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Abstract Local Indicators of Spatial Aggregation (LISA) can be used as objectives in a
multicriteria framework when highly autocorrelated areas (hot-spots) must be identified and
geographically located in complex areas. To do so, a Multi-Objective Evolutionary Algo-
rithm (MOEA) based on SPEA2 (Strength Pareto Evolutionary Algorithm v.2) has been
designed to evaluate three different fitness functions (fine-grained strength, the weighted
sum of objectives and fuzzy evaluation of weighted objectives) and three LISA methods.
MOEA makes it possible to achieve a compromise between spatial econometric methods as
it highlights areas where a specific phenomenon shows significantly high autocorrelation.
The spatial distribution of financially compromised olive-tree farms in Andalusia (Spain)
was selected for analysis and two fuzzy hot-spots were statistically identified and spatially
located. Hot-spots can be considered to be spatial fuzzy sets where the spatial units have a
membership degree that can also be calculated.
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1 Introduction

The identification of spatial units (SU) where a phenomenon is significantly concentrated is
specially relevant in many decisional situations both to identify the causes of such spatial ag-
gregation and to support decision making (Baddeley et al. 2006; Andrienko and Andrienko
2006; Gutiérrez et al. 2008; Noyan 2010). According to Agarwal et al. (2005) and Moreno
et al. (2008), hot-spots are those spatial conglomerates where the geographical distribution
of the phenomenon is highly and significantly autocorrelated.

Spatial analysis methods are widely used to identify hot-spots and geographically locate
them. Holloway et al. (2007) grouped them into: (i) those methods that specifically use spa-
tial econometrics and (ii) those that apply any Geographical Information System (GIS) tool.
In the first group, there are many methodological approaches from classical Poisson analysis
of random occurrences in space (Youssef et al. 1991) to artificial neural networks, evolution-
ary algorithms and fuzzy logic (Fischer 2006; Coello-Coello et al. 2007); from among these
some well known techniques are Local Indicators of Spatial Aggregation—LISA (Ord and
Getis 1995; Anselin 2002; Holloway et al. 2007). GIS utilities to analyse geo-referenced
spatial data also include quite a number of possibilities like: Kernel estimation (Silverman
1986), distance decay estimates (Staal et al. 2002) and dynamic Minimum Spanning Trees
(Assunçao et al. 2006). All of them show smooth surfaces in maps that highlight relevant
areas.

Instead of analysing global structures and tendencies in the spatial distribution of a vari-
able, LISA methods statistically contrast the existence of local concentrations (autocorrela-
tion) of significantly higher or lower variable values compared to its mean: hot-spots. These
methods are based on standard correlation and Durbin-Watson statistics in a time-series
context and try to detect spatial concentrations defined by a local dependence phenomenon.
Some examples of standard LISA methods are: local Moran’s I , local Geary’s C and Getis
and Ord’s G (Anselin 1995; Ord and Getis 1995). All of them are useful but their results
must be interpreted carefully because of their different ways of approximating the spatial
distribution of the phenomenon under study. For example, Moran’s I coefficient can be in-
terpreted as a covariance, the calculation procedure for Geary’s C is similar to a variance
analysis where the influence of variable values is greater than in Moran’s I (and its interpre-
tation is the opposite as well) and, finally, Getis and Ord’s G is an association measurement.

Each spatial econometric method, all of them useful, provides different sizes, shapes and
locations of hot-spots for the phenomenon under study (Moreno et al. 2008). Authors usu-
ally focus their attention on only one method to explain the spatial distribution of a specific
phenomenon but it is difficult to find papers that simultaneously combine various methods to
obtain generalized conclusions about their potential agreement rates. Some GIS utilities, like
map algebra, can be used to combine spatial projections obtained from econometric models
(Pérez-Naranjo and García-Alonso 2005; Moreno et al. 2008), but this procedure is almost
always subjective. Gonçalves and Estellita (2002) used standard linear programming in spa-
tial analysis to face the multi-objective problem generated when different spatial approaches
are considered, but unfortunately this problem is not linear (Hof and Bevers 2000).

Spatial analysis needs a wide enough geographical distribution of geo-referenced data
because it is based on the geographical contiguity of SU. The existence of unknown or dark
zones, where analysts cannot assign any data, is very frequent in complex areas. This prob-
lem can be solved substituting missing data with data predicted by statistical models (De
Pinto and Nelson 2007) or by spatial interpolation (Andrienko and Andrienko 2006). When
the statistical distribution of the phenomenon is unknown and a spatial pattern exists ac-
cording to empirical evidence, like in the agrarian sector, spatial interpolation is statistically
more efficient than ignoring these missing values (Griffith 2003).
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Isolated SU with high original values and autocorrelation scores are very easy to identify
using, for example, GIS utilities. Nevertheless, the identification and the geographical loca-
tion of hot-spots is a challenge to be dealt with because their identification and geographical
location in large and heterogeneous areas with dark zones is a non-supervised clustering
one. In this framework, each spatial econometric model is a non-linear objective to be op-
timized in search of a compromise (García-Alonso and Pérez-Naranjo 2007). This model
must handle unknown algebraic and spatial trade-offs.

