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A multiobjective dynamic vehicle routing problem (M-DVRP) has been identi�ed and a time seed based solution using particle
swarm optimization (TS-PSO) for M-DVRP has been proposed. M-DVRP considers �ve objectives, namely, geographical ranking
of the request, customer ranking, service time, expected reachability time, and satisfaction level of the customers.�emultiobjective
function ofM-DVRPhas four components, namely, number of vehicles, expected reachability time, and pro�t and satisfaction level.
�ree constraints of the objective function are vehicle, capacity, and reachability. In TS-PSO, �rst of all, the problem is partitioned
into smaller size DVRPs. Secondly, the time horizon of each smaller size DVRP is divided into time seeds and the problem is
solved in each time seed using particle swarm optimization. �e proposed solution has been simulated in ns-2 considering real
road network of New Delhi, India, and results are compared with those obtained from genetic algorithm (GA) simulations. �e
comparison con�rms that TS-PSO optimizes the multiobjective function of the identi�ed problem better than what is o	ered by
GA solution.

1. Introduction

Recently, intelligent transport system (ITS) has diversi�ed
the application area of dynamic vehicle routing problem
(DVRP) enormously. E-commerce, print media, medical,
public transportation, andoil sector are only few examples [1].
DVRP is an extension of traditional vehicle routing problem
(VRP) in terms of complexity. �e traditional VRP can be
symbolically stated on a connected network ��(��, ��, ��),
where �� = {�0, �1, �2, �3, . . . , ��} indicates the set of nodes;�� = {(��, ��), ��, �� ∈ �� and � ̸= �} represents the set of
connections, and �� = ��(�, �)(�� ,��)∈	� denotes communi-

cation cost matrix de�ned over ��. Traditionally, the node�0 is the central depot from where all the vehicles start
and end their services. �e remaining nodes of �� denote
the customers spread over geographically distinct locations.
�e VRP is nothing but �nding a set of routes for a given
set of vehicles such that each vehicle visits the customers
exactly once and overall travel cost of the vehicles should

be minimum [2]. An example of traditional VRP has been
illustrated in Figure 1. �e central depot has four delivery
vehicles to serve the demands of four customers. According to
the availability of routes, the journey for delivery vehicles has
been planned by the central depot. Due to the rapid techno-
logical advancements in real time wireless communication,
the shape of VRP has been transformed into DVRP (cf.
Figure 2). In the past, a number of variants of traditional VRP
as DVRP have been suggested by incorporating di	erent set
of constraints [3]. Some variants of VRP have been illustrated
in Table 1.

An example of DVRP has been illustrated in Figure 2.
Due to real time communication among central depot,
new customers, and delivery vehicles, the VRP depicted in
Figure 1 has been transformed into DVRP shown in Figure 2.
�e planned route of all the four delivery vehicles depicted
in the VRP (cf. Figure 1) has been changed dynamically
due to real time communication of dynamic request. �e
optimal solution of the above mentioned variants of VRP as
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Table 1: �e most common variants of VRP.

Serial number Problem Problem description Features Ref.

1 VRP-PD
VRP with pickup and
delivery

It is transportation problem for a given set of goods from some pickup locations to
the delivery locations. No central depot for the delivery vehicles is required.

[37]

2 C-VRP Capacitated VRP
It is a simple VRP with vehicles having prespeci�ed and same goods carrying
capacity.

[38]

3 H-VRP Heterogeneous VRP
It is slightly di	erent from C-VRP. Here, the vehicles have prespeci�ed but di	erent
goods carrying capacity.

[39]

4 VRP-LIFO
VRP with last-in-�rst
out

In this VRP, the items that have been picked up most recently must be the items that
need to be delivered in the next locations.

[40]

5 VRP-TW
VRP with time
window

It is a VRP with delivery time interval for each customer. �e delivery vehicles can
visit the customers in the given time interval.

[41]

6 O-VRP Open VRP
In this VRP, the delivery vehicles are not required to report back to the central
depot a�er visiting all the assigned customers.

[42]

7 DAF-VRP Dial-A-�ight VRP It is a VRP in public transport through airline. [43]

8 DAR-VRP Dial-A-ride VRP It is an on-road general public transport problem. [44]

9 VRP-MT
VRP with multiple
trips

In this VRP, the delivery vehicles take more than one tour once it �nishes the
assigned tour.

[45]

DVRPs with large number of customers and their demand
parameters could not be obtained within reasonable time due
to NP-hard nature of the problems [4]. In the last ten years,
various nature inspired metaheuristic techniques have been
applied to solve the customized instances of various DVRPs.
Genetic algorithm (GA), ant colony optimization (ACO), and
particle swarm optimization (PCO) have been commonly
used for solving the above listed DVRPs [5–7]. Nowadays,
these techniques have also been gaining popularity in vehic-
ular ad hoc networks (VANETs) [8] and high performance
computing [9].

