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+e generative approach to social science, in which agent-based simulations (or other complex systems models) are executed to
reproduce a known social phenomenon, is an important tool for realist explanation. However, a generative model, when suitably
calibrated and validated using empirical data, represents just one viable candidate set of entities and mechanisms. +e model only
partially addresses the needs of an abductive reasoning process—specifically it does not provide insight into other viable sets of
entities or mechanisms nor suggests which of these are fundamentally constitutive for the phenomenon to exist. In this paper, we
propose a new model discovery framework that more fully captures the needs of realist explanation. +e framework exploits the
implicit ontology of an existing human-built generative model to propose and test a plurality of new candidate model structures.
Genetic programming is used to automate this search process. A multiobjective approach is used, which enables multiple
perspectives on the value of any particular generative model—such as goodness of fit, parsimony, and interpretability—to be
represented simultaneously. We demonstrate this new framework using a complex systems modeling case study of change and
stasis in societal alcohol use patterns in the US over the period 1980–2010. +e framework is successful in identifying three
competing explanations of these alcohol use patterns, using novel integrations of social role theory not previously considered by
the human modeler. Practitioners in complex systems modeling should use model discovery to improve the explanatory utility of
the generative approach to realist social science.

1. Introduction

Agent-based simulation (ABS) is a well-established tool for
understanding complex systems using the generative social
science approach. +e goal of generative social science is to
explain and understand a social phenomenon as the result of
actions of autonomous entities acting according to causal
mechanisms or rules as encoded in an agent-based model
[1]. If a modeler encodes a model that produces a known
empirical pattern, the so-called “generative test” is met, and
the postulated mechanisms form a candidate explanation for

the phenomenon.Many social phenomenamay be explained
by a multiplicity of theories, each of which could pass the
generative test when encoded as an ABS, leaving us to
wonder which theory is correct; how can theories be
combined; and what is missing from our theories? Here, we
propose a novel method of discovering new models and
extending the explanatory capabilities of theory-driven
generative models using multiobjective genetic pro-
gramming—a process of knowledge discovery. Elements of a
generative theory or several generative theories are codified
in a common grammar, evolved through genetic
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programming, evaluated for empirical fit, complexity, and
interpretability, and interpreted by subject matter experts to
bring new insight to the social phenomenon.

In this paper, we set out the following aims: (1) to explain
the role of complex systems models for realist explanation;
(2) to define the structural calibration method: a retro-
ductive model discovery framework; (3) to demonstrate the
application of the model discovery framework to a specific
mechanism-based social systems model; and (4) to discuss
the implications of computer aided model discovery in light
of the case study results.

2. Methods

2.1. )e Role of Abductive Reasoning in Mechanism-Based
Explanation. +e context for our methods is the generative
[1] or mechanism-based [2] approach to the study of
complex social systems. In this approach, we assume that
any concrete phenomenon (which may be empirically ob-
servable to a greater or lesser degree) emerges from the
dynamic interplay of real entities and mechanisms that exist
independently of our ability to detect them [3]. In this
context, the role of complex systems modeling is principally
explanatory, in helping to gain insights into theorised en-
tities and mechanisms by representing them in a dynamic
simulation model.

Abductive reasoning plays a key role in mechanism-
based explanations and can be conceived of in two parts [4]:

(i) Redescription: situating the concrete phenomenon
as a case which emerges from the hypothesized
interacting components (i.e., entities and mecha-
nisms) of one or more theories.

(ii) Retroduction: identifying which of the components
in the redescription are fundamentally constitutive
to the emergence of the phenomenon (i.e., entities
and mechanisms whose inexistence would preclude
the phenomenon).

+e development of a complex systems model by a
human modeler is principally a redescription activity—the
modeler uses existing theory (and potentially develops new
theory) to construct a set of equations and rules that, when
executed as a simulation, produce emergent outcomes that
are in some sense comparable to the phenomenon under
investigation. As part of the model building process, the
modeler defines—either explicitly or implicitly—an ontol-
ogy of real entities, the agents of agent-based simulations,
and mechanisms, the rules that determine action and
interaction.

+e generative approach commits the modeler to at least
a limited form of retroduction—the simulation, as rede-
scription, is scrutinised for its ability to reproduce the
concrete phenomenon, in so far as the latter is observable in
empirical data. +e simulation parameters often have to be
manipulated in order to achieve good similarity; in the
computational modeling community, this process is known
as calibration [5] and is commonly identified as belonging to
best practice programs for analytical sociological research
[6]. If a simulation can be calibrated successfully, then the

redescription it encodes is said to pass the generative suf-
ficiency test—it remains a candidate explanation for the
phenomenon [1]. However as a retroductive process, the
generative approach, when applied to a single simulation
model, has two fundamental shortcomings: (1) it does not
allow the entities and mechanisms to be accepted as fun-
damentally constitutive since to do so would be to commit
the fallacy of affirming the consequent; (2) neither does it
allow the entities and mechanisms to be rejected as fun-
damentally constitutive, only that their present configura-
tion or representation in the simulation model is
nonconstitutive.

Together, these limitations form the basis for many of the
concerns about complex systems modeling raised within the
sociological community (see, for example, [7]). We argue
that the limitations arise from the focus of the modeling on a
single redescription, i.e., a single ABS. To improve our ex-
planatory capability, we need to increase the number of
redescriptions considered within the overall modeling
process, i.e., by building multiple ABS that either interpret a
single theory in different ways or represent multiple different
theories or both. By subjecting a plurality of redescriptions
to retroduction, we can seek to identify commonalities in the
theory components that survive the generative sufficiency
test; we can also seek to increase the robustness of the test
outcome to potential issues with the configuration or rep-
resentation of a theory within the simulation. Within the
context of model calibration activities, this concept is
operationalized as interrogating model structure (i.e., the
selection and configuration of entities and mechanisms) in
addition to model parameters—we call this structural cali-
bration. Perhaps surprisingly, given its key role in the
abductive reasoning process, the complex systems modeling
community has yet to pay significant attention to the issue of
structural calibration. Below we review the handful of
existing works on this topic.

2.2. Existing Works on Structural Calibration of Simulation
Models. A very small literature exists on the structural
calibration (described variously as “theory discovery” [8],
“model discovery” [9], and “inverse generative social sci-
ence” [10]) of mechanism-based models, all of which use
evolutionary computing (EC)methods to steer the search for
good model structures. In the earliest known study, Smith
[11] used a genetic algorithm to identify simplified repre-
sentations of behavior that could reproduce the observed
social assortativity of birds. Later, with a focus on repro-
ducing observed human crowd dynamics, Zhong et al. [12]
used gene expression programming to identify the structure
of a reward function representing individual decision
making in a “sense-think-act” framework. Gunaratne and
Garibay [8] used genetic programming to revise agents’ farm
selection rules for the “Artificial Anasazi” model, in order to
more accurately reproduce the archeological population
demography of Long House Valley, Arizona. Most inter-
estingly, again within the context of the Artificial Anasazi,
the same authors then used genetic programming to identify
components for Epstein’s Agent_Zero model of human
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behavior as the basis of farm selection decisions [9]. Finally,
in work that forms a prelude to the present study, Vu et al.
[10] used multiobjective genetic programming to identify
alternative situational mechanisms for a social norms model
of alcohol use, aimed at both improved representation of
observed drinking patterns in the US over a 15-year period
and theoretical interpretability (operationalized as the
number of terms in the situational mechanism).

