
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Multiobjective multifactorial optimization in
evolutionary multitasking
Gupta, Abhishek; Ong, Yew‑Soon; Feng, Liang; Tan, Kay Chen
2016
Gupta, A., Ong, Y., Feng, L. & Tan, K. C. (2016). Multiobjective multifactorial optimization
in evolutionary multitasking. IEEE Transactions On Cybernetics, 47(7), 1652‑1665.
https://dx.doi.org/10.1109/TCYB.2016.2554622
https://hdl.handle.net/10356/148172
https://doi.org/10.1109/TCYB.2016.2554622

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/TCYB.2016.2554622.

Downloaded on 26 Aug 2022 02:41:19 SGT

Abstract — In recent decades, the field of multi-objective

optimization has attracted considerable interest among

evolutionary computation researchers. One of the main features

that makes evolutionary methods particularly appealing for

multi-objective problems is the implicit parallelism offered by a

population, which enables simultaneous convergence towards the

entire Pareto front. While a plethora of related algorithms have

been proposed till date, a common attribute among them is that

they focus on efficiently solving only a single optimization

problem at a time. Despite the known power of implicit

parallelism, seldom has an attempt been made to multitask, i.e.,

to solve multiple optimization problems simultaneously. It is

contended that the notion of evolutionary multitasking leads to the

possibility of automated transfer of information across different

optimization exercises that may share underlying similarities,

thereby facilitating improved convergence characteristics. In

particular, the potential for automated transfer is deemed

invaluable from the standpoint of engineering design exercises

where manual knowledge adaptation and re-use are routine.

Accordingly, in this paper, we present a realization of the

evolutionary multitasking paradigm within the domain of multi-

objective optimization. The efficacy of the associated

evolutionary algorithm is demonstrated on some benchmark test

functions as well as on a real-world manufacturing process

design problem from the composites industry.

Index Terms — Evolutionary Multitasking, Multi-objective

Optimization, Memetic Computation.

I. INTRODUCTION

ULTI-OBJECTIVE Optimization Problems (MOOPs) are
ubiquitous in real-world decision making. It is generally

the case that a decision maker must simultaneously account
for multiple criteria while selecting a particular plan of action,
with each criterion contributing a different objective to be
optimized. When no a priori preference relationship between
the criterions can be established, one is forced to abandon the
standard engines of single-objective optimization.

Solving an MOOP involves obtaining a set of solutions
that provide optimal trade-off among all the relevant
objectives [1]. In other words, a solution is considered optimal
in the multi-objective sense if an attempted improvement in
any one of its objectives is necessarily accompanied by the

This work was conducted within the Rolls-Royce@NTU Corporate Lab

with support from the National Research Foundation (NRF) Singapore under
the Corp Lab@University Scheme.

Abhishek Gupta and Yew-Soon Ong are affiliated to the Rolls-
Royce@NTU Corporate Lab c/o, School of Computer Engineering, Nanyang
Tech. University, Singapore. E-mail: {abhishekg, asysong}@ntu.edu.sg.

Liang Feng is with the College of Computer Science, Chongqing
University, China. E-mail: liangf@cqu.edu.cn

Kay Chen Tan is with the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore. E-mail:
{eletankc@nus.edu.sg}.

deterioration of at least one other objective. This is often
found to be the case when the criterions facing the decision
maker are mutually competing. In recent decades, population-
based optimization algorithms, such as those of Evolutionary
Computation (EC), have emerged as the preferred choice for
tackling MOOPs [2]-[10]. Some popular examples of Multi-
objective Evolutionary Algorithms (MOEAs) commonly in
use today include NSGA-II [11], NSGA-III [12], [13], SPEA2
[14], MOEA/D [15]-[17] and indicator-based MOEAs [18].

In the field of computational intelligence, Evolutionary
Algorithms (EAs) are stochastic optimization engines that
draw inspiration from Darwinian principles of natural

selection or survival of the fittest [19], [20]. Thus, they are
often described as computational analogues of biological
evolution. Their increasing popularity in the fields of science,
operations research, and engineering, can be attributed to the
fact that EAs are derivative-free global optimizers that do not
impose any continuity and/or differentiability requirements on
the underlying objective function landscapes. Moreover, with
regard to MOOPs, the population-based approach of MOEAs
provides notable advantages over their mathematical
counterparts. While classical methods typically solve for the
set of optimal solutions in a sequential manner [1], MOEAs
are able to harness the implicit parallelism of a population to
synchronously obtain a diverse set of near optimal trade-off
points. Encouraged by this observation, a central goal of the
present study is to investigate and further exploit the potential
benefits of implicit parallelism as made available by a
population-based search strategy. To this end, it is observed
that a common feature among all MOEAs is that they focus on
efficiently solving only a single MOOP at a time. Seldom has
an effort been made to multitask, i.e. to solve multiple MOOPs
concurrently using a single population of evolving individuals.

It has been recently demonstrated in an introductory study
on Multifactorial Optimization (MFO) that the process of
evolutionary multitasking leads to implicit genetically-
encoded information transfer across optimization tasks, which
often facilitates improved convergence characteristics [21]. In
the real-world, where manual knowledge adaptation across
related tasks is commonplace, automated transfer of pertinent
information is a particularly attractive proposition. In fact,
ignoring such useful information that may lie outside the self-
contained scope of a particular problem, as is generally the
case with traditional optimization methods, is considered
highly counterproductive. For instance, in complex
engineering design exercises, the spontaneous refinement and
transfer of relevant knowledge across similar design exercises
can accelerate convergence towards near-optimal solutions of
several optimization exercises at the same time, thereby
significantly lowering the often exorbitant design time. Based
on the aforesaid practical motivation, in this paper, we aim to
push the envelope of existing EC methods by proposing an

Multi-Objective Multifactorial Optimization in

Evolutionary Multitasking

Abhishek Gupta, Yew-Soon Ong, Liang Feng, and Kay Chen Tan

M

amalgamation of multi-objective optimization with the notion
of evolutionary multitasking. The resultant paradigm is
referred to as Multi-Objective Multifactorial Optimization
(MO-MFO), wherein each constitutive MOOP contributes a
distinct factor influencing the evolutionary search process.

While devising an EA with the capability of effective
multitasking, it must be ensured that the population of
navigating agents are appropriately steered through the
multifactorial landscape. To this end, we turn to nature for
inspiration. Specifically, we find the bio-cultural models of
multifactorial inheritance [22], [23] to be well suited to our
computational needs. These models have been widely studied
by human geneticists for several years, and serve as a well-
established means to explain the transmission of complex
developmental traits to offspring through the interactions of
genetic and cultural factors [24]. For our conceived analogy
with the computational world, we consider the assortment of
MOOPs in a multitasking environment to represent multiple
cultural traits (or memes [25]) that coexist in a unified
genotype space and intervene in the evolutionary process by
interacting with the genetic mechanisms. The algorithmic
manifestation of this phenomenon leads to the formulation of
the Multi-Objective Multifactorial Evolutionary Algorithm
(MO-MFEA). As the working of the MO-MFEA is based on
the transmission of biological and cultural building blocks
from parents to offspring, the algorithm is regarded as
belonging to the realm of memetic computation [26]-[28].

In order to provide a thorough exposition of the ideas
discussed so far, this paper has been organized as follows. In
Section II, we present a brief overview of the preliminaries in
multi-objective optimization and its extension to multitasking
settings via MO-MFO, highlighting, in particular, the practical
and theoretical distinctions between the two paradigms.
Thereafter, in Section III, we delve into the details of MO-
MFO whilst describing its associated EA. After having
established the conceptual and algorithmic foundations of our
work, we proceed to computational studies in Section IV
where we carry out experiments on some synthetic benchmark
functions. Then, in Section V, we present a real-world case
study from the composites manufacturing industry that
demonstrates the practical value of our proposed method in
complex engineering design exercises. To conclude, the main
contributions of the paper are summarized in Section VI
together with important directions for future research work.