In this paper, a multiobjective dynamic vehicle routing
problem (M-DVRP) has been identi�ed. A time seed based
solution using particle swarm optimization (TS-PSO) for M-
DVRP has been proposed. �e �ve objectives considered in
the proposed problem are geographical ranking of requests,
customer ranking, service time, expected reachability time,
and satisfaction level of customers. Each of these objectives
has been materialized in terms of both conceptual and
mathematical formulation. A multiobjective function has
been generated having four components, namely, vehicle
count/number of vehicles, expected reachability time, pro�t,
and satisfaction level. �e mathematical formulations have
been derived for each of the component objectives using the
metric of the problem.�ree constraints of themultiobjective
function, namely vehicle, capacity, and reachability have been
de�ned. �e proposed solution TS-PSO broadly operates
into two steps. In the �rst step, the identi�ed problem is
partitioned into smaller size DVRPs. In the second step, time
horizon of each smaller sizeDVRPhas been divided into time
seeds and the problem has been solved in each time seed
using particle swarm optimization. A complete algorithm has
also been developed for the proposed solution technique.�e
network simulator ns-2.34 has been used for the simulation
along with two other supporting so�ware programs MOVE
and ArcGIS. �e ��een data sets OPK-01 to OPK-15 used in
the simulation have been generated considering real vehicu-
lar environment and highly dynamic customer requirements.

�e simulation results have been compared with the genetic
algorithm (GA) solution technique.

�e rest of the paper is organized as follows. Section 2
presents some early and recent developments in dynamic
vehicle routing problem. In Section 3, details of the identi�ed
problemM-DVRP are described. In Section 4, the TS-PSO is
proposed anddescribed.�e analytical and simulation results
are presented in Section 5. Conclusion is derived in Section 6.

2. Early and Recent Developments
in VRP and DVRP

�e VRP was �rst proposed by Dantzig and Ramser in
1959. �e authors optimized the routing of a �eet of gaso-
line delivery trucks between a bulk terminal and a large
number of service stations supplied by the terminal. �ey
have used linear programing formulation for obtaining near
optimal solution [10]. A�er the induction, VRP has been
one of the challenging areas of research that has witnessed
consistent attention of the researchers from both industries
and academia. �e research contribution can be categorized
into two dimensions: probabilistic optimization and static
optimization. In probabilistic optimization, the components
of the problem such as demand, number of customers, and
service time have been considered as future events and
probabilistic models have been used to predict the future
behavior of these components [11, 12]. In static optimizations,
available information about the components has been consid-
ered without including future behavior of the components.
Some of the most recent works in DVRP have been described
below. Multiobjective dynamic vehicle routing problem with
fuzzy travel times and customers’ satisfaction in supply chain
management has been suggested in [13]. �e authors have
investigated fuzzy time window and fuzzy travel time in
depth for the VRP. �e travel distance, number of vehicles,
and waiting time of vehicles have been minimized and
the satisfaction rate of customers has also been minimized.
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Figure 1: �e traditional VRP.
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Figure 2: Conversion of VRP into DVRP.
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A set based discrete particle swarm optimization approach
for optimizing vehicle routing problem (S-PSO-VRPTW)
with time window has been suggested in [14]. �e solution
approach selects an optimal subset from the universal set
and subsequently solves the selected subset problem. �e
authors have derived new mathematical formulations for
velocity and position update to realize discrete PSO. A �tness
function for candidate solution evaluation has also been
formulated. �e line haul feeder vehicle routing problem
with virtual depots has been presented in [15]. Feeder vehicle
and virtual depot concepts have been introduced by the
authors. Travel distance and waiting time for vehicles have
been minimized using heuristic cost sharing methods. A
patrol routing algorithm has been constructed in [16] for
police, ambulance, and taxi services. �e algorithm has been
explored in terms of expression, execution, evaluation, and
engagement. A domain speci�c language (DSL) turn has been
used to express the algorithm. PatrolSim a custom simulator
has been used for the execution of the algorithm. Response
time, network coverage, and hotspot coverage metrics have
been used for the evaluation of the algorithm. For a web
based geographic information system (GIS) portal, CAPS
Map has been used for end user engagement of the algorithm.
Multidepot capacitated arc routing problem (MCARP) has
been introduced in [17]. An evolutionary approach has
been constructed by integrating some classical heuristics
into a canonical evolutionary framework. �e near optimum
MCARP solution has been used to learn two distinct kinds
of heuristic information. �e evolutionary process has been
guided by this heuristic information. An arc guided evolu-
tionary algorithm for solving vehicle routing problem with
time window has been developed in [18]. In the population,
individuals have been represented using arcs so that evolution
strategy can be adapted to the VRP-TW. �e ruin and
recreate principle have been used for mutation process. A
trajectory local search algorithm has been developed to
minimize distance. A route elimination procedure has been
also suggested. Moreover, VRP has always been in the full
attention of researchers.

