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Sequences for Reliable DNA Computing
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Abstract—DNA computing relies on biochemical reactions of
DNA molecules and may result in incorrect or undesirable com-
putations. Therefore, much work has focused on designing the
DNA sequences to make the molecular computation more reliable.
Sequence design involves with a number of heterogeneous and
conflicting design criteria and traditional optimization methods
may face difficulties. In this paper, we formulate the DNA sequence
design as a multiobjective optimization problem and solve it using
a constrained multiobjective evolutionary algorithm (EA). The
method is implemented into the DNA sequence design system,
NACST/Seq, with a suite of sequence-analysis tools to help choose
the best solutions among many alternatives. The performance of
NACST/Seq is compared with other sequence design methods,
and analyzed on a traveling salesman problem solved by bio-lab
experiments. Our experimental results show that the evolutionary
sequence design by NACST/Seq outperforms in its reliability the
existing sequence design techniques such as conventional EAs,
simulated annealing, and specialized heuristic methods.

Index Terms—DNA computing, DNA sequence design, multiob-
jective evolutionary algorithm (MOEA), nucleic acid computing
simulation toolkit/sequence generator (NACST/Seq).

I. INTRODUCTION

D
EOXYRIBONUCLEIC ACID (DNA) computing is a

computational model that uses biomolecules as informa-

tion storage materials and biological laboratory experiments

as information processing operators [1]. The ability of DNA

computers to perform calculations using specific biochemical

reactions between different DNA strands by Watson–Crick

complementary basepairing, affords a number of useful prop-

erties such as massive parallelism and a huge memory capacity

[2], [3]. Recently, several interesting applications have been

demonstrated [4], [5].

However, due to the technological difficulty, DNA reactions

may result in incorrect or undesirable computation. Sometimes

DNA computing fails to generate identical results for the same

problem and algorithm. Also, some DNAs can be wasted per-

forming undesirable reactions. To overcome these drawbacks,

much work has focused on improving the reliability (correct-

ness) and efficiency (economy) of DNA computing. Most ex-

Manuscript received November 11, 2003; revised October 15, 2004. This
work was supported in part by the Molecular Evolutionary Computing (MEC)
Project of the Korean Ministry of Commerce, Industry and Energy, in part by
the National Research Laboratory (NRL) Program from the Korean Ministry of
Science and Technology, and in part by the BK21-IT Program of the Korean
Ministry of Education and Human Resources Development.

The authors are with the Biointelligence Laboratory, School of Computer
Science and Engineering, Seoul National University, Seoul 151-742 Korea
(e-mail: syshin@bi.snu.ac.kr; ihlee@bi.snu.ac.kr; dmkim@bi.snu.ac.kr;
btzhang@bi.snu.ac.kr).

Digital Object Identifier 10.1109/TEVC.2005.844166

isting approaches focus on the design of DNA sequences that

reduce the possibility for illegal reactions [6]. The emphasis on

avoiding undesirable reactions should improve both reliability

and efficiency of the generated DNA sequences. Existing tech-

niques for DNA sequence design include genetic algorithms,

dynamic programming, and heuristic methods [6].

In this paper, we propose a new evolutionary DNA sequence

design method which is implemented in the nucleic acid com-

puting simulation toolkit/sequence generator (NACST/Seq)

system. Previous evolutionary approaches used a simple ge-

netic algorithm by taking well-known fitness measures and

aggregating them into a fitness function of weighted sum. How-

ever, as the number of fitness terms increases, normalization of

fitness values is required, and also it becomes difficult to find

the proper weight value for each criterion. The present work

improves on the previous work by formulating and solving the

DNA sequence design problem as a multiobjective optimization

task. The sequence design problem has a number of heteroge-

neous and conflicting design criteria (objectives) that must be

satisfied simultaneously. Since the multiobjective evolutionary

algorithm (MOEA) approach allows a number of heterogenous

design criteria to be defined in a consistent way, the MOEA

will be a good candidate for DNA sequence optimization.

Though there has been some work in the related fields such as

microarray probe design [7], [8], no MOEA has been applied to

DNA sequence design for DNA computing. The NACST/Seq

system demonstrates a practical application of multiobjective

evolutionary optimization to real-world biochemical design

problems. We verify the utility of NACST/Seq by comparing it

with other sequence design tools. We also evaluate the perfor-

mance of the proposed method on a traveling salesman problem

(TSP) solved by biochemical experiments. The results demon-

strate NACST/Seq’s effectiveness in improving reliability of

DNA sequences.

The paper is organized as follows. In Section II, previous

work is reviewed and the DNA sequence design problem is de-

fined. Section III gives an overview of the proposed NACST/Seq

system. Section IV describes the MOEA and the analysis re-

sults of fitness measures. In Section V, the sequence genera-

tion results are shown and compared with those of other ex-

isting methods. In Section VI, conclusions are drawn and future

studies are discussed.

II. DNA SEQUENCE DESIGN

A. Previous Work

Many studies describe the sequence design problem in terms

of threshold-based constraints: Sequences are designed for

1089-778X/$20.00 © 2005 IEEE
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TABLE I
SUMMARY OF THE PREVIOUS DNA SEQUENCE DESIGN SYSTEMS. THE RELATED

WORKS ARE CATEGORIZED BY THEIR SEQUENCE GENERATION ALGORITHM

certain measures of each pair of sequences to exceed given

thresholds. More recently, researchers have attempted to design

DNA sequences in vitro. We briefly review these approaches

here. Table I summarizes the previous sequence design systems

categorized by their algorithm. Most previous systems are

based on threshold values.

