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Abstract—This paper presents a search-based method for
generating maps for the popular real-time strategy (RTS) game
StarCraft. We devise a representation of StarCraft maps suitable
for evolutionary search, along with a set of fitness functions
based on predicted entertainment value of those maps, as
derived from theories of player experience. A multiobjective
evolutionary algorithm is then used to evolve complete Star-
Craft maps based on the representation and selected fitness
functions. The output of this algorithm is a Pareto front
approximation visualizing the tradeoff between the several
fitness functions used, and where each point on the front
represents a viable map. We argue that this method is useful
for both automatic and machine-assisted map generation, and
in particular that the Pareto fronts are excellent design support
tools for human map designers.

Keywords: Real-time strategy games, RTS, procedural

content generation, evolutionary multiobjective optimization

I. INTRODUCTION

Procedural content generation (PCG) refers to the automatic

or semi-automatic generation of game content. PCG comes

in many flavors, as there are many types of game content

that can be generated (such as levels, adventures, characters,

weapons, planets, plants, histories) and many ways in which

it can be generated (many based on AI/CI methods such as

constraint satisfaction, planning or evolutionary computation,

others on e.g. fractals). PCG can also be used in different

ways in games, for example for offline content creation

during game development, support tools for human designers

or fully automatic online content creation based on player

actions. Similarly, there are different motivations for using

PCG, such as speeding up game development, saving human

designer effort/cost, saving main memory or DVD storage,

academic curiosity or the making possible of completely

new types of games. What is clear, however, is that PCG

is gaining increasing attention among both commercial game

developers, indie developers and academic game researchers.

This paper contributes to the flora of PCG approaches

by presenting a search-based approach to generating maps

to real-time strategy games. More specifically, we use a

multiobjective evolutionary algorithm to generate maps for

the game StarCraft, using fitness functions based on theo-

ries of player entertainment. We believe this approach has

significant merits over previous approaches to generating

terrains, and also that we are the first to automatically

generate complete maps for a specific strategy game. We

extend previous work published in [1] by devising a new
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map representation compatible with StarCraft, and a new set

of fitness functions tailored to this map representation.

A. Procedural map and terrain generation

Maps are central to many computer games, including

First-Person Shooters (FPS) and many Role-Playing Games

(RPG), in which the player experiences the world from a

first-person perspective as he navigates a typically hostile

environment. But they are perhaps most important for strat-

egy games, both of the turn-based variety and Real-Time

Strategy (RTS) games. In these games, the player views the

playing area from a third-person perspective (usually from

above) while directing one or several units as they traverse

an area and perform missions, usually involving battle. In

this paper, we will mainly be concerned with RTS games.

Most strategy games come with a set of hand-crafted maps,

used both in single-player “campaign” mode and multi-player

matches. However, there are numerous reasons for wanting

to automatically generate maps. Perhaps the most obvious

reason is that by generating a fresh map each time the game

is played, you extend the life-span of the game by permitting

the player to explore a fresh map and the specific challenges

it entails each time the game is played. This also means that

any advantages a player has accrued through learning a map

by heart are nullified.

A slightly less obvious reason is that maps could be

tailored to suit specific players or groups of players, and/or

to generate particular gameplay experiences. For example,

a player that has proven adept at a particular form of

strategy might be presented with a freshly generated map

that challenges her to develop other aspects of her strategic

thinking; or, if she has been determined by the game to be

less motivated by challenge and more by easy progress, a

new map could be generated that plays to the strengths of

her particular playing style while seemingly dissimilar to

previous maps she has played. In a multi-player game, maps

might be generated that balance out the strengths of of differ-

ent players’ playing styles and levels of proficiency, without

resorting to explicit handicapping in terms of game rules

or units supplied. Such a mechanism would place particular

demands on models of player behavior and preferences, as

well as on how the map creation algorithm can be controlled.

But one might also want to use procedural map gener-

ation algorithms as authoring and design support tools, to

complement human creativity. In this case the PCG tools

would be used off-line, before a game is shipped or before

new high-quality maps are made available for download. The

role of the algorithm would be to suggest new map designs

according to specified parameters or constrains, which could

then be modified and refined by human map designers.
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While most strategy games stick with prefabricated maps

(possibly complemented with an end-user map editor), a

significant minority are based on random map generation.