3. Multiple-Objective Dynamic Vehicle
Routing Problem (M-DVRP)

In this section, a di	erent aspect of DVRP is identi�ed by
incorporating �ve objectives, namely, geographical ranking
of requests, customer ranking, service time, expected reach-
ability time, and satisfaction level of customers. �e M-
DVRP can be symbolically stated on a connected network��(��, ��, ��, ��V), where �� = {�0, �1, �2, �3, . . . , ��} indi-
cates the set of nodes; �� = {(��, ��), ��, �� ∈ �� and � ̸=�} represents the set of connections, �� = ��(�, �)(�� ,��)∈	�
denotes communication cost matrix de�ned over �� and
matrix vector ��V = (�1, �2, �3, �4, �5) is group of �ve
objectives attached with each request.�e DVRP in this con-
sideration is nothing but �nding a set of routes for a given set
of vehicles such that it optimizes both�� and��V. In some of
the earlier DVRP, strict time window has been considered for
service time of the customers. Consequently, the customers

QI PLDT PUDT STIL STIU ECPUT

QI: quantity of item

PLDT: preferred lower limit for delivery time

PUDT: preferred upper limit for delivery time

STIL: satisfactory time interval for PLDT

STIU: satisfactory time interval for PUDT

ECPUI: extra cost on per unit item paid by the customer

Figure 3: Customer request vector.

GR CR ST ERT SL PF

GR: geographical ranking of the request

CR: customer ranking

ST: service time of the request

ERT: expected reachability time 

SL: satisfaction level of the request

PF: pro�t from the request

Figure 4: Order vector for each of the customer requests.

provide their satisfaction values in binary digit, that is, 0 or
1 for each request. In other words, the customer either is
fully satis�ed or rejects the requested order in its totality [19].
But the binary digit satisfaction value consideration does not
comply with real scenario. Inspired by the importance and
continuous research in fuzzy set theory [20], the considera-
tion of fuzzy time window is gaining momentum in VRP for
complying with real customer scenario [21]. For developing
a mathematical model for M-DVRP, a �exible time window
is considered in which customers are ready to accept the
delivery in relaxed time window. �e other two important
considerations of the problem are request vector and order
vector. As soon as a customer enters in the system, he/she
sends request information to the central depot via VANETs
communication [22–29]. Each customer request is a vector
of length six as illustrated in Figure 3. Once a request vector
reaches the central depot system, an order vector is generated
corresponding to the request vector. �e order vector of
length six considered in the problem is shown in Figure 4.
�e other considerations of M-DVRP are brie�y described in
following subsections.

3.1. Geographical Ranking. In M-DVRP, the geographical
ranking of a request not only is dependent on distance of
the customer from the central depot but also is an implicit
complex function of four variables, namely, average density
of request (ADR), distance (DIST), safety and reliability
(SR), and road networks (RN). �us, a vector of length four
is associated with each request by central depot re�ecting
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ADR: average density of request
DIST: distance of the customer location

RN: road network availability
SR: safety and reliability

Component weights
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0.2

Figure 5: Geographical ranking of the request with weighing
parameters.
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GSL: guaranteed satisfaction level
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Figure 6: Customer categorization, ranking, and guaranteed satis-
faction level range.

geographical ranking. �e components of the geographical
ranking vector and corresponding weighting parameters
have been shown in Figure 5. Considering 	� as weighting
parameter and length of the vector |VGR|, the constraint

∑|VGR|�=1 	� = 1 always holds. �e geographical ranking of a
request can be calculated as

�
 = ∑4�=1 	���



VGR



 − 1 , (1)

where �� denotes the ranks and thus a request has been
geographically ranked between 0 and 1.

3.2. Customer Ranking. In M-DVRP, the customers are
categorized into four categories, namely, very important
customer (VIC), important customer (IC), regular customer
(RC), and casual customer (CC). A minimum guaranteed
satisfactory level in the range [0, 1] is de�ned for each of
these categories of customers (cf. Figure 6). Based on the
minimum guaranteed satisfaction level, service time window
of the customers is also de�ned. �e VIC has strict service
time window due to highest satisfactory level that is 1. �e
minimum satisfactory level for IC is de�ned in the range[0.75, 1). Although the IC also has smaller service time
window but the system provides services in the maximum

possible relaxable timewindow. Considering long run impor-
tance of RC, the minimum satisfactory level is de�ned in the
range [0.5, 0.75) for RC.�e best possible service is provided
in the �exible service time window. �e lowest satisfactory
level range [0, 0.5) is de�ned for the CC considering their
random entry and incredible request vector. Based on their
doubtable credibility, the delivery of requests is processed on
the way during servicing the other category of customers.

3.3. Service Time. In M-DVRP, once the order of items
reaches customer’s place, the time spent on delivering the
items to the customers is known as service time (ST) of
a request. �e service time is de�ned by considering the
quantity and type of items of the request. It is determined by
the central depot on receipt of a request from the customers
in real time fashion. �e service time can be calculated as

ST = �item∑
�=1

�����
� , (2)

where�item denotes number of items, �� is the quantity of �th
item, �� is the type of �th item, and �
� is the service rate of �th
item.

