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Abstract—This paper proposes a new multi-objective estima-
tion of distribution algorithm (EDA) based on joint modeling of
objectives and variables. This EDA uses the multi-dimensional
Bayesian network as its probabilistic model. In this way it
can capture the dependencies between objectives, variables and
objectives, as well as the dependencies learnt between variables
in other Bayesian network-based EDAs. This model leads to
a problem decomposition that helps the proposed algorithm to
find better trade-off solutions to the multi-objective problem. In
addition to Pareto set approximation, the algorithm is also able
to estimate the structure of the multi-objective problem. To apply
the algorithm to many-objective problems, the algorithm includes
four different ranking methods proposed in the literature for this
purpose. The algorithm is applied to the set of walking fish group
(WFG) problems, and its optimization performance is compared
with an evolutionary algorithm and another multi-objective EDA.
The experimental results show that the proposed algorithm
performs significantly better on many of the problems and for
different objective space dimensions, and achieves comparable
results on some compared with the other algorithms.

Index Terms—Estimation of distribution algorithm, Joint
objective-variable modeling, Many-objective problem, Multi-
objective optimization, Objectives relationship.

I. INTRODUCTION

MULTI-OBJECTIVE problems (MOPs) comprise several
criteria that should be satisfied simultaneously, none of

which can be preferred over others. Let F = {f1, . . . , fm} be
the set of objective functions. Then, given an MOP of the form

min
x

q = (f1(x), . . . , fm(x))

subject to

{
x ∈ D ⊆ Rn

q ∈ Q ⊆ Rm
,

(1)

the goal of a multi-objective optimization algorithm is to
search for solutions that satisfy all or obtain an optimal
trade-off between objectives. Note that here, without loss of
generality, it is assumed that all objective functions are to be
minimized.
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Multi-objective evolutionary algorithms (MOEAs) [1]–[5]
are considered as promising optimizers that have been success-
fully applied to a variety of MOPs. These algorithms use their
nature-inspired operators to evolve a population of candidate
solutions. This population-based optimization parallelizes the
algorithm which can then simultaneously optimize several
areas of the search space to arrive at several compromise
solutions, as it is necessary when solving MOPs.

It is well known that in the presence of specific problem
properties, traditional evolutionary algorithms (EAs) may find
optimization difficult [6]. Estimation of distribution algorithms
(EDAs) [7]–[10] are a relatively new computational paradigm
proposed to overcome these difficulties. EDAs have also been
applied to solve many MOPs [11]–[14]. Instead of genetic
operators, these algorithms generate new candidate solutions
from a probabilistic model, which is learnt from a set of
promising solutions. The probabilistic model captures certain
statistics about the values of problem variables and the impor-
tant dependencies existing between these variables.

An important issue concerning MOEAs is how well they
scale as the number of objectives in the MOP increases
[15], [16]. This is especially important because real-world
problems usually have many criteria that can be formulated
as a many-objective problem. One way of accounting for
this is to consider the relationships between objectives and
explicitly reduce the number of objectives according to these
relationships. Different methods, like correlation and principal
component analysis [17]–[21], extending the definition of con-
flicting objectives [22], and linear programming [23] have been
proposed for this purpose. These methods reduce optimization
complexity by searching for a minimum subset of objectives.

In this study, we propose learning a joint probabilistic model
of both objectives and variables within the context of EDAs.
This allows the algorithm not only to capture the dependencies
between variables, as in other EDAs, but also to learn the
relationships between objectives and between objectives and
variables. The relationships learnt can have more complex
patterns of interaction than just linear correlation. These rela-
tionships are then implicitly used by the algorithm to generate
new solutions in the search space. In addition to the set of
solutions obtained in the Pareto set approximation, the joint
probabilistic model learnt in this EDA provides the decision
maker with an approximation of the MOP structure, i.e., the
relationships among variables and objectives in MOP.

A preliminary study of this notion was presented in [24],
discussing the incorporation of objectives into EDA model
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building. In this paper, we extend the study by using a spe-
cific probabilistic modeling adapted from a multi-dimensional
Bayesian network (MBN), usually used for multi-label clas-
sification tasks [25], [26]. In this type of problems, each
instance or data point can have several class labels. The
goal of learning a probabilistic model is then to predict the
class labels of new unseen data points. On the other hand,
in multi-objective optimization with EDAs, each solution in
the search space has several objective values, and the goal is
to generate new solutions from the probabilistic model that
have better objective values. Clearly, there are similarities
between the two problems that motivate the use of an MBN
to capture the relationships between variables and objectives.
For this purpose, the objectives are modeled as class vari-
ables in the probabilistic model and the dependencies learnt
between objectives and variables in the model are exploited to
generate new solutions. Using this type of model estimation,
the structure of the MOP can be obtained systematically,
and the proposed algorithm can be applied to many-objective
problems. This paper examines how this algorithm performs
on many-objective problems, using different ranking methods,
and studies some of the MOP structures obtained by the
algorithm.

The use of Bayesian network classifiers as the probabilistic
model of an EDA has been previously reported for single-
objective optimization in the evolutionary Bayesian classifier-
based optimization algorithm (EBCOA) [27], [28]. However,
there are several key differences between EBCOA and the
algorithm presented in this paper. First, the presence of mul-
tiple objectives in an MOP increases the information about
the quality of solutions (possibly contradictory) that should be
addressed during modeling. Second, instead of classifying the
solutions into disjoint classes, which may blur the differences
in the quality of the solutions, here the continuous objective
values are directly used in model learning. Third, in contrast to
a fixed dependency between the objectives and variables, the
algorithm presented here dynamically learns the relationships
between the objectives and variables. In this way, the model
can select a subset of variables that has more influence on
each objective.