+ere exist a number of issues and limitations with these
early techniques. While the studies have demonstrated
success at improving the goodness of fit to empirical data,
they have all been limited in scale—focusing on specific
aspects of larger models. Further, the studies focusing on
human behavior have also struggled with the issue of the-
oretical meaningfulness of the structures that have been
identified. While minimizing or constraining the number of
terms in the candidate behavioral rules is clearly helpful at
improving interpretability, it is often the case that the new
structures remain challenging to interpret in terms of the
original theory, with this crucial activity deferred to future
work.

2.3. Proposed Approach to Structural Calibration. Here, we
describe a new framework for structural calibration and
position it explicitly as a tool for realist explanation that can
be used alongside more traditional approaches within the
realist tradition [3]. Our approach is grounded in the rec-
ognition that the human modeler uses a creative process of
redescription that results in the construction of an ontology
for entities and mechanisms that may be implicated in the
generation of a complex phenomenon.+e starting point for
our framework is this ontology. We exploit the ontology to
(a) construct new candidate redescriptions (i.e., simulation
model structures) that can be realized via the ontology; (b)
test the candidate redescriptions in terms of their explan-
atory value, where “value” can be a plurality of consider-
ations, such as empirical goodness of fit, structural
parsimony, interpretability, and theoretical credibility.

+e ontology developed by the modeler can be con-
sidered as a set of basic building blocks of entities and
mechanisms. While we could, as humans, use the building
blocks to construct an exhaustive set of possible alternative
simulation model structures (by assembling the building
blocks in different ways), even a relatively small set of
building blocks can result in a very large number of alter-
natives that cannot be practically explored by hand. An
alternative is to use machine learning approaches, where we
make intelligent use of computational resources to auto-
matically search through the space of possible model
structures. In the vein of the existing literature, we regard the
family of evolutionary computing approaches known as
genetic programming (GP) as a highly promising workhorse
for structural calibration [13]. Multiobjective genetic pro-
gramming is particularly beneficial because it allows re-
searchers to evaluate candidate model structures according
to a set of explicitly stated considerations of explanatory
value [14]. In our present framework, we concentrate on two
aspects of value: (i) the ability of the model structure, with

suitably calibrated parameters, to reproduce the phenom-
enon so far as we understand it from our beliefs and em-
pirical data; (ii) the meaningful interpretability of the model
structure in terms of theory.

2.4. GeneratingCandidateModel Structures: Grammar-Based
Genetic Programming. Evolutionary computing is a field
that applies the principles of natural evolution in computing.
In EC, a population of candidates is evolved over many
generations based on a fitness function. A typical process
starts with a random population of candidates. +e candi-
dates with high fitness are then probabilistically chosen to
breed and produce the candidates for the next generation.
Two common genetic operators for breeding are crossover
(combining random parts from two selected candidates) and
mutation (altering a random part of a selected candidate).
Genetic programming applies this idea of evolution for
computer programs [13, 15].

+e basic genetic operators (i.e., crossover andmutation)
are entirely random and can result in the construction of
illegal programs (e.g., that breach requirements for legal
expressions or type restrictions of the programming lan-
guage). For this reason alone, it is often appropriate to
constrain the structure of programs in advance of the
evolutionary process. An approach to enforcing particular
structures is using a grammar [16]. GP approaches that use a
grammar to express constraints are called grammar-based
genetic programming (GGP). For example, the expression
f(x, y)� x∗ x+ y is one of many possible specific structures
that could be generated with the following grammar:

E: :�var|(E op E),

op: :� +| − |∗,
var: :� x|y|z.

(1)

Each line in the grammar is a production rule. +e el-
ements on the left-hand-side can be rewritten and are called
nonterminal symbols. On the other hand, elements that
cannot be rewritten are terminals. +e first production rule
is an expression (E) which can equal either a variable (var) or
a combination of two expressions (E) by an operator (op).
+e second rule allows three operators: plus, minus, and
multiply.+e last production rule specifies three variables: x,
y, and z.

Each structure produced by the grammar is represented
by a tree. +e tree representation allows researchers to
measure the structural complexity of models by counting the
number of nodes (terminal and nonterminal symbols) in the
tree. Even the simple expression f(x, y)� x∗ x+ y, shown in
Figure 1, has a node count of 15. Crossover is operation-
alized by cutting a branch of the tree and replacing it with a
branch from another tree. Mutation is operationalized by
replacing a node with a randomly generated tree.

2.5. Description of the Model Discovery Process. +is section
describes the proposed model discovery process, depicted by
the flowchart of Figure 2. +e process is a variant of a recent
approach described by Vu et al. [10]. +ere are three roles in
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the model discovery process: modeler, analyst, and domain
expert. +e modeler designs, implements, and tests agent-
based models. +e analyst analyses the model structure and
abstracts a set of basic building blocks of entities and
mechanisms. +e domain expert possesses the knowledge
and understanding about the social science that underpins
the model and can assess the model’s theoretical credibility.

In Step 1 of the model discovery process, a human
modeler develops a mechanism-based model to explain the
phenomenon in a complex social system (the baseline
model). +is redescription process is undertaken by the

modeler based on existing knowledge captured in social
theories. In Step 2, the model is evaluated for its theoretical
credibility by a human expert in the social theories that
underpin the model (i.e., a domain expert). Redevelopment
of the model may occur following this step (representing a
return to Step 1). Once the human expert is satisfied with the
baseline model, in Step 3, a human analyst abstracts a set of
primitives, i.e., “building blocks,” from the model. +ese sets
of primitives are the entities and mechanisms to be exposed
and modified in the evolutionary step (Step 6). In addition, a
grammar is defined to guide the search. Since the grammar is

Step 1: a human modeler develops an initial
mechanism-based model to explain the
phenomenon in a complex social system

Step 2: the model is evaluated for its
theoretical credibility by a human expert in
the social science the underpins the model

Step 3: a human analyst abstracts a set of
primitives from the initial model and defines

a grammar that guides the search

Step 4: calibration of model parameters

Step 5: clone the best calibrated human
model to create initial population of

candidate model structures

Step 6 (a): select parent model structures
according to multiple criteria

Step 6 (b): apply genetic programming
operators to parents to produce new

child structures

Step 6 (c): calibration of model parameters
for each child model structure

Step 6 (e): select new population of
model structures from parent and child

Step 7: the human expert assesses
the new structures in terms of

theoretical credibility

Step 6 (d): evaluate model structures for
fitness

Step 6 (f):
convergence

achieved?

Step 8: credible model structures are
interpreted for knowledge discovery

Sufficient
credibility?

No

Yes

No

Yes

Figure 2: Model discovery framework. +e dashed rectangle is the process that is not implemented in the present paper.
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Figure 1: An example tree of an expression f(x, y)� x∗ x+ y.
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a set of production rules for combining the primitives, the
analyst can enforce certain structures based on the modeler’s
knowledge of the system; noncredible operations can be
prohibited. In Step 4, the model parameters are calibrated
using the baseline model structure against the empirical
calibration targets. In Step 5, the model built by human
modeler, along with the best calibrated parameters, is cloned
to fill the initial population of model structures.