An influential example is the Civilization series of epic turn-

based strategy games, in which the default game mode sees

the player playing on a newly randomly generated world

map. No details have to the authors’ best knowledge been

released about Civilization’s map generation algorithm, but

the very short time taken to generate a map suggests a

relatively uncomplicated algorithm. The available parameters

for map generation are relatively few, the most important one

relating to size and connectedness of the world’s landmass.

The probably simplest way of generating maps similar to

those used by Civilization is to seed the ocean with embry-

onal islands, and having them grow out in random directions

a predefined number of steps [2]. Slightly more advanced

approaches involve using fractals, such as the diamond-

square algorithm [3]. The diamond-square algorithm works

by iteratively subdividing areas of space and offsetting the

midpoint by random amounts. An advantage of this family

of algorithms is that they are so fast that they can often be

used for real-time terrain generation [4].

Recently, Doran and Parberry suggested the use of soft-

ware agents for generating terrain [5]. In their approach, a

large number of agents are let loose on an initially featureless

piece of terrain and collectively shaping it. Each type of agent

has a particular task, and the workings of some of them

resemble forces of nature; so for example the river agents

travel from mountains to coast following the steepest descent

gradient. This approach is claimed to be more controllable

than fractal-based terrain generation algorithms.

The roguelike genre of games (the original Rogue game

as well as countless successors, such as Nethack, Moria

and Diablo) is unique in being fundamentally based on

random map generation. In these games the player fights

through a randomly generated dungeon – walls, placements

of monsters, traps and treasure are all generated at the

beginning of each game or play session. The dungeon gener-

ators used here often work either similarly to fractal terrain

generation approaches (generate a straight line from start to

exit, iteratively deform the path a number of times, and then

grow randomly branching paths until the room is filled), or

by glueing together a number of prefabricated segments [2].

B. Search-based procedural content generation

The above examples represent what can be called con-

structive PCG. This means that the generation algorithm

only makes one attempt: it proceeds from start to finish with

none or only insignificant backtracking. In contrast to this,

generate-and-test algorithms make several attempts, and only

keep those candidate maps content instances that pass some

sort of test. One example is Tarn Adams’ ambitious game

Dwarf Fortress, for which initial fractal map generation is

usually repeated a couple of times, and the user is shown

screenshots of “failed” maps along with explanations of what

went wrong, e.g. wrong elevation distribution.

Search-based procedural content generation (SBPCG) is

a particular type of generate-and-test PCG, where the gener-

ated candidate content is not simply rejected or accepted by

the test but graded on one or several numeric dimensions,

and where a search algorithm is used to find better content

based on the evaluations of previously generated content.

Usually, some sort of evolutionary algorithm (e.g. a genetic

algorithm or an evolution strategy) is used as the core algo-

rithm for SBPCG. In these cases, a population of candidates

(e.g. maps) is created randomly at the beginning of a run of

the algorithm, and at each generation the worst candidates

(according to some fitness function) are replaced with new

candidates generated through mutation and/or recombination

from the best candidates. Core concerns when devising an

SBPCG solution to some content generation task is how to

represent the content and how to devise the fitness function.

An overview of SBPCG can be found in [6].

One of the main arguments for SBPCG is that it allows

the designer to formulate the desired properties of the content

more explicitly than with other content generation methods.

Another argument is that it allows the use of content rep-

resentations that sometimes yield infeasible solutions (e.g.

unusable maps), as such candidates can be discarded but still

form the basis for later, better candidates. The main argument

against SBPCG is that it can be very time-consuming,

making it less suitable for real-time PCG – but choosing

the fitness function and the search space carefully can allow

content to be generated in a fraction of a second.

There have been a few previous attempts to use evolution-

ary algorithms to generate height maps for terrains before.

Frade et al. used genetic programming to evolve terrains,

with the evolved expression tree mapping coordinates on

a grid to elevation at that point. The fitness function was

based on “accessibility” meaning that all flat areas should be

connected while no individual flat area grows too big. Only

the height map was evolved, no other features of the map [7].