II. MULTI-OBJECTIVE AND MULTIFACTORIAL OPTIMIZATION

In this section, we present a review of the major concepts
in multi-objective and multifactorial optimization that form
the crux of our explorations in this paper. Distinctions
between the two paradigms shall also be highlighted.

A. Multi-Objective Optimization

In a generic multi-objective minimization problem, one
attempts to find all solutions x ∈ X such that the vector-valued
objective function F(x) = (f1(x), f2(x),…., fM(x)) is minimized.
Here, X represents the design space and M is the number of
objective functions. Note that in real-world settings the design
space is often subject to a variety of stringent constraints that
must be satisfied for a solution x to be considered feasible.

While constructing an algorithm for the purpose of multi-
objective optimization, it is important to devise a means of
comparing candidate solutions. Following the principle of
Pareto dominance [29] a feasible solution x1 is said to Pareto
dominate another feasible solution x2 if and only if fi(x1) ≤
fi(x2), ∀i ∈ {1, 2, …, M}, with at least one strict inequality.
Accordingly, a solution x* is said to be optimal in multi-
objective sense (or Pareto optimal) if x* is feasible and is non-
dominated with respect to all other feasible solutions in X.

From the description above, it follows that for M > 1 there
will exist a set of Pareto optimal solutions, especially when the
objectives are conflicting in nature (i.e., an improvement in
one is accompanied by the deterioration of another). The
image of all the Pareto optimal solutions in the objective space
is said to constitute the Pareto front (PF) [30].

B. Multi-Objective Multifactorial Optimization

The Multi-Objective Multifactorial Optimization (MO-
MFO) paradigm serves as a means of fully unlocking the
potential of implicit parallelism of population-based search.
We begin the formulation by considering a theoretical
scenario where K distinct optimization tasks (that are
traditionally treated separately as self-contained MOOPs) are
to be solved concurrently. Without loss of generality, all tasks
are assumed to be minimization problems. The jth task,
denoted as Tj, has design space Xj on which the vector-valued
objective function is defined as Fj: Xj → ℝ𝑀𝑗 , where Mj is the
number of elements in the objective function vector. Then, we
define MO-MFO as an evolutionary multitasking approach
that aims to simultaneously navigate the design space of all
tasks, assisted by the potential for fruitful genetic transfer, so
as to efficiently deduce argmin{F1(x), F2(x), …., FK(x)}.
Since each Fj presents an added factor influencing the
evolutionary processes of a single population, the combined
problem may also be termed as a K-factorial environment.

With the end goal of developing an effective evolutionary
solver for MO-MFO, it is important to formulate a standard
methodology for comparing candidate solutions during
multitasking. In order to achieve this, we first define a set of
properties for describing every individual pi, where i ∈ {1, 2,
…, |P|}, in a population P. Note that every individual is
encoded into a unified space Y that encompasses X1, X2, …,
XK, and can be translated into a task-specific solution with
respect to any of the K optimization tasks.

 Definition 1 (Factorial Rank): The factorial rank 𝑟𝑗𝑖 of pi

for task Tj is the index of pi in the list of population members
sorted in decreasing order of preference with respect to Tj.

Definition 2 (Skill Factor): The skill factor τi of pi is the
one task, amongst all other tasks in a K-factorial environment,
with which the individual is associated. If pi is evaluated for

all tasks then τi = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗{𝑟𝑗𝑖}, where j ∈ {1, 2, .., K}.

Definition 3 (Scalar Fitness): The scalar fitness of pi in a
multitasking environment is given by 𝜑𝑖 = 1 𝑟𝜏𝑖𝑖⁄ .

With regard to Definition 1, we realize that prescribing an
order of preference among individuals of a population is not
trivial when the task is an MOOP. One possible approach for
determining a meaningful order of preference, as has been
employed in the Multi-Objective Multifactorial Evolutionary
Algorithm (MO-MFEA), shall be presented in Section III.

After the fitness of each individual is scalarized as per
Definition 3, performance comparisons can be performed in a
simplistic manner. To demonstrate, an individual p1 will be
considered to dominate some other individual p2 in
multifactorial sense simply if φ1

 > φ2.

C. Distinguishing the Two Paradigms

As multi-objective optimization and evolutionary
multitasking (which is manifested as MO-MFO in this paper)
are both concerned with optimizing a set of objective
functions, conceptual similarities may be seen to exist between
them. However, it must be noted that while evolutionary
multitasking aims to leverage upon the implicit parallelism of
population-based search to exploit latent complementarities
between essentially separate (but possibly similar) tasks,
multi-objective optimization deals with efficiently resolving
conflicts among competing objectives of the same task. An
illustration summarizing the statement is depicted in Fig. 1.
The main feature distinguishing the two paradigms is the
simultaneous existence of multiple heterogeneous design
spaces in the case of multitasking. On the other hand, for the
case of multi-objective optimization, there typically exists a
single design space for a given task, with all objective
functions depending on variables contained within that space.
As a point of particular interest, note that a multitasking
environment could in fact include a multi-objective
optimization task as one among many other concurrent tasks.
This aspect shall be thoroughly investigated in the subsequent
sections of the paper. Most importantly, it highlights the
greater generality of the multi-objective multifactorial
optimization paradigm.

Fig. 1. While multi-objective optimization generally comprises a
single design space for all objective functions, evolutionary
multitasking unifies multiple heterogeneous design spaces.

On observing Fig. 1, it may be argued that once a unified

search space encompassing all tasks has been defined, it is
conceivable for standard MOEAs to be adapted for the
purpose of evolutionary multitasking. In this regard, it must be
noted that the concept of Pareto dominance, which forms the
crux of most MOEAs, is not an explicit ingredient in the
prescribed scope for multifactorial optimization. To be
precise, the purpose of evolutionary multitasking is to
optimize each constitutive task absolutely, instead of having to
establish any kind of trade-off between individual tasks. Thus,
the evolutionary selection pressure that is imparted to a

population during multi-objective optimization may not be
entirely well suited for the purpose of multitasking in
optimization.

We illustrate the effect of the selection pressure by
considering the hypothetical 2-factorial environment in Fig. 2
comprising a pair of ‘mono-objective’ tasks. From the notion
of Pareto dominance in multi-objective optimization, it
follows that individuals {p2, p3, p4, p5} belong to the first non-
dominated front while {p1, p6} belong to the second front. In
other words, individuals {p2, p3, p4, p5} are considered
incomparable to each other and are always preferred over {p1,
p6} as they represent superior convergence to the true PF. In
contrast, working out the scalar fitness of the individuals
according to the definitions in Section II-B, we find that
individuals p2 and p5 have scalar fitness = 1 (as they minimize
task 1 and task 2, respectively), individuals p1 and p6 have
scalar fitness = 0.5, and finally, individuals p3 and p4 have
scalar fitness = 0.33. Thus, based on the fitness assignment
scheme in multitasking, the evolutionary selection pressure
favors individuals {p2, p5} over {p1, p6}, which are in turn
favored over {p3, p4}. As is therefore clear, there emerges a
disagreement between the outcomes deduced from the
principles of multi-objective and multifactorial optimization.

Fig. 2. Sample points in the combined objective space of two
hypothetical mono-objective tasks in a 2-factorial environment.

III. MULTI-OBJECTIVE MULTIFACTORIAL EVOLUTION

In MO-MFO, a matter of significant importance is the
prescription of a meaningful order of preference among
candidate solutions to a constitutive MOOP. Doing so is
necessary for determining the factorial rank (see Definition 1),
and consequently, the scalar fitness (see Definition 3) of an
individual in the Multi-Objective Multifactorial Evolutionary
Algorithm (MO-MFEA). Thus, we begin this section by first
describing a simple approach for achieving the above.
Thereafter, based on the prescribed ordering scheme, we
present details of the MO-MFEA.

