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Multiobjective Gas Turbine Engine 
Controller Design Using Genetic Algorithms 

Andrew Chipperfield and Peter Fleming 

Abstract-This paper describes the use of multiobjective genetic 
algorithms (MOGA’s) in the design of a multivariable control 
system for a gas turbine engine. The mechanisms employed to 
facilitate mnltiobjective search with the genetic algorithm are 
described with the aid of an example. It is shown that the MOGA 
confers a number of advantages over conventional multiobjective 
optimization methods by evolving a family of Pareto-optimal 
solutions rather than a single solution estimate. This allows 
the engineer to examine the trade-offs between the different 
design objectives and configurations during the course of an 
optimization. In addition, the paper demonstrates how the genetic 
algorithm can be used to search in both controller structure 
and parameter space thereby offering a potentially more general 
approach to optimization in controller design than traditional 
numerical methods. While the example in the paper deals with 
control system design, the approach described can be expected to 
be applicable to more general problems in the fields of computer 
aided design (CAD) and computer aided engineering (CAE). 

I. INTRODUCTION 

ODERN gas turbine engines are highly complex sys- M tems that require equally complex controllers in order 
to remain stable while satisfying the demands placed on 
them by the pilot and operating conditions. Because of these 
complexities, extensive use is made of computer aided control 
system design (CACSD) methods to design controllers to 
meet the desired performance specifications. In particular, 
optimization-based methods in CACSD have been shown to 
be a valuable tool in assisting the control engineer in selecting 
suitable controller parameters [ 11. 

Many engineering problems are, however, characterized by 
a number of noncommensurate design objectives that must 
all be obtained for the solution to be satisfactory. Due to the 
nature of trade-offs involved, particularly in cases where mul- 
tidisciplinary design criteria are specified, e.g., size, cost, and 
performance, such problems seldom have a unique solution. 
Instead, a set of equally admissible, or nondominated solutions, 
are sought from an appropriately formulated optimization 
problem. 

However, parametric optimization methods are numerically 
intensive and require repeated application to identify the trade- 
offs between different design objectives. In this paper, we 
consider the application of genetic algorithms (GA’s) [2] to 
the design of gas turbine engine control systems. After a 
brief introduction to multiobjective optimization, the concept 
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of a multiobjective genetic algorithm (MOGA) is introduced 
through a design example of a control system for a short 
take-off vertical landing aeroengine. It is shown that the 
MOGA confers an immediate advantage over conventional 
multiobjective optimization methods by evolving a family of 
Pareto-optimal solutions. Thus, the relative trade-offs between 
design objectives may be easily identificd and a more informed 
choice made for the final controller structure. 

11. MULTIOBJECTIVE OPTIMIZATION 

The use of multiobjective optimization (MO) recognizes that 
most practical problems require a number of design criteria to 
be satisfied simultaneously, viz: 

min F ( x )  
X E O  

where x = M XI,^!, . . .  ,z,] and R define the set of 
free variables, 5 ,  subject to any constraints and F ( z )  = 
[ f ~ ( z ) ,  fi(z), . . . , f ,(lc)] are the design objectives to be 
minimized. 

Clearly, for this set of functions, F ( z ) ,  it can be seen that 
there is no one ideal “optimal” solution, rather a set of Pareto- 
optimal solutions for which an improvement in one of the 
design objectives will lead to a degradation in one or more 
of the remaining objectives. Such solutions are also known as 
noninferior or nondominated solutions to the multiobjective 
optimization problem. 

Conventionally, members of the Pareto-optimal solution set 
are sought through solution of an appropriately formulated 
nonlinear programming problem. A number of approaches are 
currently employed including the t-constraint, weighted-sum, 
and goal-attainment methods [3]. However, such approaches 
require precise expression of a usually not-well-understood 
set of weights and goals. If the trade-off surface between 
the design objectives is to be better understood, repeated 
application of such methods will be necessary. In addition, 
nonlinear programming methods cannot handle multimodality 
and discontinuities in function space well and can thus only 
be expected to produce local solutions. 

