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Abstract An important dispersion-related characteristic of
wave propagation through periodic materials is the existence
of frequency bands. A medium effectively attenuates all inci-
dent waves within stopbands and allows propagation within
passbands. The widths and locations of these bands in the
frequency domain depend on the layout of contrasting mate-
rials and the ratio of their properties. Using a multiobjective
genetic algorithm, the topologies of one-dimensional peri-
odic unit cells are designed for target frequency band struc-
tures characterizing longitudinal wave motion. The decision
variables are the number of layers in the unit cell and the
thickness of each layer. Binary and mixed formulations are
developed for the treatment of the optimization problems.
Designs are generated for the following novel objectives: (1)
maximum attenuation of time harmonic waves, (2) maximum
isolation of general broadband pulses, and (3) filtering sig-
nals at predetermined frequency windows. The saturation of
performance with the number of unit-cell layers is shown for
the first two cases. In the filtering application, the trade-off
between the simultaneous realization of passband and stop-
band targets is analyzed. It is shown that it is more difficult
to design for passbands than it is to design for stopbands.
The design approach presented has potential use in the de-
velopment of vibration and shock isolation structures, sound
isolation pads/partitions, and multiple band frequency filters,
among other applications.

Keywords Periodic materials - Phononic and photonic
crystals - Wave dispersion - Band gap - Stopband - Passband -
Topology optimization - Multiobjective genetic algorithms -
Vibration and shock isolation

Mahmoud I. Hussein (X) - Karim Hamza -
Richard A. Scott - Kazuhiro Saitou
Department of Mechanical Engineering,

The University of Michigan,

2350 Hayward Street, 2250 GG Brown Building,
Ann Arbor, MI, 48109, USA

e-mail: husseinm@engin.umich.edu

e-mail: khamza@engin.umich.edu

e-mail: hulbert@engin.umich.edu

e-mail: car@engin.umich.edu

e-mail: kazu@engin.umich.edu

Gregory M. Hulbert -

1 Introduction

Wave propagation in heterogeneous media is dispersive, i.e.,
a wave decomposes into multiple waves with different fre-
quencies. In media with periodic heterogeneity, there are
ranges of frequencies, known as stopbands or band gaps,
over which all incident waves are effectively attenuated.
This attenuation phenomenon is attributed to a mechanism
of destructive interferences within the scattered wave field.
In complementary frequency bands, passbands, construc-
tive interferences dominate and waves effectively propagate
through the medium. This frequency-banded dynamic re-
sponse has triggered much interest in periodic materials,
especially since these materials have practical applications
across multiple disciplines (e.g., photonic crystals are used
to control the propagation of electromagnetic waves, and
phononic materials, or sonic crystals, are used to control the
motion of acoustic and elastic waves). The reader is referred
to an extensive review article on this broad field (Kushwaha
1996). Of increasing interest is the design of periodic materi-
als for desired wave dispersion characteristics, which, in turn,
provides a means for passive control of the wave fields in the
materials in accordance to the requirements of the given ap-
plication. A review article on the inverse problem has recently
been published (Burger et al. 2004).

From a practical perspective, it has been shown that as
long as a sufficient number of cells are available (usually
around three to four are required), bounded structures formed
from periodic materials can exhibit similar wave attenuation
characteristics to those of the periodic materials (e.g., Day
et al. 1994; Cao and Qi 1995; Jensen 2003; Hussein et al.
2003, 2004b, 2005; Hussein 2004).

By controlling the materials layout and the ratio of their
properties within a unit cell, a periodic composite could be
designed to have a desired frequency band structure (the size
and location of stopbands). In this work, bimaterial layered
(one-dimensional) composites are considered where the unit
cell consists of sublayers of alternating material types with
different thicknesses. The frequency band structure can there-
fore be controlled by varying the configuration of the layers.
Three case studies are considered:

Case I Creation of a stopband for maximized wave atten-
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uation at a specified frequency

Case II Maximization of the percentage of stopbands
within a specified large frequency range for mini-
mum wave transmissibility

Case III Creation of multiple stopbands/passbands at spec-
ified frequency ranges

The designed materials could be used for isolating vibra-
tions induced by single (case I) or multiple (case III) harmonic
excitation. Material designs for case II could find application
for shock isolation (defining a shock load as one that consists
of a transient broadband pulse) and sound isolation in which
the frequency spectrum is typically broad.

In all the considered cases, the decision variables are (1)
the number of layers in the unit cell and (2) the thickness of
each of the layers. The maximum number of unit-cell lay-
ers and the range of admissible layer thicknesses are im-
portant quantities from both the dynamic performance and
practical points of view. Increasing these quantities provides
more precise control of the frequency band structure, but
it entails higher manufacturing costs. For practical consider-
ations, there are limits (constraints) on (1) the minimum layer
thickness and (2) the total cell length (the cell length is con-
veniently assigned with the value of unity).

Cases I and II are posed as multiobjective optimization
problems where the number of cell layers and their thick-
nesses are optimized for maximum wave attenuation capac-
ity with minimum number of layers. For case II, an additional
study is carried out where the frequency content of the exci-
tation load that is to be isolated is incorporated as a weighting
function. This forces the locations of the generated band gaps
to be biased towards the high-magnitude frequencies of the
excitation load. Two formulations of the decision variables
are developed, each with its own advantages (as will emerge).
The first is a mixed-integer programming, where the number
of layers is represented by an integer variable, and the layer
thicknesses are represented as continuous variables. The sec-
ond formulation is a zero—one integer programming, where
the unit cell is divided into a fixed number of imaginary divi-
sions, and the material type of each division is represented by
the binary variables. In this manner, the binary variables con-
trol both the number and the thicknesses of the actual layers.
Solutions to both formulations are attempted using an evo-
lutionary optimization technique. A multiobjective genetic
algorithm, namely, the Nondominated Sorting Genetic Algo-
rithm (NSGA-II; Deb et al. 2000, Deb 2001), is employed.
NSGA-II is a heuristic algorithm capable of efficiently gen-
erating quasi-Pareto optimal (noninferior) solutions.