3.4. Expected Reachability Time. In M-DVRP, the average
time required to reach a delivery vehicle from the central
depot to the assigned customers is de�ned as expected
reachability time (ERT). It depends on current geographical
position of vehicle GPVcurr, the geographical position of
customer GP�, average speed of vehicle �Vavg, and weightage

of geographical ranking GRwt. It can be calculated as

ERT = 



GPV

curr − GP�



�VavgGRwt

. (3)

3.5. Satisfaction Level of Customers. �e delivery of service
up to the customer’s expectation is the notion of satisfaction
level (SL) for a particular request. It is de�ned as a function
with domain ERT and range [0, 1]. It is expressed as

SL (ERT)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0, (ERT < PLDT − STIL) or

(ERT > PUDT + STIU)
1, PLDT ≪ ERT ≪ PUDT
ERT − (PLDT − STIL)

STIL
, (PLDT − STIL) < ERT

< PLDT(PUDT + STIU) − ERT

STIL
, PUDT < ERT

< (PUDT + STIU) .
(4)

A�er de�ning all the considered objective of the identi�ed
problem, the formulation of multiobjective function and
corresponding constraints is brie�y described below. �ere
are four components in the multiobjective function, namely,
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Rout of vehicle 1 Rout of vehicle 2 Rout of vehicle 3 Rout of vehicle 4 Open rout

−1 −1 −1 −1

Figure 7: Initial structure of a particle.

number of vehicles or vehicle count�
V
, expected reachability

time, pro�t PF, and satisfaction level. �e three constraints
of the multiobjective function are vehicle, capacity, and
reachability.�e vehicle constraint states that only one vehicle
can be assigned to a customer for a request. �e capacity
constraint states that each vehicle has prespeci�ed capacity
and this capacity could not be exceeded to deliver the
request of customers. �e reachability constraint states that
the di	erence of ERT between two successive customers
must be greater than or equal to the sum of service time
of the previous customer and the travel time between the
customers. For the multiobjective function, its components
and constraints are expressed below

Max (�−11 , �−12 �3, �4) , (5)

where

�1 = �
V
,

�2 =
�

V∑
�=1

��∑
�=1

��∑
�=1

ERT������,

�3 =
��∑
�=1

PF�,

�4 =
��∑

=1
SL (ERT
) ⋅ CPFwt
 ,

���� =
{{{{{
1, �th vehicle goes from �th

customer to �th customer

0, otherwise,
CPFwt
 = GR
 + CR


Max {GR�� + CR��, � = 1, 2, 3, � = 1, 2, 3, 4} ,

s.t. �V∑
�=1

��∑
�
���� = 1, � = 1, 2, 3, . . . , ��,

��∑
�

��∑
�
���� ⋅ "�� ≪ #ℎ, � = 1, 2, 3, . . . , �

V
,

���� (ERT�� + $�� + ST
) ≪ ���� ⋅ ERT��,
� = 1, 2, 3, . . . , ��, � = 1, 2, 3, . . . , �

V
,

(6)

where �
V
denotes the number of vehicles and �� represents

the number of customers. �e ���� is the characteristic

function and CPFwt
 is the weight of preference of customer.

For solving the above identi�ed problem, time seed based
solution using particle swarm optimization has been pro-
posed and described in the next section.

4. TS-PSO for M-DVRP

�e traditional particle swarm optimization (PSO) [30] has
been generally used in solving optimization problem in
continuous search space. But, a novel method set based
particle swarm optimization (S-PSO) [31] has been suggested
for solving combinatorial optimization problems in discrete
search space. TS-PSO is inspired from the S-PSO. In TS-PSO,
the identi�ed problem M-DVRP is partitioned into num-
ber of smaller size DVRPs considering solution feasibility.
�erea�er, the time horizon of each smaller size DVRP is
divided into a number of smaller time seeds. �e duration
of time seeds in a particular DVRP depends on the degree of
dynamism. Higher degree of dynamism in a DVRP requires
smaller time seeds as compared to a DVRP with lower degree
of dynamism. A solution for a smaller size DVRP is generated
for each of the time seeds. �e solutions of all the smaller
size DVRPs are combined that represents the solution of
the identi�ed M-DVRP. �e partitioning of the problem and
division of time seeds is more speci�cally presented below

�� = Connectioned Component of

smaller DVRPs {���, � = 1, 2, 3, . . . , �}
and time horizon of �th smaller

size DVRP, '�� = �TS∑
�=1

'��,�.
(7)

In TS-PSO, the search space is considered as set of all
known and dynamically appearing connections ��, in the
given time seed of a particular partition of the problem.
A particle in the search space also known as candidate
solution is an ordered vector of connected connections from�� with vehicle information. Initially we generate particles
of some prede�ned length whose size can increase/decrease
in successive time seeds to incorporate dynamic request of
customers in e�cient manner. �e pictorial representation
of initial structured of the vector, which has been found
very useful in the construction of particles, is described in
Figure 7. Initially, the vector has been �lled up with �xed
number of −1’s randomly. �e vector has been kept open
towards the right-end to indicate that it can grow in size
in the successive time seeds. �e total number of −1 in
the vector represents the number of vehicles used in the
solution. �e ordinal numbering of customers in a solution
vector or particle is based on initial order vectors calculated



Journal of Sensors 7

3 14 6 4 8 9 2 5 11 13 10 7 1 12

Rout of vehicle 1 Rout of vehicle 2 Rout of vehicle 3 Rout of vehicle 4 Open rout

−1−1−1−1

Figure 8: An instance of a particle in a time seed of a smaller size DVRP.

by central depot for each customer request vector accepted
for a particular times seed in a smaller size DVRP. In
Figure 8, a particle with 14 customers and 4 vehicles has
been depicted. A vehicle is visiting the customers 3, 14, and
6 in order and returning to the depot represented by −1.
Another vehicle is visiting 4, 8, 9, and 2 in order and returning
to the depot. Similarly, the routes for other vehicle tours
are shown. In successive iterations, particles are enhanced
by incorporating new information from customers, vehicles,
and order vectors. Due to these enhancements, the ordinal
numbering of customers, number of customers handled by a
particular vehicle, and number of vehicles in a particle may
change.