The simplest methods are exhaustive search and random

search. Hartemink et al. [9] implemented the exhaustive search

method “SCAN” to generate sequences for the programmed

mutagenesis. Though they successfully designed DNA se-

quences, it took much computational time. Penchovsky and

Ackermann designed DNA sequences by a random search al-

gorithm [10]. They encoded binary information in DNA strands

and demonstrated twelve-bit DNA library. Frutos et al. [11] and

Arita and Kobayashi [12] proposed a template-map strategy to

select a huge number of dissimilar sequences by using only a

significantly smaller number of templates and maps. They build

some predesigned template, and then statistically generate a

set of sequences ensuring small mismatch probability. The

template method has a merit that it can find a reliable sequence

in a short time within a given error rate. Feldkamp et al. [13]

use a directed graph to design DNA sequences. The nodes in

the graph represent base strands and a node has four strands

that can appear as successors in a longer sequence as its

child nodes. Then, by traveling the graph from root to leaf,

DNA sequences can be designed. This approach also can

find a set of orthogonal DNA sequences within a predefined

error rate quickly. Tanaka et al. [14] offered some sequence

fitness criteria, and generated the sequence using simulated

annealing. They also tried to find proper combinations of the

proposed fitness functions to find more promising solutions.

Marathe et al. [15] used a dynamic programming approach to

design DNA sequences based on Hamming distance and free

energy. They made theoretical investigations on DNA sequence

design using classical coding theory.

Unlike previous systems, biological-inspired methods have

been offered recently to design DNA sequences. Deaton et al.

[16] proposed a PCR-based protocol for in vitro selection of

DNA sequences. This approach is especially interesting in that

it uses in vitro evolution to find noncross-hybridizing DNA li-

braries, while most DNA sequence design methods use in silico

approaches. Though this method is one of the most reliable

method to design DNA sequences, it has inherent difficulties,

i.e., it cannot distinguish each DNA sequence in the library. To

assign information on DNA sequences, one has to know the spe-

cific composition of DNA sequences. Other biological-inspired

methods take into account the thermodynamics of DNA struc-

tures and free energy of DNA sequences. These features can be

used to select reliable DNA sequences as alternative fitness mea-

sures [17], [18], [24].

Evolutionary algorithms have also been proposed for se-

quence design. In particular, simple genetic algorithms are

often used [19]–[22]. This seems due to their simplicity and

efficiency. Deaton et al. proposed to use the Hamming distance

as a fitness measure [19], and found better sequences than

Adleman’s original sequences. Zhang and Shin [20] used an

iterative genetic search to design DNA sequences in the context

of an evolutionary DNA-computing model called molecular

programming. Arita et al. [21] developed a DNA sequence

design system using a genetic algorithm with three fitness

criteria. They designed self-complementary sequences for

the Whiplash model and compared the results with a random

generate-and-test algorithm.

B. Design Criteria

In DNA computing, the hybridization between a DNA

sequence and its basepairing complement (also known as

Watson–Crick pairing) is the most important factor to retrieve

the information stored in DNA sequences and operate the

computation processes. For this reason, we desire a set of DNA

sequences to form a stable duplex (double stranded DNA) with

their complements. We also need to ensure that two sequences

which are not complemented each other do not interact. Nonin-

teracting sequences should be prohibitive or relatively unstable,

compared with any perfectly matched duplex formed from a

DNA sequence and its complement [6]. These can improve the

reliability of DNA sequences.

In Table II, we list the objective functions that have been

used previously. The best system would be the system that

includes all design criteria given in Table II. However, since

some criteria overlap with others and the bio-lab methods

may vary for different criteria, the criteria should be selected

very carefully. These objectives can be classified into four

categories: 1) preventing undesired reactions; 2) controlling

secondary structures; 3) controlling the chemical characteristics

of DNA sequences; and 4) restricting one of the DNA symbols

( , , , and ) in DNA sequences.

1) Preventing Undesired Reactions: This criterion forces

the set of sequences to form the duplexes between a given DNA

sequence and its complement only. This category includes

most of the objectives in Table II. “Similarity” is defined as

an inverse Hamming distance between two given DNA se-

quences. “H-measure” tests the possibility of unintended DNA

basepairing based on the Hamming distance [28]. Shift means

the position shift of DNA sequence to compare the two DNA

sequences thoroughly. A more detailed explanation is given in

Section IV-A. H-measure on the -end tests the H-measure

with a shift in the -end. “Reverse complement Hamming dis-

tance” checks the Hamming distance using one DNA sequence

and the reverse complement of another sequence.
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TABLE II
SUMMARY OF THE DESIGN CRITERIA FOR THE PREVIOUS ALGORITHMS. THE DEVELOPED NACST/SEQ COVERS

MOST OF THESE DESIGN CRITERIA. THE SYSTEMS ARE LISTED BY SIMILARITY TO NACST/SEQ

2) Controlling the Secondary Structures: Secondary struc-

tures are usually formed by the interaction of single stranded

DNA or RNA. “Secondary structure” includes internal loop,

hairpin loop, and bulge loop. To predict the secondary structure,

many algorithms have been proposed based on thermodynamic

parameters [29], or, simply one can calculate the Hamming dis-

tance of given sequences by folding the sequences to hybridize

with itself. “Continuity” tests the repeated run of identical bases.