For case III, only the binary formulation is followed, and
the two previous competing objectives are replaced with the
ones that are related solely to dynamic performance (namely,
achievement of attenuation at specified frequency ranges and
propagation at complementary frequency ranges). The mul-
tiobjective genetic algorithm described above is also used for
case III.

A similar design problem to that of case I has been pur-
sued in the contexts of electromagnetic (Cox and Dobson
1999, 2000) and elastodynamic (Sigmund and Jensen 2003)

wave propagation. In all these studies, two-dimensional pe-
riodic unit cells were optimized to produce a band gap (be-
tween two selected branches) with a maximum width and
centered at a given frequency or at a minimum frequency.
Local search optimization techniques were used. However,
optimization problems on frequency band structures tend to
be highly multimodal, and therefore, it is possible for a local
search to converge to local optima. In this paper, the tech-
nique of genetic algorithms is chosen because it has the ad-
vantage that it simultaneously evolves multiple designs and
eventually converges to near-global optimality.

In a previous work (Hussein et al. 2002) dealing with
longitudinal wave propagation in layered periodic materials,
cases I and II were pursued (as single-objective optimiza-
tion problems). For a given maximum limit on the number
of layers, the optimal design for each case was found by
exhaustively searching over all possible cell configurations
under the restriction that layers only could have thicknesses
that are multiples of a minimum size. While the exhaustive
search guarantees finding a global optimum, it is prohibitively
expensive because the number of possible combinations of
layer thicknesses increases exponentially with the number
of layers. The adoption of genetic algorithms in this study
efficiently extends the design space and therefore allows for
better designs to be realized (preliminary results are presented
in Hussein et al. 2004a).

The new features of the present study are summarized
as follows: (1) multiobjective optimization where a dynamic
performance measure trades off with a manufacturing cost-
related objective (cases I and IT) or with another dynamic per-
formance objective (case I1I); (2) employment of an objective
function for the dynamic performance in case I that focuses
solely on the attenuation strength as opposed to the width
and location of the band gap; (3) design of band-gap materi-
als for shock isolation (case II); (4) weighted band structure
optimization where the frequency content of the excitation is
incorporated in the formulation (second part of case II); (5)
design for multiple stopbands and passbands, i.e., high-order
filters (case III); and (6) development, and comparison, of a
mixed formulation and a binary formulation for optimizing
layered band-gap materials.

The rest of the paper is organized as follows. Section 2.1
describes the mathematical formulation of a transfer matrix
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Fig. 1 Unit cell consisting of n layers (layer number indicated in paren-
theses)
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Fig. 2 Infinite layered medium (three unit cells shown)

method for computing frequency spectra (i.e., frequency vs
wave number dispersion curves) for linear elastic periodic
materials, and in Section 2.2, the dispersive response of a cor-
responding finite periodic structure (undamped and damped)
is considered. In Section 3, the two formulations of the cell
design problem are presented along with a description of the
employed multiobjective genetic algorithm and the imple-
mentation techniques. Section 4 presents the description and
results of the three case studies. A summary is provided and
conclusions are drawn in Section 5.

2 Dispersive wave motion in periodic layered materials
and structures

2.1 Unit-cell analysis

Consider a general multilayered medium (as depicted in
Fig. 1) where an arbitrary layer j is shown to be positioned
between an adjacent layer j—1 at its left and an adjacent layer
Jj+1 atits right. The interface between the layers is assumed to
be ideal. The jth layer has thickness dj, density p(), Young’s

modulus £, and longitudinal velocity clg] ) = JED /pD,
respectively. For this one-dimensional model, the elastody-
namic response is determined using Floquet’s (1883) theorem
and the transfer matrix method (Thomson 1950). Combining
these tools provides an exact elasticity solution for the fre-
quency spectrum (Esquivel-Sirvent and Cocoletzi 1994; Shen
and Cao 2000; Hussein et al. 2005).

The governing equation for longitudinal wave propaga-
tion in the x direction in the jth layer is:

28 u(x,t)

M = (c (/)( )) 7’

ot?

where u is the displacement field and ¢ denotes time. The
boundary conditions that must be satisfied at the layer inter-
faces are (1) the continuity of the displacement « and (2) the
continuity of the traction (stress) o. The solution of Eq. 1 in
the jth layer can be written as a superposition of forward and
backward traveling waves with harmonic time dependence:

ey

—iwt

A )
M(x,t) — [Ag)elkp/x +A(]) —lkj ] X e ,

where i = 4/—1, kéj ) a)/c(/ ), and w is the temporal fre-
quency. The stress component is given by

@)

Bu(x t)

o(x, 1) =EY (x) 3)

Let x/" and x/R denote the position along the x-axis of the left
and right boundaries of layer j, respectlvely From Egs. 2 and
3, and using the relation x/ R — x/L 4 4, i, the values of the
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Fig. 3 Dispersion curves for longitudinal wave propagation normal to the layers in the infinite periodic structure shown in Fig. 2 (stop bands

shaded in gray)
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displacement u and stress o at x/I are related to those at x/R.
Through a transfer matrix T;, this mapping can be repeated
recursively to relate the displacements and the stresses across
several layers. For the n-layered system shown in Fig. 1, a cu-
mulative transfer matrix T = T, T,,_| - - - T} is constructed:

5] =]
0 | R o]

For an infinite periodic layered medium consisting of re-
peated unit cells, each consisting of n layers and has width
d =dy+dy+ -+ d,, Floquet’s theorem is used to relate
the time harmonic response at a given cell to that at an adja-
cent cell:

u 1 u
x+d X

where k is a wave number corresponding to wave motion in
the periodic medium. Coupling Eq. 4 with Eq. 5 results in
the eigenvalue problem:

ikdq| U
[T —1Ie ][a]

which is solved for the dispersion curves (w vs k). Further-
more, the time-dependent displacement mode shapes can be
obtained using Eqgs. 2, 4, and 5. A detailed description of the
above procedure as well as an algorithm for computing the
mode shapes has been presented previously (Hussein et al.
2005).