Sorenson and Pasquier evolve simple dungeon layouts for

e.g. rogue-like games, using a map representation where

rooms and hallways of different sizes are placed on a two-

dimensional surface which is by default untraversable. The

fitness function is simply the length from start to finish, and

the only constraint that the path should be connected [8].

Similarly, Ashlock et al. evolved path-planning problems in

which the objective was to maximize distance from start to

finish by placing walls at various positions and angles [9].

In the above examples, only parts of game environments

(e.g. height maps and walls) are evolved – not complete,

playable levels with e.g. items, monsters, resources. This

is probably why the fitness functions are only tangentially

related to actual game playability and entertainment; path

length and accessibility do not alone make for a well-

designed level. In contrast, some recent SBPCG papers have

explicitly been based on notions of player entertainment.

Togelius et al. evolved racing game tracks based on objec-

tives inspired by Malone’s entertainment dimensions [10];

Pedersen et al. evolved levels for Super Mario Bros based
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on a data-driven model of player affect [11]; Hastings et al.

evolved weapons for a 2D shooter based on player activity in

the game [12]; Togelius and Schmidhuber evolved predator-

prey games [13]; and Browne evolved board games based

on measures derived from studies of successful games [14].

None of these studies concerned maps or terrains, however.

C. Multiobjective evolution

In standard evolutionary computation a single fitness func-

tion is used to evaluate candidate solutions. However, for

many problems it is hard to combine all demands into a

single objective measure; e.g. when we want a car to be

cheap, fast and safe, we need to optimize in three fitness

dimensions. Several objectives are typically conflicting, for

example a faster car is typically less cheap.

The intuitive solution is to simply add the fitness mea-

sures together (using some weighting of each measure),

and optimize for the resulting composite measure. This

method has several drawbacks. One is that you do not

know the appropriate weighting of the fitness dimensions

until you have investigated the distribution of solutions

among each dimension. Another is that optimization along a

single dimension does not allow for exploration of the often

complicated ways in which the various fitness dimensions

interact (e.g., above a certain price threshold faster cars might

not be less cheap).

Multiobjective evolutionary algorithms (MOEA) were in-

vented to solve this problem, and are now a major research

direction within evolutionary computation as well as com-

mon in industrial applications. An MOEA presumes at least

two fitness functions and proceeds towards the Pareto front

of Pareto-optimal solutions, i.e. solutions satisfying that there

is no other solution being equal or better in all dimensions.

The valuable result of an MOEA is its final set of solutions,

whose subset of non-dominated solutions (optimal within the

set) presents an approximation of the Pareto front.

When using two or three objectives1, the Pareto front

can be conveniently plotted in a graph, allowing visual

exploration of the tradeoffs between these objectives. Visual

or automated inspection of Pareto fronts helps to detect

situations where a small improvement in one objective would

lead to a huge loss in another, which is usually undesired.

The possibility to visualize the tradeoffs inherent in a design

problem makes multiobjective optimization via MOEAs a

great but underused tool for design and authoring support.

Optimizing some aspect of a game for playability is inher-

ently a multiobjective problem, as it is very hard to formulate

a single-dimensional automatic measure of how entertaining

a game is; it is indeed not trivial to formulate partial measures

of game enjoyability. When designing game content, it would

seem invaluable for a designer to be able to conveniently

visualize the tradeoffs inherent in a design problem; when

automatically generating game content tailored to particular

1More than three objectives are usually hard to handle for any MOEA, as
the number of incomparable solutions—better in some objective, but worse
in another—grows exponentially with the number of objectives.

players, it would also seem ideal to first generate a selection

of candidate content from which appropriate game content

for the particular player could then be chosen, based on their

previous playing style and experience model. Despite this

seemingly perfect fit, we have not seen any examples of

MOEAs used for PCG; the closest we can find are examples

of multiobjective evolution of NPC behavior [15].

D. This paper

In this paper, we show that search based procedural content

generation can be used to automatically create playable maps

for a very popular real-time strategy game. In order to do

this, we propose and motivate a number of fitness measures

for such maps, which we argue can also be generalized

to maps in other games. We also show how multiobjective

evolution can be used as a design support tool, by exploring

the tradeoffs between the proposed fitness functions.