If one base is repeated, an unusual secondary structure can be

formed. Though the secondary structure of DNA strands is usu-

ally prohibited, they could be adopted to perform DNA com-

puting in several ways [30].

3) Controlling the Chemical Characteristics of DNA Se-

quences: In many cases, it is desirable to control DNA

sequences to have similar chemical characteristics. Measures

for this criterion include “free energy,” “melting temperature,”

and “GC ratio.” “GC ratio” is the percentage of guanine or

cytosine in a whole DNA sequence. “Melting temperature” is

defined as the temperature at which 50% of the oligonucleotide

and its perfect complement are in duplex. “Free energy” is the

necessary energy to make a duplex (actually, it is defined as the

energy required to break a duplex). Given fixed protocols, one

of the most reliable measure for the relative stability of a DNA

duplex is its free energy. Melting temperature is also closely

related to the free energy of a DNA duplex and a much less

accurate measure of the stability is its GC content.

4) Restricting DNA Sequences: This criterion restricts the

composition (DNA base or subsequence) of a DNA sequence.

In some cases, one of four DNA bases is reserved for special

purposes [26]. Also, special DNA subsequences such as the re-

striction enzyme site should be controlled for proper reactions.

“Constraints on DNA bases” and “occurrence of specific subse-

quences” are related to this criterion.

C. Requirements of DNA Sequence Design Systems

Based on our review, the general requirements of DNA se-

quence generation systems can be summarized as follows.

• Sequence reliability: Reliability is the most important

factor of a DNA sequence design system. All DNA se-

quence design criteria contribute to improving reliability.

Additionally, users may want to choose the necessary

design criteria to fit their specific situations.

• User friendliness: A user-friendly interface is necessary

for easy use. For example, users should be able to specify

the parameters easily through the user interface.

• Analysis capability: To examine the reliability of the de-

signed sequence, users need to analyze the properties of

the given sequence.

• Sequence reusability: Users need to save or load the DNA-

sequence set to reuse it. Also, a small DNA sequence set

can be incorporated to make a larger DNA-sequence set.

The most important feature is the sequence reliability which de-

cides the characteristics of the designed sequences. Addition-

ally, the other requirements are also necessary for the conve-

nience of users.

III. OVERVIEW OF THE NACST/SEQ SYSTEM

As summarized in Section II-C, an ideal DNA sequence

designer should offer at least four main features. These were

the guidelines for our development of the NACST/Seq system.

For sequence reliability, we employ an MOEA by covering as

many design criteria as possible from those listed in Table II.

For user friendliness, NACST/Seq is implemented using

Qt library and C++ language for user interface on Linux

platforms. NACST/Seq also adopts a plug-in architecture that

makes it possible to develop each fitness plug-in separately and



146 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

Fig. 1. Structure of nucleic acid computing simulation toolkit (NACST).
NACST consists of four main modules: NACST/Seq for sequence generation,
NACST/Report, NACST/Plot for analysis and visualization, and NACST/Sim
for bio-lab simulation. Plug-in structure can help to add or delete the
independent modules.

to assure a future extension. Additional components such as

NACST/Report and NACST/Plot to analyze the sequences and

to visualize the properties of the sequences are implemented for

the analysis capability. Finally, NACST/Seq can save and load

the sequences in XML format, generate partial DNA-sequence

set, and add a sequence to the set manually to reuse DNA

sequences.

The structure of the whole NACST system is shown in Fig. 1.

NACST/Seq is responsible for generating DNA sequences

(more details in Section IV), NACST/Sim simulates the labora-

tory experiments, NACST/Report and NACST/Plot analyze the

results of the sequence generation or the lab simulation. In this

paper, we focus on the NACST/Seq system.

The sequence generation steps in NACST/Seq are shown in

Fig. 2. The first step is to select a generation option [Fig. 2(a)].

In this step, a user can generate new sequences and new sets.

Otherwise, the user can extend the existing DNA sequence set

by generating new sequences, or adding existing sequences to

the set manually. The user can decide the sequence structures

to prevent the generation of self-complementary sequences or

to promote it. Then, the general sequence-option window ap-

pears, as shown in Fig. 2(b). In this window, the number of se-

quences and the length of each sequence can be adjusted. The

fitness option window provides the functionality of combining

the objectives [Fig. 2(c)]. If the selected fitness needs additional

arguments, the user can call up the pop-up windows for tuning

the arguments. Finally, the options for the EA are determined

[Fig. 2(d)]. These include the number of generations, popula-

tion size, and crossover and mutation rates. After execution of

sequence generation, the main window shows the resulting set

of sequences with their melting temperature and GC ratio.

NACST/Report is used to analyze the resulting sequence sets.