�e mathematical formulation of the proposed solution
in terms of particle swarm optimization is given below. �e
formulas used for updating position and velocity of particles
in the traditional particle swarm optimization have been
expressed as

*�� = - × *� + 	1 × ��1 (/best − 6�)
+ 	2 × ��2 (�best − 6�) ,

(8)

6�� = 6� + *�� , (9)

where- denotes inertia weight, 	1 and 	2 are the acceleration
coe�cients that de�ne the rate of impact of /best and �best,
respectively, and ��1 and ��2 represent two random numbers
in the range [0, 1]. In TS-PSO, the above two mathematical
formulations have been used for updating position and
velocity of the particles. But each component operation of the
two operations de�ned in (8) and (9) has been rede�ned in
the framework of TS-PSO in the next subsections.

4.1. Position Representation of a Particle. In TS-PSO, position
of a particle is a vector of ordered connections along with
vehicle information. Actually, an instance of a particle repre-
sents the position of the particle. (cf. Figure 8). �e position
vector of a particle is represented as

6� = [�5,71 �9,42 , �2,63 , V1�3,13 , �12,84 ,
V2 ⋅ ⋅ ⋅ V3�50,49� �52,47�+1 , . . .] ,

(10)

where �
,�� is the �th connection between the customers : and; and V� is the �th vehicle used by the group of following
customers.

4.2. Velocity Representation of a Particle. In TS-PSO, the
velocity of a particle is a vector of connections associated
with three inclusion probabilities. Each connection of the
vector is associated with three inclusion probabilities ?ERT,

?PF, and ?SL. ?ERT ∈ [0, 1] is the insertion probability of a
connection into solution giving importance to the expected
reachability time. Similarly, ?PF ∈ [0, 1] and ?SL ∈ [0, 1] are
insertion probability considering pro�t and satisfaction level.
�e velocity vector of a particle is expressed as

*� = [�15,171 (0.2, 0.4, 0.5) , �19,242 (0.1, 0.2, 0.3) ,
V1, . . . , �50,49� (0.6, 0.9, 0.8) V�] .

(11)

4.3. Velocity Updating of a Particle. As mentioned above,
in TS-PSO, the velocity of a particle is updated using the
traditional velocity updating equation (8). But the component
operation is rede�ned in the framework of TS-PSO. �e
component operation - × *� changes the three probabilities
attached to the connections of *�. �e component operation(/best−6�) or (�best−6�) represents connection set reduction
operation and multiplication of coe�cient into position; that
is, 	1 ×��1 (/best −6�) or 	2 ×��2 (�best −6�) associates the three
probabilities to each connection of the position. Each of these
operations has been more clearly de�ned below

- × *� = [�
,�� (?�ERT, ?�PF, ?�SL) | � ∈ ��, :, ; ∈ ��] ,
?�ERT = {1, if (- × ?ERT) > 1

- × ?ERT, otherwise,
?�PF = {1, if (- × ?PF) > 1

- × ?PF, otherwise,
?�SL = {1, if (- × ?SL) > 1

- × ?SL, otherwise,
6� − 6� = [�
,�� V� | ∀V� ∈ 6�, V� ∈ 6�, �
,�� ∈ 6�,

�
,�� ∉ 6�] ,
	1 or 2 × ��1 or 2 (6�)

= [�
,�� (?ERT, ?PF, ?SL) | � ∈ 6�, :, ; ∈ ��] ,
?ERT = {1, if (	1 or 2 × ��1 or 2) > 1

	1 or 2 × ��1 or 2, otherwise,
?PF = {1, if (	1 or 2 × ��1 or 2) > 1

	1 or 2 × ��1 or 2, otherwise,
?SL = {1, if (	1 or 2 × ��1 or 2) > 1

	1 or 2 × ��1 or 2, otherwise.

(12)
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4.4. Position Updating of a Particle. �e position of a particle
is updated using the traditional position updating equation
(9). But the addition operation of the equation has been rede-
�ned in the framework of TS-PSO. �e addition operation
recon�gures all connections of the position 6� to generate
a new position 6�� . �e recon�gured connection of 6�� is
de�ned as

6�� = [�
,��� V� | ∀�
,�� , V� ∈ 6�] ,

;� =
{{{{{{{{{

H, if �
,�� ∈ *�� and satis�es I�
�, if �
,�� ∈ J�� and satis�es I�;, otherwise,

(13)

where I� denotes the constraint set and J�� is the dynamic
connection set for the �th time seed. A complete algorithm
for the proposed solution approach TS-PSO is presented in
Algorithm 1.

5. Simulation and Analysis of Results

In this section extensive simulations have been performed to
analyze the optimization accuracy of the proposed solution
TS-PSO in solving the identi�ed problemM-DVRP.�e four
objectives considered for optimization accuracy assessment
are vehicle count, expected reachability time, pro�t, and
satisfaction level. �e simulation results have been compared
with that of genetic algorithm (GA) based solution.