In the following sections, we describe: the StarCraft game,

which we use to test our maps; the map representation and

genotype-to-phenotype mapping; our fitness functions; the

multiobjective evolutionary algorithm we use; our experi-

ments, and finally what we can learn from all this.

II. THE STARCRAFT REAL-TIME STRATEGY GAME

StarCraft is one of the most famous strategy games ever. It

was released by Blizzard Entertainment in 1998 and has, as

of 2009, sold more than 11 million copies [16]; it is famous

for its fine balance between the different playable factions,

and very popular for tournament play.

The game features three factions; terrans, humans that have

left planet earth to travel to distant areas of our galaxy; zerg,

a race of insectoid like creatures; and protoss, a humanoid

race with very advanced technology and psionic abilities.

In the game the player has to plan and build a base

with different structures, each with a specific purpose. To

afford structures and building units the player has to gather

resources from minerals and vespene gas, located around

the game map. Units must be created to defend the home

base and to attack and defeat the enemy players. Different

units have different strengths and weaknesses; e.g., some are

good defenders, some deal plenty of damage but are not very

mobile, others are fast but don’t do very much damage. The

game also features a technology tree in which players can

spend resources to research upgrades for units and structures.

The game can be played in a single-player story line mode,

or a skirmish mode where the player battles against other

players or computer controlled enemies. A large world-wide

fan base has contributed large amounts of player generated

content, such as multiplayer maps and map editors.

III. MAP REPRESENTATION

In these experiments we evolve maps containing all of the

crucial elements for a StarCraft map. These are: locations for

bases and for two types of resources (minerals and Vespene

gas), and areas of impassable terrain (mountains and rivers).

We use two different representations of the map — an

indirect representation used for searching (the genotype), and
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a direct representation for fitness testing and visualization

(the phenotype). Each time fitnesses are calculated, a pheno-

type is created from each genotype. The genotype (indirect)

representation is a fixed-length array of real values between 0

and 1. The length of the array is decided by the number and

types of map elements. Four types of elements are possible,

with parameters as follows:

• Base: φ and θ coordinates of each base

• Mineral source: x and y coordinates of each mineral

source.

• Gas well: x and y coordinates of each gas well.

• Impassable area: These represent water or rocks in the

finished map. Each impassable area has five parameters,

namely x and y start coordinates, probability of left turn,

probability of right turn, and probability of gap.

For our experiments, we generated maps with three bases,

four resources of each type and five impassable areas, leading

to genomes of length 3 · 2 + 5 · 2 + 5 · 2 + 5 · 10 = 76.

This map representation has the advantage that it can be

efficiently searched by many common global optimization

algorithms, such as evolution strategies and particle swarm

optimization. In particular, many of these algorithms assume

a real-valued representation, and that local changes in the

genotype have local effects in the phenotype. For example,

when changing the φ coordinate of the base, the positions

of nearby resources are not changed, and neither are the

mountains; it is easy to imagine representations where this

would not be the case, such as many fractal representations.

Additionally, this representation is scale invariant; a pheno-

type of any size can be created out of the genotype.

The phenotype (direct) representation is designed to be

easy to base fitness calculations on, and to convert to

StarCraft’s internal map format. The representation consists

of a heightmap in the form of a 64 × 64 grid (the size of a

small StarCraft map) where each cell can be either passable

or impassable and three lists of x and y coordinates of

bases, mineral sources and gas wells, respectively. The lists

of resource sites are populated from the corresponding lists

in the genotype representation by simply multiplying each x
and y coordinate by 64.

The coordinates for each base are generated using a

method based on polar coordinates. The two parameters for

the base are treated as angle and length of an axis extending

from the center of the map, at the end of which the base

is placed. Additionally, the representation is constrained so

that each base is forced to be within its own arc of the circle,

meaning that for three bases each base is placed within its

own 120 degree arc; the length of the axis is constrained to

between 1/2 and 1 of the radius of the map, meaning that

bases cannot be place too close to the center of the map. By

means of polar coordinates, we restrict base placement so

as to make neighboring bases unlikely in order to increase

the chances of obtaining a playable map. Coordinates lying

outside the map are simply mapped to the outermost cell of

the map in that direction. This increases the probability of

placing bases on the map borders and is a desired effect.

