., to be published, doi: 10.1109/TEVC.2017.2769108.
[16] X.-F. Liu et al., “An energy efficient ant colony system for virtual

machine placement in cloud computing,” IEEE Trans. Evol. Comput.,
vol. 22, no. 1, pp. 113–128, Feb. 2018.

[17] X.-F. Liu, Z.-H. Zhan, and J. Zhang, “An energy aware unified ant colony
system for dynamic virtual machine placement in cloud computing,”
Energies, vol. 10, no. 5, pp. 1–15, 2017.

[18] R. Garg and A. K. Singh, “Multi-objective workflow grid schedul-
ing based on discrete particle swarm optimization,” in Proc. Int. Conf.

Swarm Evol. Memetic Comput., 2011, pp. 183–190.
[19] A. K. M. K. A. Talukder, M. Kirley, and R. Buyya, “Multiobjective dif-

ferential evolution for scheduling workflow applications on global grids,”
Concurrency Comput. Pract. Exp., vol. 21, no. 13, pp. 1742–1756,
2009.

[20] Z. H. Zhan et al., “Cloud computing resource scheduling and a survey
of its evolutionary approaches,” ACM Comput. Surveys, vol. 47, no. 4,
p. 63, 2015.

[21] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Proc. Grid Comput. Environ.

Workshop, Austin, TX, USA, 2008, pp. 1–10.
[22] N. R. Herbst, S. Kounev, and R. H. Reussner, “Elasticity in cloud com-

puting: What it is, and what it is not,” in Proc. Int. Conf. Auton. Comput.,
San Jose, CA, USA, 2013, pp. 23–27.

[23] S. Raghavan, P. Sarwesh, C. Marimuthu, and K. Chandrasekaran, “Bat
algorithm for scheduling workflow applications in cloud,” in Proc.

Int. Conf. Electron. Design Comput. Netw. Autom. Verification, 2015,
pp. 139–144.

[24] Y.-C. Liang, A. H.-L. Chen, and Y.-H. Nien, “Artificial bee colony
for workflow scheduling,” in Proc. IEEE Congr. Evol. Comput., 2014,
pp. 558–564.

[25] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Proc. IEEE Int. Conf. Comput. Intell.

Security, Perth, WA, Australia, 2010, pp. 400–407.
[26] B. Lin et al., “A pretreatment workflow scheduling approach for big data

applications in multicloud environments,” IEEE Trans. Netw. Service

Manag., vol. 13, no. 3, pp. 581–594, Sep. 2016.
[27] M. A. Rodriguez and R. Buyya, “Deadline based resource provision-

ing and scheduling algorithm for scientific workflows on clouds,” IEEE

Trans. Cloud Comput., vol. 2, no. 2, pp. 222–235, Apr./Jun. 2014.
[28] Z.-G. Chen, K.-J. Du, Z.-H. Zhan, and J. Zhang, “Deadline constrained

cloud computing resources scheduling for cost optimization based on
dynamic objective genetic algorithm,” in Proc. IEEE Congr. Evol.

Comput., 2015, pp. 708–714.
[29] J. J. Durillo and R. Prodan, “Multi-objective workflow scheduling in

Amazon EC2,” Cluster Comput., vol. 17, no. 2, pp. 169–189, 2014.
[30] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-

complexity task scheduling for heterogeneous computing,” IEEE Trans.

Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.
[31] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective

workflow scheduling in cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 5, pp. 1344–1357, May 2016.

[32] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B,

Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.
[33] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative

learning approach to the traveling salesman problem,” IEEE Trans. Evol.

Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.
[34] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization,” IEEE

Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.
[35] T. Liao, K. Socha, M. A. M. de Oca, T. Stützle, and M. Dorigo, “Ant

colony optimization for mixed-variable optimization problems,” IEEE

Trans. Evol. Comput., vol. 18, no. 4, pp. 503–518, Aug. 2014.
[36] M. Mavrovouniotis, F. M. Müller, and S. Yang, “Ant colony optimization

with local search for dynamic traveling salesman problems,” IEEE Trans.