The rest of this paper is organized as follows. Section
II briefly reviews some background required to follow the
discussion in this paper. The proposed EDA based on joint
modeling of objectives and variables is described in Section
III. Section IV presents the numerical results of applying the
algorithm on a set of MOPs and analyzes the results. Possible
MOP structures learnt by the algorithm are also analyzed.
Finally, the paper is concluded in Section V and some lines
of future research are proposed.

II. PRELIMINARIES

A. Estimation of Distribution Algorithms

Traditional genetic operators used for generating new solu-
tions in evolutionary algorithms act almost blindly and are very
likely to disrupt the good sub-solutions found so far which
will affect the optimization convergence. This disruption is
more likely to occur as the correlation between problem

ESTIMATION OF DISTRIBUTION ALGORITHM
Inputs:

Representation of solutions
Objective function f

1 P0 ← Generate initial population according to the given representation
2 F0 ← Evaluate each individual x of P0 using f
3 t← 0
4 while termination criteria are not met do
5 St ← Select a subset of Pt according to Ft

6 ρ̂t(x)← Estimate the probability density of solutions in St

7 Ut ← Sample from ρ̂t(x) according to the given representation
8 Ht ← Evaluate Ut using f
9 Pt+1 ← Incorporate Ut into Pt according to Ft and Ht

10 Ft+1 ← Update Ft according to the solutions in Pt+1

11 t← t+ 1
12 end while

Output: The best solution(s) in Pt

Fig. 1. The basic steps of an EDA

variables increases, rendering the algorithm inefficient for such
problems. Estimation of distribution algorithms (EDAs) make
use of probabilistic models to replace the genetic operators in
order to overcome this shortcoming. Fig. 1 shows the basic
steps of a typical EDA.

The set of selected solutions St serves as a training dataset
to estimate the probabilistic model and leads the search
towards regions with better fitness (represented by the selected
solutions). The set of new solutions Ut is generated using the
probabilities encoded in the probabilistic model in accordance
with the statistics collected from the solutions in St. The
choice of probabilistic model can have a major influence
on the performance and efficiency of EDAs. For example,
some probabilistic models can also encode the dependencies
between the variables, which they can use to identify and
preserve these dependencies in the sampling process. Bayesian
networks (see below) are one of these probabilistic models that
can encode dependencies between any number of variables.
Thus EDAs using this probabilistic model can be applied
to problems with highly correlated variables and a complex
structure.

In the context of multi-objective optimization, when there is
more than one objective function in the problem, Ft is a matrix
with m columns not a vector. A successful strategy adopted by
many MOEAs (including multi-objective EDAs) [29], [30] is
to modify the solution selection and replacement mechanisms
and use solution reproduction (model learning and sampling
for EDAs) as in single objective optimization. However, as we
discuss later, the inclusion of more objectives into the problem
can also affect how the new solutions are being generated.

B. Multi-dimensional Bayesian Network Classifiers

Bayesian networks [31] are multivariate probabilistic graph-
ical models, consisting of two components:

• the structure, represented by a directed acyclic graph
(DAG), where the nodes are the problem variables and
the arcs are conditional (in)dependencies between triplets
of variables, and

• the parameters, expressing for each variable Xi the con-
ditional probability of each of its values, given different
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Fig. 2. An example of a multi-dimensional Bayesian network structure, used
for multi-label classification

value combinations of its parent variables (Pa(Xi)) ac-
cording to the structure, i.e.,

p(xi | pa(Xi)),

where pa(Xi) is a value combination for the parent
variables in Pa(Xi).

By introducing a special node C into the network as the
class node, Bayesian networks can be used for classification
tasks to obtain the posterior probability of a class value c,
given feature values x1, . . . , xn, i.e., p(c | x1, . . . , xn). Several
types of Bayesian network classifiers have been proposed in
the literature (naı̈ve Bayes, seminaı̈ve Bayes, tree augmented
naı̈ve Bayes, etc.).

If a data point can simultaneously belong to several (say m)
classes, then a multi-dimensional Bayesian network (MBN)
can be learnt to perform multi-label classification, where the
posterior probability is now given by

p(c1, . . . , cm | x1, . . . , xn).

Fig. 2 shows an example of the structure of an MBN used for
multi-label classification. In this type of model, the nodes are
organized in two separate layers: the top layer comprises class
variables and the bottom layer contains feature variables. The
set of arcs in the structure is partitioned into three subsets,
resulting in the following subgraphs:
• the class subgraph, containing the class nodes and the

interactions between them,
• the feature subgraph, comprising the feature variables and

their relations, and
• the bridge subgraph, depicting the one-way dependencies

from class nodes to feature nodes.
The probabilistic model can answer several types of ques-

tions: the class labels of a given data point, the most probable
feature values for a given combination of class labels, and the
most probable values for a subset of features or classes given
the value of the others. Considering the similarity between
multi-labeled classification and MOPs, the respective questions
will be: what are the estimated objective values of a given
solution, what is the most probable solution resulting in a
specific value combination for the objectives, and, having
found the values of some objectives or variables, what will the
most probable values of the others be. Also worthy of note is
that the existence of specific types of decomposability in the
MBN structure can make these types of inference questions
simpler to answer [26].

C. Gaussian Bayesian Networks

In domains with continuous valued variables, it is usually
assumed that the variables follow a Gaussian distribution.
The Bayesian network learnt from a set of variables, having
a multivariate Gaussian distribution p(x) = N (µ,Σ) as
their joint probability function, is called a Gaussian Bayesian
network (GBN). Here, µ is the mean vector and Σ is the
covariance matrix of the distribution.