All cells of each map phenotype are by default passable.

Impassable areas are then “drawn” in a manner similar to

turtle graphics [17]. The drawing of each impassable area

starts at its designated x and y position by marking that cell

as impassable. The “pen” then repeatedly moves one step in

its current direction (starting direction is right) and marks the

new cell as impassable, until it reaches a cell which is already

impassable or the border of the map. At each cell, it decides

whether to turn left, turn right and/or “lift the pen” and leave

a gap in the line according to its designated probability for

each of these actions. Only one of these actions is taken

at each step, with a turn angle of 45 degrees. That is, if

the turtle turns left, the next step starts over again at the

same position without painting. If it does not turn left, the

probability for a right turn is checked, and if it does not turn

right, the probability for a gap is checked. If none of this

applies, the turtle just moves one step forward in its current

orientation and marks the new position as impassable. As

it often happens that the resulting line is not closed, one

attempt to draw towards the original x and y starting position

is made by simply setting the orientation according to the

vector between current and starting position and starting the

whole process over again. One further additional constraint

is used to prevent very long lines without turns: whenever

5 consecutive steps have been made into one direction, the

orientation of the turtle is changed by rotating it 45 degrees

into the direction to the starting position.

In order to ensure a completely deterministic genotype to

phenotype mapping, a fixed random number table with 200

entries is used to decide whether to turn and/or leave gaps.

The last steps in the generation of a complete Star-

Craft map are that (1) a GIF image file is generated

from the phenotype, in which each cell type has a dif-

ferent color, and that (2) the SCPM software (available at

http://www.clanscag.com) automatically creates a complete

StarCraft map from the image. Further manual editing is then

possible using StarCraft map editors. The maps shown in this

paper have been slightly edited for visual appeal, without

changing the functional structure of the evolved maps.

IV. FITNESS FUNCTIONS

In SBPCG, there is a distinction among three types of

fitness functions: interactive, simulation-based and direct [6].

Interactive fitness functions rely on human game players

playing the candidate content and providing direct or indirect

feedback about its quality. While in a sense the ultimate

type of fitness function, interactive fitness functions require

massive amounts of player input and are only possible in

some types of games, such as ongoing massively multiplayer

games [12]. Simulation-based fitness functions assess content

automatically through algorithmically playing the game or

some aspect of the game using the candidate content. Such

evaluations can potentially be accurate predictors of player

enjoyment, but require both artificial intelligence capable of

playing the game competently in a human-like manner and

often substantial computation time [10], [13]. Direct fitness
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functions base their fitness calculations directly on the pheno-

type representation of the content. Such fitness functions are

obviously much easier to implement and faster to compute

than simulation-based functions, but it is hard to devise direct

fitness functions that accurately predict key aspects of player

experience (except when basing them on data-driven player

models built from extensive user studies [11]).

For this paper, we do not have the luxury of having

human players sit through countless hours to test the tens

of thousands of candidate maps the evolutionary algorithm

generates, nor any reliable and efficient way of testing maps

through algorithmic playthrough of the full game. However,

we can simulate one key aspect of RTS gameplay: moving

between two points along the fastest possible path. We use

the classical A* algorithm for this task, which returns the

number of cells along the shortest path (avoiding impassable

areas) – if not otherwise specified, “distance” means number

of cells on the shortest path found by A* in the rest of the

paper. We defined eight different fitness measures (mainly

based on distance) intended to reflect various desired game

characteristics. It was at the time of their formulation not

clear to which degree the various functions conflicted or

induced searchable fitness landscapes. The experiments in

this paper investigate the interplay of pairs of these functions.

The designed fitness functions are motivated by a number

of desirable characteristics of good StarCraft maps:

• Playability: It should be possible to engage in normal

gameplay: building up a base, attacking enemies etc.

• Fairness: All players should have similar possibility of

winning the game given the same skill level. Note that

this does not necessarily mean that starting positions

should be or look similar.

• Skill differentiation: Superior tactics should win more

often, so the map should allow use of different tactics.

• Interestingness: Maps should not all look the same, and

should not be bland (e.g. symmetrical or featureless).