Cybern., vol. 47, no. 7, pp. 1743–1756, Jul. 2017.
[37] Z.-G. Chen et al., “Deadline constrained cloud computing resources

scheduling through an ant colony system approach,” in Proc. Int. Conf.

Cloud Comput. Res. Innovat., 2015, pp. 112–119.
[38] D. Angus and C. Woodward, “Multiple objective ant colony

optimization,” Swarm Intell., vol. 3, no. 1, pp. 69–85, 2009.
[39] M. Lopez-Ibanez and T. Stützle, “The automatic design of multiobjective

ant colony optimization algorithms,” IEEE Trans. Evol. Comput., vol. 16,
no. 6, pp. 861–875, Dec. 2012.

[40] M. López-Ibáñez and T. Stützle, “An experimental analysis of design
choices of multi-objective ant colony optimization algorithms,” Swarm

Intell., vol. 6, no.3. pp. 207–232, 2012.
[41] Z.-H. Zhan et al., “Multiple populations for multiple objectives:

A coevolutionary technique for solving multiobjective optimization
problems,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 445–463,
Apr. 2013.

[42] J. Sahni and D. P. Vidyarthi, “A cost-effective deadline-constrained
dynamic scheduling algorithm for scientific workflows in a cloud
environment,” IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 2–18,
Jan./Mar. 2018.

[43] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[44] S. Ostermann et al., “A performance analysis of EC2 cloud computing
services for scientific computing,” in Proc. Int. Conf. Cloud Comput.,
2010, pp. 115–131.

[45] S. Bharathi et al., “Characterization of scientific workflows,” in Proc. 3rd

Workshop Workflows Support Large Scale Sci., Austin, TX, USA, 2008,
pp. 1–10.

[46] G. Juve et al., “Characterizing and profiling scientific work-
flows,” Future Gener. Comput. Syst., vol. 29, no. 3, pp. 682–692,
2013.

[47] G. Yao, Y. Ding, Y. Jin, and K. Hao, “Endocrine-based coevo-
lutionary multi-swarm for multi-objective workflow scheduling in
a cloud system,” Soft Comput., vol. 21, no. 15, pp. 4309–4322,
2017.

[48] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,” IEEE Trans.

Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

http://dx.doi.org/10.1109/TEVC.2017.2769108

2926 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 8, AUGUST 2019

Zong-Gan Chen (S’17) received the B.S.
degree from Sun Yat-sen University, Guangzhou,
China, in 2016. He is currently pursuing the Ph.D.
degree in computer science and technology with the
South China University of Technology, Guangzhou.

His current research interests include ant colony
optimization, differential evolution, and their
applications in real-world optimization problems.

Zhi-Hui Zhan (M’13) received the bachelor’s and
Ph.D. degrees from the Department of Computer
Science, Sun Yat-sen University, Guangzhou, China,
in 2007 and 2013, respectively.

He is currently the Changjiang Scholar Young
Professor and the Pearl River Scholar Young
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou. His current research interests include
evolutionary computation algorithms, swarm intel-
ligence algorithms, and their applications in real-

world problems, and in environments of cloud computing and big data.
Dr. Zhan was a recipient of the Natural Science Foundation for

Distinguished Young Scientists of Guangdong Province, China, in 2014, the
Pearl River New Star in Science and Technology in 2015, the Youth Talent
in Science and Technology Innovation of Guangdong Province in 2016,
the Wu Wen Jun Artificial Intelligence Excellent Youth from the Chinese
Association for Artificial Intelligence in 2017, and the China Computer
Federation Outstanding Dissertation Award and the IEEE CIS Outstanding
Dissertation Award for his doctoral dissertation. He is listed as one of the
Most Cited Chinese Researchers in Computer Science.

Ying Lin (M’12) received the Ph.D. degree in
computer applied technology from Sun Yat-sen
University, Guangzhou, China, in 2012.

She is currently an Assistant Professor with the
Department of Psychology, Sun Yat-sen University
and also a Research Fellow with the Guangdong
Provincial Key Laboratory of Computational
Intelligence and Cyberspace Information, South
China University of Technology, Guangzhou. Her
current research interests include computational
intelligence and its applications in network analysis,

cognitive diagnosis, and cloud computing.