The structure of a GBN is similar to any other Bayesian net-
work. However, the network parameters define a conditional
(linear) Gaussian distribution for the variable corresponding to
each node, given the values of the parent variables [32], [33]

p
(
xi | pa(Xi)

)
= N

(
µi +

∑
Xj∈Pa(Xi)

wij(xj − µj), ν2i
)
, (2)

where µi is the mean of variable Xi, νi is the standard
deviation of the univariate conditional distribution, regression
coefficients wij specify the importance of each of the parents,
and xj is the corresponding value of Xj in pa(Xi).

III. MBN-EDA
A. Joint Modeling of Variables and Objectives

It is common practice in EDAs to estimate a probabilistic
model of the problem variables only encoding the charac-
teristics of the selected solutions St (see Algorithm 1). The
sampling algorithm is then expected to generate a new set
of solutions Ut from this model according to the statistics
collected from the solutions in St. Apart from this, there
is no requirement for the solutions in Ut to have better or
comparable objective values to those in St.

Using this solution generation scheme, exploration of the
search space, driven by the characteristics encoded in the
probabilistic model, is usually good. To extend the scheme in
order to account for objective values, the objectives can also
be encoded in the model. In this way, preferences concerning
objective values (obtained from the selected solutions) can
be encoded in the model. This applies especially to MOPs,
where more information about the quality of the solutions is
available because there are several objectives. In this study,
we show that this type of information, handled by expressive
probabilistic models, turns out to be useful for solving multi-
objective problems.

The joint learning of objectives and variables also suggests
a new way for estimating the relationships between MOP
variables and objectives. These relationships can be exploited
by the optimization algorithm to facilitate the search, focusing
only on variables that influence the values of an objective.
Thus, an implicit variable selection is taking place for each
of the objectives. Moreover, the relationships between the
objectives are also captured, helping to identify how the
values of some objectives might change against the values of
some others, using the conditional independence relationships
encoded in the model.

B. An EDA based on MBN Estimation

The probabilistic model used in this paper for joint model
learning is the multi-dimensional Bayesian network (MBN).
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Fig. 3. An overview of the proposed MBN-EDA

The variables are modeled as feature nodes and objectives as
continuous-valued class nodes. The feature subgraph encodes
the dependencies between problem variables like the models
learnt by other EDAs that use Bayesian networks as their
probabilistic model [34]–[39]. The bridge and class subgraphs,
however, encode new types of dependencies. The bridge
subgraph shows the interdependencies between each objective
and the variables, and the class subgraph represents the direct
relationships between objectives.

Let (X,Q) = (X1, . . . , Xn, Q1, . . . , Qm) denote the joint
vector of problem variables and objectives respectively (of
size n + m). Then, like any other Bayesian network, the
learnt MBN encodes a factorization of the joint probability
distribution of its constituent variables. This will give an
implicit decomposition of the MOP for this joint vector. The
joint probability distribution of this MBN is given by

p (x1, . . . , xn, q1, . . . , qm) =
n∏
i=1

p(xi|pa(Xi)) ·
m∏
j=1

p(qj |pa(Qj)), (3)

where Pa(Xi) ⊆ {X ∪ Q \ Xi} and Pa(Qj) ⊆ {Q \ Qj}
respectively are the parents of each variable and objective,
and pa(Xi) and pa(Qj) represent one of their possible value
combinations.

The proposed algorithm, which is called MBN-EDA, uses
this probabilistic model to capture the characteristics of se-
lected solutions and their objective values, and generates new
candidate solutions for MOP in search of the Pareto optimal
solutions. Fig. 3 shows the algorithm layout. After selecting a
subset of solutions according to a selection mechanism, e.g.,
non-dominated sorting+truncation selection, the solutions are
joined with their objective values to form extended solutions.
These extended solutions, comprising values for both variables
and objectives, are used to serve as a data set for estimating an
MBN. The model sampler generates new candidate solutions
from the learnt MBN, taking into consideration the values of

both objectives and variables. Finally, these new solutions are
added to the population based on a replacement mechanism.
The following sections provide more details about the algo-
rithm.

C. Solution Ranking for Elitist Selection

In contrast to single objective optimization, where the objec-
tive values can be used directly to rank solutions, the existence
of multiple objectives in MOPs necessitates the application of
an intermediate function of the form

G : Q ⊆ Rm 7→ T ⊆ R,

whose output will be used to rank the solutions. One of the
most commonly used techniques in multi-objective optimiza-
tion is the non-dominated sorting algorithm [40], which sorts
the solutions into non-dominated Pareto fronts and then sorts
the solutions within each front according to their crowding
distances. However, it has been shown that the effectiveness
of this ranking method drops as the number of objectives
increases [41]–[43].

Finding efficient ranking methods for many-objective opti-
mization (when there are more than three objectives) is the
topic of ongoing research, and several methods have been
proposed in the literature. In this study, we adopt four methods,
which have been reported to show better performance for
evolutionary many-objective optimization [44]–[47], to rank
the solutions in the MBN-EDA selection step. Let q =
(q1, . . . , qm) =

(
f1(x), . . . , fm(x)

)
and r = (r1, . . . , rm) =(

f1(y), . . . , fm(y)
)

be the objective values obtained for two
solutions x and y, where x,y ∈ D ⊆ Rn, and assume all
objectives are to be minimized. Then the considered ranking
methods are as follows:
• Weighted sum of the objectives, using a weight vector
w = (w1, . . . , wm) showing the importance of each
objective:

GWS(q) =

m∑
i=1

wiqi. (4)

• Distance to the best objective values b = (b1, . . . , bm),
using some distance measure d(·, ·) in the objective space
(e.g., Euclidean distance):

GDB(q) = d(b, q). (5)

When the best objective values are not known beforehand
(which is usually the case), the best objective values
achieved so far (considering each objective individually)
in the current population (Ft in Algorithm 1) can be used,
i.e., the best value bi for objective fi is

bi = min
q∈Ft

{qi}.