For the purpose of demonstration, consider the time har-
monic wave propagation in a periodic layered medium with
an arbitrarily chosen unit-cell design, as shown in Fig. 2. The
unit cell is composed of two parallel layers of stiff (fiber) and
compliant (matrix) materials. Using ‘f” and ‘m’ subscripts
to denote fiber and matrix, respectively, the dimensions are
df/ld=0.8. The ratios of the material properties are p/pm=3
and Et/Ey,=12. It is should be noted that the dispersion char-
acteristics are dependent on the ratios of layer geometries and
material properties and not on their absolute values.

The dispersion curves for longitudinal waves propa-
gating in the direction normal to the layering are com-
puted and plotted in Fig. 3. The nondimensional frequency
Q=wd /
& = &real + i&imag = k x d define the ordinate and abscissa,
respectively. The solid lines represent the real part of the dis-
persion relation, and these appear as multiple branches of
passband modes of wave propagation. The dashed lines rep-
resent the imaginary part of the dispersion relation, and these
too appear as multiple branches, but of stopband modes.
At passband frequencies, waves are “allowed” to effectively
propagate across the medium. At stopband frequencies, in-
cident waves are localized and attenuated in space, thus
“forbidding” the effective transmission of energy across the
layers.

The model and analysis presented above could be gener-
alized to incorporate transverse wave motion as well as wave

“)

®)

=0,

1L

(6)

X

En / pm and the nondimensional wave number

propagation parallel (as opposed to normal) to the layering.
However, the same ideas hold with regards to the notion of
designing periodic layered materials for desired dispersion
characteristics. Hence, for the rest of this paper, the attention
is focused on longitudinal wave propagation in the direction
normal to the layering.

2.2 Dispersion in a finite periodic structure

For a periodic material’s banded frequency characteristics to
have practical significance, it is important that a finite (i.e.,
bounded) structure formed from this material exhibits simi-
lar wave attenuation characteristics. It has been shown that a
minimum number of cells, e.g., three to four cells, are neces-
sary for the response of a finite periodic structure to exhibit
the same frequency bands as the constituent periodic ma-
terial (Hussein et al. 2005). Such congruence of response is
briefly demonstrated in this section through an example. Fur-
thermore, viscous damping in a bounded periodic structure
is considered to examine its effects.

As a demonstrative case study, the five-cell long struc-
ture (of length L=5) shown in Fig. 4 is considered (5 cells
are included to be in the conservative side). The unit cell
from which this structure is formed is the same as shown in
Fig. 2. The stopbands of that unit cell are the horizontal bands
shaded in Fig. 3. The structure is restrained from motion at
the right end and is subjected to a prescribed harmonic force
at the left end of the form
Jex(x, 1) = Fx, 0", )
where F is a complex coefficient and w* is the frequency of
an applied harmonic force. A forced response frequency
sweep (with a sampling step of AQ* = 0.1, where Q* =

w*d / +/Em / pm 18 carried out to cover the entire range, 0 <

Q* < 50, considered in Section 2.1. To incorporate the above
forcing as well as viscous damping, the governing equation
of motion is generalized to

0Pu +DPuy —EDu, o = fou(x, 1), (8)

where D) is a damping coefficient associated with the jth
layer. Superscripts (-),x and (-),; denote differentiation with

Fixed End
5 Cells A

Prescribed Load

Fig. 4 Finite periodic structure consisting of five cells (black and white
colors represent fiber and matrix, respectively). The structure has a
fixed boundary condition at the right end. At the left end, a prescribed
harmonic force is applied
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respect to position and time, respectively. For simplicity, pro-
portional material damping is considered (as commonly as-
sumed in structural dynamics) and has the form
DU — ,Bp(j) + otE(j), 9)
where (3 and « are parameters.

A standard finite element method is used to solve the
above problem for two cases: (1) undamped and (2) damped
with $=0.25 and a=0. The model consists of 600 piece-
wise linear elements, with lengths following the condition

h§ = 2hg,, where h° is the element size. The maximum dis-
placement values within the fifth cell (i.e., at the receiving
end of the structure) are plotted as a function of Q* in Fig. 5.
All displacement values are normalized with respect to the
static deflection of an equivalent homogenous structure, de-
fined as

§ = SFd/Eqyg. (10)

where

Eae = <rfi 4 rmi)_l, (1)
Es En

and where rf and r, denote the fraction of stiff and compli-
ant materials, respectively. The constituent unit-cell stopband
frequency ranges are the vertical bands shaded in the figure.
These are identical to the horizontally shaded stopbands in
Fig. 3. It is clear that the dynamic behavior of both the un-
damped and damped finite periodic structures conform to the
periodic material’s frequency bands—and since as many as
five unit cells are available, the attenuation at stopband fre-
quencies is significant as desired. The damping suppresses
the passband resonant modes and appears to have no ef-
fect on the stopband response. These results affirm that the
frequency-banded characteristics of a unit cell matches with
that of a corresponding finite, fully periodic structure, in-
cluding a viscously damped structure. Hence, the process of
unit-cell design (the focus of the rest of the paper) is suffi-
cient for the design of finite periodic structures for both the
undamped and damped cases.