Yue-Jiao Gong (M’15) received the B.S. and Ph.D.
degrees in computer science from Sun Yat-sen
University, Guangzhou, China, in 2010 and 2014,
respectively.

From 2015 to 2016, she was a Post-Doctoral
Research Fellow with the Department of Computer
and Information Science, University of Macau,
Macau, China. She is currently an Associate
Professor with the School of Computer Science and
Engineering, South China University of Technology,
Guangzhou. She is also a Young Pearl River Scholar.

Her current research interests include evolutionary computation and machine
learning methods, as well as their applications to intelligent transportation and
smart city.

Tian-Long Gu received the M.Eng. degree from
Xidian University, Xi’an, China, in 1987 and the
Ph.D. degree from Zhejiang University, Hangzhou,
China, in 1996.

From 1998 to 2002, he was a Research Fellow
with the School of Electrical and Computer
Engineering, Curtin University of Technology,
Bentley, WA, Australia, and a Post-Doctoral
Fellow with the School of Engineering, Murdoch
University, Murdoch, WA, Australia. He is currently
a Professor with the School of Computer Science

and Engineering, Guilin University of Electronic Technology, Guilin, China.
His current research interests include formal methods, data and knowledge
engineering, software engineering, and information security protocol.

Feng Zhao received the Ph.D. degree in commu-
nication and information system from Shandong
University, Jinan, China, in 2007.

He is currently a Full Professor with the School
of Electronics and Communication Engineering,
Yulin Normal University, Yulin, China. His current
research interests include cognitive radio networks,
MIMO wireless communications, cooperative com-
munications, smart antenna techniques, and cloud
computing.

Hua-Qiang Yuan received the Ph.D. degree
from Shanghai Jiao Tong University, Shanghai,
China, in 1996.

He is currently a Professor with the School of
Computer Science and Network Security, Dongguan
University of Technology, Dongguan, China. His
current research interests include computational
intelligence and cyberspace security.

Xiaofeng Chen (SM’16) received the B.S. and M.S.
degrees in mathematics from Northwest University,
Xi’an, China, in 1998 and 2000, respectively, and
the Ph.D. degree in cryptography from Xidian
University, Xi’an, in 2003.

He is currently a Professor with Xidian University.
He has published over 100 research papers in refer-
eed international conferences and journals. He has
over 4000 Google Scholar Citations. His current
research interests include applied cryptography and
cloud computing security.

Dr. Chen is in the Editorial Board of the IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING, Security and Communication

Networks, and Computing and Informatics. He has served as the pro-
gram/general chair or program committee member in over 30 international
conferences.

Qing Li (SM’07) received the B.Eng. degree
in computer science from Hunan University,
Changsha, China, and the M.Sc. and Ph.D. degrees
in computer science from the University of Southern
California, Los Angeles, CA, USA.

He is the Founding Director of the
Multimedia Software Engineering Research
Centre, and concurrently a Professor with the
Department of Computer Science, City University
of Hong Kong, Hong Kong. His current research
interests include dynamic object modeling,

multimedia and mobile information retrieval and management, distributed
databases and data warehousing/mining, and workflow management and Web
services.

Jun Zhang (F’17) received the Ph.D. degree from
the City University of Hong Kong, Hong Kong, in
2002.

He is currently a Changjiang Chair Professor with
the School of Computer Science and Engineering,
South China University of Technology, Guangzhou,
China. His current research interests include com-
putational intelligence, cloud computing, high
performance computing, data mining, wireless sen-
sor networks, operations research, and power elec-
tronic circuits. He has published over 100 technical

papers in the above areas.
Dr. Zhang was a recipient of the China National Funds for Distinguished

Young Scientists from the National Natural Science Foundation of China in
2011 and the First-Grade Award in Natural Science Research from the
Ministry of Education, China, in 2009. He is currently an Associate Editor of
the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, the IEEE
TRANSACTIONS ON CYBERNETICS, and the IEEE TRANSACTIONS ON

INDUSTRIAL ELECTRONICS.