• Global detriment or the total gain lost by each solution
against other solutions in the population:

GGD(q) =
∑

∀r∈Ft,r 6=q

gain(r, q), (6)
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where the function gain(·, ·) computes the gain obtained
in the objective values by a solution q compared to
another solution r:

gain(q, r) =
m∑
i=1

max{0, ri − qi}. (7)

• Profit of the gain obtained from each solution against
other solutions in the population:

GPG(q) = max
r∈Ft,r 6=q

gain(q, r)

− max
r∈Ft,r 6=q

gain(r, q), (8)

where the definition of gain(·, ·) is equal to (7) above.
Applied to the objective values obtained for the MOP

candidate solutions, these ranking methods will result in an
ordered set, which is then used to select a subset of solutions.
Any selection mechanism can be simply applied on the ordered
set. MBN-EDA uses truncation selection where the best τ ·N
solutions (according to the ranking method) of the population
are selected for a given τ ∈ (0, 1), where N is the number of
solutions in the population.

D. Solution Reproduction based on Probabilistic Modeling

1) Estimating the Probabilistic Model: A search+score
strategy [48]–[50] is used in MBN-EDA to learn the MBN
from the data. In this strategy, a search algorithm is employed
to explore the space of possible MBN structures to find a
structure that closely matches the data. The quality of different
MBN structures obtained in this search process is measured
using a scoring metric, usually computed from data. Although
using a search algorithm (structure search) within another
search algorithm (solution search) may appear to be circular,
note that the aim of the structure search algorithm is to find a
structure that adequately represents data characteristics rather
than the optimum structure. For further discussion refer to
[51].

A greedy local search algorithm is used to learn the structure
of MBN. In each iteration, this algorithm weighs up all
possible arc addition, removal and reversal operations that will
map the current network structure to a new valid structure
(according to the MBN structural constrains) in a single step
and then applies the operation that will result in the highest
increase in the network score [52]. The Bayesian information
criterion (BIC) [53] is used to score possible MBN structures,
This score is based on a penalized log-likelihood measure

N∑
k=1

( n∑
i=1

log
(
p
(
xki | pak(Xi)

))
+

m∑
j=1

log
(
p
(
qkj | pak(Qj)

)))

−1

2
log (N)

( n∑
i=1

|Pa(Xi)|+
m∑
j=1

|Pa(Qj)|

+ 2(n+m)
)
,

(9)

where xki and qkj are the values of variable Xi and objective
Qj in the kth joint solution, respectively. Similarly, pak(Xi)
and pak(Qj) are respectively the value combinations of the
parents of Xi and Qj in the kth joint solution. |Pa(Xi)| ≤
n+m−1 and |Pa(Qj)| ≤ m−1 respectively show the number
of parents of Xi and Qj , according to the MBN structure.

The second term in (9), which is the penalizing term,
is computed assuming that MBN is implemented in con-
tinuous domains with a GBN. The parameters of this type
of MBN are computed from the mean vector and covari-
ance matrix of the multivariate Gaussian distribution (MGD)
estimated for the joint vector of variables and objectives:
N (m<1×(n+m)>,S<(n+m)×(n+m)>). Usually the maximum
likelihood (ML) estimation is used to estimate the parameters
of MGD (the mean vector and covariance matrix) from the
data. However, when the dataset does not provide sufficient
statistics, this method cannot obtain a robust estimation of
the parameters and especially the covariance matrix which
should be symmetric and positive-definite. In our case, since
the solutions are extended by appending the objective values,
this problem becomes even worse.

Regularization techniques [54], [55] are one of the methods
that can be used to overcome this problem. MBN-EDA uses
the covariance shrinkage estimation [56] to improve the esti-
mation of MGD for the joint vector of variables and objectives.
In this method, the ML estimation of the covariance matrix is
linearly combined with a simpler target matrix, which has a
smaller number of parameters. More specifically, a diagonal
matrix with zeros in all off-diagonal entries is used as the
target to enforce shrinkage towards sparser matrices while
leaving the diagonal elements (variances) intact, preventing
early loss of diversity:

S∗ = (1− λ)S + λT . (10)

Here, T represents the target matrix and λ is the shrinkage
intensity (also called regularization parameter), which can be
computed analytically in a data-driven manner by minimiz-
ing a mean square error loss function. In practice, the ML
estimation of the correlation matrix is used to compute this
shrinkage intensity for the specified diagonal target matrix.
The regularized estimation in (10) leads to a statistically
more efficient covariance matrix that is well-conditioned and
positive-definite, as necessary for computing the parameters of
MBN. For more details on applying regularization techniques
to the model learning of continuous EDAs, see [57].

2) Generating New Solutions: New candidate solutions to
the MOP can be sampled from the probability distribution
encoded in the MBN. Probabilistic logic sampling [58], also
known as forward sampling, is the method frequently used
for sampling Bayesian networks. This method first obtains
an ancestral or topological ordering of the network nodes.
In this ordering, each node appears after its parent nodes
according to the Bayesian network structure. Consequently, all
objective nodes appear before variable nodes in the topological
ordering obtained for an MBN, due to the restrictions imposed
by the bridge subgraph in model learning. New solutions are
generated by sampling the conditional probability distributions
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estimated for each node in the MBN according to the com-
puted order. Since all node i’s parents appear before node
i in the ordering, all of its parent nodes will have already
been sampled at the time of sampling node i and therefore the
parameters of the conditional distribution of this node can be
computed.