3 Multiobjective genetic algorithm for unit-cell design
3.1 Cell design problem formulations: mixed and binary

Varying the number of layers of alternating materials and
their thicknesses allows for “shaping” the frequency spec-
trum of the periodic medium. With this capability, a design
can be generated with a desired distribution of stopbands and
passbands to achieve a target dynamic performance. The de-
tails of performance measures are given in Section 4. Recall
that the number of cell layers is n, and let the thicknesses
be expressed in vector form, i.e.,d = (d1, da, ..., d,). Since
the unit cell is periodic, it is assumed, without loss of gener-
ality, that the first layer in the unit cell is always a fiber and
that n is an even number. Using the integer variable n and

the continuous variable d, the problem can be formulated as
a mixed-integer programming, which shall be referred to as
the mixed formulation:

Minimize f; = Pen;(n,d), f>» = Pena(n, d), (12)
n
Subject to Zdj =1, (13)
j=1
di >aforj=1,2,..n, (14)
2 <n < nmax, N IS an even number, (15)
deR' ne?Z, (16)
where

f1, f2: performance and/or cost objective functions. A per-
formance objective is defined as a penalty on the devi-
ation of the wave attenuation capacity of the medium
at a specified frequency (or frequency range) from a
desired target. A cost objective is defined as a penalty
on the estimated manufacturing cost (assumed to in-
crease with the number of layers in the unit cell)
a: minimum thickness of a layer given as a fraction of
unity.
Nmax: Maximum number of layers.

It should be noted that the dimension of vector variable d
depends on another variable 7, which often causes a difficulty
in optimization algorithms. The constraint on the total cell
length is unity by construction. For the other constraints, it
is assumed that a and npy,.x are defined by the manufacturing
limitations.

Alternatively, the problem can be formulated in terms of
a vector of binary variables b=(b1, b»,..., b;) (with a constant
dimension /) by assuming that a unit cell is divided into /
imaginary “divisions” or “slots,” each of which can be filled
with either fiber ‘t” or matrix ‘m’ (Hussein et al. 2002):

b — { 0 if slot i is filled with fiber ‘f’ 17
"7 ] 1ifsloti is filled with matrix ‘m”"

Contiguous slots filled with the same material form a ho-
mogenous continuum and are regarded as one cell layer. With
this description, the total number of layers is

-1
n= Zs,- +1,
i=1

where s=(s1, ..., 5;_1), 5;=XOR(b;, b;;1). The thickness d; of
layer j can take only discrete values with a multiple of 1/,
which can be expressed as:

(18)

1
dj=(qj —4qj-1) % 7 (19)
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Fig. 5 Maximum displacement amplitude within fifth (rightmost) cell of structure shown in Fig. 4 vs frequency of excitation for undamped and
damped cases. Stop bands corresponding to the periodic material’s unit cell are shaded in gray

where q=(qo, q1,..., qn) are the indices of s with s;=1,
sorted in ascending order with go=0 and ¢g,=I[. This for-
malism implies that n=dim(q)—1. For example, if /=10
and b=(0,0,0,1,1,1,1,0,0,1), then s=(0,0,1,0,0,0,1,0,1) and
q=(0,3,7,9,10), and hence n=4 and d=(0.3,0.4,0.2,0.1),
starting with a fiber material for the first layer and alternating
thereafter.

Using b as an independent design variable, the problem
can now be formulated as zero—one integer programming,
which shall be referred to as the binary formulation:

Minimize: { fi = Pen;(n,d), f> = Peny(n,d)}, (20)
-1
Subjectto:n = Y s; + 1,5, = XOR(b;, bi41) @1
i=1
fori=1,2,...,1—1,
dj = (qj —qj-1) x 1,
(22)
gjfor j =0,...,n, are as defined above,
di >aforj=12,...,n, (23)
2 < n < nmax, 1 18 an even number, 24)
b e {0, 1}\. (25)

In the previous work (Hussein et al. 2002), the cell de-
sign problem was tackled using the binary formulation with
[=10, and this small value allowed for an exhaustive search
of 210 alternatives. Since d ;i can only be a multiple of 1//, the

optimal cell design could be further improved with a larger
[, which makes exhaustive search totally impractical. In this
paper, a multiobjective genetic algorithm is chosen due to its
efficiency for global optimization of discrete and/or contin-
uous variables as described in the following section.

3.2 Multiobjective genetic algorithm

A multiobjective genetic algorithm employed in the follow-
ing case studies is a variant of the NSGA-II (Deb et al. 2000,
Deb 2001), whose steps are outlined as follows:

1. Create a population P of p random designs and evaluate
their objective function values. Also, create empty sets O
and O.

2. Rank each design c in P according to the number of other
designs dominating! ¢ (rank 0 is Pareto optimal in P).

3. Store the designs with rank O into set O. Update O by re-
moving any designs dominated by others in O. If the size
of O reaches a prespecified number, remove the designs
that are similar to others (based on Euclidian-distance
crowding) to maintain the size, while promoting diversity.

4. Select two designs ¢; and ¢; in P with probability propor-
tional to p-rank(c;) and p-rank(c;).

5. Crossover ¢; and ¢; to generate new design(s) with a cer-

tain probability.

Mutate the new design(s) with a certain probability.

7. Repair the new design(s) to maintain their feasibility
and/or remove redundancy.

o

' For a vector-valued function f=({1, f>, ..., fu) to be minimized, a
point x dominates y if f;(x)<f:(y) for all i=1, 2, ..., n, and f;(x)<f:(y)
for at least one of i=1, 2, ..., n.
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8. Evaluate the objective function values of the new de-
sign(s) and store in Q. If the size of Q is less than p,
go to step 4.

9. Replace P with Q, empty Q, and increment the generation
counter. If the generation counter has reached a prespec-
ified number, terminate the process and return O. Other-
wise, go to step 2.

Due to the differences in the design variables, the two
formulations of the cell design problem require different im-
plementations of crossover, mutation, and repair at steps 6,
7, and 8. The details of these implementations are explained
in the following sections.

3.3 Implementation of the mixed formulation

For the mixed formulation, a design is represented as a pair
(n, d), where d is a vector of constant size ny,x With d; = d;
fori=1, 2, ..., n.