Step 6 is the heart of the evolutionary approach. Parent
structures are selected from the population of model
structures (Step 6(a)). After applying the genetic operators
(crossover andmutation), new child structures are generated
(Step 6(b)). Ideally, the parameters of the new child struc-
tures are recalibrated to see if the model error can be
minimized further (Step 6(c)). However, such a nested
approach to calibration is very computationally intensive,
and so we necessarily omitted this step due to limits on the
available computing resources. Instead, we allowed the GP
to select constants from not only a general set of constants
but also values of calibrated parameters generated at Step 4.
Next (in Step 6(d)), the new structures are evaluated for their
fitness (such as model error compared to empirical data).
After evaluation, the new population is selected based on the
objectives (Step 6(e)). +ese evolutionary steps are per-
formed until convergence is achieved or when a maximum
number of iterations is reached (Step 6(f)).

In Step 7, through deliberative discussion with the an-
alyst and the modeler, the domain expert assesses the set of
new structures with the highest fitness values in terms of
theoretical credibility. If the new structures lack sufficient
credibility, the domain expert, the modeler, and the analyst
return to Step 3 to discuss changes to the grammar to
improve the meaningfulness of the operations that can be
selected by the evolutionary algorithm. Further iterations of
Steps 3 to 7 are carried out until credible structures are
generated or resources are exhausted. In Step 8, credible
model structures are interpreted for knowledge discovery
purposes, promoting discussion about the underlying social
theories used in the model and, potentially, further theory
development or empirical data gathering.

3. Application

We applied the new framework to a specific mechanism-
based social systems model. Here, we interpreted the causal
mechanisms derived from social role theory as drivers of
alcohol consumption to build a complex systems model of
population-level alcohol use patterns in the US since the
1980s (Figure 3). Social role theory is a collective term used
to describe a diverse range of mechanism-based explana-
tions for individual and collective behaviors and practices
from the fields of social psychology, sociology, and an-
thropology [17]. Particular conceptualizations of role theory
have been used within the alcohol research community to
explain observed trends in alcohol use—specifically relating
to the interplay between alcohol use and positional roles
such as parent, partner, and paid employee [18]. Our aim in
this application is to test the extent to which credible
conceptualizations of role theory can reproduce historical

trends in population alcohol use (as measured via survey
data).

In this application, different roles in the model discovery
process were undertaken by different authors. +e modeler
role was principally undertaken by HB, AB, and RCP. +e
analyst role was undertaken by CB and TMV. +e domain
expert was PS.

3.1. Social Roles as aMechanism-BasedExplanation ofAlcohol
Use: )e Human-Built Model as It Relates to Role )eory.
+e concept of role strain is central to many of the studies
relating positional roles to alcohol use. Biddle [17] defines
role strain as the “experience of stress associated with po-
sitions or expected role.” Role strain is hypothesized to arise
through a number of pathways where alcohol can act as
cause, consequence, or both. Alcohol can be used by indi-
viduals as a means of coping with role strain arising from
role overload (holding a role set that is too complex), role
deprivation (lacking roles that provide meaning to life), or
role incongruence (holding roles which are nonnormative
with respect to status or identity) [19, 20]. Alcohol use can
also induce or exacerbate role strain, where use is incom-
patible with the demands of performing the role [21]. In the
model, role strain is the arithmetic mean of role incon-
gruence and role overload (equation (1) in Table 1). Role
overload (equation (2) is determined by the roles an agent
holds, their levels of involvement in these roles, and four
calibrated parameters representing the effect of holding each
role on experiencing role overload. Role incongruence
(equation (3)) is the arithmetic mean of the difference be-
tween each role holding status and the prevalence of that role
in society (i.e., the percentage of people holding that role).

In the mechanism known as role selection, individuals
may act (consciously or otherwise) to prevent or reduce role
strain by avoiding or escaping from roles that are incom-
patible with their existing alcohol use [21]. +is mechanism
is implemented by adjusting the probability of transitioning
between roles based on the heavy drinking status of the agent
(where heavy drinking is defined as having consumed 5+
standard drinks in the previous month) (equations (4) and
(5)). In a contrasting role socialisation mechanism, indi-
viduals gradually adopt and internalize drinking practices
that are compatible with the roles they hold [21–23]. A
difference in drinking disposition is calculated when indi-
viduals gain or lose roles (equations (6) and (7)). +e new
disposition to drink (equation (8)) is a function of this
difference in disposition and a modifier (equation (9)),
calculated using the number of days the new role has been
held and the speed of socialisation.

Knibbe et al. [18] suggested that the set of positional roles
held by an individual can affect the ability of that person to
participate in drinking situations, depending on the extent to
which drinking is integrated into the structure of everyday
life within society. In this sense, social roles act as mecha-
nisms that regulate the daily opportunities for using alcohol.
Individuals in the model have a different opportunity to
drink outside and inside the home, which depends on the
roles they hold.+e opportunity to drink out and in are each
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calculated as a log odds (equations (10) and (11)) and then
converted to probabilities (equations (12) and (13)). +e log
odds for drinking outside the home are based on an agent’s
role load, employment status, and two calibrated parameters
to describe the unknown effect sizes of these factors on
opportunity to drink out. Role load and a combination of
marital and parenthood status determine the log odds of
drinking opportunity inside the home. Again, this equation
contains parameters describing the unknown effect of these
factors on the opportunity to drink in.

+e conditional probability of agent i consuming a jth
drink (equations (14) and (15)) is governed by each agent’s
long-term disposition to drink, their probability of drinking
in and outside the home, and role strain.

3.2. Data

3.2.1. Model Initialization. To initialize the models, data
from the National Survey on Drug Use and Health
(NSDUH) 1979–2010 [24], Panel Study of IncomeDynamics
(PSID) 1979–2010 [25], and the US Census 1980–2010 [26]
were used. A microsynthesis [27] was generated for a de-
mographically representative population of 1000 individuals
aged 12–80 in the USA, 1980. +e model was initialized with
these 1000 agents on the first day of 1980. +e socio-
demographic attributes of agents were initialized from the
microsynthesis: age, sex, ethnicity, employment status,
marital status, and parenthood status. Additionally, the
microsynthesis initialized agents with alcohol use attributes:
a 12-month drinking status, usual number of drinking days
per month, usual quantity of drinks per month, and number
of days where more than five drinks are consumed per
month.

3.2.2. Simulation. During each simulated year, individuals
enter the model as new 12-year-old adolescents and new
migrants. Individuals also leave the model due to death and
outward migration. Total counts of new migrants to enter in
each year were estimated using the American Community
Survey 1980–2010 [28] and were microsynthesised to data
from the nearest NSDUH year to give a representative
migrant population with corresponding baseline drinking
behavior. Mortality rates for the microsimulation were
derived from the Center for Disease Control and Prevention
(CDC) all cause mortality data for the US between
1979–1998 [29] and 1999–2010 [30].

Transition probabilities for moving between each of the
eight unique combinations of social roles variables (mar-
riage, employment, and parenthood) are applied annually
during the simulation.+ese probabilities were derived from
multistate Markov models fitted to marriage, parenting, and
employment trends from a representative US study, the
Panel Study of Income Dynamics 1979–2000 [25].

At initialization, each agent is allocated a vector which
represents their long-term disposition to drink. +ese are
initialized from the mean and standard deviation of their
drinking frequency and quantity at baseline.

3.2.3. Calibration Targets. Calibration targets for alcohol use
were derived from empirical data fromNSDUH for the years
1979–2010. Four alcohol use targets per year were used for
calibration: (1) prevalence—the proportion of individuals
reporting consuming an alcoholic beverage during the
previous year; (2) frequency—among drinkers, the average
number of drinking days per month; (3) quantity—among
drinkers, the average grams of alcohol consumed per day;

Markov model
transitions

Macro (population) Micro (individual) 

Population-level
trends in role

holding

Probability of transitioning roles

Role involvement
Role incongruence

Role strain

Role status

Long-term disposition to drink

Daily probability of having a drink

Individual’s drinks per day

Role load

Opportunity to drink
(in the home)

Opportunity to drink
(outside the home)

Population-level
alcohol use

Figure 3: Schematic of roles model.
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Table 1: Equations in the human-built model.