A multi-objective problem is a decisional situation where the decision maker (DM)
has to optimize some objectives with unknown trade-offs between them. When non-
linear functions have to be optimized in a potential non-convex decisional space, Multi-
Objective Evolutionary Algorithms (MOEA) can be used (Bäck 1996; Kalyanmoy 2004;
Tavares-Pereira et al. 2007) to successfully approximate the Pareto set instead of other tradi-
tional techniques like the preference-based approach and Monte-Carlo simulation (Coello-
Coello et al. 2007). Rather than performing mathematical optimization techniques on the
objectives, a MOEA iteratively tries to obtain better and better solutions in the variable
space while avoiding local optima. These solutions are evaluated using a fitness function
which derives from the objective set (Bäck 1996), for example: weighted sum of objectives,
rank dominance, Pareto ranking, strength value based on dominance, fuzzy inference and
so on (Coello-Coello et al. 2007). Each solution set or population is improved in a step-
by-step iterative process, generation by generation, using evolutionary operators: selection,
crossover and mutation. Once a stopping procedure is fulfilled, MOEA results approximate
the Pareto set of efficient solutions. According to DM needs, MOEA can use different fitness
types for the same problem to evaluate and compare alternative Pareto sets.

According to Coello-Coello et al. (2007) there are three categories of MOEA tech-
niques: “a priori”, progressive and “a posteriori”. In the first one, the DM has to de-
fine the relative relevance of each objective before solving the resulting model. This
characteristic is the major drawback of these algorithms (Wilson and MacLeod 1993;
Das and Dennis 1997) because the selection of the objective weights is subjective and,
depending on it, some relevant solutions can be missed since the variable space is arbi-
trarily limited. In progressive techniques, DM incorporates his preferences in the process
in an interactive way (Barbosa and Barreto 2001). Obviously, DMs have to be avail-
able to evaluate how appropriate a specific solution set really is. DM subjective pref-
erences again limit the search space and, independently of their applicability, an inter-
active process can be used whatever the “a priori” or “a posteriori” technique that has
been selected. Finally, “a posteriori” techniques (Das and Dennis 1997; Srigiriraju 2000;
Laumanns et al. 2006) explore the whole variable space trying to obtain, theoretically, the
Pareto set or, in practice, as many elements within it as possible.

When spatial analysis methods are used as objectives, all of them have an identical rele-
vance “a priori”. In this specific situation “a posteriori” techniques are the most appropriate.
These techniques group many different MOEA strategies: independent sampling (Srigiriraju
2000), criterion selection—Vector Evaluated Genetic Algorithm (VEGA) and extensions
(Kursawe 1991; Hajela and Lin 1992), aggregation selection—weighted sums, constraint
and objective combinations or hybrid search approaches (Loughlin and Ranjithan 1997;
Ishibuchi and Murata 1998; Deb 1999), ε-Constraint (Laumanns et al. 2006), Pareto sam-
pling techniques (Coello-Coello et al. 2007) and so on. Whatever technique is selected, the
scalability of the problem is an issue to be dealt with, and there is no “a priori” best MOEA
strategy for any one problem (Wolpert and Macready 1997).

Our MOEA is based on the Strength Pareto Evolutionary Algorithm v.2 (SPEA2) which
has been considered as an “a posteriori” approach to multiobjective optimization (Zitzler and
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Thiele 1999; Zitzler et al. 2001). This algorithm is very flexible because it was specifically
designed to integrate different MOEA strategies based on specific fitness functions (Coello-
Coello et al. 2007). One of its main characteristics is that it needs an external file (ENDSF)
to accumulate the non-dominated solutions obtained in each generation. The “strength” of
each non-dominated solution is evaluated proportionally, generation by generation, taking
into account the number of solutions that it dominates (dominance count) and the num-
ber of individuals that dominate it (dominance rank). This strategy is called fitness-grained
assignment based on dominance and clustering and it combines both single dominances
in a unique dominance ranking. Other strategies are dominance rank (Horn et al. 1994;
Zydallis et al. 2001) and dominance depth (Deb et al. 2002), nevertheless, our strategy
seems to be more efficient for identifying hot-spots in space. In order to guide the algorithm,
SPEA2 uses a nearest neighbour density estimation technique and, to preserve extremely ef-
ficient solutions, it truncates the external file thus removing unnecessary elements.