A. Ordering Population Members in MOOPs

For the sake of brevity, the concepts of Non-dominated
Front (NF) and Crowding Distance (CD) in constrained multi-
objective optimization are directly adopted from the literature

[11], [31]. We do not elaborate on their interpretations in this
paper since these concepts have been well-established over
several years of multi-objective optimization research. For an
overview of the topic, the reader is referred to [32] and [33].

Notice that for ordering individuals in a population, it is
sufficient to define a preference relationship between two
individuals and show that the binary relationship satisfies the
properties of irreflexivity, asymmetry, and transitivity. To this
end, let us consider a pair of individuals p1 and p2 with non-
dominated fronts NF1 and NF2 and crowding distances CD1
and CD2, respectively. With the aim of obtaining a diverse
distribution of points along the PF, we prescribe individual p2
to be preferred over p1 (i.e., p2 ≻ p1) if any one of the
following conditions holds:
 NF2 < NF1
 NF2 = NF1 and CD2 > CD1

For the aforementioned preference relationship, the
satisfaction of the necessary properties can be simply shown
as below.

Property 1 (Irreflexivity): pi ⊁ pi, for all pi ∈ P.
Proof: Suppose pi ≻ pi. Then, either (a) NFi < NFi or (b)

NFi = NFi and CDi > CDi. However, since NFi = NFi and CDi
= CDi, the supposition leads to a contradiction.

Property 2 (Asymmetry): If two individuals p1 and p2
satisfy p2 ≻ p1, then p1 ⊁ p2.

Proof: Suppose p1 ≻ p2. Then, either (a) NF1 < NF2 or (b)
NF1 = NF2 and CD1 > CD2. However, according to p2 ≻ p1, we
have either (a) NF2 < NF1 or (b) NF2 = NF1 `and CD2 > CD1.
Thus, the supposition leads to a contradiction.

Property 3 (Transitivity): If p2 ≻ p1 and p3 ≻ p2, then it
must also be the case that p3 ≻ p1.

Proof: We are given that p2 is preferred over p1 according
to the conditions stated earlier. Since p3 ≻ p2 we also have
either (a) NF3 < NF2 or (b) NF3 = NF2 and CD3 > CD2. If
condition (a) is true then it implies NF3 < NF1. If condition (b)
is true then it implies either (b.1) NF3 < NF1 or (b.2) NF3 =
NF1 and CD3 > CD1. Therefore, if p2 is preferred over p1, and
p3 is preferred over p2, then p3 must also be preferred over p1.

B. The MO-MFEA

Having set out the basic concepts of MO-MFO, we
proceed to the development of the MO-MFEA. The
pseudocode of the MO-MFEA is presented in Algorithm 1.
The algorithm has been built upon the popular Non-dominated
Sorting Genetic Algorithm (NSGA-II) [11]. In fact, in the
special case of K = 1, the algorithm takes the exact form of
NSGA-II. The interesting feature of the MO-MFEA is that it
attempts to combine biological and cultural building blocks
for the purpose of effective evolutionary multitasking.
Accordingly, the algorithm has been attributed to the emerging
area of memetic computation.

The MO-MFEA begins by generating a random initial
population of N individuals in a unified search space Y.
Further, every individual in the population is assigned a
specific skill factor (refer to Definition 2). The assignment
technique must ensure that every task is uniformly
represented. Note that, in the MO-MFEA, the skill factor of an
individual is seen as a computational depiction of its assigned
cultural trait. The importance of such an assignment is mainly

to guarantee that every individual is evaluated with respect to
only one task (i.e., its assigned skill factor) amongst all other
tasks in the multitasking environment. This step is practically
motivated as exhaustively evaluating every individual for
every task will often be computationally too demanding,
particularly when K is large (many-tasking).

Algorithm 1: Pseudocode of the MO-MFEA

1. Generate N individuals in Y to form initial population P0

2. for every pi in P0 do

Assign skill factor τi

Evaluate pi for task τi only

3. end for

4. Compute scalar fitness φi for every pi based on NF and CD

5. Set t = 0

6. while (stopping conditions are not satisfied) do 𝑃𝑡′= Binary Tournament Selection(Pt)

Ct = Offspring(𝑃𝑡′) → Refer Algorithm 2

for every ci in Ct do

Determine skill factor τi → Refer Algorithm 3

Evaluate ci for task τi only

end

Rt = Ct ∪ Pt

Update scalar fitness of all individuals in Rt.

Select N fittest members from Rt to form Pt+1.

Set t = t + 1

7. end while

1) Offspring creation

For producing offspring, a pool of parent candidates is
first created via binary tournament selection. The selection is
performed purely based on the scalar fitness values of the
individuals (see Definition 3), regardless of their respective
skill factors. In other words, two individuals with different
skill factors are considered comparable simply based on their
scalar fitness values. Individuals in the parent pool are to
undergo crossover and/or mutation in the unified search space
Y, thereby passing down their genetic material to a new
generation of offspring. At this juncture, in accordance with
the phenomenon of assortative mating in multifactorial
inheritance [22], [23], we establish a set of conditions that
must be satisfied for two randomly selected parent candidates
(from the pool) to undergo crossover. If these conditions are
not satisfied, then the two candidate parents simply undergo
mutation separately, producing two mutant offspring.

Algorithm 2: Offspring creation via assortative mating

Consider candidate parents p1 and p2 in 𝑃𝑡′
1. Generate a random number rand between 0 and 1.

2. if τ1 == τ2 or rand < rmp then

(c1, c2) = Crossover+Mutate(p1, p2)

3. else

c1 = Mutate(p1), c2 = Mutate(p2)

4. end if

The principle of assortative mating states that individuals
prefer to mate with those belonging to a similar cultural
background. Accordingly, in the MO-MFEA, parents having
the same skill factor (i.e., having identical cultural traits) can
crossover freely, while cross-cultural parents may only
crossover with a prescribed random mating probability (rmp).
An overview of the steps are presented in Algorithm 2.
2) Offspring evaluation

Besides inheriting the genetic material of their parents,
offspring are also culturally influenced by them, as is
explained by the natural phenomenon of vertical cultural

transmission [24]. In gene-culture co-evolutionary theory [24],
vertical cultural transmission is regarded as a type of
inheritance that acts jointly with genetics and causes the
phenotype of offspring to be affected by that of their parents.
In the proposed framework, the aforementioned notion is
algorithmically realized via a selective imitation strategy. To
elaborate, the strategy mimics the natural tendency of
offspring to imitate the cultural traits of their parents.
Accordingly, an offspring created in the MO-MFEA randomly
imitates the skill factor of any one of its parents. Thus, it is
enforced that an individual can only be evaluated for one task
with which at least one of its parents is associated. A summary
of the proposed steps is provided in Algorithm 3. Recall that
selective evaluation has a critical role in reducing the
computational expense of the MO-MFEA, especially with
increasing number of tasks to be handled at the same time.

Algorithm 3: Vertical cultural transmission via selective
imitation
Consider offspring c ∈ Ct

1. Generate a random number rand between 0 and 1.

2. if c = Crossover+Mutate(p1, p2) and rand ≤ 0.5 then

c imitates skill factor of p1

3. else if c = Crossover+Mutate(p1, p2) and rand > 0.5 then

c imitates skill factor of p2

4. else if c = Mutate(p1)

c imitates skill factor of p1

5. else

c imitates skill factor of p2

6. end if

C. Constructing the Unified Search Space

For efficient inter-task implicit genetic transfer [21] in an
evolutionary multitasking environment, it is essential to first
describe a unified genotype space that encompasses the
heterogeneous design spaces of all constitutive optimization
tasks. In fact, the unification can be viewed as a higher-order
abstraction [34] or meme space wherein genetic building
blocks of encoded knowledge [35] are processed and shared
across tasks. Thus, the schemata corresponding to different
tasks are combined into a unified pool of genetic material,
which enables the MO-MFEA to process them in parallel.
With this background, consider a multitask setting where the
design space dimensionality of task Tj is Dj, for j ∈ {1, 2, …,
K}. Herein, the unified search space Y is constructed such that
Dmultitask = maxj{Dj}. In other words, the chromosome y of an

individual in Y is simply a vector of Dmultitask random-keys
[36], [37]. While addressing the jth task, we extract Dj
variables (random-keys) from y and decode them into a
relevant solution representation. In many cases of practical
interest where some a priori domain knowledge is available,
an informed selection of Dj task-specific variables from the
list of Dmultitask variables can significantly improve the
utilization of shared knowledge. For instance, for the real-
world case study in Section V, variables belonging to different
tasks but bearing the same phenotypic meaning are associated
with the same keys in y. However, in many naive cases with
no prior domain knowledge, extracting the first Dj variables
from the chromosome can also be a viable alternative [21].