3.3.1 Crossover and mutation

The crossover operator produces one new design (', d’) from
two “parent” designs (n1,d;) and (np, d>), implemented
as a combination of arithmetic and heuristic crossovers
(Michalewicz 1996):

n' =2[(n; +2a(ny —ny))/2] (26)

d =d; +2a(d —dy) 27)
Prior to crossover, the selected parents are reordered such that
(n1, dy) is the better design (not dominated by (n7, d»)). The
variable « is a random number between 0 and 1 (uniformly
distributed). The factor “2” in the second term in Eqs. 26
and 27 is due to combining the arithmetic and heuristic
crossovers. If a<0.5, the new design is always one that stands
“between” the parent designs (as in the case of arithmetic
crossover), whereas if a>0.5, the new design is projected
outwards in the direction of the better design (as in the case of
heuristic crossover). These types of crossover are reported to
function well with continuous variables (Michalewicz 1996);
hence, it is applied to d with a high probability.

Since there is no restriction on the crossover between
chromosomes representing designs of different layer lengths,
a situation may occur whereby nj#n>. The crossover on the
discrete variable n effectively changes the number of layers,
which can invalidate the physical meaning of allele values
on portions of d. This is analogous to mutation effects, and
for that reason, the crossover on the number of layers is per-
formed according to Eq. 26 with low probability. Otherwise,
n’ is taken as the maximum of n; and n,.

Mutation is applied with a low probability to every vari-
able in (n’, d") by randomly changing the variable values to
some value within its allowed range (i.e., uniform mutation).

3.3.2 Repair

The repair operator for the mixed formulation performs the
following steps:

— The value of n is set to its nearest even number between 2
and nyax. Although the crossover in Eq. 26 automatically
produces even numbers, this step is to adjust the effect of
uniform mutation on 7.

— The values of d; for i>n (which are physically meaning-
less) are set to zero to remove chromosome redundancy
(chromosomes having different allele values that repre-
sent the same physical design). ~

— A linear transformation is performed such that d'; +
do+---+d,=1andd'; >afori=1,2, .., n.

3.4 Implementation of the binary formulation

For the binary formulation, a design is simply represented as
binary vector b.

3.4.1 Crossover and mutation

Classic multipoint crossover and bit-flip mutation (Goldberg
1989) are applied.

3.4.2 Repair

Since the design performance depends only on the unit cell
number of layers, the layer thicknesses, and the layering se-
quence (i.e., which layer follows which, but not which layer
starts first), a repair operator that effectively cuts the search
space by a factor of 4 is implemented as follows:

— Left-rotation of the chromosome bits is performed until
b1=0 (first bit is zero) and b;=1 (last bit is assigned the
value of unity)

This repair operator automatically ensures that the num-
ber of layers is an even number greater than or equal to 2, but
does not guarantee that the minimum layer thickness is >a.
However, if the division thickness is chosen such that 1/[>a
(as in all cases considered in this work), the constraint on the
minimum layer thickness is intrinsically satisfied.

4 Case studies: cell designs for desired frequency
spectra

4.1 Case I: creation of a stopband for maximized
attenuation at a specified frequency

The aim in this case study is to design a unit cell consisting
of ‘f” and ‘m’ materials (same properties as in Section 2),
which provides maximum stopband attenuation at a prede-
termined nondimensional frequency Q*. From a practical
perspective, a finite structure composed of several cells of
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such a design could be used to attenuate the propagation of
a single harmonic wave resulting from an external excitation
at a frequency w* (the size d of the cells and the proper-
ties of the ‘m’ material are also specified). It is known that
the strength of spatial attenuation of an incident wave at a
stopband frequency is exponentially related to the value of
the corresponding imaginary wave number. On this basis,
the value of the imaginary wave number (which is negative)
at the predetermined frequency is taken as the performance
objective function fi for the design problem:
Minimize: fi = &imag (27). (28)
In contrast to objectives expressed in terms of band-gap size
(like those chosen by Cox and Dobson 1999, 2000; Sigmund
and Jensen 2003), the objective of Eq. 28 ensures that the
performance credit is solely related to the strength of atten-

uation. In addition to a performance objective, a competing
cost objective is introduced. Denoted f>, this objective is
chosen to be the number of layers in the unit cell:

Minimize: f> = n. 29)

Pareto plots generated by the multiobjective genetic
algorithm are shown in Fig. 6a. The run-time parameters of
the genetic algorithm are given in Appendix (Table Al). The
values of nmax=16 and /=30 were used for the mixed and
binary formulations, respectively, and for the mixed formu-
lation, 1/] was taken as the minimum layer thickness. The
values for npax and / were chosen to allow a larger design
freedom than the case reported in Hussein et al. (2002), which
was based on the objective given by Eq. 28 and also had
Q*=20 as the target frequency. The optimal design in that
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paper (obtained by exhaustive enumeration following the bi-
nary formulation with /=10) is shown as a reference point
in Fig. 6a, and its layout is shown in Fig. 6b. The number of
layers of that design is n=10, and the imaginary value of the
wave number at the specified frequency is &imag=—8.01. It
should be noted that /=30 makes an exhaustive search highly
impractical since it would require 228 (~2.7x 10%) function
evaluations?.

The Pareto plots in Fig. 6a show that the multiobjective
genetic algorithm found improved designs (§jmag=—8.55) us-
ing the same number of layers as in Hussein et al. (2002) as
well as even better designs using 12 layers. No better designs

2 It can be shown that the size of the combinatorial search space is
equal to 2/-2,

were found by increasing the number of layers beyond 12.
The unit-cell layouts of a selection of the best designs are
shown in Fig. 6b. Note that these unit cells are not primi-
tive; that is, they consist of subcells. This is due to the fact
that an inherent length scale has been incorporated in the de-
sign objective through the specified target nondimensional
frequency Q2*. For maximum band-gap attenuation at that
frequency, several of these subcells are required to form the
optimal unit cell. Dispersion curves for two of the best de-
signs (performance-wise) are presented in Fig. 6¢ and d. It
should be noted for both plots that while the stopband is not
centered around 2*=20, the design maximizes |§imag| at that
specified frequency. An objective to control the size of the
band gap (while centralizing it around a specified frequency
or around a minimized central frequency) could alternatively
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be considered following the same process; however, this is
likely to be at the expense of maximizing \Eimag |