5.1. Simulation Environment andMethodology. Network sim-
ulator ns-2.34 has been used in the simulation of TS-PSO
algorithm. �e realistic mobility model and realistic urban
tra�c environment have been generated using mobility
model generator for vehicular networks (MOVE) [32]. An
open-source micro-tra�c simulator known as simulation of
urban mobility (SUMO) has been used to develop MOVE
[33]. Most of the necessary scenario of urban tra�c envi-
ronment such as roads, lanes in each road, number of �ows
in each lane, junctions, tra�c lights in a particular junction,
vehicle speed, le� or right turning probability of a vehicle at
a particular point, and static nodes as customers has been set
up through two main modules of MOVE, namely, road map
editor and vehiclemovement editor.�emobility trace gener-
ated byMOVEwith the help of SUMOhas been directly used
in ns-2.�e performance of TS-PSOhas been tested using the
��een data sets, namely, OPK-01,OPK-02, . . . ,OPK-15 gen-
erated by considering realistic vehicular tra�c environment
and highly dynamic customer requirements. �ese datasets
have been generated using real tra�c data of California
Vehicle Activity Database (CalVAD) [34] and US Depart-
ment of Transportation [35] which can be downloaded from
the website “Wireless Communication Research Lab” [36].
�e reason behind generating the data sets is that a lot of
dynamic features such as geographical ranking, customer
ranking, expected reachability time, satisfaction level, and
dynamic tra�c hazards have been considered in the proposed
solution TS-PSO that could not be tested with the existing

Table 2: Simulation parameters.

Parameters Values

Simulation area 1500 × 1000m2

Simulation time 1380 s
Number of vehicles 28–115

Vehicle speed 1.4–16.7m/s

Transmission range 250m
Packet senders 30
Tra�c type CBR

Packet size 512 bytes
Packet type UDP

Ifqlen 50
CBR rate 6 packets/s
Channel type Wireless

Propagation model Shadowing

Antenna model Omnidirectional

MAC protocol IEEE 802.11p

MAC data rate 5Mbps

Query period 3 s
Hello time-out 1 s
Frequency 5.9GHz

Routing protocols P-GEDIR

VRP or modi�ed-VRP data sets. To realize the twenty-
three hours’ time horizon between 6 AM and 5 AM in
the next morning, in the simulation, twenty- three-minute
time horizon has been considered in the closed interval[0, 1380] seconds.�e other important simulation parameter

is summarized in Table 2. A�er setting the network and tra�c
�ow with the above discussed parameters, the simulation has

been performed using the di	erent data sets. �e complete
simulation process has been summarized in Figure 9. �e
satellite image of New Delhi, India (cf. Figure 10), has been
obtained via Google Earth and it is imported in ArcGIS
10.2.2 for the coordinate assignments.�e data set containing
customer, vehicle, route, and connection information has
been given input to MOVE that generates New Delhi Map
with network information. �erea�er, con�guration and
trace �le have been generated and ultimately vehicular tra�c
�ow in the New Delhi Map has been produced. TS-PSO

has been implemented in ns-2 using the trace �le generated
through MOVE.

5.2. Result Analysis. In this analysis, we have considered
whether the Pareto based solution generated by the proposed
algorithm TS-PSO covers the solution achieved by GA
considering only one objective function while keeping others
as constant.�e comparison results between TS-PSO andGA
have been depicted in Table 3.

�e results depicted in Table 2 show that the solution pro-
vided by the proposed algorithm is found to be competitive
enough as compared to the solution provided by the genetic
algorithm. It is also noteworthy that our algorithm considers
all the objective functions of M-DVRP model concurrently
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Table 3: Simulation results.