Based on the above, we now describe a sample decoding
procedure for a chromosome y to be translated into a task-
specific solution representation. For the case of continuous
optimization, a straightforward linear mapping of the random-
keys from the genotype space to the box-constrained design
space of the optimization task suffices. For example, consider
task Tj for which the ith variable (xi) is box-constrained as [Li,
Ui]. Assuming the ith random-key of y to be yi ∈ [0, 1], the
decoding may simply be achieved as follows,

 𝑥𝑖 = 𝐿𝑖 + (𝑈𝑖 – 𝐿𝑖) · 𝑦𝑖 . (1)

D. The Mechanics of Implicit Genetic Transfer

In any EA, ‘knowledge’ exists in the form of a population
of genetically encoded solutions. Thus, for transfer of
knowledge to occur across tasks in multitasking environments,
an interesting proposition is the implicit transfer of genetic
material between candidate solutions belonging to different
tasks. In the MO-MFEA, this is achieved by two components
of the algorithm acting in conjunction, namely, (a) the random
mating probability, which allows individuals with distinct skill
factors to crossover, and (b) the fact that their offspring can
randomly select a parental skill factor for imitation.

Fig. 3. The SBX crossover produces offspring (c1 and c2) that are
located near their parents (p1 and p2) with high probability. If the

parents possess different skill factors, a multicultural environment is
created for offspring to be reared in. This condition leads to the

possibility of implicit genetic transfer (refer to main text for details).

In [21], the classical Simulated Binary Crossover (SBX)

operator was employed in the chromosomal mating step. A

salient property of the SBX operator, which happens to be of
interest in the process of multitasking, is that it creates
offspring that are located in close proximity of the parents
with high probability [38], [39]. With this background,
consider the situation in Fig. 3 where two parents p1 and p2

perform crossover in a hypothetical 2-D search space. Note
that p1 has skill factor T1 while p2 has skill factor T2, with T1 ≠
T2. As is generally the case, offspring c1 and c2 are created
close to the parents. To elaborate, c1 inherits much of its
genetic material from p1, while c2 is found to be genetically
closer to p2. Given such a setup, if c1 randomly imitates the
skill factor of p2 (i.e., c1 is evaluated for T2) and/or if c2
randomly imitates the skill factor of p1 (i.e., c2 is evaluated for
T1), then implicit genetic transfer is said to have occurred
between the two tasks. Now, if the genetic material associated
with T1 (being carried by c1) happens to be useful for T2 as
well, or vice versa, then the transfer is beneficial. Else, there
exists a possibility that the transfer turns out to be impeding
(or negative) [40]-[42]. However, the remarkable feature of
evolution is that when negative transfer occurs, the inferior
genes get automatically depleted and eventually removed from
the population (over the course of a few generations) by the
natural process of survival of the fittest.

With regard to the random mating probability, it plays an
additional role of reflecting the intuition of the designer or
decision maker towards the possibility of fruitful genetic
transfer between tasks. If the tasks are known to be closely
related, then rmp should be set close to 1 in order to facilitate
unhindered exchange of genetic material. In contrast, when the
relationship between tasks is uncertain, a lower value of rmp
may be used to imply only occasional genetic exchange. The
latter strategy acts as a means of lowering the chance of
excessive negative transfer that could encumber the search.

IV. THE BOON OF MULTITASKING

In this section, we showcase the utility of the proposed
evolutionary multitasking paradigm by presenting
experimental studies for some synthetic benchmark functions
that are expected to pose challenges for many existing
optimization algorithms. The performance of the MO-MFEA
(which executes multitasking) shall be compared against its
base algorithm, i.e., the NSGA-II (which executes a single
task at a time). Recall that in the special case of a 1-factorial
environment, MO-MFEA is in fact equivalent in form to
NSGA-II. Since the purpose of this comparison is to
demonstrate the performance improvements achievable via
multitasking alone, we employ identical solution encoding,
genetic operators, and parameter settings in the MO-MFEA
and in NSGA-II.

A. Experimental Setup for Benchmark Functions

Both algorithms are initiated with a total population of N
= 100 individuals, and are executed for a maximum of 25000
solution evaluations on each run. Note that in the present
implementation of the MO-MFEA, the available budget of
solution evaluations gets (roughly) evenly split among the
various tasks in the multitasking environment. Thus, for the 2-
factorial benchmark experiments, there occur approximately
12500 evaluations per task in the MO-MFEA.

With regard to genetic operators, we employ SBX
crossover and polynomial mutation [43]. Further, a crossover
probability of pc = 1 is considered with no uniform crossover-
like variable swap between offspring. The latter condition
helps reduce chromosome disruption [44] and allows the
effects of inter-task implicit genetic transfer to be clearly seen.
The mutation probability is set to pm = 1/D. Note that, for
NSGA-II, D = Dj while solving Tj. On the other hand, for the
MO-MFEA, D = Dmultitask. As we evaluate several difficult
(Multimodal + Rotated) benchmark functions in our
experiments (which pose a stiff challenge in terms of
convergence to the true PF), we emphasize search space
exploration by using relatively low distribution indices for the
SBX and polynomial mutation operations. Accordingly, we fix
the crossover index and the mutation index as ηc = 10 and ηm =
10, respectively. Lastly, regarding the random mating
probability of the MO-MFEA, we set it to 1 in order to
facilitate unhindered exchange of genes between tasks.

For the purpose of effective performance comparison
between the MO-MFEA and NSGA-II, we make use of the
Inverted Generational Distance (IGD) metric [45]. For
benchmark functions where the true PF is known beforehand,
the IGD simply measures the Euclidean distance between the
true PF and the approximate PF obtained by the algorithms.
The metric has been especially defined to provide a reasonable
representation of the convergence and diversity of the
approximate PF.

B. Specification of Benchmark MOOPs

We consider a set of highly multimodal MOOPs. The
challenge with multimodality lies in convergence to the true
PF, given how easy it is to get trapped at a local PF. However,
during evolutionary multitasking, the MO-MFEA is expected
to autonomously exploit the genetic complementarities
between tasks whenever available, thereby bypassing
obstacles more easily to converge faster.

The task specifications presented hereafter are essentially
variants of the ZDT4 benchmark function introduced by
Zitzler et al. in [46]. Similar variants have also been used by
Deb and Goel in [47] while verifying the effects of controlled
elitism in the NSGA-II. The basic structure of the ZDT4
function is as follows,

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝒙) = (𝑓1(𝑥1), 𝑓2(𝒙)),
 𝑤ℎ𝑒𝑟𝑒, 𝑓1 = 𝑥1 𝑎𝑛𝑑 𝑓2 = 𝑔(𝒙)[1 − √𝑥1 𝑔(𝒙)⁄]. (2)

In the above, by simply using different multimodal functions
as g(x), a variety of difficult multi-objective test problems
may be constructed. Four such MOOPs are described next.
1) ZDT4-R

This problem is similar to the original ZDT4 where g(x)
takes the form of the Rastrigin function [48],
 𝑔(𝒙) = 1 + 10(𝐷 − 1) + ∑ 𝑧𝑖2 − 10cos (4𝜋𝑧𝑖)𝐷−1𝑖=1 ,
 𝑤ℎ𝑒𝑟𝑒, 𝒛 = 𝑀 ∙ (𝑥2, 𝑥3, … , 𝑥𝐷)𝑇, (3)

M being a randomly generated (D-1) × (D-1) rotation matrix.