Thanks to the joint modeling of objectives and variables
in the MBN that has encoded the dependencies between the
variables and objectives, any information about good objective
values can be inserted and propagated in the network in
the sampling process, increasing the probability of generating
variable values that will result in such objective values. More-
over, the restrictions imposed by the direction of the arcs in
the MBN bridge subgraph decrease the number of generated
solutions that are inconsistent with the inserted evidence [59].

The approach adopted in this paper treats the objective
nodes as normal nodes, and new dummy values (since they
are not computed from the objective functions) are generated
for these nodes using the probabilities encoded in the MBN.
In this way the interdependencies that are captured during
model learning between objectives are also taken into account
in the sampling process. When a variable node that has
some objective nodes as its parents is being sampled, these
dummy objective values are used to compute the parameters
of the conditional distribution. The values generated for the
objectives are an approximation of the characteristics encoded
in the model for the objective values of the selected solutions.
Therefore, this method can increase the conformity of the
sampled solutions with the learnt MBN.

IV. EXPERIMENTS

To study the performance of MBN-EDA in multi-objective
optimization and to see how the proposed scheme for solution
reproduction works, this algorithm is applied on a set of MOPs
and its behavior is analyzed. The algorithm is implemented
using the Matlab toolbox for EDAs (MatEDA) [60], and the
implementation of the MBN learning algorithm is adapted
from the code provided for GBN learning [61]. Before learning
the MBN, training data (extended solutions) are first standard-
ized to have a mean of zero and a standard deviation of one, in
order to simplify the learning process by reducing the number
of parameters in each node. The learning algorithm restarts the
structure search from a new random structure after reaching a
local optimum of the score function up to a maximum number
of node score evaluations. The algorithm finally returns the
highest scoring network in all these sub-searches.

To get a better assessment of the optimization performance
of MBN-EDA, the results are compared against two other
algorithms: a multi-objective evolutionary algorithm (MOEA)
and a multi-objective EDA. The MOEA uses simulated binary
crossover [62] and polynomial mutation [63] in continuous
domains as its genetic operators to generate new solutions, and
is used as a standard reference algorithm in many evolution-
ary multi-objective optimization studies [5], [64]. The multi-
objective EDA, namely the regularity-model based multi-
objective EDA (RM-MEDA) [13] has been demonstrated to
outperform many MOEAs on several benchmark functions.

RM-MEDA assumes a certain type of smoothness for the
Pareto set and iteratively applies local principal component
analysis to build a piece-wise continuous manifold of dimen-
sion m− 1 (m is the number of objectives). This is then used
with Gaussian noise to generate new solutions.

The above four ranking methods (Equations (4)–(6) and (8))
are implemented within an individual selector engine which is
plugged into each of these algorithms. Since in a black-box
optimization scenario, none of the objectives takes precedence
over others, equal weights are used for all of the objectives
in the weighted sum ranking method (GWS). To allow the
values of different objectives with possibly different ranges
to be combined, all objective values are normalized before
applying a ranking method. MBN-EDA and MOEA use the
same ranking method as for selection in the replacement step.
RM-MEDA does not have a replacement step, and the newly
generated solutions completely replace the whole population.

A. MOPs

In [65], Huband et al. reviewed many of the available MOP
benchmarks in the literature, based on which they proposed a
set of MOPs called the walking fish group (WFG) problems.
These problems encompass a diverse set of properties that can
be found in real-world MOPs and, therefore, raise substantial
obstacles for any multi-objective optimization algorithm. Each
of the objective functions fj of an MOP in this benchmark
takes the following form

min
z

fj(z) = D · zm + Sj · hj(z1, . . . , zm−1), (11)

where D and Sj are scaling factors and the functions hj(·)
together determine the shape of the Pareto optimal front (e.g.,
concave, convex, etc.) for that MOP. z is an m-dimensional
vector obtained by applying a number of transformation func-
tions, like shifting, biasing or reduction, to the n-dimensional
input solution x ∈ D and is composed of two parts: the first
m− 1 parameters, z1, . . . , zm−1, are obtained from the first k
variables of the input solution, and the last parameter (zm)
is obtained from the last l variables of the input solution,
where n = k+ l. To simplify the application of transformation
functions in the input solution, k is assumed to be a multiple
of m− 1 and l an even number.

The number of both objectives and variables can be scaled
in this benchmark, which consists of nine MOPs. All WFG
problems, except the first three, have a concave Pareto optimal
front. WFG1 has a mixed convex-concave optimal front,
WFG2 has a disconnected convex front, and WFG3 has a
degenerated one-dimensional linear front. For most of these
MOPs, the optimal solution of objectives is shifted away
from zero to neutralize any bias of the optimization algorithm
towards smaller values for the variables. Moreover, in many
of the WFG problems, the objective functions are inseparable,
requiring the optimization algorithm to consider the relation-
ships between variables.

In this study, these WFG problems have been used in the
experiments to test the algorithms. The number of objectives
considered are 3, 5, 7, 10, 15 and 20, whereas the number of
variables is set to 16 (with some exceptions). In this way, we
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will be able to investigate the performance of the algorithms
against an increasing number of objectives with an unchanged
solution space size.