4.2 Case II: maximization of the percentage of stopbands
within a specified large frequency range for minimum
transmissibility

The objective in this case study is to minimize the transmis-
sion of an incident general transient pulse. Transient pulses
typically have broad frequency content, and in most practical
cases, it may be impossible that a stopband can be synthe-
sized with enough width to cover the whole frequency range
of the pulse. For example, in case I, the maximum band-gap
width achieved is AQ2 & 30, while it may be desirable to
suppress a pulse with a wider bandwidth. For this reason, an
alternate performance measure, transmissibility, is taken as

the performance objective f1. In this study, transmissibility,
denoted Ty, is defined as the percentage of the sum of fre-
quency ranges where a passband exists to the total frequency
range, Qmin < Q% < Qmax, of the pulse that is to be isolated.
This definition leads to the following statement:

S H (Ereat (2)dS2

max — Cmin

Minimize: f; = T, = 100 x

9

where H (£rea1(£2)) is a hard limit function defined as

1 if &req1 > O (passband)

H (§real (§2)) = {0 if £ = O (stopband) Gh

The cost objective f> is defined in Eq. 29, as in case I. The re-
lationship to the finite structure is again through the mapping

Qmin/max = @min/max d/\/ Em/pm, where Wmin/max denotes
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the lower and upper limits of the actual frequency range of
the shock load, respectively.

Consider first a case where the frequency content is
constantoverarange of 0 < Q* < 50 (Q2mpin = 0 and Qpax =
50). The mixed formulation with ny,,x=16 and a=1/I, and
the binary formulation with /=30, were implemented. The
run-time parameter values for the genetic algorithm are the
same as in case I and are given in Appendix (Table Al).
The resulting Pareto plots are presented in Fig. 7a. The perfor-
mance of the design reported by Hussein et al. (2002) (which
employed an exhaustive search with /[=10) is 7,=16.3%,
and the cost is n=6 layers. A data point for this result is in-
cluded in Fig. 7a for comparison. The multiobjective genetic
algorithm found superior designs (7,=12.9%) with n=6 and
even better designs (7,=11.5%) for n=8. No better designs
were found with more than eight layers. This observed layer
saturation emanates from the limit on the minimum size of
the layers below which dispersion in the medium will not
occur. Note that for a given maximum temporal frequency
limit, there is a corresponding minimum wavelength (max-
imum wave number) limit associated with the appropriate
Brillouin zone. For dispersion to occur, the minimum wave-
length in the scattered field should not significantly exceed
the length scale of the layers. The unit-cell layouts of selected
best designs are shown in Fig. 7b. The frequency spectra for
the best performing designs (using both formulations) are
shown in Fig. 7c and d. In practice, finite forms of these types
of designs could be realized as mounting devices for shock
isolation and as surface pads or wall partitions for sound
isolation.

Consider now the more general case of a pulse with
variable frequency content. The performance objective fi is
modified by introducing a weighting function that takes into
account the frequency distribution of the pulse. This way, a
bias is introduced to give preference for the appearance of
stopbands in regions in the spectrum where the frequency
content of the pulse is high. For example, consider the prob-
lem of designing a periodic material that is to be tailored to
isolate a double-Gaussian pulse of the form

—a(t=b)* _ g—a(t—c)

gt)y=e (32)

where a, b, and ¢ are parameters. For g(w) [the Fourier
transform of g(#)] to approximately span the frequency range
0 < Q* < 50, the parameters are chosen as follows:

a =450,b =0.25,c = 0.26. (33)

The performance objective f] in this case involves the
weighted transmissibility, Tp:

Qmax

G () H (§rear (£2))dS2,
(34)

Minimize: fi = T, = 100 x /
Qmin

Table 1 Target stopbands and target passbands for case I1I example

Target stopbands

SBi: SBs: SB3:
10<Q2<20 25<Q<35 40 < Q2 <45
Target passbands

PB;: PB;: PBs: PB4:
0<Q<10 20< Q<25 35<Q2<40 45<Q<50

where G(2) = ag(w) and « is determined such that

Qmax
[ G(Q)dQ = 1. 35)

Qmin

The Pareto plots in Fig. 8a show the performances/costs of
designs obtained via weighted optimization (using the mixed
and binary formulations and same run-time parameters as
above) for the frequency range of 0 < Q* < 50. Similar to
the nonweighted case, no better designs were found with
more than eight layers. However, with the weighted objective,
the performance of the designs is observed to improve by
about 3—4% across the Pareto front. Unit-cell designs with a
weighted transmissibility as remarkably low as fp =8.2%
are realized. The unit-cell layouts of selected best designs
are shown in Fig. 8b, and the frequency spectra of the best
performing designs (using both formulations) are shown in
Fig. 8c and d.

It should be noted that this novel approach of incorporat-
ing the frequency content of the excitation into the optimiza-
tion scheme (to favorably bias the synthesis of the designed
material’s frequency band structure) is generally applicable
to any arbitrary form of excitation.

4.2.1 Remarks

Cases I and II show that the multiobjective genetic algorithm
could find better designs than the ones reported by Hussein et
al. (2002)—this is because the optimization problems treated
have been relaxed by allowing a larger design space. The
mixed formulation is a relaxation of the binary formulation.
However, the dependency of the size of d on n in the mixed
formulation decreases the efficiency of the genetic algorithm,
a phenomenon known as epistasis (Goldberg 1989). This is a
likely reason why the binary formulation found better designs
than the mixed formulation for most cases. The binary formu-
lation has the advantages that the optimized layer thickness
values require no truncation, and that the layer dimensions

Table 2 Target stopbands and target passbands for case I1I example

Target stopbands

SBi: SBs: SB3: SB4:
0<Q<10 20< Q<25 35<Q2<40 45<Q<50
Target passbands

PB]Z PBzi PB3Z

10 < Q<20 25 < Q<35 40 < Q<45
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are multiples of a certain value and hence could be manufac-
tured in standard sizes. On the other hand, for a fixed length
binary string, an increase in the number of cell layers implies
a loss of resolution because fewer bits are allocated per layer.
From a practical perspective, the advantages of the binary
formulation outweigh those of the mixed formulation espe-
cially since the results show that the maximum difference
in performance in favor of the mixed formulation does not
exceed 1%.