2) ZDT4-G

Here, g(x) takes the form of the Griewank function [49],
 𝑔(𝒙) = 2 + ∑ 𝑧𝑖2 4000⁄𝐷−1𝑖=1 − ∏ cos (𝑧𝑖/√𝑖)𝐷−1𝑖=1 ,
 𝑤ℎ𝑒𝑟𝑒, 𝒛 = 𝑀 ∙ (𝑥2, 𝑥3, … , 𝑥𝐷)𝑇, (4)

3) ZDT4-A

Here, g(x) takes the form of the Ackley function [50],
 𝑔(𝒙) = 21 + exp (1) − 20 exp (−0.2√∑ 𝑧𝑖2𝐷−1𝑖=1𝐷−1) − exp (∑ cos (2𝜋𝑧𝑖)𝐷−1𝑖=1 𝐷−1),

 𝑤ℎ𝑒𝑟𝑒, 𝒛 = 𝑀 ∙ (𝑥2, 𝑥3, … , 𝑥𝐷)𝑇, (5)

4) ZDT4-RC

This is a constrained version of ZDT4-R. As prescribed in
[51], the constraints are imposed as follows,

 cos(𝜃) (𝑓2 − 𝑒) − sin(𝜃) 𝑓1 ≥ 𝑎|sin (𝑏𝜋(sin(𝜃) (𝑓2 − 𝑒) + cos (𝜃)𝑓1)𝑐)|𝑑,
 𝑤ℎ𝑒𝑟𝑒 𝜃 = −0.05𝜋, 𝑎 = 40, 𝑏 = 5, 𝑐 = 1, 𝑑 = 6, 𝑒 = 0. (6)

Details of the design space corresponding to the four

MOOPs are reported in Table I. In all cases, the
dimensionality of the design space is assumed to be 10, i.e., D
= 10 in Eq. (3) to Eq. (5).

TABLE I

SUMMARY OF THE BENCHMARK TEST FUNCTIONS

Task Label Extent of Design Space Properties

ZDT4-R
x1 ∈ [0,1];

xi ∈ [-5, 5] for i = 2, …, D
Multimodal + Rotated

ZDT4-G
x1 ∈ [0,1];

xi ∈ [-512, 512] for i = 2, …, D
Multimodal + Rotated

ZDT4-A
x1 ∈ [0,1];

xi ∈ [-32, 32] for i = 2, …, D
Multimodal + Rotated

ZDT4-RC
x1 ∈ [0,1];

xi ∈ [-5, 5] for i = 2, …, D
Multimodal + Rotated

+ Constrained

C. Numerical Results and Discussions

We construct a pair of 2-factorial multitasking instances
by combining the multimodal MOOPs described earlier. In the
first instance, we integrate ZDT4-R and ZDT4-G into a single
multitasking environment. The combined problem is referred
to as (ZDT4-R, ZDT4-G). Similarly, in the second instance,
we combine ZDT4-RC and ZDT4-A, with the combined
problem denoted as (ZDT4-RC, ZDT4-A). Observe that each
multitasking instance comprises tasks with heterogeneous
design spaces, thereby highlighting the utility of the unified
search space. Moreover, the true PFs of the tasks are known to
intersect in the unified search space, thereby reflecting the
prevalence of transferrable knowledge between distinct tasks
in the real-world. Finally, note that all performance results
reported in the subsection are averaged across 31 independent
runs of the optimizers. The performance of evolutionary
multitasking via the MO-MFEA is compared against the

performance of NSGA-II which operates only on a single
MOOP at a time.
1) Instance 1: (ZDT4-R, ZDT4-G)

On analyzing the landscapes of ZDT4-R and ZDT4-G, it
is noted that while the former comprises 219 local PFs, the
latter has 1639 local PFs (of which only one is the global
optimum). Interestingly, we find that the basin of attraction
corresponding to each local PF of ZDT4-G is narrow, at least
when measured in the unified search space. This implies that it
is relatively straightforward for a population of searching
individuals to quickly jump across local optimums, without
getting trapped in one. In contrast, the ZDT4-R function
possesses wide basins of attraction corresponding to each local
optimum, making it much harder for individuals to escape.
Thus, while combining ZDT4-R and ZDT4-G in a single
multitasking environment, it is expected that ZDT4-G will
experience faster convergence, thereby making refined genetic
material continuously available for transfer to ZDT4-R.

Our expectations are closely borne out by the numerical
results depicted in Fig. 4. The figure shows that while solving
ZDT4-R separately using NSGA-II, the IGD progresses
slowly, which highlights the tendency of the population to get
trapped in a local PF. Notably, when ZDT4-R and ZDT4-G
are integrated, convergence characteristics are significantly
improved due to the exploitation of shared genetic building
blocks during evolutionary multitasking. This fact is aptly
demonstrated by the accelerated convergence of the curve
MO-MFEA(ZDT4-R**, ZDT4-G) in Fig. 4.

It is also noteworthy that the convergence characteristic of
the less challenging ZDT4-G function is not impeded by
multitasking. In fact, the rapid convergence of the curve MO-
MFEA(ZDT4-R, ZDT4-G**), as shown in Fig. 4, implies that
(at least in this case) evolutionary multitasking successfully
aids both functions. In other words, the continuous exchange
of genetic material between tasks allows the exploitation of
both landscapes simultaneously, thereby enabling the
population to effectively avoid obstacles to converge faster.

Fig. 4. Comparing averaged convergence characteristics of the
normalized IGD metric for instance (ZDT4-R, ZDT4-G). Note that
the curve corresponding to a particular task in MO-MFO is denoted

by appending asterisks (**) to the task label.

Fig. 5. Comparing averaged convergence characteristics of the
normalized IGD metric for instance (ZDT4-RC, ZDT4-A). Note that
the curve corresponding to a particular task in MO-MFO is denoted

by appending asterisks (**) to the task label.

2) Instance 2: (ZDT4-RC, ZDT4-A)

In the second multitasking instance, both constitutive
optimization tasks are considered to be significantly
challenging. ZDT4-RC is a constrained version of ZDT4-R,
thereby adding to the complexity of the MOOP. Further,
ZDT4-A introduces its own challenges. In particular, when the
population is far from the true PF, the local optimum structure
of the ZDT4-A function poses difficulties in accurately
identifying the progress made by population members. This is
because distantly located local PFs are found to have
approximately the same objective function values.

Based on the above-stated observations, the second
instance provides an ideal setting to showcase the manner in
which evolutionary multitasking facilitates a fruitful interplay
between the objective function landscapes of constitutive
tasks. Specifically, in (ZDT4-RC, ZDT4-A), the landscape of
ZDT4-RC drives evolution during the initial stages (when the
population is far from the true PF) while ZDT4-A takes over
during the latter stages. As depicted in Fig. 5, the implicit
genetic transfer lends a strong impetus to the evolutionary
search process of both tasks, which explains the accelerated
convergence characteristics achieved by the MO-MFEA.

V. A REAL-WORLD CASE STUDY FROM THE COMPOSITES

MANUFACTURING INDUSTRY

Among humans, the inherent ability to multitask is
brought to the fore on a daily basis while simultaneously
dealing with a variety of responsibilities or tasks. Whenever a
family of tasks possesses some underlying commonalities or
complementarities, the process of multitasking provides the
means for spontaneous exchange of information among them,
which can often assist in improved task execution. In [21], this
anthropic phenomenon was executed computationally in the
form of evolutionary multitasking. For demonstrating the
utility of this novel paradigm in real-world problem solving,
we present an illustrative case study from the field of complex
engineering design where the practice of manual adaption and
re-use of relevant knowledge is routine.