The objective of this paper is to demonstrate that MOEA, based on the SPEA2 strategy,
is an interesting methodological approach which can be used to identify and geographically
locate highly autocorrelated zones (hot-spots) by combining k econometric methods and
different fitness functions even when there is incomplete spatial data and, due to that, spatial
interpolation is needed. The spatial distribution of the financial risk of Andalusian olive-tree
farms in dry farming at municipality level was selected to be analysed. This was because the
identification of the financially compromised olive-growing-areas is strategically relevant
because olive trees are the most important crop in this region (southern region in Spain).

This paper is structured as follows: in Sect. 2 the methodology is described; Sect. 3
presents the experimental design; results from MOEA models are statistically described and
analysed in Sect. 4; and, finally, some illustrative comments and conclusions are drawn in
Sect. 5.

2 Methodology

In order to identify hot-spots, the SPEA2 algorithm has been used as the primary MOEA
strategy and Moran’s I , Geary’s C and Getis and Ord’s G were the spatial autocorrelation
methods selected as objectives to approximate the spatial distribution of the phenomenon.
Results obtained from the standard SPEA2 fitness function were compared to those obtained
using both the weighted sum of objectives (Ishbuchi and Murata 1996; Coello-Coello et al.
2007) and a fuzzy evaluation of weighted objectives (Lee and Esbensen 1997; Wang and
Terpenny 2005). This procedure is used to check the hypothesis that hot-spots are fuzzy and
the membership degree of each of their potential SU can be approximated.

2.1 Univariate spatial analysis

Hot-spots group an unknown number of spatially close SU with optimum and uniform LISA
scores that can be estimated by their means and standard deviation (SD). Since the munic-
ipalities are the highest precision SU in the area under study, they were selected to deter-
mine and geo-reference LISA scores. So, each SUi has an associated LISA scores vector
[Ii,Ci,Gi] calculated according to the value of the variable selected in it and in its nearest
neighbourhoods.

In regions where SU sizes are very heterogeneous, the use of real or Euclidean distances
can bias the real spatial distribution of the phenomenon (Anselin 2002; Pérez-Naranjo and
García-Alonso 2005). This fact is due to the standard contiguity matrix structure that consid-
ers that a common SU boundary defines spatial neighbourhoods. This assumption is correct



Ann Oper Res

when SU have similar sizes, but it is problematic when very small and very big SU co-exist
along complicated boundaries.

In order to carry out LISA methods in complex regions, the neighbourhood definition
can be reformulated using a distance criterion (Emir-Farinas and Francis 2005). According
to that, neighbourhoods are considered to be both all the SU with a boundary in common
and also those SU within a statistically defined radius (Anselin 2002). In a first step, real
neighbourhoods with boundaries in common of SUj ∈ M (M being the SU set) are included
in NHj (neighbourhood set of SUj ). Other SUj neighbourhoods are sequentially identified
and included in NHj following the procedure: (i) the nearest neighbourhood SUi /∈ NHj to
SUj is identified, (ii) the mean square error (MSE) of the distances between SUj and all its
neighbourhoods, including SUi , in NHj is calculated and (iii) if the MSE is lower than a
predefined value, SUi is included in NHj and the process continues in (i); if not, it stops and
SUi is not included in NHj .

2.2 The multiobjective evolutionary algorithm

Taking into account the framework under study, one solution is a SU set (SU1,SU2, . . . ,SUn)

selected from the set of all the possible combinations without repetition of n SU, and it is a
potential hot-spot. For a specific solution, the means of its LISA scores are estimators of its
global autocorrelation relevance, their corresponding SD are estimators of the spatial uni-
formity of LISA scores and the vector (Ī ,SDI , C̄,SDC, Ḡ,SDG) can be determined easily.
From a theoretical point of view, a hot-spot can be identified through: (i) optimizing the
means (MaxĪ ,MinC̄,MaxḠ) and (ii) minimizing the SD (MinSDI ,MinSDC,MinSDG). In
addition to the 2k LISA objectives (k being the number of econometric methods), another
objective is necessary to obtain spatially close SU sets: the minimum path that joins all the
SU in the solution also has to be minimized. In the end, 2k + 1 objectives must be analysed.

Based on the standard SPEA2 strategy, some improvements have been developed to iden-
tify hot-spots in space (Table 1 shows the algorithm structure). These improvements begin
with the initial population design where SU can be selected at random in both the complete
region under study or in a pre-classified region. Taking geographical diversity into account,
an additional loop has also been included to analyse more than only one initial solution. Fi-
nally, three different fitness functions are used to guide the algorithm: the standard SPEA2
fitness function, the weighted sum of objectives (weights selected at random) and, finally,
a fuzzy inference engine that evaluates weighted objectives.