No. Concept Model equation Description

1 Role strain RoleStraini[k]� (RoleLoadi[k] + RoleIncongruencei[k])/2
Role strain is the overall stress an
individual experiences as a result of

the social roles they hold.

2 Role load

RoleLoadi[k]� β1∗ParentStatusi[k]∗
ParentInvolvementi+ β2∗MaritalStatusi[k]∗

MaritalInvolvementi+ β3∗EmploymentStatusi[k]∗
EmploymentInvolvementi+ β4∗ (1 − MaritalStatusi[k])∗ParentStatusi[k]∗

ParentInvolvementi

Role load is the stress that results
from needing to perform a role.
Role status is either 0 (not having a
role) or 1 (having a role). Role

involvement represents how much
a person is involved in a role, if
they hold it (between 0 and 1, from

no involvement to full
involvement). +ere are four

terms: one term for each of the
three roles (having a role and more
involvement in that role increases

the stress) and a term for
additional stress when an

individual is a single parent
(holding the role without the
support of another parent).

3
Role

incongruence

RoleIncongruencei[k]� (ParentStatusi[k] −
sParentExpectancysex,age[k] +MaritalStatusi[k] −

sMaritalExpectancysex,age[k] + EmploymentStatusi[k] −
sEmploymentExpectancysex,age[k])/3

Role incongruence is the stress that
results from holding a role that

deviates from societal expectations
for an individual’s identity

(encoded as a sex-age category). It
is the average of the differences for
each role between the current
status and the corresponding

societal expectancy (prevalence of
that role in the society is between 0

and 1).

4

Role
transition
update for

gaining roles

Heavy drinkers:
(i) TPi[k]� sTPsex,age[k − 1]∗ (1 + β12)

Non heavy drinkers:
(i) TPi[k]� sTPsex,age[k − 1] ∗ (1 − AnnualHeavyDrinkingPrevalence
[k − 1]∗ (1 + β12))/(1 − AnnualHeavyDrinkingPrevalence[k − 1])

To account for role selection,
individual role transitions over the

lifecourse are calculated by
modifying the societal transition
rates according to whether or not
the individual is a heavy drinker
(equations (4) and (5)). Heavy

drinking makes it less likely for an
individual to gain roles. Heavy

drinking makes it more likely for
an individual to lose roles.

AnnualHeavyDrinkingPrevalence
represents the population

prevalence of heavy drinking in the
model (between 0 and 1).

5

Role
transition
update for
losing roles

Heavy drinkers:
(i) TPi[k]� sTPsex,age[k − 1]∗ (1 + β13)

Non heavy drinkers:
(i) TPi[k]� sTPsex,age[k − 1] ∗ (1 − AnnualHeavyDrinkingPrevalence

[k − 1]∗ (1 + β13))/(1 − AnnualHeavyDrinkingPrevalence[k − 1])
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and (4) heavy episodic drinking—among drinkers, the av-
erage number of occasions where 5+ drinks were consumed,
per month. +e targets are split by subgroup, with four
subgroups defined by the number of roles held (0–3 roles).
We chose to categorize by the number of roles (n� 4) instead
of the combination of roles (n� 8) for two reasons: firstly, this

is an indicator commonly used in the social roles literature
[19]; secondly, the eight role decomposition is too great for the
standard error of the targets to be informative from a cali-
bration perspective. In summary, there are 16 targets (4 al-
cohol use targets by 4 different number of roles) for each year
between 1979 and 2010.

Table 1: Continued.

No. Concept Model equation Description

6

Difference in
disposition to
drink due to
gaining roles

DispositionDifferencei,j[k]�Dispositioni,j[k]∗ (1 + β10) − Dispositioni,j[k]

To account for role socialisation,
the disposition to drink is

gradually reduced the longer an
individual holds a role and is

gradually increased if an individual
loses a role. +e full disposition
effect to apply is calculated using

equations (6) and (7). +e
proportion of that effect to apply
after a particular number of days of
socialisation is calculated using the
logistic function in equation (9).
+is modifier is then applied to
scale the full disposition effect
using equation (8) and calculate
the overall disposition at time k.
Socialisation effects accrue over

one year following a role
transition.

7

Difference in
disposition to
drink due to
losing roles

DispositionDifferencei,j[k]�Dispositioni,j[k]∗ (1 + β11) − Dispositioni,j[k]

8

New
disposition to
drink (after

role
socialisation)

Dispositioni,j[k]�Dispositioni,j[k − 1] +DispositionDifferencei,j[k]∗
modifieri[k]

9
Modifier for
socialisation
mechanisms

modifieri[k]� ê((DaysofSocialisationi[k] − sSocialisationSpeed)/365)/
(1 + ê((DaysofSocialisationi[k] − sSocialisationSpeed)/365))

10
Opportunity
to drink out

logOddsOppOuti[k]�
log(β5∗ (1 − β6∗RoleLoadi[k] + β7∗ EmploymentStatusi[k]))

Equations (10) and (11) describe
the log odds for the opportunities
to drink outside and inside the

home, with reference to having no
opportunity to drink. β5 is the
baseline opportunity. Role load

acts to reduce both opportunities.
Individuals have more opportunity

to drink outside the home if
employed andmore opportunity to

drink inside the home when
holding marital or parenting roles.

Equations (12) and (13)
operationalize the logit model that

derives the probabilities of
drinking outside and inside the
home on any given day from the
log odds of equations (10) and (11)

(for three mutually exclusive
scenarios: drinking in, drinking

out, and not drinking)

11
Opportunity
to drink in

logOddsOppIni[k]�
log(β5∗ (1 − β8∗RoleLoadi[k] + β9∗ (MaritalStatusi[k] + ParentStatusi[k])))

12

Probability of
having an
opportunity
to drink out

probOppOuti[k]� ê(logOddsOppOuti[k])/
((ê(logOddsOppIni[k]) + ê(logOddsOppOuti[k]) + 1))

13

Probability of
having an
opportunity
to drink in

probOppIni[k]� ê (logOddsOppIni[k])/
((ê(logOddsOppIni[k]) + ê (logOddsOppOuti[k]) + 1))

14
Probability of
drinking first
drink (j� 0)

ProbabilityDrinki,0[k]�
Dispositioni[k]∗ (ProbOppOuti[k] + ProbOppIni[k])∗ (1 + β14∗RoleStraini[k])

+e daily drinking probability is
modeled as the long-term drinking
disposition, mediated by drinking
opportunities and role strain. We
differentiate between drinking
frequency (first drink in an

occasion) and quantity (next drink,
given that an occasion has begun).