Data set Functions TS-PSO
Randomized solution

�GA
� = �TS-PSO

� �GA
� = ⌈1.5�TS-PSO

� ⌉ �GA
� = ⌈1.8�TS-PSO

� ⌉ �GA
� = ⌈2�TS-PSO

� ⌉

OPK-01

�1−1 0.0357 0.0357 0.0238 0.0198 0.0179

�2−1 0.0008 0.0007 0.0007 0.0007 0.0008

�3 86U 8U 13U 16U 21U

�4 0.665 0.195 0.237 0.264 0.289

OPK-02

�1−1 0.0244 0.0244 0.0163 0.0136 0.0122

�2−1 0.0009 0.0007 0.0007 0.0007 0.0008

�3 105U 19U 25U 30U 35U

�4 0.713 0.234 0.284 0.301 0.325

OPK-03

�1−1 0.0179 0.0179 0.0119 0.0099 0.0089

�2−1 0.0012 0.0008 0.0009 0.0009 0.0011

�3 137U 36U 44U 48U 52U

�4 0.742 0.306 0.368 0.397 0.437

OPK-04

�1−1 0.0167 0.0167 0.0111 0.0093 0.0083

�2−1 0.0013 0.0008 0.0009 0.0010 0.0012

�3 149U 41U 48U 53U 56U

�4 0.752 0.342 0.395 0.425 0.456

OPK-05

�1−1 0.0154 0.0154 0.0103 0.0085 0.0077

�2−1 0.0014 0.0008 0.0010 0.0011 0.0013

�3 162U 47U 55U 58U 62U

�4 0.764 0.368 0.426 0.453 0.483

OPK-06

�1−1 0.0143 0.0143 0.0095 0.0079 0.0071

�2−1 0.0015 0.0008 0.0011 0.0012 0.0014

�3 178U 53U 61U 64U 68U

�4 0.773 0.417 0.443 0.478 0.501

OPK-07

�1−1 0.0133 0.0133 0.0089 0.0074 0.0067

�2−1 0.0016 0.0009 0.0012 0.0014 0.0016

�3 196U 61U 66U 69U 72U

�4 0.782 0.436 0.471 0.492 0.532

OPK-08

�1−1 0.0125 0.0125 0.0083 0.0069 0.0063

�2−1 0.0018 0.0009 0.0013 0.0015 0.0017

�3 207U 68U 70U 73U 76U

�4 0.795 0.465 0.490 0.520 0.554

OPK-09

�1−1 0.0118 0.0118 0.0078 0.0065 0.0059

�2−1 0.0020 0.0009 0.0015 0.0018 0.0020

�3 219U 77U 76U 79U 83U

�4 0.807 0.483 0.514 0.542 0.568

OPK-10

�1−1 0.0111 0.0111 0.0074 0.0062 0.0056

�2−1 0.0024 0.0009 0.0017 0.0021 0.0023

�3 239U 83U 81U 84U 87U

�4 0.812 0.516 0.532 0.571 0.595

OPK-11

�1−1 0.0105 0.0105 0.0070 0.0058 0.0053

�2−1 0.0027 0.0010 0.0019 0.0025 0.0026

�3 253U 89U 87U 90U 92U

�4 0.823 0.542 0.563 0.594 0.617

OPK-12

�1−1 0.0100 0.0100 0.0067 0.0056 0.0050

�2−1 0.0033 0.0010 0.0022 0.0030 0.0031

�3 269U 96U 91U 95U 98U

�4 0.831 0.589 0.601 0.637 0.650
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Table 3: Continued.

Data set Functions TS-PSO
Randomized solution

�GA
� = �TS-PSO

� �GA
� = ⌈1.5�TS-PSO

� ⌉ �GA
� = ⌈1.8�TS-PSO

� ⌉ �GA
� = ⌈2�TS-PSO

� ⌉

OPK-13

�1−1 0.0095 0.0095 0.0063 0.0053 0.0048

�2−1 0.0041 0.0010 0.0026 0.0037 0.0039

�3 204U 73U 69U 64U 56U

�4 0.844 0.593 0.627 0.650 0.674

OPK-14

�1−1 0.0091 0.0091 0.0060 0.0051 0.0045

�2−1 0.0054 0.0011 0.0031 0.0050 0.0051

�3 183U 69U 62U 53U 49U

�4 0.856 0.618 0.649 0.663 0.685

OPK-15

�1−1 0.0087 0.0087 0.0058 0.0048 0.0043

�2−1 0.0076 0.0011 0.0039 0.0065 0.0071

�3 172U 64U 57U 48U 41U

�4 0.862 0.631 0.672 0.691 0.721

Data set

1. Customer information via MOVE as .nod.xml

2. Vehicle information via MOVE as .nod.xml

3. Route information via MOVE as .edg.xml

4. Connection information via Dreamweaver CS6 as .con.xml

Satellite image of New Delhi, India, via

Google Earth

2D coordinates of the satellite image via

ArcGIS

New Delhi Map via

NETCONVERT as .net.xml

Con�gure via MOVE

as .cfg.xml

Trace �le via MOVE

as .sumo.tr

Vehicular tra�c �ow via tra�c model generator

of MOVE as .tcl

NS-2

simulation

Figure 9: Work �ow diagram of the simulation process.

Figure 10:�e satellite image of NewDelhi, India, via Google Earth.

whereas single objective has been considered in genetic algo-
rithms. Additionally in GA solution, by increasing number

of vehicles two times �GA
V

= ⌈2�TS-PSO
V

⌉ as compared to
TS-PSO, the solutions provided by GA come close to the
proposed solution in terms of SL but the pro�t earned by
the TS-PSO is far better than what is o	ered by GA solution.
To closely analyze the performance of TS-PSO in optimizing

the functions �−12 , �3, and �4, the following results have been
obtained.

�e results in Figure 11(a) show the comparison of opti-

mization of function �−12 , that is, ERT between TS-PSO and
GA solutions. It can be clearly observed that the proposed
solution optimizes the function far better than that of the
comparedGA solutions considering equal vehicle count.�is
can be attributed to the fact that the geographical ranking
of requests in the proposed solution results in better ERT.
�e optimization accuracy of GA in terms of ERT improves