In order to minimize the minimum paths (MinPath), a relative distance must be defined
to avoid undesirable bias. Therefore, ∀j, i SUj to SUi distances dji have been substituted
by a relative proximity rate rpj i in [1, rpmax] ⊂ Q (see another illustrative example in Hodg-
son and Jacobsen 2009). When SUi is a real SUj neighbourhood, then rpj i = 1. Once this
first relative proximity rate is assigned, the procedure identifies the neighbourhoods that are
not part of those SU that belong to this first level (rpj i = 1) and assigns them the relative
proximity rate rpj i = 2. Sequentially, neighbourhoods of later levels identify the following
relative proximity rate until a predefined maximum rpmax is reached (Fig. 1 shows an illus-
trative example). This procedure minimizes the effects of SU size in LISA estimation and in
MOEA.

The fitness function based on the fuzzy evaluation of weighted objectives is not standard
(Wang and Terpenny 2005). All membership functions (MF)—semantic labels like HIGH
and LOW (1)—were designed as symmetric triangular or Z functions. Let m be the number
of MF for each of the 2k + 1 objectives selected, the total number of fuzzy rules like (1) that
the inference engine must analyse for each pair of MF, MF−

h —at the left—and MF+
h —at the
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Table 1 Structure of the MOEA algorithm for the evaluation of hot-spots in space (based on SPEA2 model,
Zitzler et al. 2001). Three different fitness functions have been included and evaluated

1: procedure based on SPEA2 (Population size N ′, number of generations g, kth objective fk(x))

2: Create the external non dominated solution file (ENDSF)

3: For i = 1 to s do � s being number of different initial solutions.

4: Initial population design, S � At random. Based or not on regional divisions.

5: for i = 1 to g do

6: Compute the fitness of each individual in S and ENDSF � Standard SPEA2, weighted

sum of objectives and/or fuzzy evaluation of weighted objectives.

7: Preserve all non-dominated solutions in ENDSF

8: If ENDSF is too big then the truncated operator removes unnecessary solutions

� Extreme solutions are preserved in the variable space.

9: Empty registers in ENDSF are filled out using dominated solutions

10: Binary tournament selection with replacement � Elitism is optional. Two stopping

criteria (MCE) are analysed.

11: Crossover � Elitism is optional. Crossover can be simple or double.

12: Mutation � Elitism is optional. At random, distance-based and fitness-based.

13: Repair process � Structural and technical infeasibilities.

14: end for

15: end for

16: end procedure

Fig. 1 Example of the
determination of relative
proximity rates (grey scale) for a
specific SUj (black) and
rpmax = 5 (darker grey)

right—(h = 1,2, . . . ,2k + 1), determined by each real objective value is 2(2k+1). Each ob-
jective value in the vector (Ī ,SDI , C̄,SDC, Ḡ,SDG,MinPath) determines MF−

h and MF+
h ,

27 being the total number of rules like (1) that the inference engine must evaluate to deter-
mine the final fitness value.

IF
Ī is HIGH and SDI is LOW and C̄ is LOW and SDC is LOW and Ḡ is HIGH and
SDG is LOW and the Minimum Path is LOW

THEN
Fitness value is HIGH

(1)



Ann Oper Res

Obviously there is no expert knowledge to determine the resulting MF of the fitness for
each 22k+1 combination. For each solution and wh being the weight of objective h (selected
at random for each initial solution), the MF of the fitness is determined by:

MF =
2k+1∑

h=1

whMF−/+
h

/ 2k+1∑

h=1

wh for each 22k+1 combination. (2)

Usually, but not always,
∑2k+1

h=1 wh = 1. The appropriate MF for each objective value
is selected according to its orientation: maximization or minimization. Once the fitness
MFs for each 22k+1 combination have been determined, Mizumoto’s Product-Sum-Gravity
method with composition (Asai 1995) is used to calculate the fitness value of the solution.

A standard tournament with replacement of two solutions has been selected for the
MOEA selection operator. During this process, both the weak and strict Pareto optimal-
ity criteria (Coello-Coello and Lamont 2004) are used. Dominated solutions can be substi-
tuted at random by completely new feasible solutions to increase diversity in the variable
space. Finally, the selection operator includes two different stopping procedures based on
the MSE. The first one evaluates the algorithm aptitude, estimated by the fitness MSE, which
was calculated taking into account the best efficient solutions obtained in each generation
(discarding the first ones). The second stopping procedure explores the whole ENDSF cal-
culating a global fitness MSE. When one of them is repetitively below a predefined value or
the maximum number of generations is reached, the algorithm stops and the solutions are
saved in the ENDSF.