Before calculating any of the below fitness measures, the

map is “sanity checked” by ensuring that every base and

all resources are accessible (there exists a path which is not

blocked by impassable areas) from every other base. Any

map not satisfying these criteria is assigned a fitness of 0

in all objectives, effectively discarding it. This test ensures

basic playability. All fitness functions are to be maximized

and are normalized to values in [0, 1].
The first two fitness functions relate mainly to the prop-

erties of the placement of players’ starting bases, and to the

impassable area around and between bases.

• fb0: Base space. For playability, some space for other

buildings is required next to the base. Out of the 5 · 5
cells surrounding a base, the base space is defined as the

fraction of these cells that are passable and reachable

within 5 steps (using A*) from the base. This fitness

value is the mean of the base space of all bases.

• fb1: Base distance. The measure makes sure that the

bases are not too easy to reach from each other so

that the players have the opportunity to develop their

Fig. 1: Unsafe (left) and safe (right) resources. Bases are

depicted by pentagons, resources as circles. The lines mark

shortest possible paths for attackers/defenders.

base before clashing with the others. It contributes to

playability and skill differentiation as the game is more

difficult for all players when starting close to each other.

fb1 is the minimum distance between any two bases,

divided by the sum of the map’s width and height.

The next four fitness functions relate to the placement of

resources, relative to each other and to bases; all of these

measures mainly contribute to fairness.

• fr1: Distance from base to closest resource. The dis-

tance from each base to its closest mineral and its closest

gas wells is calculated. fr1 is the quotient between the

minimal and maximal distance to the closest resource

for all bases.

• fr2: Resource ownership. Each base is associated with

its closest resource (done separately for minerals and

gas wells) and the base is considered as the owner

of that resource. In case a resource is the closest to

more than one base, the bases own only a fraction of it

each (assuming fair sharing). fr2 is the average fraction

players own of their closest resources, where a value of

1 means that all resource are clearly assigned.

• fr3: Resource safety. Another measure of how clearly

resources are assigned to a single player, fr3 mea-

sures the average deviation of path lengths between

one resource and all bases (see Fig. 1). So, for bases

b1, ..., bn and resources r1, ..., rm we calculate all path

lengths between resources and bases and group them

by resource type: ∀j = 1, . . . ,m : Dj = {dist(rj , bi) |
i = 1, . . . , n} . fr3 = min{sgas, sminerals}, where sgas

and sminerals are simply the average standard deviations

of the respective sets Dj .

• fr4: Resource fairness. For each base, the shortest

distance to both types of resources is calculated. The

fitness is then calculated as 1 − (max − min), where

max and min are the maximum and minimum distances

between a base and its nearest resource.

The remaining two fitness functions deal with the character

of the paths of the map. These functions mainly contribute

to skill differentiation and interestingness.

• fp1: Choke points. We consider the average narrowest

gap on all paths between bases. The narrowest gap along

a path is calculated by first calculating a shortest path
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and then traversing along the path and counting the

width of the path at each cell. Path width is calculated

through determining whether the path is currently mov-

ing horizontally or vertically through comparison with

the previous cell in the path, and searching orthogonally

to the path direction until either an impassable cell or

the border of the map is encountered. Choke points

contribute to skill differentiation in that a good player

will be able to exploit such points through using a

smaller defending force to stop a larger attacking force,

which cannot use the strength of its numbers as they

have to pass sequentially through the narrow gap.

• fp2: Path overlapping. We consider the paths from the

bases to all resources and calculate to what extent they

overlap. In case many cells are used from different bases

we assume that the players’ units are likely to meet.

The value of fp2 is the average number of uses of the

map’s cells. It contributes to skill differentiation, as it

increases the number of possible flash points which the

player must monitor for conflicts.

V. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM

Most MOEAs work relatively similarly. A population of

search points (called individuals for historical reasons) is

generated randomly at first, and then adapted to the problem

in order to move towards the Pareto front by a repeated cycle

of variation and selection. Variation creates new search points

by mixing information of existing ones (recombination) and

performing undirected steps with a defined expected length

(mutation). Selection choses the best of the old and new

individuals for the preceding iteration and deletes the others.