NACST/Report can load any sequence sets saved in its XML

format and examines various aspects of the loaded sequence

sets such as the comparison of the fitness values [Fig. 3(a)],

the graphical representation of the superiority of fitness value

in each sequence between two selected sets [Fig. 3(b)], and the

analysis of the sequences in a selected set [Fig. 3(c)].

As shown in Fig. 4, NACST/Plot can be used to visualize

the results and the properties of the sequences. The plotted

graphs can be saved as a postscript file and users can browse a

plotting history. Finally, NACST/Sim is developed to simulate

the biological experiments for handling DNA sequences [31].

It is used to verify the quality of designed sequences by esti-

mating the probability of unintended hybridization such as non

Watson–Crick DNA basepairing. After testing the designed

sequences by NACST/Sim, the most reliable DNA sequence

set which has the least unintended DNA basepairing will be

recommended.

IV. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS (EAS)

FOR DNA SEQUENCE DESIGN

In this section, we describe the MOEA approach to DNA se-

quence design adopted in NACST/Seq. First, we describe the fit-

ness criteria for sequence optimization in detail and investigate

the characteristics of the fitness landscapes. The experimental

results are given in the next section.

A. Fitness Criteria for DNA Sequence Design

As shown in Table II, the objectives of NACST/Seq is very

similar to [14]. That is why we try to accumulate the objectives

as many as possible. The differences are constraints on DNA

bases and -end H-measure. The reason why NACST/Seq does

not use -end H-measure is that this factor is already consid-

ered in H-measure. Even if -end H-measure is important for

PCR primer design, we do not want to overemphasize the -end

H-measure. In addition, the sequence design algorithm is totally

different from each other.

Formally, the DNA sequence design problem can be written

as follows:

minimize

fitness measures in Table II (1)

Seven measures such as similarity, H-measure, secondary

structure, continuity, melting temperature, GC content, and

constraints on DNA bases can be considered in NACST/Seq

as explained in Table II. Among them, the constraints on DNA

bases are necessary for a special purpose design scheme such

as stop sequence [26], not one of widely used sequence design

objectives. Therefore, we do not consider it in this paper. The

explanation of other objectives will be followed.

1) Similarity: The similarity measure

computes the similarity in the same direction of two given

sequences to keep each sequence as unique as possible

including position shift. For a thorough comparison, we

lengthen the sequence by its own sequence, and then cal-

culate the fitness. For example, in the case of Fig. 5, the

similarity between - - and

- - is calculated. Sequence

- - is extended by adding its

own sequence to the -end with gaps (in Fig. 5, the gap is 3).
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Fig. 2. Sequence generation process in NACST/Seq. (a) General options such as the generation of new sequences or the addition of the existing sequences can
be selected. (b) Sequence specific information can be set. (c) Options for each fitness function can be decided. (d) Options for EAs can be selected.

Fig. 3. Demonstration of NACST/Report. NACST/Report shows the properties of the sequences and compares the sequence sets. (a) All sequence sets can be
examined by the comparison of those fitness values measured through each objective used in the optimization procedure. (b) NACST/Report provides a graphical
representation of the superiority of fitness value in each sequence between two selected pools. (c) A selected pool can be analyzed. NACST/Report can highlight
the position of a specific subsequence in a pool, find all complementary subsequences of user’s input sequence, and mark all successive occurrence of the same
base running over the threshold.

We distinguish the continuous similarity where the same

substrings appear in two sequences from the discontinuous

similarity, where the overall trend of two resembles each other.

For example, the sequences - - and

- - have continuous similarity of 4

(“GCAT”) from the third base to the sixth and discontinuous

similarity value of 6 (the underlined bases) without a position

shift.

2) H-measure: The H-measure considers

two sequences as complementary, while similarity regards two

sequences as parallel (Fig. 6). That is, H-measure computes

how many nucleotides are complementary between the given

sequences to prevent cross-hybridization of two sequences. As

similarity, H-measure also uses the elongated sequence.

3) Hairpin: This measure calculates the probability to form

a secondary structure. We made two variants of hairpin fitness

measure, one for preventing the hairpin structure and the other

for making planned hairpin structure

(2)

Even though there are many algorithms that can predict the

DNA or RNA secondary structure including hairpin with ther-

modynamic parameters [32], we calculate the Hamming dis-

tance for simplicity by considering the length of hairpin loop

and the number of hybridized pairs as illustrated in Fig. 7.

4) Continuity: If same bases occur continuously in a se-

quence, the sequence can show the unexpected structures.

calculates degree of successive occurrence of

the same base, as shown in Fig. 8. For more controllable exper-

iments, we can check purine and pyrimidine continuity, as well

as adenine, thymine, guanine, and cytosine continuity.



148 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 2, APRIL 2005

Fig. 4. NACST/Plot. (a) Plot of the data file which is saved in XML format of the sequence set. (b) Plot of the fitness results. Also, the comparison results of
selected two sets can be plotted.

Fig. 5. Example of similarity measure. The similarity measure checks how
many positions are the same given two strands. Two DNA strands are chosen
and one DNA strand is elongated with gap g. Then, the elongated strand and the
other strand are compared in each position with position shifts. After all shifts
are considered, gap g is increased by one to compare two strands continuously.