Crossover can be simple (solutions are cut in the same position between two SU) or dou-
ble (there are two cuts in each solution) but the procedure is standard. A mutation operator
replaces one or more SU in a parent solution with other different SU. Mutation is performed
at random or can be distance-based or fitness-based (both selected at random). The last two
mutation types greatly increase the intensity of the search and must be carefully adjusted to
avoid premature convergence to a local optimum. Once a SU in the solution is selected to
be mutated, distance-based mutation identifies the SU that minimizes the minimum path to
the remaining SU. On the other hand, fitness-based mutation selects the SU that maximizes
the fitness function. The elitism of the best solution obtained is always optional.

Rather than using a strategy based on penalty functions to manage non-feasible solu-
tions (Coello-Coello et al. 2007), our MOEA includes a repair process (Michalewicz and
Schoenauer 1996; Smith and Coit 1997). In our framework, the second choice is very ef-
ficient because the mutation operator (at random, distance-based or fitness-based) can be
used to reach a new feasible solution similar to the original one. There are two different
types of infeasibility: structural and technical. The first case is very simple: it is absolutely
impossible to have repeated SU in a solution. This circumstance can sometimes occur when
the crossover operator is performed. The most relevant technical infeasibility is due to the
minimum path control, that is, the minimum path that links all the SU in a solution should
be lower than or equal to a predefined value. Due to Pareto optimality definitions, the vari-
able space can include solutions with a very large minimum path in the space of objectives.
In our problem domain, it is impossible to consider efficient solutions like that (dispersed
hot-spots) and, therefore, the minimum path has to be constrained.

2.3 Identification of hot-spots in space

At the end of the procedure, the ENDSF stores the potential hot-spots. Each individual SU
there is analysed to determine how many times it appears and the results are plotted in a
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standard histogram. Extreme SU, at the right hand side of the histogram, identify those SU
that appear an extremely high number of times in potential hot-spots. These extreme SU
are identified using standard Q-Q Plots (Beirlant et al. 2004) considering that extremes can
be adjusted to an exponential probability distribution. These extreme SU finally identify
hot-spots and can be geographically located on a map using a GIS.

According to this procedure, many SU in the ENDSF are ignored. Taking this fact into
account, the original LISA values of the SU identified as hot-spots are substituted by the cor-
responding LISA means, calculated without them, and the MOEA is run again to identify
and locate new hot-spots. This procedure does not penalise primary hot-spot neighbour-
hoods and, therefore, they can appear in the new hot-spot set.

3 Experimental design

3.1 Databases: Andalusian olive tree farms in dry farming

Andalusia is one of the largest regions in Spain as well as in the European Union. It is
located in the south of Spain, limited at the south by the Mediterranean Sea and the Atlantic
Ocean. One of its main economic sectors from both social and territorial points of view is
agriculture and olive trees in dry farming are its most important crop (Junta de Andalucía
2004).

In 2003 a complex survey was carried out to evaluate the socio-economic structure of An-
dalusian farms in the agricultural year 2000 and 252 dry farming olive-tree farmers were in-
terviewed in 80 municipalities (SU). Socioeconomic variables (costs, revenues, hand labour
and so on) were simulated 2619 times in each agricultural year from 2001 to 2015. From a
sustainability point of view, the net margin, obtained by subtracting total direct costs from
total revenues including subsidies, is the most important variable to evaluate the financial
risk of a specific farm or territory. For each SU in the agricultural year 2001, the financial
risk was calculated as the probability of having a net margin below or equal to zero.

Andalusia has 770 SU but only 80 were surveyed and, consequently, many of them have
missing values. Taking into account that olive-tree farms are spread throughout most of the
region and that cultivation maps are available, spatial interpolation is feasible. Let M ∈ Qp

be the set of SU in the zone under study and S ⊂ M the set of municipalities where nf i

farms have been surveyed (i = 1,2, . . . , s; s being the number of municipalities with almost
one surveyed farm) and where a financial risk value fri was really calculated. For each
municipality j /∈ S, let NHj ⊂ M be the set of its nearest neighbourhoods h with a relative
proximity rate (Sect. 2.1) rpjh ≤ rpmax, rpmax being a predefined value. When the number
of municipalities nj with surveyed farms in NHj is greater than a parameter nbmin, the
estimated/interpolated financial risk efrj is calculated by:

efrj =
nj∑

i=1

(nf i × fri/dji)