A. A Brief Introduction to Composites Manufacturing

We consider two distinct composites manufacturing
techniques that belong to the same family of rigid-tool Liquid
Composite Molding (LCM) processes [52]. To elaborate, (a)
Resin Transfer Molding (RTM) and (b) Injection/Compression
Liquid Composite Molding (I/C-LCM) are popular techniques
for high volume production of Fiber-Reinforced Polymer
(FRP) composite parts, and are distinguished by the use of
highly stiff (rigid) molds. As the mold undergoes negligible
deflection in response to the large internal forces originating
from the combined effect of high injection pressure of liquid
resin and compaction of the (solid) fibrous reinforcement,
rigid-tool LCM processes find numerous applications in areas
requiring high geometrical precision, such as the automobile
and aerospace industries. However, in order to ensure
feasibility of the manufacturing cycle, sophisticated peripheral
equipment is often needed to equilibrate the large internal
forces. Accordingly, two crucial objectives emerge in the
optimal design of LCM processes: (a) maximization of
throughput, and (b) minimization of estimated capital layout
and running costs of the peripheral equipment. While the
former objective is directly related to the manufacturing time
per part, the second objective is estimated to be proportional to
the magnitude of internal force [53], [54].

Next, we briefly describe the two composites
manufacturing processes under consideration in this study.

Fig. 6. Workflow of RTM [52]: (a) placement of preform, (b)
complete mold closure to desired part thickness, (c) high pressure

liquid resin injection, (d) extraction of final part.

1) Resin transfer molding

The setup of the RTM process typically consists of a
metallic mold machined according to the geometry of the FRP
part to be manufactured. The first step is to place a preform of
the fibrous reinforcement inside the mold cavity (as shown in
step [a] of Fig. 6). The mold is then completely closed, fully
compressing the preform to the final thickness of the part (step
[b] in Fig. 6). Before liquid resin injection, the mold is heated
to a desired (optimum) operation temperature. Then, a
thermosetting resin is injected into the closed mold at high
pressure until the resin reaches the vents (refer to step [c] in

Fig. 6). To conclude, the filled mold is allowed to rest until the
liquid resin sufficiently solidifies, followed by extraction of
the final part (step [d] in Fig. 6). The optimization of the RTM
cycle involves four design variables, namely, (a) speed of
mold closure (Vclosure), (b) resin injection pressure (Pinj), (c)
preheated mold temperature (Tmould), and (d) preheated resin
temperature (Tresin). Thus, a design vector for the RTM cycle
can be summarized as (Vclosure, Pinj, Tmould, Tresin).
2) Injection/compression liquid composite molding

While mold filling in RTM is generally viewed as a single
phase process, the same occurs in a two-phase manner in I/C-
LCM. As illustrated in Fig. 7, during I/C-LCM, the mold is
only partially closed prior to resin injection (as shown in step
[b] in Fig. 7). After the required volume of liquid resin has
been injected into the (partially) open mold (step [c] in Fig. 7),
the mold is fully closed to the desired part thickness using a
velocity-controlled mechanism (refer to step [d] in Fig. 7).
Due to the inclusion of the in situ mold closure phase (step [d]
in Fig. 7), the I/C-LCM cycle introduces two additional design
variables, namely, (a) mold cavity thickness during resin
injection (Hinj), and (b) velocity of final mold closure

(𝑉𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑓𝑖𝑛𝑎𝑙
). Thus, a design vector for the I/C-LCM cycle can be

summarized as (𝑉𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , Pinj, Tmould, Tresin, Hinj,𝑉𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑓𝑖𝑛𝑎𝑙
).

B. The Multi-Objective Optimization Tasks

The I/C-LCM cycle is often considered less competitive
than RTM due to the practical difficulty of in situ mold
compression (step [d] in Fig. 7) [55]. The difficulty arises
particularly in the manufacture of FRP parts of large size
and/or complex curvature. Furthermore, while the RTM cycle
only requires simple perimeter clamps as peripheral
equipment, I/C-LCM demands the equivalent of a hydraulic
press. Nevertheless, a significant advantage of I/C-LCM can
be that it allows notably faster manufacturing times as
compared to RTM [52]. Thus, while determining a preferred
manufacturing technique for a particular FRP composite part,
the manufacturer is expected to carefully explore both
processes in terms of practicality, setup and running costs, as
well as the production rate. To this end, the optimization task
corresponding to each manufacturing technique may be
formulated as [54],

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑀𝑜𝑙𝑑 𝐹𝑖𝑙𝑙𝑖𝑛𝑔 𝑇𝑖𝑚𝑒, 𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑜𝑟𝑐𝑒),
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐹𝑓𝑙𝑢𝑖𝑑 + 𝐹𝑓𝑖𝑏𝑟𝑒 ≤ 𝐹𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 . (7)

Here, Ffluid represents the internal force originating from resin
pressure, Ffibre is the response of the compressed fibrous
reinforcement, and Fcapacity is the maximum allowable internal
force as dictated by the availability of peripheral equipment.
The values of Ffluid, Ffibre, mold filling time, and peak internal

force (for a given combination of input design variables) are
obtained via a process simulation software [56], [57] which
evaluates a set of partial differential equations (see Appendix)
that govern the complex non-isothermal and chemically
reactive resin flow through porous media. As is well known,
such simulations are generally computationally time
consuming, often taking several minutes for a single
evaluation of sufficiently high fidelity. This feature presents a
considerable roadblock to efficient optimization.

Fig. 7. Workflow of I/C-LCM [52]: (a) placement of preform, (b)
partial mold closure, (c) high pressure liquid resin injection, (d) in

situ mold closure to desired part thickness, (e) extraction of final part.

1) The potential utility of evolutionary multitasking in

engineering design

The described composites manufacturing problem provides
an ideal setting for us to demonstrate the real-world utility of
exploiting knowledge overlaps in evolutionary multitasking.
Since RTM and I/C-LCM belong to the same family of rigid-
tool LCM processes and have several recurring design
variables, one intuitively expects there to exist some
underlying synergy between the two techniques, especially
when dealing with the manufacture of the same FRP
composite part. In particular, referring to Fig. 8, the common
knowledge is expected to be (primarily) contained in the
intersecting region of the phenotype space, i.e., in xoverlap =
(Pinj, Tmould, Tresin). Note that despite the phenotypic overlap,
the variables Pinj, Tmould, and Tresin need not assume identical
numeric values with respect to both tasks.

Situations such as the above, where distinct optimization
tasks have several overlapping design variables, frequently
occur in the conceptualization phase of most product/process
development cycles [58]. Taking the current example of
manufacturing process design, the fabrication of a product
typically follows careful selection of a process that minimizes
capital layout on equipment and running costs while
maximizing throughput [59]. To this end, the set of all
candidate processes must be thoroughly explored before
making a (delayed) decision about the most suitable one [60].
Since different processes often exhibit several recurrent design
variables, the designer instinctively anticipates there to exist
some useful or adaptable knowledge that may be common
across various design exploration exercises. Thus, in such

situations, instead of having to investigate each candidate
manufacturing process serially with manual knowledge
adaptation, evolutionary multitasking provides the scope for
knowledge refinement and exchange to occur spontaneously in
the form of implicit genetic transfer. The resultant stimulus
provided to the evolutionary search can significantly shorten
the often exorbitantly time consuming design stage.

Fig. 8. A summary of the 2-task environment in composites

manufacturing. Here, x1 represents a solution in the phenotype space
of the RTM cycle, and x2 represents a solution in the phenotype space

of the I/C-LCM cycle. The interesting aspect of this multitasking
instance is that there exists an overlap in the phenotype space, giving

rise to synergies that can be exploited during multitasking.