Genetic algorithms, on the other hand, do not require 
derivative information or a formal initial estimate of the 
solution region. Because of the stochastic nature of the search 
mechanism, GA’s are capable of searching the entire solution 
space with more likelihood of finding the global optimum 
than conventional optimization methods. Indeed, conventional 
methods usually require the objective function to be well 
behaved, whereas the generational nature of GA’s can tolerate 
noisy, discontinuous, and time-varying function evaluations 
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Fig. 1 .  SIMULINK model of the ASTOVL engine 

[4]. Single objective GA’s do still require some combination 
of the design objectives although the relative importance may 
be changed during the course of the search process. 

Multiobjective GA’s [SI, employing the principles of Pareto- 
dominance as the basis for assigning a scalar fitness value to 
a vector valued objective function, allow individual solution 
estimates to be compared with one another even in the 
total absence of information regarding the relative importance 
of the objectives. Using rank-based selection and nicheing 
techniques, it is feasible to generate populations of non- 
dominated solution estimates without having to combine the 
objectives in some way. This i s  advantageous because the 
combination of noncommensurate objectives requires precise 
understanding of the interplay between those objectives if the 
optimization is to be meaningful. The use of Pareto rank-based 
fitness assignment permits different nondominated individuals 
to be sampled at the Same rate thereby according the same 
preference to all Pareto-optimal solutions. 

Because MOGA’s are susceptible to unstable converged 
populations, due to the potential for very different genotypes 
to result in nondominated individuals, a particular problem is 
the production of lethals when fit members of the population 
are mated. The search then become? inefficient and the GA is 
likely to converge to some suboptimal solution. However, the 
use of mating restrictions, to reduce the production of lethals, 
enhances the stability of the population whilst allowing a wide 
divervity in genetic material. 

111. DESIGN EXAMPLE 
This example application demonstrates how MOGA’s may 

be used to select the controller structure and suitable parameter 
sets for a multivariable flight control system. The system 
considered is a propulsion unit for an advanced short take-off, 
vertical landing (ASTOVL) aeroengine [6], shown in Fig. 1. 
There are two inputs to the system, XTOTD and XDIFFD, 
and it is required that the pilot have control of the fore-aft 
differential thrust (XDIFF) and the total engine thrust (XTOT). 
The design problem is to find a set of precompensators that 

satisfy a number of time-response design specifications while 
minimizing the interaction between the loops of the system. 

The time-domain performance requirements, in response to 
a step in demand at one of the inputs, are 

I )  70% rise-time 5 0.35 seconds, 
2) 10% settling-time 5 0.5 s, and 
3) maximum overshoot 5 lo%, 

at the associated output. The amount of interaction, or cross- 
coupling, between modes is measured as 

(XTOT)~  d t  

when excited by a step input to XDIFFD, and vice-versa, and 
should be less than 0.05 for this example. 

IV. IMPLEMENTATION 

The ASTOVI, propulsion unit was modeled directly using 
the SIMULINK package 171 as shown in Fig. 1. The objective 
functions were written as m-files using commands from the 
Control Systems Toolbox. The precompensators for this prob- 
lem were allowed to be either first or second order or simple 
gains, Fig. 2(a). 

Using a structured chromosome representation [4], 
Fig. 2(b), it is possible to allow the free parameters for 
each possible precompensator configuration to reside in all 
individuals. Here, high-level genes, labeled I‘l to P, in 
Fig. 2(b) and encoded as integers, are used to determine 
which precompensator structures are active in a particular 
chromosome. Associated with each precompensator, Pi, 
are three sets of real-valued parameters, A i ,  Bi, and Ci, 
corresponding to the gains and time constants of the 
permissible precompensator structures. Thus, the values of the 
precompensator structure flags select which set of parameters 
are valid with each precompensator and therefore the order 
of the precompensators. In this way, a chromosome may 
contain a number ,of possibly good representations at any 
one time, although only the set defined by the values of the 
high-level genes; will be active. 
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9) KX( l)(s+KX(2)) 
1 

Pre-compensator A Pre-compensator B Pre-compensator C 

pre-compensator pre-compensator I pre-compensator 2 pre-compensator 3 pre-compensator 4 
structure $ass parameters parameters parameters parameters 

(b) 

Fig. 2. Representing the precompensator structures and parameter sets. (a) Precompensator structures. (b) Chromosome structure 

In addition, as the overall structure of the controller varies 
with the set of active pre- compensators, an additional ob- 
jective was included that measured the complexity of the 
controller. This was calculated by summing the values of the 
precompensator flags, thus 

4 

p, 5 9. 
2=1 

Thus, a total chromosome length of 28 elements was used 
and nine design objectives should be satisfied. 