Fig. 6. H-measure is similar to the similarity measure. The difference is
H-measure compares the given two strands with opposite direction, 5 -3
and 3 -5 , whereas similarity measure checks them with the same direction.
H-measure calculates the unintended DNA base pairing rate.

5) Melting Temperature: Melting temperature is one of the

most important features for laboratory experiment. There are

many equations to calculate melting temperature such as the

Wallace 2–4 rule [33], the method [34], and the nearest-

Fig. 7. Hairpin is a self-hybridization by forming the loop. First r (ring length)
is initialized, then the number of hybridized pairs is checked. The position of
the ring is shifted, as shown in the figure. If the shift ends, the r is increased.

Fig. 8. Continuity measure prohibits the consecutive runs of the same base
over the given threshold. If the threshold is four, the first run violates the
continuity and others do not.

neighbor model [35]. We use the method and nearest

neighbor model (NN) with SantaLucia’s unified NN parameters

[35] to calculate melting temperature. is defined as follows:

(3)

where is the target melting temperature, and

is the melting temperature of the generated

sequence.
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Fig. 9. Plot of H-measure values between 5 bp sequences. The x and y axis
show all of the five-mer DNA sequences represented by decimal numbers. For
example, z-value of (0,2) is the value of the H-measure between sequences
“AAAAA” and “AAAAG.”

6) GC Content: The GC content is the percentage of and

in a sequence. Since GC content can affect the chemical prop-

erties of DNA sequences, it is important criteria

(4)

More mathematical definitions for these measures are given in

the Appendix.

B. Analysis of DNA Sequence Fitness Measures

We investigated fitness objectives to determine the character-

istics of DNA sequence optimization. First, we plot the H-mea-

sure and similarity for two 5-mer sequences, since H-measure

and similarity are the most important objectives. Fig. 9 shows

the fitness landscape of H-measure value of two 5-mer DNA

sequences. The and axis represent the DNA sequences. Set-

ting “ ” as 0, “ ” as 1, “ ” as 2, and “ ” as 3, a DNA se-

quence can be thought as a number of base 4. Then, a sequence

can be represented by the decimal number corresponding to this

number. For example, a sequence “AAAAA” can be represented

by the number and a sequence “ACGCA”

by . The optimal value of H-measure is

zero. As shown in Fig. 9, the fitness landscape of H-measure

shows many local optima, and it is hard to find any gradient

information to the global optimum. Additionally, H-measure is

a discrete function. The details are described in the Appendix.

The fitness landscape of similarity value is similar to that of

the H-measure. Both functions are discrete and have many local

optima.

Next, to find out the relationship between H-measure and sim-

ilarity, we plotted the objective space of H-measure and simi-

larity in Fig. 10. The points on the line in Fig. 10 depicts the

best nondominated solutions in the objective space. The objec-

tive space of H-measure and similarity shows the traditional

relationship of conflict objectives in multiobjective optimiza-

tion problems. We also analyzed other fitness objectives in this

manner. Among them, H-measure and similarity conflicted most

with each other. GC ratio and similarity also showed conflict.

Fig. 10. Objective space of H-measure and similarity for 5 bp DNA sequences.
The line depicts the tradeoff surface.

Other objectives did not conflict with each other, and they had

only one optimum point as sphere function. Nevertheless, they

were all discontinuous functions which are hard to find the op-

timum. Therefore, we can conclude that DNA sequence design

problem is a hard multiobjective optimization problem.

C. Algorithm of NACST/Seq

As shown in Section IV-B, DNA sequence optimization has

many fitness functions which conflict each other. Therefore,

MOEA is a natural candidate for DNA sequence optimization.

In addition, if we use MOEA, we can easily add or delete fit-

ness objective for sequence optimization. In DNA sequence op-

timization, selection of fitness objective could be diverse for the

purpose of DNA sequences. Therefore, the possibility of easy

addition or deletion of objective functions without changing

program can be another merit of MOEA for DNA sequence

optimization.

Among various MOEAs [36]–[38], we implement

NACST/Seq based on a controlled elitist nondominated sorting

genetic algorithm (NSGA-II) [39], which is the one of the most

widely used MOEAs for the real-world problems. Since DNA

sequence optimization has various fitness objectives, as shown

in Section IV-A, we need the algorithm to balance convergence

and diversity as well as to handle a number of objectives.

NSGA can handle a number of objectives through ranking by

nondominated sorting procedure. It also showed good con-

vergence and diversity performance among various MOEAs

[37]. In addition, the crowding distance measure in NSGA-II

overcomes a drawback of deciding the sharing parameter.

In multiobjective optimization, the problem difficulty varies

rather interestingly with the number of objectives [40]. Espe-

cially, there are a bunch of objectives in DNA sequence opti-

mization compared with other multiobjective problems. There-

fore, maintaining the exploration ability is an important issue

within DNA sequence optimization. Usually, there are two gen-

eral approaches to this problem: using a large population size

and using a modified algorithm for assigning fitness [41]. Since
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Fig. 11. Percentage of feasible solutions over population through generations
for the constrained MOEA and the normal MOEA. The dotted line is the result
when the constrained tournament selection is used. The solid line shows that
the penalty is treated as an additional objective. The constrained MOEA finds
feasible solutions quickly and keeps them in front.

increasing population size requires long computational time and

it is a difficult task to modify algorithm to handle a number of

objectives, we use the NSGA-II with controlled elitism strategy.