This working principle has its advantages in the minimal

necessary knowledge of the optimization problem (black box,

no algebraic form or gradients needed) with which it is

capable to handle complex problems. On the other hand,

black box algorithms are somewhat slower than classical

optimization algorithms on convex/very simple problems.

The most popular and long-established MOEA, NSGA-

II [18], has proved its worth in many benchmark and real-

world applications. However, it is nowadays outperformed by

state-of-the-art MOEAs, such as the SMS-EMOA [19] which

is known as a fast descendant of the NSGA-II.

The SMS-EMOA, which we use in this paper, generates

only one new individual per cycle and removes the individual

with the smallest hypervolume contribution, i.e. the one that

dominates the smallest objective space. To accommodate

the need for setting one or several constraints, we employ

a modified selection scheme here. Individuals outside the

allowed region get a penalty equaling their distance to

it. When considering which individual to remove, the one

with the largest penalty always gets precedence. Thus, valid

individuals are never removed in the presence of invalid ones.

We employ standard recombination/mutation operators

SBX and PM [20], and set the run length after some testing

to 50000 evaluations. In all experiments, we use populations

of 20 individuals, which we consider sufficient to achieve a

representation of the Pareto front.

VI. EXPERIMENTS

A. Initial Study

Before the main investigation of tradeoffs between our

fitness functions, we performed initial exploratory studies

to see whether the functions were possible to optimize,

whether they were trivial, and whether there seemed to be

any conflicts with other objectives at all.

We found that both of the base placement functions were

very simple to optimize to maximal or near-maximal values.

We therefore included both of them as constraints in the map

generation. fb0 (base space) is additionally not conflicting

with any other objective, so we made it a hard constraint

(maps with fb0 < 0.5 are discarded) and do not use it as a

proper objective. As there can still be some value to maps

with low fb1 (base distance), maps with fb1 < 0.5 are just

penalized by subtracting 0.5−fb1 from all their fitness values;

additionally, fb1 is used as an objective in its own right.

B. Main Study

The aim of our main study was to find out the degree of

conflict between the map objectives we have invented. We

performed a number of 2-objective runs, where we test pairs

of objectives against each other. All objectives except fb0

were tested, and each pair was used in 10 runs; the results

can be seen in tables I and II, using two different indicators

of the degree of conflict.

Table I shows the average sizes of the final Pareto front

approximations, i.e. the number of non-dominated solutions

in the last generation. In the absence of any conflict between

two objectives, the Pareto front would contain a single indi-

vidual that maximizes both objectives. We therefore consider

small fronts to be indicators of a low degree of conflict.

Table II shows the hypervolume of the final non-dominated

sets relative to the reference point (1, 1). A value of 1.0
indicates that both objectives are maximized to optimality (or

close enough regarding the numerical accuracy of the tables).

In case the Pareto front approximation is very accurate the

hypervolume value even reflects the shape of the front, e.g.

a diagonal line has a value of 0.5. For this indicator, low

values indicate high degrees of conflict.

Note that the algorithm might or might not be able to find

the true Pareto front, in general or within the allotted number

of generations. There is no way of knowing the accuracy of

the current Pareto front approximation; we can therefore not

say with absolute certainty that there is or is not a conflict.

Fitness function fr2 (resource ownership) is very easy to

optimize. It reached very high hypervolume values indicating

that there is little conflict with other objectives, and that it

might be more suitable as a constraint. However, surprisingly,

when combining fr2 with fp1 (choke points) the whole

population is non-dominated.

fp1 is itself very easy to optimize as having paths of

minimal width it just requires small gaps in some impassable

barrier; see figure 2 for examples. fr2 and fr3 are both

attempts at measuring almost the same underlying quality,

and predictably there is almost no conflict between them;
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Fig. 2: Example maps generated by simultaneous optimization of fp1 and fr4.