It is interesting to note that while the mixed and binary
solutions corresponding to 6, and 8, layers in both Figs. 7 and
8 are very close in performance, their respective designs are
notably different. These results demonstrate nonuniqueness
and shed some light on the multimodality of the considered
objectives. Note that the objectives involve a summation over
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afrequency range, and therefore the net sum (objective value)
could be similar for different band structures and hence for
different designs. In fact, this observation supports the as-
sertion of the existence of numerous local optima, which, in
turn, provides strong justification for the use of a heuristic
evolutionary optimization technique such as NSGA-II.

4.3 Case III: creation of multiple stopbands/passbands
at specified frequency ranges

In this case study, the objective is to impede wave propa-
gation at multiple specific frequencies. A material designed
with such characteristics could be used to form a structure
that is required to isolate vibration under multiharmonic exci-
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Fig. 9 Case III (creation of multiple bands as given in Table 1): a Pareto diagram (binary formulation), b selected unit cell designs from the Pareto
front. Frequency spectrum for ¢ design A and d design B (stop bands shaded in gray)
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tation. Although a case II design may also be suitable for this
application, it would not guarantee that the band gaps cover
the various specific excitation frequencies. Furthermore, in
some engineering applications, it might be desirable to have
passbands lie adjacent to the target isolation frequency ranges
(the target stopbands) to allow the excitation energy to pass
through.

To achieve this design goal, two performance objectives
are formulated, and for simplicity, no cost objective is con-
sidered. The first objective targets the achievement of atten-
uation at specified stopband frequency ranges, whereas the
second targets the achievement of propagation at the comple-
mentary passband frequency ranges. More specifically, the
first objective f7 is to minimize the percentage “lack of cre-
ation” of desired stopbands (i.e., stopbands violation), and
the second objective f>, defined similarly, is to minimize
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the percentage “lack of creation” of desired passbands (i.e.,
passbands violation):

féznl:ix Gs(2)H (§rear(€2))dS2
S G (Q)dS

Minimize: f; = 100 x

and

S Gp(Q)(1 — H (Ereat (2)))dS2
anllX G (Q)dQ

min

Minimize: f, = 100 x

(37
where Gs(2) and Gp(£2) are the target stopband and pass-
band weighing functions, respectively, and are defined as

18 < <38 i =1,..., SBima

min
0 otherwise

’

(3%)

Gs(Q2) = {

Design A

I HI ]

Layer thicknesses listed in Appendix (Table A4)

Design B

Layer thicknesses listed in Appendix (Table A4)

50 e a—
Target SB, - - T
45k Y T T T e Ly
TargetPB3 =
4Of 1P e ] T
Target SB ¢~
9| 04 000000000007 e enoagoopdhaoonsonnnoonoc
a 3
-, 30} Target P82 _:
e e in
<D25"""""""'"'/'\'""' R R
> - - =
gzo TargetSB2 _;_
Lt -
15} | Target PB, '>
10||||||||||||||||||||||||Q—F|ﬁ@
TargetSB1 —_
5T — Real Part (Pass Band) A i
0 — Imaginary Part (Stop Band) . - )

-6 -5 -4 -3 -2 -1 0 1 2 3
Wavenumber, &

d

Fig. 10 Case III (creation of multiple bands as given in Table 2): a Pareto diagram (binary formulation), b selected unit cell designs from the
Pareto front. Frequency spectrum for ¢ design A and d design B (stop bands shaded in gray)



Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics 73

1t <o <ofli i=1,.

] PBl’IlaX .
0 0therw1se

Gp(Q) = {
(39)

In Eqgs. 38 and 39, the ith stopband and passband are denoted
by SB; and PB,, respectively (enumeration starts with lowest
frequency band). The number of the maximum stopband and
passband considered is defined as SBax and PB ., respec-
tively, and the formula for relating the nondimensional and

SB; /PB; SB; /PB; /
mln/maxd/ m/pm7 as

actual frequencies is 7~ =

previously noted. Note that the specific target frequency
ranges could collectively cover a broadband if the multihar-
monic excitation spans a wide frequency range.

As an example, consider the two sets of design parame-
ters (criteria) given in Tables 1 and 2. The first set represents
three desired stopbands and four desired passbands, all within
the range 0 < 2 < 50. The second set represents the “com-
plement” of the first set with all the desired stopband ranges
replaced with desired passband ranges and vice versa. Using
the binary formulation, two Pareto plots are generated (for
[=30 and /[=100) and are shown in Figs. 9a and 10a, respec-
tively. The run-time parameter values for the genetic algo-
rithm in this case are given in Appendix (Table A2). Clearly,
the difference in the design performances is significant be-
tween the /=30 and /=100 sets, especially for f> for both
criterion sets. For the design parameters given in Table 1, f>
at best is approximately 20% (violation), whereas the stop-
band objective, on the other hand, ranges from approximately
0.5 to 25% (violation). Similarly, for the design parameters
given in Table 2, the passband objective at best is also approx-
imately 20%, whereas f] ranges from approximately 17% to
at least 50%. This shows that it is more difficult to design
for passbands than it is to design for stopbands, when the de-
sign objectives encompass both target passbands and target
stopbands. Numerous experimentation with different band
targets should give further insight into this issue. The unit-
cell layouts of two selected best designs for the first criterion
set are shown in Fig. 9b (layer thickness values are given
in Table A3), and their frequency spectra are presented in
Fig. 9c and d. Also, layouts of two selected best designs for
the second criterion set are shown in Fig. 10b (layer thickness
values are given in Table A4), and their frequency spectra are
presented in Fig. 10c and d. Because the design objectives
encompass substantially more target frequency ranges com-
pared to cases I and 11, the resultant layer topologies are more
complex.