B. Experimental Design

Each algorithm is applied with each ranking method sep-
arately to each WFG problem with different numbers of
objectives. Therefore, there will be 3 × 4 × 9 × 6 possible
combinations. The additive epsilon indicator [64], [66] is used
to measure the quality of the results obtained by each of the
algorithms because of its tractable computational complexity
for many-objective problems. This indicator is based on the
notion of epsilon efficiency [67], and the corresponding rela-
tion of epsilon dominance that is defined as

∀x,y ∈ D,
x �ε+ y ⇐⇒ ∀fi ∈ F fi(x) ≤ ε+ fi(y). (12)

The additive epsilon indicator between two approximations A
and B of the Pareto set is defined as the smallest epsilon value
that allows all the solutions in B to be ‘ε+’-dominated by at
least one solution in A:

Iε+(A,B) = min
ε∈R+

∀y ∈ B ∃x ∈ A | x �ε+ y. (13)

According to this definition, the additive epsilon indicator
for an approximation A of the Pareto set is obtained using a
reference set R

Iε+(A) = Iε+(A,R). (14)

This definition implies that smaller values of the epsilon
indicator are better. A good choice for the reference set R
is an approximation of the Pareto optimal set. However, the
size of a good approximation of the Pareto optimal set should
increase exponentially with the number of objectives in the
MOP to offer a good coverage of the Pareto optimal front.
Therefore, this choice of reference set is impractical for many-
objective problems. The reference set considered in this paper
is composed of the endpoint solutions, obtained by setting one
of the objectives to its minimum value and the others to their
maximum value, plus the solution representing an approximate
compromise between the values of all objectives (e.g., the
mean value in the objectives range). The size of this reference
set grows only linearly with the number of objectives, and the
inclusion of endpoints favors those Pareto set approximations
that result in a more scattered Pareto front.

C. Results

Fig. 4–6 show the epsilon indicator value obtained for the
Pareto set approximations of each of the algorithms, averaged
over 20 independent runs. All of the algorithms stop after
reaching a maximum number of generations, which is set to
300. The population size is equal for all algorithms and is
gradually incremented as the number of objectives increases
according to Table I. In each generation, 50% of the solutions
in the population are selected for reproduction(i.e., τ = 0.5).

Table II shows the statistical analysis of the results for
the algorithms with different ranking methods on each of

TABLE I
THE POPULATION SIZE USED FOR DIFFERENT NUMBER OF OBJECTIVES

AND VARIABLES.

No. Objectives 3 5 7 10 15 20

No. Variables 16 16 16 15 16 21

Population Size 50 100 150 200 250 300

the MOPs with different numbers of objectives. The non-
parametric Friedman test [68] is used to check for the statis-
tical differences of the algorithm performance. When the null
hypothesis that all the algorithms have an equal average rank
is rejected for a specific problem configuration with a p-value
less than 0.05, the entry related to the algorithm with the best
Friedman rank is shown in bold. The numbers in parentheses
show the results of pairwise comparisons using Bergmann-
Hommel’s post-hoc test with a significance level of α = 0.05.
The first number shows how many algorithms are significantly
worse than the algorithm listed in this column, and the second
number shows how many algorithms are significantly better.

The objectives in WFG1 are unimodal and biased for
specific regions of their input. For this problem, MBN-EDA
is able to obtain significantly better Pareto set approxima-
tions than the other two algorithms. The performance of the
algorithm is very similar when using the different ranking
methods tested in these experiments (Fig. 4, left column).
Even though there are more interdependencies between the
variables in WFG2, MBN-EDA is able to obtain significantly
better results for this problem, evidencing the advantage of its
probabilistic model for guiding the solution space search. The
difference in the optimal front of the MOP problems does
not significantly affect MBN-EDA’s optimization ability as
observed for WFG3, which is very similar to WFG2 except for
the shape of the Pareto optimal front. Moreover, approximating
the degenerated front in this problem requires good search
process exploitation, which, according to the results for this
problem, MBN-EDA is better able to do than the other two
algorithms.

For WFG4 (Fig. 5, left column), where all of the objectives
are multi-modal, the optimization results obtained by MBN-
EDA with different ranking methods are significantly better
in most of objective space dimensions. For some of the
ranking methods, MOEA and MBN-EDA performances are
comparable as the number of objectives increase, suggesting
the usefulness of genetic operators if there are a large number
of optima in a problem. When objective multi-modality is
combined with deception, as in WFG5, MBN-EDA perfor-
mance significantly deteriorates. In fact this algorithm has the
worsted optimization performance compared with the other
two algorithms for this problem, where it obtains significantly
worse Pareto set approximations with all the tested ranking
methods, and specially for larger objective space dimensions.
A possible explanation for this behavior is that the relation-
ships between deceptive objectives do not provide sufficient
information to help the algorithm generate good trade-off
solutions in the search space.

The interdependencies between variables in WFG6 are more
complex than in the WFG2 and WFG3 problems. Therefore,
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Fig. 4. The average epsilon indicator values for WFG1 (left column), WFG2 (middle column) and WFG3 (right column) problems.

we find that the choice of the ranking method used in so-
lution selection, which provides the training data for model
estimation, will play a major role. In this MOP, the results
obtained by MBN-EDA with the GPG and GGD ranking
methods are significantly better than for the other algorithms,
whereas the results are comparable or significantly worse with
the other two ranking methods when the number of objectives
is increased. This also shows that the gain function defined in
(7) can be a good measure of solutions superiority in this type
of MOP.

In WFG7 and WFG8, the optimum value of each variable
is biased based on the values of other variables. All of the

algorithms find it very difficult to deal with this property
of the problem. Again, we see (Fig. 6, left and middle
columns) that the choice of ranking method has a significant
influence on algorithm performance. With some of the ranking
methods (e.g., GPG and GGD), MBN-EDA is able to obtain
significantly better approximations of the Pareto optimal set
for these two problems according to the quality indicator
values. The last problem (WFG9) combines many of the
properties found in the previous WFG problems. Specifically,
apart from variable optimal values being biased, many of the
objectives are deceptive as in WFG5. As described previously
for WFG5, this prevents MBN-EDA from being able to per-
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Fig. 5. The average epsilon indicator values for WFG4 (left column), WFG5 (middle column) and WFG6 (right column) problems.

form considerably better than the other two algorithms, despite
the additional information it collects from data. Nevertheless,
the performance of MBN-EDA for this problem is comparable
to the other two algorithms, and, with some ranking methods
(GWS and GDB), is significantly better.