Under this approach, the number of individuals in each front

is restricted to follow a predefined distribution. This allows to

maintain diverse population as well as to utilize the advantage

of elitism strategy.

We modified NSGA-II to work within the scope of DNA se-

quence optimization. NACST/Seq adopts a hierarchical repre-

sentation including individual level and a sequence level. The

crossover and mutation operators are divided into two steps.

Step 1) Individual level operation which is regarded as an

exchange of member sequences between two indi-

viduals.

Step 2) Belongs to the sequence level which is the same as

multipoint crossover in simple genetic algorithms.

The mutation operator changes DNA base at random position.

Using both operators showed empirically better results than

using one of operators, and tournament selection with tour-

nament size two was used to select the individuals. We used

tournament size two to reduce the computational time. Also,

empirically there was no significant improvement in using a

larger tournament size. To use the controlled NSGA-II, it is

important to decide the reduction rate which decides the size of

each front. In previous work [41], since a reduction rate 0.65

showed the best performance, we adopt 0.65 in NACST/Seq.

Then, constraint handling technology is applied to DNA se-

quence optimization. Since some objectives such as melting

temperature and GC content can be naturally regarded as con-

straints, not objective functions, the more precise formulation

of DNA sequence optimization is a constrained MOEA. Ad-

ditionally, when using constraint handling technique, we can

Fig. 12. Pseudocode for the main procedure of NACST/Seq. P is the current
population and Q is the new population.

find more reliable solution in early generation by decreasing the

number of objectives. Therefore, (1) can be modified as follows:

Optimize continuity, hairpin

H-measure, similarity

subject to GCcontent (5)

Here, we use constrained tournament selection to handle the

penalty functions. There are three cases in the constrained tour-

nament to drive infeasible solutions toward the feasible region

[41]: if infeasible solution and feasible solution are selected, fea-

sible solution is selected; if both infeasible solutions are chosen,

one with less penalty wins; when both feasible solutions are se-

lected, if any one dominates the other, dominating one is se-

lected, if not, one with larger crowding distance wins.

To demonstrate the effectiveness of constraint handling

method in finding feasible solutions, we plot the percentage

of the feasible solutions over population for the constrained

MOEA and the normal MOEA. Fig. 11 depicts the result of the

generation of seven 20-mer DNA sequences. Only GC content

was kept at 50%. Except the constraint handling method,

the same parameters are used: the population size was 1000,

maximum generation was 200, crossover rate was 0.9, mutation

rate was 0.01, and reduction rate was 0.5. As shown in Fig. 11,

the constrained tournament selection finds feasible solutions

quickly and keeps them in front. On the other hand, when the
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TABLE III
COMPARISON RESULTS OF THE SEQUENCES IN [43] AND THE SEQUENCES BY NACST/SEQ.

THE FITNESS IS EXAMINED BY NACST/REPORT

GC content is treated as the one of the objectives, infeasible

solutions are hardly removed from population. This prevents

one from finding the optimal solution.

The entire NACST/Seq procedure is summarized in Fig. 12.

First, parent and offspring population are united and evaluated.

Then, new parent population is formed by constrained tourna-

ment selection. From these new parents, new offsprings are gen-

erated by variation operators such as two-step crossover and

mutation [42].

V. SEQUENCE DESIGN RESULTS BY NACST/SEQ

A. Comparison With Other Sequence Design Systems

We compared our algorithm with other approaches to show

the performance of NACST/Seq. We analyzed sequences from

several publications and those generated by NACST/Seq with

comparable restrictions. Sequences were taken from the results

of Deaton et al. [17], [43], Tanaka et al. [44], and Faulhammer

et al. [26]. The parameters for NACST/Seq were as follows. For

H-measure and similarity, we set lower limits for the continuous

case equal to six bases and those for the discontinuous case to

17%. For continuity, the threshold value was 2. We assumed

that hairpin formation requires at least six basepairings and a six

base loop. Though typical minimum settings are stem length 3

and loop length 3, we assumed 6 for both to reduce the com-

putational time. All these values were decided empirically with

biochemical background. The melting temperature was decided

by the nearest neighbor (NN) method with 1 M salt concentra-

tion and 10 nM DNA concentration. The reduction rate was 0.65

as explained in [41]. The population size was 3000 and the max-

imum generation was 200 for [26] and [43]. The population size

was 5000 and the maximum generation was 300 for [44]. Here,

we constrained only the GC ratio, since the range of melting

temperature was not given in the references. For [43] and [44],

Fig. 13. Average fitness comparison results between Deaton and NACST/Seq.
Y axis indicates the average values of each fitness objective in Table III.
NACST/Seq shows better results for all objectives.

the GC ratio was restricted to 50%. For [26], the range of the GC

ratio was 40% 50%. Among the various DNA sequence set as

a result of MOEA, we chose the best one by NACST/Sim which

is the biochemical reaction simulator [31].