Through a comparative study between MO-MFEA and
NSGA-II for the described composites manufacturing
problem, we present a substantiation of our claims.

C. Computational Results

Herein, we carry out the simulation-based exploration (via
multi-objective optimization) of two candidate manufacturing
processes for a FRP composite disc (or plate). The plate
diameter is 1 m, with a central injection hole of 2 cm (as
shown in Fig. 9). The desired part thickness is 0.75 cm. A
glass-fiber reinforced epoxy resin matrix is considered, with
fiber volume fraction of the finished part to be 50%. Further, it
is prescribed that the availability of peripheral equipment
restricts Fcapacity to 30 tons (3E+05 N). For full details of
material properties required for numerical simulations the
reader is referred to [59]. We do not reproduce the data in this
paper for the sake of brevity.

Fig. 9. Plan of a FRP composite disc with a circular injection gate.

TABLE II

DESIGN VARIABLES AND EXTENT OF THE DESIGN SPACE FOR

THE RTM AND I/C-LCM MANUFACTURING CYCLES

Design Variable Lower Bound Upper Bound 𝑉𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙/𝑓𝑖𝑛𝑎𝑙
 1 mm/min 10 mm/min

Pinj 1 MPa 10 MPa

Tmould 293 K 348 K

Tresin 293 K 348 K

Hinj 0.8 cm 1 cm

The extent of the design space for all design variables are

provided in Table II (the table includes variables
corresponding to the RTM cycle and the I/C-LCM cycle. In
order to account for the computational expense of the
numerical simulations, we consider a small population of N =
50 individuals (in the MO-MFEA and the NSGA-II) which are
evolved for a limited budget of 5000 solution evaluations.
Recall that the MO-MFEA causes the evaluation budget to be
(roughly) equally shared among constitutive optimization
tasks, thereby limiting the available evaluations to
approximately 2500 per task in this 2-factorial environment. In
order to compare the convergence characteristics of the MO-
MFEA and NSGA-II, we make use of the normalized
Hypervolume (HV) metric [45], as described in Fig. 10. The
reference point is set to (220 sec, 33 tons) and the prior
estimate of the ideal point is (18 sec, 13.5 tons). The IGD
metric is no longer preferred in this case as the true PF is not
known beforehand for real-world problems. Note that, in
contrast to IGD, HV is expected to increase gradually for an
evolving population, with higher HV values indicating
superior convergence and diversity of the population. The
values of the normalized HV metric reported hereafter are
averages across 3 independent runs of the optimizers.

Fig. 10. The normalized Hypervolume metric.

Figs. 11 and 12 represent the evolution of the HV for the

case of RTM and I/C-LCM, respectively. As is clear from
both figures, when the two manufacturing processes are
explored simultaneously in a single multitasking environment

(as is the case in the MO-MFEA), the overall convergence
characteristics can be significantly improved as opposed to
tackling a single optimization task at a time with NSGA-II.
Since the MO-MFEA has several identical features as the
NSGA-II, the improved performance during multitasking can
be credited majorly to the effective utilization of the
underlying synergies between the two tasks. The resultant
impetus to the evolutionary search enables higher HV values
to be achieved within significantly fewer number of solution
evaluations, as is revealed in Figs. 11 and 12. Thus, in typical
engineering design exercises involving time consuming
computational simulations, the potential for multitasking can
greatly accelerate the design stage.

Fig. 11. Comparing the evolution of the HV metric for the case of
RTM. Note that the curve corresponding to a particular task in MO-

MFO is denoted by appending asterisks (**) to the task label.

Fig. 12. Comparing the evolution of the HV metric for the case of
I/C-LCM. Note that the curve corresponding to a particular task in
MO-MFO is denoted by appending asterisks (**) to the task label.

Finally, to conclude the real-world case study, we present

the approximate PFs of the RTM and I/C-LCM cycle, as are
obtained by the MO-MFEA, in Fig. 13. We find that the I/C-

LCM cycle does indeed provide the scope for considerably
faster mold filling (thereby reducing the overall manufacturing
time). On the other hand, the internal force that may be
achieved during RTM is lower than what is achievable during
I/C-LCM. This indicates that the capital layout on equipment
and running cost of the RTM cycle may be lower. Armed with
such information, the designer/manufacturer can make an
informed a posteriori decision regarding the most suitable
manufacturing process; that which presents an ideal balance
between practicality, maximizing throughput, and minimizing
cost of layout and running peripheral equipment.

Fig. 13. Approximate PFs of the RTM and I/C-LCM cycles.

VI. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

In this paper, we have presented an amalgamation of
multi-objective optimization with the notion of evolutionary
multitasking. We label the resultant paradigm as Multi-

Objective Multifactorial Optimization (MO-MFO), where
each MOOP in a multitasking environment acts as an
additional factor influencing the evolution of a single
population of individuals. The mechanics of evolution are
carried out via a new multitasking engine labelled as the
Multi-Objective Multifactorial Evolutionary Algorithm (MO-
MFEA). It is contended that the process of multitasking in
optimization opens doors to the so far underexplored
possibility of harnessing the underlying commonalities
between different optimization tasks. In fact, evolutionary
multitasking is deemed to be particularly well suited for
automated transfer, adaptation, and refinement of knowledge
(in the form of encoded genetic material), without the need for
any external human intervention.

The claims stated above have been substantiated through
computational studies on some benchmark MOOPs as well as
on a real-world manufacturing process design problem from
the composites industry. It is found that the phenomenon of
implicit genetic transfer in multitasking can exploit the
presence of transferrable knowledge between optimization
tasks, thereby facilitating improved performance
characteristics for multiple tasks at the same time. In the field
of complex engineering design, which typically involves
computationally expensive simulation-based optimization, the

impetus provided to evolutionary search during multitasking
can considerably shorten the exorbitantly time consuming
design process.

Although the results presented in the paper are
encouraging and demonstrate the potential implications of
evolutionary multitasking towards real-world problem solving,
we acknowledge that the concept gives rise to several research
questions that must be thoroughly studied in the future. For
instance, it must be noted that evolutionary multitasking
cannot always be expected to provide performance
improvements. As has been discussed in the paper, while some
genetic transfer may be useful, others may impede the search.
The chance of predominantly negative transfer may be high if
the unification scheme, decoding mechanism, and genetic
operators are not appropriately designed to comply with the
features of the underlying optimization tasks. While even the
simple schemes used in this study have shown promising
performance enhancements, there is indeed the scope for
development of more advanced techniques that are better
suited for multitasking under different circumstances. In
particular, the design of unified representations and decoding
mechanisms which incorporate domain knowledge and/or
account for the associations between variables of different
tasks are considered invaluable for consistently effective
evolutionary multitasking.

Finally, notice that in the real-world application presented
in this paper, an explicit overlap is known to exist between the
phenotype spaces of the optimization tasks, which can be
exploited during multitasking. However, our methods can in
principle be utilized for a variety of other real-world instances
where the amount of overlap may be lower or less apparent.
Admittedly, this may at times reduce the success rate of
multitasking. However, according to the study carried out in
[21], in many cases the multifactorial evolutionary algorithm
was found to successfully harness hidden complementarities
even among cross-domain optimization tasks (i.e., including
continuous and combinatorial problems). From the standpoint
of conceived cloud-based on-demand machine learning and
optimization services [61]-[63], the implication of such a
feature calls for further research attention.