In general, the results suggest that there are several factors
affecting the optimization performance of the tested algorithms
on the selected set of MOP problems. According to the
selected quality indicator, MBN-EDA is able to obtain better
approximations of the Pareto set than the other two algorithms
for many of the tested MOPs featuring different properties
and on different objective space dimensions. MBN-EDA finds

some specific MOP properties, like deception in the variable
values, difficult to deal with.

For some of the tested MOPs, the choice of the ranking
method plays a crucial role in algorithm performance and
some algorithms tend to be more compatible with specific
ranking methods. For example, MBN-EDA performed better
than the other algorithms for most MOPs using G<PG> as
the ranking method. Since the solution selection mechanism
is similar in all algorithms (as they use similar ranking
methods), a significant difference in the performance between
one algorithm and the others can be attributed to its solution
reproduction mechanism. Therefore, the better optimization
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Fig. 6. The average epsilon indicator values for WFG7 (left column), WFG8 (middle column) and WFG9 (right column) problems.

results for MBN-EDA may be related to model estimation
and sampling being better, as they concern both objectives
and variables. Moreover, although the choice of probabilistic
model in an EDA is important, it should be noted that the
difference between MBN-EDA and RM-MEDA performance
is not only due to the difference in their probabilistic models.
We have previously shown [24] that the incorporation of
objectives into the same probabilistic model can result in
significantly better performance.

In some of the problem instances (e.g., WFG6 with GPG),
with the increase in the objective space dimension, the al-
gorithms seem to obtain better Pareto set approximations

that result in lower quality indicator values (meaning better
approximations). Note, however, that like the algorithms,
the computation of quality indicator values is also affected
by the increase in the objective space dimension. In larger
objective spaces, the Pareto set approximations obtained by
the algorithms will become sparser, as they are using small
populations. Also since a small reference set is used to evaluate
the algorithms, the differences in the performance of an
algorithm in different objective space dimensions will not be
clear. However, since an equal reference set is used for each
specific objective space dimension, the indicator values can
be used to compare the performance of different algorithms in
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TABLE II
THE RESULTS OF STATISTICAL DIFFERENCE TESTS FOR DIFFERENT WFG PROBLEMS WITH DIFFERENT NUMBER OF OBJECTIVES AND FOUR DIFFERENT

RANKING METHODS. THE BOLD ENTRIES SHOW THE ALGORITHM OBTAINING THE BEST RANKING ACCORDING TO THE STATISTICAL TEST. THE
NUMBERS IN THE PARENTHESES SHOWS THE NUMBER OF ALGORITHMS THAT ARE SIGNIFICANTLY WORSE AND BETTER THAN EACH ALGORITHM,

RESPECTIVELY, CONSIDERING A 0.05 SIGNIFICANCE LEVEL (REFER TO THE TEXT FOR MORE DISCUSSION OF THE STATISTICAL TEST).
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Fig. 7. The average weight of the links from objectives to variables in 5-objective WFG1 problem with irrelevant variables.
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Fig. 8. The average weight of the links between objectives in 8-objective WFG1 problem with three pairs of similar objectives.

that dimension.

D. MOP Structure Estimation

A major concern of this study is to analyze the MOP
structures estimated by MBN-EDA in the course of evolution.
These structures are important not only because they can
improve optimization by providing information about different
types of (in)dependencies existing in the problem (as shown in
Section IV-C), but also because they can give decision makers
more control over the selection of the desired information from
Pareto set approximations [69] and better insight into the way
different variables influence the objectives or how objectives
interact [70]. MBN-EDA’s ability to retrieve the MOP structure
is tested in different case studies by investigating the structures
learnt for the WFG1 problem with five objectives and 16
variables and an already known MOP structure. To include
the factor of different training data for estimating the MOP
structure in the analysis, two of the previously introduced
ranking methods, i.e., GPG and GDB , are used with MBN-
EDA in the study.

In the first case study, nine irrelevant variables are added to
the problem and uniformly distributed among other variables.
These variables do not affect the outcome of objective values
in the MOP. Fig. 7 shows the absolute weight of the links
encoded in the MBN’s bridge substructure between objectives

and variables along the evolution path of MBN-EDA. The
weights are averaged over 20 independent runs. We found that
MBN-EDA is able to clearly distinguish between relevant and
irrelevant variables in the studied MOP. The low weight of
the links between objectives and irrelevant variables in the
estimated MBNs is because either the objectives and these
variables have been encoded as conditionally independent of
the other variables and objectives or any existing link has
been attached a very small weight, allowing the algorithm
to bypass the noise introduced by these variables to the
problem. Although the models are learnt from different initial
populations in the different runs, the structural information
encoded between objectives and variables is very similar. It is
also shown that the populations selected according to the GPG
ranking method help to better distinguish between relevant and
irrelevant variables especially in the final generations where
the algorithm focuses on specific regions of the search space.