5 Summary and conclusions

In this study, a multiobjective genetic algorithm was used for
the design of periodic layered materials for desired frequency
band structure (size and location of stopbands/passbands
within the medium’s frequency spectrum). The following
three case studies were considered—(1) case I: maximizing
wave attenuation capacity at a single specified frequency; (2)

case II: maximizing the percentage of stopbands within a
specified large frequency range, with and without a superim-
posed weight function to account for the frequency content of
the pulse to be isolated; and (3) case III: synthesizing multiple
stopbands/passbands at specified frequency ranges. The first
and third cases apply to the problem of vibration isolation
(or filtering) under single and multiple harmonic excitation,
respectively, whereas the second case applies to the problems
of shock and sound (or any general transient pulse) isolation.

Two formulations were developed, for each of cases I
and II, namely, mixed-integer programming (mixed formu-
lation) and zero—one integer programming (binary formu-
lation). The formulations were implemented on example
problems. The Pareto plots for both sets of results indicated
that an increase in the number of cell layers improves the
wave attenuation performance. Furthermore, better unit-cell
designs were found compared to those previously reported
(Hussein et al. 2002). The results also show that the relevant
measure of wave attenuation saturated at approximately 12
layers for periodic materials designed to stop a time harmonic
wave and approximately 8 layers for isolation of transient
pulses spanning a wide frequency range. The saturation is at-
tributed to the existence of limits on the ratio of wavelength to
the minimum characteristic length scale in the unit cell, above
which the medium is nondispersive. The designed unit cells
in case [ had an attenuation strength as high as |§imag| ~ 8.3,

and in case I, a weighted transmissibility as low as Tp ~ 8%.
In case III (implemented only using the binary formulation),
it was shown that unit cells can be tailored to exhibit multiple
stopbands/passbands at specified frequency ranges, but with
less precision for targeted passbands.

The presented design approach suggests remarkable
promise for generating periodic materials that could be used
for forming bounded structures with advanced vibration,
shock/sound isolation, or filtering characteristics. The results
also motivate extending this approach to multidimensional
structures, which is the topic of future research.

Appendix

Table A1 Run-time parameters of genetic algorithm used in cases I and
I

Mixed formulation Binary formulation

Population size 120 100
Number of 80 100
generations

Crossover probability 0.90 0.90
(overall)

Crossover probability 0.05 implicit
(number of

layers gene)

Mutation probability 0.02 0.02
Number of runs 5 5
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Table A2 Run-time parameters of genetic algorithm used in case I1I

Table A4 Layer thicknesses for selected case I1I designs for objective
given in Table 2

Binary, /=30 Binary, /=100
Population size 100 200 Layer d; Layer d; Layer d; Layer d;
Number of 100 150 number, ( 10—2) number, ( 1072) number, (1072) number, (1 072)
generations j j j j
Crossover probability 0.90 0.90 :
Mutation probability ~ 0.02 0.02 pesign A, T 1 o g
Number of runs 5 5 2 1 12 1 22 1 32 23
3 5 13 1 23 3 33 1
4 2 14 8 24 1 34 2
5 1 15 1 25 10 35 1
6 1 16 1 26 2 36 4
Table A3 Layer thicknesses for selected case III designs for objective ! 17 ! 27 2 37 !
given in Table 1 8 1 18 1 28 4 38 3
9 2 19 1 29 1
Layer d; Layer d; Layer d; Layer d; ll)(isign BZ 20 1 30 2
number. —2y number. —2y number. -2y number. -2
Aoy SRR 0Ty SRR 07 SRR A0 2 16 1 31 46 1
- 2 1 17 1 32 1 47 2
Design A 3 1 18 1 33 1 48 2
2 2 13 4 24 2 35 1 5 2 20 1 35 2 50 1
3 9 14 1 25 1 36 5 6 3 21 2 36 1 51 1
5 1 16 5 27 1 38 1 8 2 23 1 38 1 53 1
7 1 18 L 29 1 40 1 10 1 25 1 40 1 55 1
8 1 19 2 30 1 41 9 1 26 2 41 7 56 1
9 1 20 1 31 6 2 4 21 27 1 4 1 57 4
10 1 21 1 32 1 43 1 13 1 28 1 43 2 58 3
Design B 15 2 30 4 45 1 60 2
1 2 14 1 27 1 40 1
2 1 15 2 28 1 41 1
3 5 16 3 29 1 42 2
4 2 17 2 30 1 43 1
5 1 18 1 31 1 a4 2 Deb K, Argawal S, Pratab A, Meyarivan T (2000) A fast elitist non-
6 6 19 3 32 1 45 8 dominated sorting genetic algorithm for multi-objective optimiza-
7 2 20 2 33 5 46 2 tion: NSGA-IL. In: Lecture notes in computer science no. 1917,
8 2 21 1 34 2 47 1 parallel problem solving from Nature VI Conference. Springer,
9 2 22 3 35 1 48 4 Paris, France, pp 849-858
10 2 23 1 36 3 49 1 Esquivel-Sirvent R, Cocoletzi GH (1994) Band-structure for the propa-
11 2 24 1 37 1 50 2 gation of elastic-waves in superlattices. J Acoust Soc Am 95:86-90
12 1 25 1 38 1 51 1 Floquet G (1883) Sur les Equations Différentielles Lindaries 2 Coeffi-
13 1 26 1 39 1 52 3 cients Périodiques. Ann Ec Norm 12:47-88
Goldberg D (1989) Genetic algorithms in search optimization and ma-
chine learning. Addison-Wesley Pub. Co., Reading, MA
Hussein MI (2004) Dynamics of banded materials and structures: analy-
sis, design and computation in multiple scales. Ph.D. Thesis. Uni-
versity of Michigan, Ann Arbor, MI
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