with increasing vehicle count in the solution as ��
V

= �SDP
V

,

��
V

= ⌈1.5�SDP
V

⌉, ��
V

= ⌈1.8�SDP
V

⌉, and ��
V

= ⌈2�SDP
V

⌉ due
to easy availability of vehicles for individual customers.�us,
TS-PSO uses lesser number of vehicles while reducing ERT
as compared to GA solutions. �e results of comparison of
optimization accuracy for function�3, that is, PF betweenTS-
PSO and GA solutions, have been depicted in Figure 11(b). It
clearly reveals that the TS-PSO more e	ectively maximizes
the PF as compared to GA solutions. �is is due to the
e	ective customer ranking in the proposed solution. It is
also noteworthy that increasing the vehicle count beyond a
particular optimized point deteriorates the PF earned by the
solution.�e optimization accuracy of �4, that is, SL between
the proposed solution and GA, has been compared in the
results shown in Figure 11(c). �e results con�rm that the
maximization of SL by the proposed solution is signi�cantly
higher than the compared GA solutions. �is is due to the
consideration of CPFwt
 in the proposed solution. Moreover,
the maximization of SL increases with increasing vehicle
count for both the solution approaches. But the di	erence in
maximization of SL between the proposed solution and GA
is clearly visible in the results.
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Notations:��: Connected network graph;��: Number of vehicles;�
sr
: Number of static request; ST: Service time

CRV: Customer Request Vector; OV: Order vector; GR: Geographical Ranking; CRK: Customer ranking vector;��� : Number of customers in �th partition of network;��dr: Number of dynamic request in �th partition of network;

6�best(�): Global best position of �th generation;6
best� (�): Local best position of �th particle in �th generation'�� : Time horizon for �th sub-networks; '��,�: �th time seed of the �th sub-network; ERT: Expected reachability time

6�: �reshold solution used for stopping criteria. Input- ��(��, ��, ��, ��),��,�sr
,��dr.Output-{6�best(�)}

Process-
(1) Initialize a connected network��(��, ��, ��, ��).
(2) for � = 1 to�

sr
// Generating CRV

(4) generate CRV (M, PLDT, PUDT, STIL, STIU, ECPUT) randomly
(5) endfor
(6) for � = 1 to�

sr
// Generating OV

(7) generate GR vector (ADR, Dist., RN, SR) randomly and calculate Gr using (1)
(8) generate CRK vector (VIC, IC, RC, CC) randomly and assign weight according to ranks
(9) calculate ST using (2)
(10) calculate ERT using (3)
(11) endfor

(12) Partition ��(��, ��, ��, �V
) into � sub-networks as �� = ⋃��=1���

(13) for � = 1 to �
(14) Divide time horizon '�� into $ time seeds as '�� = '�1, � + '�2, � + '�3, � ⋅ ⋅ ⋅ + '��, �
(15) for each time seed '��, �
(16) ��dr = rand(0 − ���)
(17) for � = 1 to��dr // Generating Customer Request Vector for Dynamic Requests
(18) generate CRV (M, PLDT, PUDT, STIL, STIU, ECPUT) randomly
(19) endfor

(20) for � = 1 to��dr // Generating Customer Order Vector for Dynamic Requests
(21) generate GR vector (ADR, Dist., RN, SR) randomly and calculate Gr using (1)
(22) generate CRK vector (VIC, IC, RC, CC) and assign weight according to ranks
(23) calculate ST using (2)
(24) calculate ERT using (3)
(25) endfor
(26) � = 0
(27) Generate position6�(�) and velocity *�(�) for �th particle in �th generation from COV

(28) while (|6�best(�) − 6�best(� − 1) < 6�|) do
(29) � = � + 1
(30) for each particle ?�(6�(�), *�(�)) of the search space

(31) evaluate �tness using objective function (5) as Fitt[?�(6�(�), *�(�))]
(32) if (Fitt[?�(6�(�), *�(�))] == Fitt[?�(6�(� − 1), *�(� − 1))])
(33) 6
best� (�) = 6�(�)
(34) endfor

(35) 6�best(�) = 6
best1 (�)
(36) for � = 2 to number of particles in the swarm

(37) if (Fitt[?�(6
best� (�), *�(�))] > Fitt[?�(6�best(�), *�(�))])
(38) 6�best(�) = 6
best� (�)
(39) endfor
(40) endwhile

(41) store 6�best(�) for �th time seed
(42) endfor

(43) store the set of 6�best(�) for �th partition
(44) endfor

Algorithm 1: TS-PSO.

6. Conclusion

In this paper, a novel variation of DVRP has been iden-
ti�ed by incorporating multiple objectives such as geo-
graphical ranking, customer ranking, service time, expected

reachability time, and satisfaction level. �e identi�ed DVRP
is called multiobjective dynamic vehicle routing problem
(M-DVRP). A time seed based solution using particle
swarm optimization (TS-PSO) for the identi�ed problem
has been proposed. �e proposed solution could be useful
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Figure 11: �e optimization performance of TS-PSO in optimizing (a) �−12 , (b) �3, and (c) �4.

in the framework of various dynamic vehicle routing prob-
lems of real environments such as logistics, courier, and E-
commerce because the M-DVRP has more realistic assump-
tions about the real environment. It e	ectively optimizes the
considered parameters of the problem, for example, vehicle
count, expected reachability time, pro�t, and satisfaction
level. �e optimization of expected reachability time by TS-
PSO is far better than what is obtained from GA solution.
It should also be noted that TS-PSO uses less vehicles. �e
optimization of pro�t by TS-PSO is almost three times better

thanwhat is obtained in case ofGAapproach.�e satisfaction
level has been e	ectively optimized by TS-PSO. In future
research, authors will explore evolutionary multiobjective
optimization (EMO) for solving M-DVRP.
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