15
Probability of
drinking next
drink (j> 0)

ProbabilityDrinki,j[k]�
Dispositioni[k]∗ (ProbOppOuti[k] + ProbOppIni[k])∗ (1 + β15∗RoleStraini[k])

+e concepts in the concept column are from the schematic in Figure 3. +ese equations contain unobserved parameters (highlighted in bold) which modify
the effects of social role mechanisms. +ese are given values following model calibration (Section 3.3) which searches for the set of parameters which best fit
historically observed trends in alcohol use over time. +e agents in the model, indexed by i, represent individual drinkers; their behavior is a decision to
consume the jth drink in a drinking occasion. +e model also includes two dynamic structural entities: expectancies for holding roles at a given point in the
lifecourse and average transition probabilities (TPs) between roles. For clarity, all structural entities carry the prefix s. +e discrete time unit (representing
each day) in the simulation is k.
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3.2.4. Implementation. +e model was implemented in C++
using the RepastHPC 2.2.0 toolkit [31]. +e model is run
forward in time for 20 years for calibration (1980–1999) and 10
years for validation (2000–2009). Each model tick represents
one day in the simulation. On each day of the simulation, the
probability of drinking is calculated for each agent. Once per
year in the simulation, transition probabilities for role tran-
sitions are applied and role expectancies are updated.

3.3. Parameter Calibration. +e model contains 31 param-
eters for calibration, which are highlighted in bold text in
Table 1. For this paper, a Latin hypercube space-filling design
was employed to sample 5,000 parameter sets from the joint
prior distribution using the lhs package in R [32]. +e Latin
hypercube was optimized by maximizing the minimum
distance between samples [33]. +ese parameter sets are
evaluated using an error metric that compares the simulated
results against the calibration targets.

error �
1

NM
∑
N

n�1

∑
M

m�1

y∗m[n] − ym[n]
∣∣∣∣ ∣∣∣∣��������������
sm[n]( )2 + dm( )2

√ , (2)

whereN is the number of observations,M is the number of
outputs, y∗m[n] is the simulated data for output m at time n,
ym[n] is the mean of empirical target data for output m at
time n, sm[n] is the standard error of the empirical target
data for output m at time n, and (dm)

2 is the variance of the
model discrepancy for output m, which is 10% of the
possible range for each output. Model discrepancy captures
the fact that model is not a perfect representation of reality.

As described in Section 3.2.3, there are 16 targets
(prevalence, frequency, quantity, and heavy episodic drinking,
each split by the number of roles held, 0–3), and thusM is 16.
N is different for each output because some years are missing
in the empirical data. +e parameterization that provided the
minimum error in equation (2) was selected as the result of
the calibration process. +e human-built model along with
the best parameterization was selected as the reference model
for the structural calibration process.

3.4. Grammar-Based Genetic Programming: Design and
Implementation. +is section describes a GGP system
designed to perform the model discovery process. For the
grammar that guided the GP process, the popular context-
free grammar was used. +e full grammar written in
Backus–Naur form [34] is available in Figure 4. Considering
the representation of the GGP candidates, each candidate is
represented by a tree that is generated following the pro-
duction rules of the grammar. Each GGP candidate (a
program <p>) contains 9 expressions for the 9 role-related
terms used in the roles model: role selectionmechanism, role
socialisation mechanism, role load, role incongruence, role
strain, log-odds-out modifier, log-odds-in modifier, first-
drink disposition, and next-drink disposition. Several
groups of variables, along with constants and calibrated
parameters, were defined. Each can be formed only by a
defined combination of variables, operators, and constants.

Some role-related terms use the same expression because
they have the same structure and the same constraints, e.g.,
probFirstDrink and probNextDrink both use expression
<e5>. +is grammar provides a hierarchical structure that
can capture the layers of role-related concepts in the ref-
erence model.

For the initialization of the GGP, we decided to start with
an initial population filled with the same structure. +e
structure used as the starting point is the reference model,
i.e., the structure designed by human modelers with the best
fitted parameterization. Additionally, a multiobjective GGP
was employed to simultaneously minimize both model error
and complexity.+ese two objectives address the two aspects
of value we discussed in Section 2.3: (i) the ability of the
model to reproduce the phenomenon so far as we under-
stand it from our beliefs and empirical data; (ii) the
meaningful interpretability in terms of theory.

+e first objective, model error, is captured by com-
paring the simulated data from the model with the empirical
data from the real world. +e model error is described in
equation (2) (Section 3.3). +e second objective, complexity,
is a proxy for interpretability and parsimony. Minimizing
the complexity during model discovery also constrains the
model discovery process from discovering too complex
structures that overfit the empirical data and are not in-
terpretable by domain experts. +e complexity is defined by
the number of nodes in the GGP candidate, with a special
case that node ON is counted as 2 in contrast to node OFF
being counted as 1. +e drawback when using complexity as
a proxy is that it does not guarantee meaningful inter-
pretability, i.e., low complexity can also result in meaningless
model structures. +erefore, at the end of every iteration of
the model discovery process, we worked with the domain
expert to verify the interpretability of all structures in terms
of theoretical meaningfulness. We asked the expert to
classify model structures using a crisp binary definition of
credible or noncredible.While the judgment was holistic, the
classification process was a deliberative discussion between
the expert, the modeler, and the analyst. +is discussion was
recorded and used subsequently to produce a set of quali-
tative criteria for judging model credibility.

For the selection process, the popular NSGA-II opti-
mizer [35] was used to develop an even representation of the
Pareto front that shows the trade-off between model error
and complexity. During the evaluation, the corresponding
expressions in the simulation’s source code were edited
based on a candidate structure; then the simulation was
recompiled and run in order to collect the simulated results
for calculating the model error.

+e described GGP system was implemented using the
PonyGE2 toolkit [34] and set up with the following
parameters:

(i) 500 GGP candidates per generation

(ii) Initialization: 500 copies of the reference structure

(iii) GP operators: 75% subtree crossover and 25%
subtree mutation

(iv) Maximum tree depth: 17

Complexity 9



(v) 2 objectives (goodness of fit and complexity) with
NSGA-II replacement and selection operators

+e GGP process was run on an Intel i9 9980XE pro-
cessor with 36 cores. +e source code of the simulation with
the best calibrated parameters (RepastHPC) and the GGP
system (PonyGE2) is available at bitbucket.org/r01cascade/

roles_ggp_complexity and is licensed under the GNU
General Public License version 3.

4. Results

4.1. GGP Results and the Pareto Front. In the case study,
three iterations of the model discovery process were

Figure 4: Context-free grammar. Variables have the same name as in Table 1 but, for improved clarity, without the indexing notation.
Shorthand notation is defined for the multiplication of role involvement and role status (e.g.,
InvolvedxMarital�MaritalInvolvement∗ MaritalStatus) and for the difference between the role status and role expectancy (e.g.,
DiffExpectancyMarital�MaritalStatus − sMaritalExpectancy).
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required to produce any structures that the domain expert
deemed as credible. Modifications were made to the
grammar between each iteration in an attempt to improve
the effectiveness of the discovery process. +is was an open-
ended trial and error iterative process involving the modeler
and the analyst. We stopped the process once credible
structures had been discovered. +e evolution of the
grammar is documented in the Supplementary Material A.
+e final grammar is shown in Figure 4.

In the final iteration of the process, both model error
and model complexity objectives reduced over genera-
tions and converged at the 20th generation, after which no
change to the Pareto front was observed. Figure 5 shows
the final population of 14 nondominated structures and
also includes the reference structure for comparison.
+ese models are indexed by their complexity, e.g., model
24 is the model on the Pareto front with complexity 24. All
the structures discovered by the GGP are less complex
than the reference structure. Six of them are worse than
the reference model in terms of model error, while the
remaining eight offer improved fit over the calibration
window.

4.2. )eoretical Credibility of the Discovered Models. We
worked with a domain specialist to examine the non-
dominated model structures generated by the GGP in terms
of their theoretical credibility and coherency with respect to
social role theory. Table 2 compares the structures of the
reference model and selected GGP models. In Table 2, el-
ements not affecting agent drinking (probFirstDrink and
probNextDrink variables, equations (14) and (15)) are
highlighted in italic.