/ nj∑

i=1

(nf i/dji) when nj ≥ nbmin ∀j ∈ M not in S (3)

where dji is the distance between j and its nearest neighbourhood i ∈ S defined by the
relative proximity rate. This approach improves the standard spatial interpolation used by
Andrienko and Andrienko (2006) when there are a variable number of real observations in
each SU. For rpmax = 4 and nbmin = 3, the resulting number of interpolated SU was 461.
Figure 2a shows the spatial distribution of financial risk of olive-tree farms in dry farming
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Fig. 2 Spatial distribution of financial risk—real and interpolated values (a), rescaled Moran’s I (b), rescaled
Geary’s C (c) and rescaled Getis and Ord’s G (d)

Table 2 Basic statistics for both original (80 municipalities) and interpolated (461 municipalities) financial
risks and local autocorrelation scores (Moran’s I , Geary’s C and Getis and Ord’s G)

Financial risk Local autocorrelation methods (LISA)a

Original Interpolated I C G

Average 0.4117 0.4485 0.3648 0.1372 0.5585

SDb 0.2645 0.1901 0.1531 0.0760 0.1837

Median 0.4053 0.4143 0.2958 0.1127 0.5377

Minimum 0.0000 0.0000 0.1000 0.1000 0.1000

Maximum 0.9956 0.9956 0.9000 0.9000 0.9000

aSurveyed and interpolated SU-541 municipalities- and rescaled [0.1,0.9] scores

bStandard deviation

taking into account both real (80 municipalities) and interpolated values. Other combina-
tions of those parameters (rpmax,nbmin) offer different interpolated SU and maps, but the
one selected shows the closest approximated shape to real olive-tree farm geographical dis-
tribution. Table 2 summarizes basic statistics of both original and interpolated financial risks.

3.2 Local autocorrelation

The number of categories to determine relative proximity rates among SU was 10 and LISA
scores were determined for rpj i ≤ 5. Relative proximity rates greater than 5 mean very
large geographical distances and we cannot consider that SU with rpj i > 5 can influence
autocorrelation scores of the SU under study. As expected, the spatial distributions of indi-
vidual LISA scores are very different, difficult to interpret and spatially in conflict (Fig. 2b,
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c and d). Table 2 summarizes some LISA score basic statistics once they were rescaled in a
range [0.1,0.9] to avoid undesirable negative values for the objectives in MOEA.

3.3 MOEA structure and parameters

The initial population, which was designed 4 times to guarantee the geographical diversity,
had 400 solutions. For each fitness function, the MOEA was run twice to determine two
hot-spot sets (Sect. 2.3). The crossover rate was 0.1 (double was 0.005) and the mutation
rate was 0.05. These rates were selected after several tests (1000 generations). These tests
showed crossover to be more useful than mutation in achieving efficient solutions as the
solution minimum distance did not change a lot. Once a SU has been selected to be mutated,
both its distance-based mutation rate and fitness-based mutation rate were 0.25. Crossover
rates were higher than mutation rates because the first operator is experimentally more useful
than the second to maintain heterogeneity stress in the population. The maximum number of
generations was established at 10000, 2.5% was the admissible MSE (20 consecutive times
to stop the algorithm) and elitism was admitted in crossover and mutation from the 10th
generation.

Seven objectives were finally analysed: Moran’s I mean (Ī , rescaled values, maximized)
and SDI , Geary’s C mean (C̄, rescaled values, minimized) and SDC , Getis and Ord’s G

mean (Ḡ, rescaled values, maximized) and SDG and the minimum path between all SU
(P , relative distance rates, minimized). All the SD objectives were minimized. Only the
minimum path was constrained to P ≤ 0.5(nSU − 1), nSU being the number of SU in a
solution which was 5. The solutions where nSU ≥ 5 do not offer different hot-spots and the
higher the nSU the greater the computer demand. In order to evaluate the fitness MF when
the fuzzy evaluation of weighted objectives was selected, 11 MFs were chosen (2 extreme Z
functions and 9 triangular symmetric ones). Taking into account the resulting fitness values,
the number of MFs selected is enough to manage statistical diversity.

In order to identify extreme SU in the ENDSF, 30 equal intervals were selected for Q-Q
Plots (Fig. 3 shows an illustrative example). More intervals do not influence the identifica-
tion of the extreme SU. Only extreme SU, identified by an exponential fit, were considered
to identify and locate hot-spots on a map.

4 Results

The Mann-Whitney U test, comparing original and interpolated financial risks, showed that
there is no significant difference between the two means (p-value = 0.095) and, therefore,
the estimation of LISA scores using both original and spatially interpolated financial risks
is appropriate. Figures 2b, c and d demonstrate that the spatial projections of LISA scores
show different patterns and the spatial compromises cannot be defined either visually or by
using map algebra.