A Genetic Algorithm Toolbox for use with the MATLAB 
CACSD package [8], developed in house, was used to im- 
plement the GA with additional extensions to accommodate 
multiobjective ranking, sharing, and mating restrictions in the 
objective domain [ 5 ] .  

Multiobjective ranking is based upon the dominance of 
an individual, i.e., how many individuals outperform it in 
objective space, Fig. 3. From Fig. 3, it may also be seen that 
multiobjective ranking is nonunique, a number of individuals 
are ranked 0, i.e., nondominated. Ranking may also be com- 
bined with goal and/or priority information to discriminate 
between nondominated solutions. For example, a solution in 
which all the goals are satisfied can be considered superior, or 
preferable, to a nondominated one in which some components 
go beyond the goal boundaries. Similarly, an improvement 
in an objective component such that the objective value lies 
inside the goal boundary should be accepted even when this 
causes a degradation in another objective component provided 
that the corresponding goal is satisfied. In cases where objec- 
tives are assigned different priorities, higher priority objectives 
are optimized in a Pareto fashion until their goals are met at 
which point the remaining objectives are optimized (see [9]). 
In this example, the goals were set to the values given in the 
previous section and all objectives were assigned the same 
priority. 

All preferred individuals thus achieve the same fitness; 
however, the number of actual offspring may differ due to 
the stochastic nature of the selection mechanism. Thus, an 
accumulation of the imbalances in reproduction can lead the 
search into an arbitrary area of the trade-off surface. This 
phenomenon is known as genetic drift [IO] and can drastically 
reduce the quality and efficiency of search. Proposed as a 
solution to the problem genetic drift, fitness sharing [ l l]  
penalizes the fitness of individuals in popular neighborhoods 
in favor of more remote individuals of similar fitness. A niche 

A 
.f2 

Fig. 3. Pareto ranking 

count is used to derive the density of individuals in genotypic, 
phenotypic, or objective space. This value is derived from 
a sharing function that determines the contribution made 
by individuals to niches. Raw fitness values may then be 
adjusted in response to niche counts and the total fitness in 
the population redistributed over the individuals. However, 
the use of fitness sharing has been restricted by difficulties 
in determining appropriate niche sizes. 

The approach adopted in this example overcomes this 
problem by using techniques developed from kernel density 
estimation methods in statistical analysis, in particular the 
Epanechnikov kernel [12]. A constant factor is used in com- 
puting the sharing function and has been shown in [I21 to 
be appropriate for performing sharing in Euclidean decision 
variable space. 

Recombining arbitrary pairs of nondominated individuals 
from the trade-off surface can result in the production of 
an unacceptably large number of unfit offspring, or lethals. 
A further refinement to the MOGA is therefore to bias the 
manner in which individuals are paired for recombination, 
often termed mating restriction [13]. This is generally achieved 
by restricting reproduction to pairs of individuals that are 
within some given distance of each other. A common practice 
is to use the niche radius from the sharing function and the 
approach here employed the smoothing parameter from the 
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Fig. 4. Typical optimized ASTOVL response. 

(b) 
-0 5 

0 1 2 3 4 Fig 5 Sample ASTOVL (a) Trade-off graph (b) Design objectives 

kernel density function as the mating restriction limit. The 
interested reader is referred to [ 141 where a full account of the 
development of MOGA’s may be found. 

The crossover operator employed was intermediate recom- 
bination [15] applied with probability 0.7. As the chromosome 
contains many inactive elements, the probability of applying 
breeder CA mutation [ 151 was set to 0.1. The use of adaptive 
mutation rates may have been more appropriate for this 
example and representation, although the (seemingly) high 
mutation rate is consistent with the use of real-valued operators 
and the average number of active parameters. No fine-tuning 
of operator rates was attempted. 

Finally, in order to reduce the computational burden of 
evaluating the objectives, re-evaluation of individuals was only 
performed if they had been affected by the genetic operators 
[ 161. This reduced the number function evaluations required 
by 20-30%. 

V. RESULTS 

Using a population size of 40, the GA was run for 100 
generations in the first instance. A list of the best 50 individuals 
was continually maintained during the execution of the GA 
allowing the final selection of controller to be made from the 
best structures found by the GA over all generations. 