+rough analysis of the deliberative discussions held
between the expert, analyst, and modeler, it was possible to
generate three qualitative criteria that enable a consistent
assessment of credibility for this example case study. In what
follows, we provide a narrative discussion of credibility
across the Pareto front in Figure 5. However, a complete
documentation of all GGP models and corresponding jus-
tifications of credibility is also included in the Supple-
mentary Material B. +e three identified criteria for
theoretical credibility are as follows:

(1) At least one of the theory constructs must be im-
plicated in the model dynamics. In a mechanism-
based model of alcohol use, the mechanisms need to
be used to generate drinking behavior. For models
based on role theory, this means that the models
must use at least one of the core theory constructs of
role strain, role load, role incongruence, or oppor-
tunity. For example, in the absence of a role
socialisation process, using solely a variable that
describes drinking history (Disposition) does not
generate a credible mechanism-basedmodel in terms
of role theory.

(2) +e theory constructs must be used to represent
mechanisms, rather than being proxies for black-box
variable-centric explanation. In some of the

identified models, we observed that theory con-
structs could be replaced directly by observable
sociodemographic properties of the agents. +ese
cases indicate that the mechanism-based explanation
is being avoided in favor of a black-box variable-
centric “determinants” approach to understanding
drinking behaviors that is more conventional in the
literature [36]. For example, in a mechanism-based
model, marital status should not directly define
opportunity, where opportunity then directly de-
termines disposition to drink.

(3) +e model equations that describe the mechanisms
must be compatible with the causal logic and evi-
dence base for the theory. In a mechanism-based
model, some of the encoded causal relationships
between core theory constructs are only meaningful
when constrained in terms of direction, sign, and/or
magnitude. For example, role load must either not
affect or cause a decrease in opportunity to drink—it
is inconceivable, in role theory terms, that role load
could cause an increase in opportunity (since load
implies time use by agents that cannot be combined
with drinking).

Focusing now on the Pareto front, the model with lowest
complexity on the front (on the far right of Figure 5) is
model 24—this model includes a single term for each
production rule, with both role selection and role social-
isation processes switched off (Table 3). When parsed, all but
two of the production rules are inactive—probFirstDrink

and probNextDrink—with both set to the term Dispo-

sition.+is term represents the initial dispositions to drink
endowed to the agents based on observed drinking patterns
in NSDUH data, so essentially model 24 encodes the

GGP
Reference model
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Figure 5: GGP structures on the Pareto front versus the reference
structure (model error is the error when compared the simulated
results against calibration targets; complexity is measured as the
number of nodes in the tree of a GGP candidate).
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heuristic “past behavior predicts future behavior” with no
aspect of role theory present. +is heuristic is clearly suf-
ficient to reproduce target data at the start of the simulation
but the fit to targets becomes progressively poor over time.

As we begin to traverse the Pareto front in the direction
of increasing complexity (from right to left in Figure 5),
elements relating to role theory begin to be introduced into
the production rules; however, these elements do not nec-
essarily survive the parsing process. For example, model 25
switches on role selection, but—as with model 24—no
components relating to roles are present in the final
probFirstDrink and probNextDrink production rules.
We can conclude that the very small improvement observed
for model 25 in comparison to model 24 is due to low level
stochasticity in the simulation.

In the next model, model 29, role selection and social-
isation processes are switched off but production rule
probFirstDrink is now set to Disposition∗ ProbOppIn,
i.e., the probability of engaging in a drinking occasion is scaled
by the probability of having the opportunity to drink at home,
while the number of drinks consumed in such an occasion
continues to follow the heuristic “past behavior predicts fu-
ture behavior.” Following the production rules upward, we
identify that, as a result of the log-odds structure that is
preserved in all models, ProbOppIn is increased by role load
(RoleLoad) and decreased by holding an employment role
(EmploymentStatus). Meanwhile, role load is defined as
level of involvement in a held marital role (Involvedx-
Marital). From the perspective of role theory, this model is
interpretable but not credible: (i) since only ProbOppIn is
included, but the possibility of ProbOppOut= 0 across all
agents is not credible, ProbOppIn is interpreted as simply a
surrogate for any kind of drinking opportunity; (ii) oppor-
tunity is seen to increase as a result of role load, which is not
credible, since opportunity should decrease with role load,
and is seen to decrease as a result of being employed, which is
also not credible because, outside of role load considerations
(for which employment is not present in the model), being
employed should provide increased opportunities for
drinking (e.g., due to income or exposure to social drinking
situations). Model 29 also offers little improvement in model
error compared to the overall “past behavior predicts future
behavior.” Overall, it is very clear that this model is found
wanting.

Continuing to traverse the Pareto front from right to left,
we find that the first model to offer a credible interpretation
in terms of role theory is model 38. +is model also offers a
substantial improvement over the less complex “past be-
havior predicts future behavior” model in terms of model
error. In model 38, the frequency of drinking occasions
(probFirstDrink) is increased by the probability of an at-
home drinking opportunity (where, as for model 29, this
should be interpreted as a surrogate for any kind of drinking
opportunity). Some attempts by the GGP at parameter
calibration are also seen here, with nonlinear scaling of
Disposition. Opportunity is increased by holding an
employment role and decreased by role load (the latter
defined as level of involvement in a marital role). Despite
reservations about the limited extent of the definition of role

load, this opportunity mechanism appears plausible. Role
holding is also influenced by drinking behavior in this
model, since role selection is switched on—feedback is
therefore in action and we can claim at this point that the
GGP has discovered a true dynamical model that involves
roles.

+e second model that can be regarded as credible in
terms of role theory is model 59—this model suggests that
experiencing role strain increases the likelihood of a
drinking occasion (due to the RoleStrain multiplier on
Disposition in the probFirstDrink production rule).
Role strain is defined purely as role incongruence, where the
latter concept is preserved intact from the reference model
(i.e., role incongruence is the average deviation of an agent’s
role holding from normative roles). Both role selection and
socialisation are also active in this model, but no opportunity
mechanisms are present.

+e third model offering credibility in terms of role
theory is model 79. In the model, role strain increases both
frequency of drinking occasions and per-occasion quantity
(via positive modifiers on probFirstDrink and prob-

NextDrink, respectively). Role strain arises as a weighted
combination of role load and role incongruence, where load
arises from high levels of involvement in an employment
role and incongruence arises through nonnormative em-
ployment status (e.g., being working age unemployed).
Opportunity also influences drinking frequency (via the
PropOppIn shift in the probFirstDrink production
rule)—again, to be credible, PropOppInmust be interpreted
as a general opportunity, rather than having any locational
context. Opportunity is reduced through the interaction of
role load with parenting (via the InMod production rule) and
also reduced by role load in isolation (via OutMod). In this
model, neither role selection nor socialisation is active.

4.3. Calibrated Goodness of Fit. +e reference model has an
error of 0.54 against the time series of targets used for cali-
bration (covering the period 1980–2000). +e time series plot
for the reference model is shown by the pink line in Figure 6.
Fit to drinking prevalence is good, except for the one-role
subgroup. Fit to frequency, quantity, and heavy episodic
drinking is generally poor, particularly for the zero-role
subgroup. Models lying on the Pareto front represent a range
of errors, including both better and worse than the reference
model. +e credible models are quite considerably better, as
seen from the time series plots in Figure 6. +e issue with
drinking prevalence in the one-role subgroup and issues with
frequency and quantity are largely eliminated—with
remaining problems largely confined to underestimation of
heavy episodic drinking in the three-roles group.