For all the fitness functions evaluated and runs carried out, the number of efficient so-
lutions in the ENDSF was always over 120 (Table 3). The differences between runs and
methods are not evident when analysing their basic statistics but the Mann-Whitney U test
showed that these differences are noteworthy (Table 4) especially where Ī and Ḡ are con-
cerned. When the efficient solutions obtained in different runs are compared, Ī always shows
significant differences and is the most discriminant LISA score. Ḡ as well as P are relevant
to obtain significant mean differences between runs when comparing the standard SPEA2
fitness function and the fuzzy evaluation of weighted objectives.
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Fig. 3 Example of a Q-Q Plot based on an exponential probability distribution (30 equal intervals). Extremes
identified (SPEA2, run #1, SU that appear more than one time in an efficient solution)

Table 3 Basic statistics of rescaled [0.1,0.9] objectives—mean and (SD)—in the external non-dominated
solution file. Only LISA and minimum path objectives have been included

Fitness First MOEA run Second MOEA run

#Sa MaxĪ MinC̄ MaxḠ MinP b #Sa MaxĪ MinC̄ MaxḠ MinP b

SPEA2 128 0.761 0.127 0.778 0.119 144 0.68 0.127 0.762 0.177

(0.066) (0.015) (0.039) (0.068) (0.146) (0.019) (0.043) (0.099)

WOc 175 0.705 0.127 0.766 0.193 135 0.666 0.128 0.765 0.174

(0.119) (0.013) (0.04) (0.099) (0.1) (0.013) (0.056) (0.094)

FId 186 0.769 0.126 0.76 0.175 158 0.738 0.126 0.770 0.19

(0.067) (0.013) (0.033) (0.098) (0.101) (0.014) (0.03) (0.093)

aNumber of efficient solutions
bMinimum path between SU
cWO: Weighted sum of objectives weights defined at random
dFI: Fuzzy inference of weighted objectives

The behaviour of C̄ is really interesting because it does not show any significant differ-
ence when fitness functions and/or runs are evaluated (Table 4). As Table 3 shows, the values
of C̄ remain practically constant in all the tests: this means that the spatial distribution of
Geary’s C is very constrained to specific locations. Once the MOEA identifies these places,
the other LISA scores highlight specific zones. As P has been constrained, the resulting
MOEA model was, on one hand, slightly less computer-time demanding and, on the other,
it focused its attention on more useful solutions from a decision-making point of view.

There are not many SU in efficient solutions (Table 5) and only a few have been detected
in the extreme of the Q-Q Plots. As expected, all of them show very high financial risk but
they are not geographically located in the same place (Fig. 4). Two different hot-spots have
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Table 4 Results of the Mann-Whitney U (p-values) test comparing LISA and minimum path objectives

MaxĪ MinC̄ MaxḠ MinP

SPEA2 #1 SPEA2 #2 0.000a 0.417 0.000a 0.000a

SPEA2 #1 WO #1 0.000a 0.951 0.013b 0.000a

SPEA2 #1 WO #2 0.000a 0.457 0.051 0.000a

SPEA2 #1 FI #1 0.093 0.938 0.000a 0.000a

SPEA2 #1 FI #2 0.321 0.764 0.014b 0.000a

SPEA2 #2 WO #1 0.248 0.215 0.281 0.592

SPEA2 #2 WO #2 0.005a 0.083 0.021b 0.344

SPEA2 #2 FI #1 0.000a 0.247 0.666 0.321

SPEA2 #2 FI #2 0.000a 0.626 0.044b 0.244

WO #1 WO #2 0.000a 0.406 0.15 0.116

WO #1 FI #1 0.000a 0.878 0.076 0.086

WO #1 FI #2 0.012b 0.521 0.361 0.248

WO #2 FI #1 0.000a 0.371 0.001a 0.945

WO #2 FI #2 0.000a 0.28 0.133 0.006a

FI #1 FI #2 0.007a 0.623 0.005a 0.003a

aSignificant at α = 0.01

bSignificant at α = 0.05

Table 5 Number of spatial units (SU)—municipalities—in hot-spots/(total SU included in efficient solu-
tions) and basic statistics of rescaled [0.1,0.9] financial risks of hot-spot SU

First MOEA run Second MOEA run

Fitness #SU Meana SDa #SU Meana SDa

SPEA2 8/(64) 0.8707 0.0280 5/(76) 0.8692 0.0218

WO 8/(101) 0.8528 0.0725 4/(100) 0.8665 0.0047

FI 6/(79) 0.8797 0.0191 5/(75) 0.8889 0.0450

aRescaled financial risk

been identified in Andalusia one in the west and the other in the east. There are relevant
differences in the geographical distribution of hot-spot SU when fitness function spatial
projections are compared, but their locations remain almost constant. The western hot-spot
is larger than the eastern one; it includes small SU that are always identified in the first run.
The structure and spatial location of the second hot-spot in the east is more variable because
only one SU has been detected by all the MOEA fitness functions and runs.