Fig. 4 shows a typical response for a controller found by 
the MOGA. It can be clearly seen that all of the design 
objective have been satisfied. However, from such responses 
it is difficult to determine the relative merits of one controller 
against another over the entire population. This is particularly 
true if on-line preference articulation is to be used to guide 
the search during an optimization. 

Fig. 5 illustrates a typical trade-off graph for the ASTOVL 
controller and a user interface for interactively setting design 
goals and examining nondominated solutions in a population 
or database. In the plot, each line represents a nondominated 
individual found by the MOGA. Objectives 1 ,  2, and 3 are the 
rise-time, settling-time, and overshoot, respectively, for the 
XTOT channel, and objective 4 is the cross-coupling between 

XTOTD and XDIFF. Objectives 5 lto 8 correspond to the same 
design specifications on the XDIFF channel and objective 9 
is the overall controller complexity. The y-axis shows the 
performance of individuals in each objective domain with 
cross-marks showing the design goals. 

In Fig. 5, trade-offs between adjacent design objectives re- 
sult in the crossing of lines between them whereas noncrossing 
lines indicate that objectives do not compete with one another. 
For example, the XTOT channel settling-time, overshoot, and 
cross-coupling (objectives 2, 3, and 4) appear to compete 
quite heavily, while the same trade-offs are not exhibited 
by the XDIFF channel. Only the preferred individuals, those 
that satisfy the design goals, are shown. When no individuals 
are preferred, the nondominated individuals are displayed. An 
additional feature of the user inter-Face is the ability to move 
the position of the objectives on the x-axis. This affords the 
control engineer a convenient mechanism for examining the 
trade-offs between nonadjacent design objectives. 

Having satisfied the original design goals, the control engi- 
neer is now free to enhance the performance of the controllers. 
The relative degree of under- or over-attainment of the design 
goals is clearly visible in Fig. 5 and the designer may take 
advantage of this information when setting new design goals. 

Fig. 6 shows the new trade-off graph produced when the 
goals are reset and the MOGA is iillowed to continues for a 
further 25 generations. The cross-marks on the plot correspond 
to the new goal set of t0.25, 0.4, 5.0, 0.03, 0.25, 0.4, 5.0, 0.03, 
121. In this goal set, all of the performance goals have been 
tightened while the controller complexity has been relaxed. 
This allows more complex controllers to be considered in order 
to meet the stricter performance requirements. However, as 
many satisfactory structures already exist in this region, the 
most complex controllers have not had their parameters tuned 
sufficiently to meet these new design requirements. 

By changing the values of the goals, the search is forced 
to examine a smaller area of the trade-off surface. Individuals 
that do not now satisfy the design goals are no longer preferred 
and the population is forced to evolve toward a new region of 
the design space. Thus, a more accurate picture of the trade-off 
surface in that region is constructed. 
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Fig. 6. Trade-off graph for revised design objectives. 

VI. CONCLUDING REMARKS 
This paper has shown how MOGA’s may be applied to the 

design of gas turbine engine control systems. Using a single 
unified formulation, a number of competing design objectives 
may be simultaneously optimized through search in both 
controller structure and parameter space. The MOGA approach 
has a clear advantage over conventional multiobjective opti- 
mization methods in that it allows a number of nondominated 
controller structures to be examined in a single design cycle. 
Furthermore, the MOGA permits the optimization goals to 
be changed during the design cycle without the need to 
reformulate objective functions or restart the search. 

A simple user interface has been demonstrated that allows 
the control engineer to examine the trade-offs and interplay 
between design objectives. The control engineer may inter- 
act with the MOGA through the successive articulation of 
preferences, guiding the optimization on the basis of design re- 
quirements rather than the properties of the objective functions. 
Such a process allows a closer interaction between the control 
engineer and the primary design tools, hopefully leading to a 
more informed design procedure. 

While interactive use is desirable, the numerically intensive 
nature of evaluating objective functions may render such 
an approach infeasible. In such cases, parallel processing 
techniques could be employed to alleviate the computational 
burden. Similarly, the nicheing mechanisms which arise in 
some distributed population structures may prove beneficial 
to the MOGA. Finally, while this paper has considered the 
application of MOGA’s to gas turbine engine design, the 
procedures and techniques discussed should prove useful in 
the wider field of CACSD and computer aided engineering 
(CAE) in general. 
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