It should be noted that the goodness of fit of the ref-
erence model is weak in comparison to other models. +is
issue could have been caused by either an inadequate pa-
rameter calibration process or fundamental inability of the
structures initially designed by the modeler to capture the
target dynamics. To seek an improvement in the goodness of
fit of the reference model, we could have run a more ex-
tensive parameter calibration or undertaken handcrafting of
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the structure. However, we decided the calibrated model was
adequate for the GGP process to work with and intentionally
did not try to improve the goodness of fit further. It is clear
here, from a model development lifecycle perspective, that
the boundary between the reference model and the GGP can
be blurred.

4.4. Validated Goodness of Fit. Target time series data used
for validation covers the period 2000–2010.+is period
covers an increase in drinking prevalence, frequency, and
heavy episodic consumption that contrasts with the gentle
declines seen over the calibration window. All three theo-
retically credible models exhibit a substantial relative decline
in performance over the validation period (see Table 4). +e
calibration and validation errors are inversely correlated,

suggestive of overfitting to noise in the calibration targets.
However, the decline in even the lowest complexity credible
model (model 38) suggests that the retroduction funda-
mentally lacks generalizability to an adjacent temporal pe-
riod, i.e., the real entities and mechanisms identified are
invalid or incomplete. Looking in more detail at the vali-
dation issues, models 38 and 59 generate continuing declines
in drinking for two-role and three-role groups that are
trending in the opposite direction in the empirical data. +e
models also generate a collapse in heavy episodic drinking
among the three-role subgroup that is not supported by the
data. +e most complex of the credible models—model
79—does capture the trend reversal (if slightly lagged) for
most two-role and three-role outcomes but underestimates
frequency and quantity for the no-role group.
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Figure 6: Time series of 16 outputs of the reference model, 3 credible GGP models, and the empirical target data (mean target data± 95%
confidence interval). +e horizontal axis is the simulated years and each graph has a dashed vertical line that separates 20 calibration years
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5. Discussion

5.1. Model Discovery Case Study Findings

5.1.1. Insights into Mechanisms. Our model discovery
framework offers three alternative perspectives (corre-
sponding to three credible models 38, 59, and 79) that all
offer a substantially better fit to the calibration window data
compared to the reference model. In perspective (i), the
retroducted mechanisms influencing alcohol use are op-
portunity and role selection; roles affect drinking frequency
only, but not quantity. +e relevant roles are employment
(which drives opportunity) and being strongly involved in a
marital role (which reduces opportunity via the role load it
creates). Role strain is not important nor is role socialisation.
Perspective (ii) suggests that role strain drives increased
drinking frequency but not quantity. Role strain is due to
holding nonnormative roles, with all three roles implicated.
Both role selection and socialisation are important, but
drinking opportunity is not important. Finally in perspective
(iii), role strain drives both increased frequency and in-
creased quantity. Opportunity drives frequency only. Role
selection and socialisation are not important. Parenting and
employment are implicated for role strain, but marriage is
not. A universal caveat on these perspectives, which were
driven by data over 1980–2000, is that validation issues were
identified over the period 2000–2010.

5.1.2. How Do )ese Retroducted Insights Compare to Em-
pirical Findings? In the first perspective (i), holding an
employment role increases opportunity to drink, while high
levels of involvement in a marital role reduces opportunity
to drink, with no other role-based pathways activated. +ese
retroducted mechanisms are both supported by empirical
research. Using data from a large birth cohort in the UK,
Staff et al. [37] demonstrated that the employment role in
isolation was associated with increased alcohol consump-
tion, and both marital and parental roles were associated
with a decrease in consumption. Further, the authors sug-
gested that these effects may be caused by differences in
opportunities to drink associated with the marital role, for
example, by reducing the number of occasions an individual
will engage in socialising which could impact alcohol use.
+is potential mechanism is reflected in perspective (i),
whereby an individual has less opportunity to drink and
therefore less frequent drinking occasions if they are married
(and highly involved in their marital role). +is is also
supported by Bachman’s analysis [22], which found that the
association between the marital role and reductions in

alcohol consumption was strongly moderated by reductions
in evenings out and increased disapproval for use.

In perspective (ii), role incongruence is suggested to be a
driver of role strain, which influences the frequency of
drinking. +is is supported by Biddle [17] who suggests that
individuals can experience role strain due to experiencing
roles outside the normative timings, for example, tran-
sitioning into a parent role as an unmarried teenager. Role
strain as a driver of alcohol use has also been empirically
observed [19], which suggests that individuals may use al-
cohol to cope with stress. Additionally in perspective (ii),
both role socialisation and selection mechanisms are active.
+e importance of role socialisation mechanisms as a driver
of alcohol use is supported by Lee et al. [23] who found that
heavy drinking occasions were reduced after individuals had
become married. Additionally, Bachman [22] conducted a
review of the literature linking marriage and alcohol use and
suggested that the majority of studies find socialisation ef-
fects for the marriage role, i.e., gaining the marriage role
leads to reductions in alcohol use. +e involvement of role
selection mechanisms in alcohol use behavior is also sup-
ported by the wider literature on role theory and alcohol use.
Specifically, Lee et al. [38] provided evidence for role se-
lection mechanisms, finding that earlier alcohol misuse
reduces the likelihood of transitioning into social roles. +is
could be interpreted in a role selection context—if an in-
dividual is a heavy drinker, they are less likely to transition
into a role which would be incompatible with their drinking.

An increase in alcohol consumption due to role strain is
also implicated as a mechanism in perspective (iii). Here,
role strain arises due to a combination of role load and role
incongruence, which are determined by high levels of in-
volvement in an employment role or a nonnormative em-
ployment status, respectively. Role strain as a driver of both
alcohol consumption frequency and quantity is supported
by Cooper [39], who found in a study of adolescents in the
US that drinking as a means of coping (with role strain or
otherwise) was associated with heavier drinking patterns.
Additionally, in this model, having an opportunity to drink
affects frequency of alcohol consumption and is reduced if
the parenting role is held.+is is supported by Kuntsche and
colleagues [19] who found that in a large study of wester-
nised countries, holding a greater number of roles, including
parenthood, was associated with a reduction in alcohol
consumption, via a decrease in opportunities to drink.

5.2. Benefits of the Framework. Our approach represents a
novel and promising technique for knowledge discovery
which is able to generate models with theoretically inter-
pretable mechanisms and can fit historical patterns of data in
complex dynamic representations of social systems. +e
model discovery framework offers a substantial improve-
ment compared to the reference model, in terms of both
lowered complexity for interpretability and improved fit to
historically observed alcohol consumption trends. However,
it is important that in the last step, domain experts are
involved to interpret the options generated by the model.

Table 4: Goodness-of-fit errors for the reference model and the
three credible GP models.

Model Calibration error Validation error

+e reference model 0.542 0.750
Model 38 0.236 0.340
Model 59 0.214 0.390
Model 79 0.211 0.444
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Our technique can therefore provide new approaches for
developing theories to explain complex social systems.

A further advantage of this approach is that it is both
theory and data-driven. We use formalised theories of be-
havior and several large empirical datasets to inform both
the initial settings of the model (agent population charac-
teristics) and the phenomenon to be explained—population-
level alcohol use is derived from a large nationally repre-
sentative survey.