As expected, the structure of hot-spots is fuzzy when r fitness functions are used and n

runs are carried out. After the first run, whatever the fitness function selected, the original
autocorrelation values of the SU in the first-frontier hot-spots were replaced by their cor-
responding means calculated excluding them. In our specific problem, the SU in the first
hot-spot set do not appear in the second. We cannot affirm that this phenomenon can be gen-
eralized and, depending on the original variable values, the same SU could be identified in
different runs. XSUj i is the number of times the SUj is considered as a part of a hot-spot in
the run i (XSUj i ≤ r) and each run is weighted with the inverse of the run number wi = 1/i,
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Fig. 4 Hot-spots (areas 1 and 2) obtained comparing the results of three different fitness functions and two
MOEA runs. The rescaled financial risk map (a) is shown as a reference

the SUj membership degree μ(SUj ) is: (i) 1 if XSUj 1 = r ; (ii) if not, then

μ(SUj ) =
n∑

i=1

wiXSUj i

/
r

n∑

i=1

wi ∀j (4)

This fuzzy approach highlights the geographical zones where the phenomenon is signifi-
cantly concentrated and minimizes the existence of dominant SU. In the first hot-spot four
SU and in the second only one has a μ(SUj ) = 1 (Fig. 4). On the other hand and considering
the first hot-spot, there are two SU detected in the first run using the SPEA2 fitness function
that have also been detected by the others fitness functions (the weighted sum of objectives
and the fuzzy inference of weighted objectives) in the second run. In this case both have a

membership degree μ(SUj ) = (1 + 2 × 1/2)/[3 × (1 + 1/2)] = 0.
�

4.

5 Conclusions

MOEA have demonstrated their utility and reliability in determining hot-spots in a complex
framework like the spatial distribution of financial risk in olive-tree farms in Andalusia.
LISA scores can be spatially analysed in a GIS but show different projections in spatial
conflict that are difficult to interpret. To analyse econometric models that are to be consid-
ered as objectives, a MOEA can approximate the Pareto set when each efficient solution
is understood as a non-repeated, close and highly autocorrelated group of SU: a potential
hot-spot. Not all of the SU in efficient solutions can be considered to be part of a hot-spot,
especially when their probabilities of being in an efficient solution are very low. This kind
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of SU is very frequent and makes an additional analysis necessary in order to identify real
SU in hot-spots. Q-Q Plots can be used to determine SU in hot-spots when an exponential
probability distribution is considered to adjust the statistical distribution of extremes. This
procedure assures the identification of very relevant SU but also discards others that could
be relevant as well. In order to identify new hot-spots, the MOEA can be run again, but
this time the means of the corresponding LISA values substitute the original LISA scores
of previously identified hot-spot SU. This procedure is computer-demanding but offers very
robust estimations of those SU that can be included in hot-spots.

Some LISA objectives do not give any statistical variability when results of different
MOEA strategies and/or runs are compared. Very different mean values of other objectives
can be obtained without substantially modifying the mean of the first ones (this is especially
true when C̄ is analysed). In the end, these objectives did not give statistical variability in
the Pareto set, although they did guide the MOEA algorithm, and only when they reached a
specific range of values did the other objectives vary.

In our context, it is not possible to determine if one specific MOEA fitness function is
better than another because the dominance concept cannot easily be extended to evaluate the
models. For example, in the first run, SPEA2 means are always better than those shown by
the weighted sum of objectives (Table 3). In this case, only SDC is a little bit lower, although
this circumstance is different when the second run means are compared.

The statistical identification of SU in hot-spots is not enough; using GIS utilities, decision
makers can locate them geographically. The existence of different MOEA fitness functions
always provokes differences in the location of hot-spots that are related to the presence
or absence of specific SU but, at least in our example, the geographical hot-spot locations
remain relatively constant. This means that it is possible to achieve a compromise between
different econometric methods highlighting very special zones where a specific phenomenon
is highly autocorrelated. The hot-spot shapes and the number of SU in them can be improved
by repeating the process “removing” previous selections statistically. Therefore, hot-spot
structures can be considered fuzzy sets where each SU has a membership degree that can be
obtained taking into account the number of times that it appears in a hot-spot for each run.
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