TABLE I: AVERAGE NUMBER OF NON-DOMINATED INDIVIDU-
ALS IN THE FINAL POPULATION FOR EACH FUNCTION COMBINA-
TION.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 6.9 1.6 5.0 7.8 2.9 7.5
fr1 5.8 9.1 3.4 3.7 7.6
fr2 1.2 2.7 20.0 1.3
fr3 7.3 3.3 8.7
fr4 2.8 8.1
fp1 4.2

TABLE II: AVERAGE HYPERVOLUME VALUES OF THE NON-
DOMINATED INDIVIDUALS IN THE FINAL POPULATION.

fr1 fr2 fr3 fr4 fp1 fp2

fb1 0.675 0.724 0.394 0.673 0.644 0.075
fr1 1.000 0.452 0.993 0.895 0.107
fr2 0.504 0.993 0.900 0.114
fr3 0.473 0.479 0.053
fr4 0.891 0.108
fp1 0.099

the average Pareto front size is just over 1. All hypervolume

values involving fp2 (path overlapping) are very small,

maybe due to inadequate normalization. An improvement

would be to normalize with respect to free cells only rather

than all cells. Figure 3 shows a selection of Pareto front

approximations for the objectives (fb1, fr4) and (fp1, fr4).
The diversity is low and special mechanism are required to

improve it. For technical reasons, the objectives have been

negated and values transformed to [−1, 0] for minimization

in the SMS-EMOA.

C. Map Generation

Figure 2 depicts two maps resulting from the simultaneous

optimization of fr4 and fp1. The map was generated using
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Fig. 3: Pareto front approximations for (fb1, fr4), (fp1, fr4).
The upper plots depict the results of 10 separate runs; the

lower ones their combined non-dominated individuals.

the method described in section III but with only two bases.

These maps are used as training maps in the CIG 2010 RTS

StarCraft competition [21]. The large blue and red circles

mark the two bases. Minerals are indicated by light blue

diamonds, gas wells by a crater. The impassable areas are

drawn either as mountains (gray) or as water (dark blue).

The bases are situated close to the map borders (probably

due to the base placement method and the fb1 constraints),

the impassable areas are perforated with small gaps (fp1) and

the resources are very evenly distributed (fr4).
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D. Discussion

Our various fitness functions turned to differ greatly in how

easily they were to optimize and their potential for interesting

conflicts with other objectives. The base placement functions

fb1 and fb2, were so easy to optimize that they could be

converted to constraints.

The result of optimizing for the resource placement func-

tions looked very different upon visual inspection. We were

less than satisfied with functions fr1 and fr2; the latter

because it is too easy to optimize, and the former because

it results in maps that do not look very StarCraft-like. fr4,

which considers all resources rather than just the closest ones,

renders much more palatable results. This suggests that a map

generator could use something like fr4 to generate the global

resource placement, and then simple place one resource of

each type within a single-screen line of sight from each base.

A similar measure that allows the difficulty of the resources

to be scaled would be interesting as well.

Optimizing the choke point function fp1 tends to generate

scattered and disconnected impassable areas, suggesting that

optimizing for low values of the same functions could gener-

ate areas of compact impassable areas and open spaces. This

is a very nice feature, and when used together with a con-

flicting objective allows us to generate a continuum between

extremes in terms of both gameplay and visual appearance.

At the same time, a more refined choke point function could

be devised that aims for single gaps in otherwise connected

impassable barriers. We see some potential in maximizing the

interaction of players by the path sharing function, but in its

current form it is hampered by inappropriate normalization.

Yet other similar measures may help to design maps of

different character and complexity in order to scale between

different levels of player experience.

VII. CONCLUSIONS

In this paper, we used multiobjective evolutionary algo-

rithms, together with a relatively indirect map representation

to evolve complete playable maps for the RTS game Star-

Craft. A number of fitness functions measuring map qualities

connected to playability, fairness, skill differentiation and

interestingness were defined and their interplay investigated.

We believe this is the first time search-based procedural

content generation has been used to create playable game

maps, and possibly the first time multiobjective optimization

has been used for any sort of content generation for an actual

game. We have also shown that there exist a number of

interesting tradeoffs between map objectives, which can be

used together with multiobjective optimization to automati-

cally explore the boundaries of design space for a particular

class of content. Such a mechanism can be used both for

completely automated adaptive content generation, and to

assist human content designers.

Future work will deal with optimizing more than two

objectives simultaneously, and on combining direct fitness

functions (as used here) with simulation-based fitness func-

tions. We will also verify the quality of generated maps

through user studies. Maps generated by our methods will

be used in the CIG 2010 RTS competition on StarCraft [21].
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