First, we compared NACST/Seq with [43]. In [43], a genetic

algorithm was used to design good sequences for Adleman’s

graph. The comparison results are shown in Table III and

Fig. 13. Fig. 13 shows the average values of all sequences in

Table III. The sequences generated by NACST/Seq outperform

the sequence in [43]. Our sequences show much lower H-mea-

sure and similarity values. This implies the sequences made

by NACST/Seq have much higher probability to hybridize

with the its correct complementary sequences. The secondary

structure is more prohibited due to the very low continuity and

hairpin, and the width of the range of melting temperatures and

GC ratio are better. In our sequences, the longest length of the
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TABLE IV
COMPARISON RESULTS OF THE SEQUENCES IN [44] AND OUR SEQUENCES

repeated base is three which appears only once, whereas it is

five that of Deaton et al. was applied.

Then, we compared the sequences in [44] generated by

simulated annealing. Tanaka et al. designed a set of 20 DNA

sequences whose length is 20-mer, as shown in Table IV. The

evaluation function was a weighted sum of different terms in-

cluding H-measure, self-complementarity, GC portion, melting

temperature, self-complementarity, complete hybridization at

the -end, and continuity. In the generated sequences, the

continuous bases did not appear, GC portion of all sequences

was 50%, H-measure and similarity values were relatively

small. However, NACST/Seq can find better sequences in all

measures, as shown in Table IV and Fig. 14, where GC portion

and continuity value are the same, 50% and 0%, respectively.

Fig. 14 shows comparison results in terms of average of fitness.

For hairpin, H-measure, and similarity, the sequences designed

by NACST/Seq show much better properties. Even the width

of the range of melting temperatures is better.

Fig. 14. Comparison results between average values of Tanaka and
NACST/Seq.

Table V presents the sequences for the chess knight move-

ment problem in [26]. Referring to [26], these sequences were
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TABLE V
COMPARISON RESULTS OF THE SEQUENCES IN [26] AND NACST/SEQ

verified by real-laboratory experiments. Faulhammer et al. [26]

generated 20 15-mer DNA sequences using PERMUTE that re-

paired sequences until they met the criteria such as Hamming

distance, melting temperature, and so on. As in the previous

case, our sequences are more dissimilar, prohibit unintended

DNA basepairing, and have the smaller range of melting temper-

ature and GC ratio (refer to Fig. 15). Both sequences do not have

hairpin formation. If we relax the constraint of the GC ratio, we

can get better sequences for H-measure and similarity.

Finally, we compared the sequences in [17]. Unlike the pre-

vious methods, the minimum free energy for duplex formation

between two given sequences was calculated. They showed 40
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Fig. 15. Comparison results between Faulhammer and NACST/Seq.
NACST/Seq outperforms Tanaka et al.’s algorithm.

Fig. 16. Comparison results of Deaton (new method) and NACST/Seq.
NACST/Seq shows better results for all objectives.

DNA sequences among generated 3595 sequences. However,

NACST/Seq can also find more promising DNA sequence set.

Fig. 16 shows the comparison results. While they used free en-

ergy calculation to optimize DNA sequences, we applied free

energy term to select best candidate set among various set of

MOEA run by NACST/Sim. As we chose the final sequence

using NACST/Sim, our sequences show better performance in

H-measure and similarity, even if Deaton et al. [17] used free

energy calculation term directly.

B. Application to the Traveling Salesman Problem (TSP)

At the first trial, we used the conventional EA with mul-

tiple-point crossover, single-point mutation, and RW selection.

The fitness function was the weighted sum of required fitness

measures

fitness

(6)

For simplicity, we set each weight to one. The best fitness value

is zero, therefore, we have to minimize (6).

TABLE VI
GENERATED VERTEX SEQUENCES FOR SEVEN-TSP. BOTH SEQUENCES

BY THE CONVENTIONAL EVOLUTIONARY ALGORITHM

AND BY THE PROPOSED ALGORITHM ARE SHOWN

Fig. 17. Comparison results between conventional EA and NACST/Seq.

We designed DNA sequences for the TSP using conventional

EA. The target TSP was a seven-node incomplete graph, seven

vertex sequences, five weight sequences, and 24 edge sequences

were generated to solve this problem. The population size was

1000, maximum generation was 1000, crossover rate was 0.9,

and mutation rate was 0.05. The parameters for DNA sequences

were the same as the setting of the previous section. For more

detailed description, see [45]. The top seven DNA sequence for

seven-TSP designed by EA in Table VI were verified by the

biological experiments [46].

As explained earlier, the properties of DNA sequence opti-

mization are suitable for MOEA, but not conventional EA. We

generated the vertex sequence for the TSP by the proposed con-

strained MOEA to compare with the result of EA. The popula-

tion size was 3000, the generation size was 200, and the reduc-

tion rate was 0.65. Although the population size is bigger than

EA, the number of iteration is much smaller. The sequences by

MOEA are compared to those by EA in Table VI.

Table VII and Fig. 17 show the comparison results of conven-

tional EA and MOEA. The sequences designed by MOEA are

better than those by EA for several reasons. In MOEA results,

there are no repeated nucleotides (continuity) and no hairpin

structures. H-measure and similarity measures in MOEA are

also much more suitable for a laboratory experiment. The GC

ratio is the same. Only the width of range of melting tempera-

ture of EA is comparable to that of MOEA. Therefore, we can

conclude that sequences generated by MOEA can successfully
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TABLE VII
FITNESS OF THE GENERATED VERTEX SEQUENCES FOR TSP

solve the same TSP done by the sequence of EA, since the result

of MOEA outperforms the result of EA.