The second case study analyzes the structures learnt for
an eight-objective WFG1 problem with three pairs of similar
objectives. Fig. 8 compares the absolute weight of the arcs
between similar objectives and between dissimilar objective
pairs, encoded in the class substructure of MBN in different
generations of MBN-EDA. The results are averaged over 20
independent runs. The relatively high weights between similar
objectives show that MBN-EDA is correctly encoding a strong
dependency between these objectives compared with other de-
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Fig. 9. Part of the structure learnt for the 5-objective WFG1 problem showing the most significant arcs and their corresponding nodes.

pendencies in the class subgraph. Note that a closer inspection
of the models learnt in different runs with different initial
populations has revealed that such a dependency between
similar objectives is encoded in the model in all the runs, i.e.,
100% of the time. We also find that the information about the
similarity of objectives in the MBN class subgraph is better
captured from the populations selected according to the GDB
ranking method.

Based on the observations from the above two case studies,
the third case study directly inspects the structures learnt
by MBN-EDA for the original WFG1 problem. In the five-
objective WFG1 problem considered in the case studies re-
ported in this section, the first k = 4 variables determine
the position of a given solution in the objective space using
different shape functions hj . This is then linearly combined
with a distance parameter, obtained from the last l = 12
variables. A simplified definition of the five objective functions
in this problem can be given as follows [65]:

f1(x) = a+ 2 · h1
(
g2(x1), g2(x2), g2(x3), g2(x4)

)
f2(x) = a+ 4 · h2

(
g2(x1), g2(x2), g2(x3), g2(x4)

)
f3(x) = a+ 6 · h3

(
g2(x1), g2(x2), g2(x3)

)
f4(x) = a+ 8 · h4

(
g2(x1), g2(x2)

)
f5(x) = a+ 10 · h5

(
g2(x1)

)
,

(15)

where a = g1(x5, . . . , x16), and functions g1(·) and g2(·) rep-
resent a composition of transformations on the input variables.

Fig. 9 shows part of the structure learnt for this problem,
consisting of significant arcs and their corresponding nodes
that have an average absolute weight value greater than a
threshold set to w ≥ 0.1 (constituting about 7% of the
most significant arcs). While there are many links capturing
the obscure (in)dependencies between variables (not depicted
here), it is evident that MBN-EDA attaches more importance
to the links between objectives in the class subgraph, and
between the objectives and the first four variables in the
bridge subgraph. Moreover, these dependencies conform to
the function definitions given in (15). For example, the link
between objectives Q2 and Q4, which is captured using both
tested ranking methods, is supported by the fact that h2 is
a multiplication of h4 and two other factors obtained from
variables X3 and X4. Another example is the relationship

between objective Q1 and the four variables, either directly or
through the relationship with other objectives, since all four
variables influence the value of this objective.

An important point to note here is the significance of the
information provided by the dependencies between objectives
and between objectives and variables in multi-objective op-
timization from MBN-EDA point of view. There are some
studies in the literature that analyze how the dependencies
between variables are represented in probabilistic models [71].
But, to the best of our knowledge, the importance of the
dependencies involving objectives have not been considered so
far in other EDAs used for multi-objective optimization. Such
dependencies allow the proposed MBN-EDA to approximate
how the variables can affect objective values, which is used
to generate new solutions with better objective values.

V. CONCLUSIONS

The similarity between multi-label classification and multi-
objective optimization motivates the use of MBNs in the
context of EDAs to solve MOPs. This paper proposes a new
modeling approach in MO-EDAs that uses MBN estimation
to learn a joint model of objectives and variables while at the
same time differentiating their role in the network. This model
can capture not only the relationships between variables like
other EDAs, but also the relationships between variables and
objectives, and between objectives. The proposed MBN-EDA
is able to deal with many-objective problems by exploiting
these new types of relationships encoded in the MBN and
implicitly obtaining a decomposition of the MOP, which is
used to generate new solutions.

MBN estimation is incorporated into continuous EDAs
using Gaussian Bayesian networks where each network node
encodes a conditional Gaussian distribution. To obtain a more
robust estimation of the model parameters, MBN-EDA em-
ploys regularization techniques, previously applied only to
single-objective EDAs. This helps the algorithm to obtain a
sparser structure, avoiding the effect of possible noise in the
data and simplifying many-objective optimization.

The results of exhaustive experiments, applying MBN-EDA
with different ranking methods to the WFG problems with
a different number of objectives, show that, according to
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the epsilon quality indicator and compared with two other
algorithms, a standard MOEA and a competitive EDA, this
algorithm is able to obtain significantly better approximations
of the Pareto set for many of these MOPs, with a significance
level of α = 0.05. We found that the choice of ranking meth-
ods has a major influence on the performance of the algorithms
for some of the problems, as they determine the population
used for model estimation and offspring reproduction. The
results also show that the proposed MBN-EDA was unable to
satisfactorily deal with some MOP properties, like deception
in the values of the variables.

The proposed joint model learning approach suggests a way
of obtaining the MOP structure that can be used for decision
making. An analysis of the structures learnt by MBN-EDA
along the evolution path show that the proposed algorithm is
able to distinguish between relevant and irrelevant variables,
performing a type of variable selection for the objectives
encoded in the model. It can also capture stronger dependen-
cies between similar objectives. The analysis of the specific
structures learnt for the five-objective WFG1 problem shows
that MBN-EDA is able to obtain a very good approximation of
this MOP structure and that the information provided by the
dependencies between variables and objectives and between
objectives, which other EDAs completely overlook, can be
very important for multi-objective optimization.

There are many ways to extend this work. This new mod-
eling method provides a promising platform for the experts or
decision makers to incorporate preference information [72],
[73] into the model as conditional (in)dependency relations
between objectives and variables, as well as preferable values
for some objectives. The dependencies learnt between objec-
tives in the MOP structure can be used to analyze relationships
like conflict or redundancy between sets of objectives. The ap-
plication of MBN-EDA to real-world problems with unknown
structures and to check how the captured relationships meet
decision-maker expectations are also potential future areas of
research.
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