+is method is also very flexible. Firstly, the grammar
can be easily modified to redefine search directions, intro-
duce new building blocks, restrict or relax constraints, or
introduce different ways to combine the building blocks.
+is can be done within the grammar without changing the
whole model discovery process. Additionally, although we
present a case study modeling alcohol consumption, the
framework could also be utilized to explain and understand a
variety of complex models of social systems. Our method is
easily adapted to look at alternative theories of behavior and
even to search across multiple theories to give novel com-
binations which provide a better explanation of empirical
data trends.

5.3. Limitations. One limitation of this approach is that the
GGP works with the primitives and the grammar that the
modeler provides it with. It is therefore possible that the-
oretically meaningful and adequately explanatory models
could be missed because the modeler does not allow for it. In
our case study, deliberative discussions during GGP iden-
tified that the concept of opportunity encapsulated both time
and money resources, which are impacted differently by role
theory mechanisms; including these aspects explicitly might
arguably have improved the model’s explanatory capability.
Model discovery is an iterative, problem-specific process. To
design the primitives, modelers have to decide which ele-
ments in their models are interesting and relevant to their
research questions.+e level of abstraction is also important:
lower levels of abstraction usually have more elements and
possible combinations. As for the grammar design, good
practices can be found in the work of Nicolau and Agapitos
[40].

Additionally, not all aspects of the model were exposed
to the GGP process; for example, socialisation and selection
mechanisms could be either switched on or off, but the
equations could not be modified. If socialisation is switched
on, the new disposition to drink is always determined by the
same calculation; however, exposing this to the GGP could
offer alternative candidate mechanisms for the effects of
transitioning roles on underlying desire to drink.+is would
also allow us to investigate in future model iterations
whether socialisation effects vary for different roles, as
suggested by Bachman et al. [22].

+e GGP method can produce complicated models in
terms of theories, which require interpreting by a domain
expert. In this paper, out of 14 nondominated structures
discovered in the final iteration of the GGP, three were
deemed to be theoretically meaningful. For a more efficient
search, it would be beneficial if either the grammar allows

only meaningful structures or the model discovery process
can enforce the theoretical meaningfulness in other ways
(such as during the crossover and mutation operators).
However, the prior encoding of meaning is very challenging
to achieve and there is also a risk of missing novel ideas due
to overconstraining the search. Further, we stopped the
discovery process once a small number of credible models
had been identified. If we had continued to refine the
grammar, further credible models may have been identi-
fied—including models that offered reduced complexity or
increased goodness of fit over those existing models. In the
context of retroduction, such models may have offered
greater insight into the relationship between social roles and
alcohol use. At present, it remains unclear what a good yield
of interpretable theories would be from a model discovery
process.

We identified three qualitative criteria for model cred-
ibility. +ese criteria arose from deliberative discussions in
relation to the role theory case study and, as such, their
generalizability remains untested. We worked with only a
single domain expert, but multiple experts may have offered
different criteria or interpreted the same criteria differently.
While we enforced a crisp binary categorization of model
credibility in the search process, given the qualitative nature
of the criteria, it may be more appropriate to adopt mul-
tinomial and/or fuzzy measures of credibility in future work.

Lastly, our implementation of the proposed discovery
process skipped the recalibration stage for parameters of the
newly discovered structures (Step 6(c)) due to computa-
tional limitations. We addressed this issue by allowing
calibrated constants as primitives, but this approach is not as
rich as a full calibration for each new structure.+is problem
is actually present in many GP works, especially with
computationally expensive programs. +e potential solution
is leveraging surrogate models to approximate the fitness
evaluation in GP [41, 42].

5.4. Implications for Complex Systems Modeling Practice.
Retroduction—teasing out the complex interaction of real
entities and mechanisms that brings about a concrete
phenomenon—is challenging. Complex systems models
(CSMs) that attempt this are often charged with being ar-
bitrary and/or absolutist in their conceptions of reality.
Structural calibration avoids this by looking across a wide
multiplicity of models that retain the base elements of
mechanism-based theory. Complex systems modelers, who
use formal models to help explain concrete phenomena,
should use structural calibration as part of their standard
modeling practices, in the same way that data-driven
modelers, who use formal models to explain variance in
patterns of data, consider term selection.

However, automated structural calibration is a major
enterprise. It requires complex systems modelers to (i) think
more about ontology—what are the base elements of theory
that are candidates for inclusion in any model? and (ii)
formally describe entities and mechanisms in a consistent
way that allows them to be recombined together in mean-
ingful ways. To help, we have developed an open-source
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model discovery framework for CSM developers that forces
an ontological focus and provides an underlying formal
language that is amenable to automatic structural
calibration.

+is work and the underlying model discovery process
contribute to the needs for standards andmodeling practices
in the ABS community. Collins et al. [43] pointed out that as
ABS matures, with many simulation software tools (like
Netlogo [44] and Repast Symphony [45]), potential stan-
dards and protocols will be needed and proposed. For ex-
ample, Grimm et al. [46] designed the ODD (Overview,
Design concepts, and Details) protocol as a generic and
structured template to describe agent-based models for
better communication and replicability. Another example is
the UML (Unified Modeling Language) to develop and
document agent-based models [47–49]. +ere are also many
discussions and proposals about different aspects of the ABS
development process. A recently proposed software archi-
tecture [50], namely MBSSM (Mechanism-Based Social
System Modelling), is designed based on a middle-range
theory approach to express individual social theory mech-
anisms in a unified way. Following this line of thought, our
model discovery process can be addressed as a protocol
concerned with structural uncertainty. It is common to
decide on a model structure and then calibrate the pa-
rameters within the model to capture parameter uncertainty.
Our work takes this further and addresses the between-
model uncertainty of structural assumptions. More im-
portantly, we demonstrated the feasibility of automated
model structure discovery by embracing both theory and
empirical data. Exploring different model structures is not
only valuable for theory testing but also can contribute to
theory exploration.

6. Conclusion

Here, we have presented a novel method which utilizes
genetic programming techniques to discover new and
adapted behavioral theories from models of complex social
systems. Using a case study of a social role theory to inform
mechanism-based model of population-level alcohol use, we
have demonstrated that our approach can find new, theo-
retically meaningful and interpretable mechanisms which
drive population alcohol use in a complex systems model. It
would take a humanmodeler an infeasible amount of time to
manually construct a multiplicity of different variations of
the mechanisms. +e GP method assists in efficient
screening of mechanism variants.+is screening process can
be important, since different realizations of a mechanism can
produce qualitatively different model outputs [51].+e novel
models generated by the GP method offer a better fit to
alcohol consumption data than a reference model, which
was constructed by a human modeler representing one
possible interpretation of the mechanisms of role theory.
Our approach is flexible and can be easily extended to
complex systems models that are seeking to explain other
social phenomena. Our method also offers novel directions
for future knowledge discovery and social theory

development, based on the fusion of data-driven and theory-
driven methods.

A key part of realist explanation is comparison and
integration across multiple theories [4]. While our existing
example is limited to the building blocks defined in social
role theory, there is no reason why building blocks relating
to other theories cannot be defined. However, integration of
these wider building blocks, such that they can be exploited
by machine learning, will require a common language for
expression of the theories. We see middle-range theory [52]
and its realization in the so-called Coleman Boat [53], or
other micro-macro schemes, as a potentially useful template
for formal descriptions of theory and their translation, via a
model discovery framework, into integrated simulation
models. Future work will aim to incorporate additional
theories and to generate novel combinations of multiple
theories.
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