C. Other Problems

Using the MOEA described in this paper, we also designed

the sequences for a resolution refutation [47] and version space

learning with a lab-on-a-chip technology [48]. These sequences

have been also verified by laboratory experiments.

VI. CONCLUSION

We presented a multiobjective evolutionary algorithm

(MOEA) to solve a real-world DNA sequence design problem.

The DNA sequence design problem is formulated as a multi-

objective optimization task and solved by a controlled elitist

MOEA with constrained tournament selection. This method

is implemented as a DNA sequence design software called

NACST/Seq. The rationale for this approach is based on our

analysis of the problem. The landscape of DNA sequence

optimization shows many local optima and little gradient

information. It depicts the conflicting relationship between

fitness objectives. This supports that MOEAs are actually a

good candidate for DNA sequence optimization. The controlled

elitist MOEA proved also useful since we have a large number

of fitness objectives in this problem domain. The constrained

tournament method turns out to be effective since some fitness

objectives are more suitable to constraints, not to objectives.

The DNA sequences designed by NACST/Seq were com-

pared with those designed by other existing sequence design

systems. The results show that NACST/Seq can generate better

or comparative sequences in all objectives than other systems.

The generality of the NACST/Seq system is also proven by

its successful application to a wide range of laboratory exper-

iments, including the TSP, molecular theorem proving, and

molecular version-space learning. Experimental results support

that NACST/Seq is a useful tool for sequence design in DNA

computing. From the evolutionary computational point of view,

the DNA sequence design problem exemplifies a new practical

application of MOEA that demonstrates its usefulness.

It should be mentioned that there is still room for further im-

provement of the NACST/Seq system with respect to its speed.

The MOEA approach generally takes significant CPU time to

find optimal sequence sets, which is caused by the explorative

nature of evolutionary computation combined with the difficulty

of the design problem we addressed. Introduction of a heuristic

such as using a template map and generating a nonrandom initial

population would accelerate the convergence speed of MOEA.

Also, we try to incorporate more fast MOEA such as -MOEA

and reformulate objective functions for speed-up.

Finally, as mentioned in Section III, NACST/Seq is a sub-

part of NACST, which is in silico platform for DNA computing.

Using the NACST system, users can design DNA sequences

(NACST/Seq), simulate laboratory experiments (NACST/Sim),

and analyze the results (NACST/Report and NACST/Plot). This

integrated system can accelerate the development of DNA com-

puting algorithms.

APPENDIX

Basic Definitions

We define an alphabet to consist of each single nucleotide and

gab as , where “ ” denotes a gab. Also,

an alphabet consists of only single nucleotide can be defined

as . Then, the set of all DNA sequences

is denoted as . Let and . The length

of sequence is denoted as , and ( ) means

th nucleotide from -end of sequence . A set of sequences

with the same length is denoted by , where th member of
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is denoted as . is the complementary base of , and other

basic definitions are as follows:

otherwise

otherwise

otherwise

For a given sequence , the number of nonblank nu-

cleotides is defined as

length

where

otherwise

and a shift of a sequence by bases is denoted as follows:

shift

A. H-Measure

H-measure for the given set of sequences is defined as

follows:

H-measure

where and are anti-parallel to each other.

H-measure is divided by two terms. One term is

for the overall complementarity and the other is the penalty

term for the continuous complementary region. Formally,

H-measure is defined as follows:

H-measure shift

shift

where

length

is a real-value between 0 and 1, and is an integer

between 1 and . Both values are set by user, and

means the length of continuous basepairing starting from th

base of sequence , as shown in the first equation at the bottom

of the page.

B. Similarity

Similarity is calculated as

Similarity

where and are parallel each other. Similarity is

also divided into two terms. One term is for the overall discrete

similarity and the other is the penalty term for the continuous

common subsequence

Similarity shift

shift

where

length

is a real value between 0 and 1, and is an integer

between 1 and . Both values are given by user, and

means the length of the continuous common subsequence

starting from th base of sequence , as shown in the second

equation at the bottom of the page.

C. Hairpin

We assume that a hairpin has at least bases as a loop and

at least base pairs as a stem. In this fitness function, we

calculate the penalty for formation of hairpin with various size

at every position in the sequence. We consider a hairpin with

-base loop and -base pairs stem to be formed at position in

the sequence , if more than half of bases in the subsequence

hybridize to the subsequence . We

define the number of matches in these subsequences as the

penalty for this hairpin. The formal description of fitness is

shown in the first equation at the top of the next page, where

denotes maximum

number of possible basepairs when a hairpin is formed at center

, takes the smaller one.

if , s.t. , for ,

otherwise

if , s.t. , for ,

otherwise
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Hairpin

Hairpin

Continuity

if , s.t. , for ,

otherwise

if method,

if ratio method

D. Continuity

Continuity for a set of sequences is defined as follows:

Continuity

where Continuity is shown in the second equation at the top

of the page.

E. Melting Temperature

Let denotes the percentage of bases and in se-

quence . Then, melting temperature ( ), is like the third

equation at the top of the page, where is DNA sequence,

is salt concentration, is gas constant, and is total se-

quence concentration.
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