APPENDIX

The filling of the mold with a liquid resin in a generic
composites manufacturing process is governed by the
following PDEs:
 𝛻 . (ℎ 𝑲𝜇 𝛻 𝑝) = 𝜕ℎ𝜕𝑡 , (8)
 𝜌 𝐶𝑝 𝜕𝑇𝜕𝑡 + 𝜌𝑟𝐶𝑝𝑟(𝒖 . ∇𝑇) = ∇. (𝑘 ∇𝑇) + (1 − 𝑉𝑓) ∙ 𝐻̇, (9)

 𝜑 𝜕𝛼𝜕𝑡 + 𝒖. 𝛻𝛼 = (1 − 𝑉𝑓) ∙ 𝑅𝛼. (10)

Here, Eq. 8 represents Darcy’s Law that governs fluid flow in
porous media, h is the thickness of the mold cavity, p is the
local resin pressure, K is the reinforcement permeability
tensor, t is the time, and ∂h/∂t represents the speed of mold
closure. Note that while ∂h/∂t is zero throughout the RTM
cycle, it is strictly negative for the I/C-LCM cycle during in

situ mold compression. The viscosity μ of the resin is a

function of the local temperature T and the degree of resin
cure α. The relation may be captured by the following widely
used rheological model,
 𝜇 = 𝐴𝜇𝑒𝐸𝜇 𝑅 𝑇⁄ (𝛼𝑔𝛼𝑔− 𝛼)𝑎+𝑏𝛼

, (11)

where αg is the degree of cure at which resin gel conversion
occurs, R is the universal gas constant, Eµ is the activation
energy, and Aµ, a and b are other experimentally determined
constants.

Eq. 9 is a lumped energy equation which governs the
temperature distribution within the mold. The material
properties ρ, Cp, and k represent the average density, specific
heat capacity, and thermal conductivity of the resin-fiber
system, respectively. Further, u is the volume averaged resin

flow velocity, Vf is the fiber volume fraction, and 𝐻̇ is a source
term representing the thermal energy generated by the resin
during its exothermic polymerization reaction.

Finally, Eq. 10 models how the degree of resin conversion
varies in the part during filling. Therein, Rα (= 𝑑𝛼 𝑑𝑡⁄)
represents the rate of resin polymerization. Kamal and Sourour
[64] proposed the following general model which is widely
used to describe the polymerization reaction,
 𝑑𝛼𝑑𝑡 = (𝐴1 . 𝑒(−𝐸1 𝑅 𝑇⁄) + 𝐴2 . 𝑒(−𝐸2 𝑅 𝑇⁄). 𝛼𝑚1) . (1 − 𝛼)𝑚2, (12)

where A1, A2, E1, E2, m1, and m2 are experimentally determined
constants.

For complete details on the material properties and values
of empirical constants used in the composites manufacturing
case study, the reader is referred to [59].

REFERENCES

[1] M. Ehrgott. Multicriteria Optimization. Springer, 2005.
[2] V. A. Shim, K. C. Tan, and H. J. Tang, “Adaptive memetic computing

for evolutionary multi-objective optimization”, IEEE Transactions on

Cybernetics, vol. 45, no. 4, pp. 610-621, 2014.
[3] L. Ke, Q. Zhang, and R. Battiti, “Hybridization of Decomposition and

Local Search for Multiobjective Optimization”, IEEE Transactions on

Cybernetics, vol. 44, no. 10, pp. 1808 - 1820, 2014.
[4] E. G. Talbi, S. Mostaghim, T. Okabe, H. Ishibuchi, G Rudolph, and C.

A. Coello Coello, “Parallel approaches for multi-objective
optimization,” in Muliobjective Optimization, Springer Berlin
Heidelberg, 2008, pp. 349-372.

[5] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms.
Wiley, 2001.

[6] W. F. Leong and G. G. Yen, “PSO-based multi-objective optimization
with dynamic population size and adaptive local archives,” IEEE Trans.

SMC Part B: Cybernetics, vol. 38, no. 5, pp. 1270-1293, 2008.
[7] H. Ishibuchi and T. Murata, “A multi-objective genetic local search

algorithm and its application to flowshop scheduling,” IEEE Trans.

SMC Part C, vol. 28, no. 3, pp. 392-403, 1998.
[8] K. C. Tan, C. K Goh, Y. J. Yang, and T. H. Lee, “Evolving better

population distribution and exploration in evolutionary multi-objective
optimization”, European Journal of Operational Research, vol. 171, no.
2, pp. 463-495, 2006.

[9] K.C. Tan, T. H. Lee, D. Khoo, and E. F. Khor, “A multi-objective
evolutionary algorithm toolbox for computer-aided multi-objective
optimization”, IEEE Transactions on Systems, Man and Cybernetics:

Part B (Cybernetics), vol. 31, no. 4, pp. 537-556, 2001.
[10] S. W. Jiang, J. Zhang, Y. S. Ong, A. N. S. Zhang, and P. S. Tan, “A

Simple and Fast Hypervolume Indicator-based Multiobjective
Evolutionary Algorithm”, IEEE Transactions on Cybernetics, vol. 45,
no. 10, pp. 2202-2213, 2014.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multi-objective genetic algorithm: NSGA-2,” IEEE Trans. Evo. Comp.,
vol. 6, no. 2, pp. 182-197, 2002.

[12] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based non-dominated sorting approach,
Part I: Solving problems with box constraints” IEEE Trans. on Evo.

Comp., vol. 18, no. 4, pp. 577-601, 2013.
[13] H. Jain and K. Deb, “An evolutionary many-objective optimization

algorithm using reference-point-based non-dominated sorting approach,
Part II: Handling constraints and extending to an adaptive approach”
IEEE Trans. on Evo. Comp., vol. 18, no. 4, pp. 602-622, 2013.

[14] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm,” in Proc. EUROGEN 2001.

Evolutionary Methods for Design, Optimization and Control With

Applications to Industrial Problems, K. Giannakoglou, D. Tsahalis, J.
Periaux, P. Papailou, and T. Fogarty, Eds., Athens, Greece, Sept. 2001.

[15] Q. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary algorithm
based on decomposition”, IEEE Transactions on Evolutionary

Computation, vol. 11, no. 6, pp. 712-731, 2007.
[16] K. Li, S. Kwong, Q. Zhang, and K. Deb, “Interrelationship-Based

Selection for Decomposition Multiobjective Optimization,” IEEE

Transactions on Cybernetics, vol. 45, no. 10, pp. 2076-2088, 2015.
[17] S. Jiang and S. Yang, “An Improved Multiobjective Optimization

Evolutionary Algorithm Based on Decomposition for Complex Pareto
Fronts,” IEEE Transactions on Cybernetics, vol. 46, no. 2, pp. 421-437,
2016.

[18] J. Bader, E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evolutionary Computation, vol. 19, no. 1,
pp. 45-76, 2011.

[19] T. Back, U. Hammel, and H. P. Schwefel, “Evolutionary computation:
Comments on the history and current state,” IEEE Trans. on Evo.

Comp., vol. 1, no. 1, pp. 3-17, 1997.
[20] M. Srinivas and L.M. Patnaik, “Genetic Algorithms: A survey,”

Computer, vol. 27, no. 6, pp. 17-26, June 1994.
[21] A. Gupta, Y. S. Ong, and L. Feng, “Multifactorial Evolution: Toward

Evolutionary Multitasking,” IEEE Trans. on Evo. Comp., Accepted,
2015.

[22] J. Rice, C. R. Cloninger, and T. Reich, “Multifactorial inheritance with
cultural transmission and assortative mating. I. Description and basic
properties of the unitary models,” Am. J. Hum. Genet., vol. 30, pp. 618-
643, 1978.

[23] C. R. Cloninger, J. Rice, and T. Reich, “Multifactorial inheritance with
cultural transmission and assortative mating. II. A general model of
combined polygenic and cultural inheritance,” Am. J. Hum. Genet., vol.
31, pp. 176-198, 1979.

[24] L. L. Cavalli-Sforza and M. W. Feldman, “Cultural vs Biological
inheritance: Phenotypic transmission from parents to children (A theory
of the effect of parental phenotypes on children’s phenotypes),” Am. J.

Hum. Genet., vol. 25, 618-637, 1973.
[25] R. Dawkins. The Selfish Gene. Oxford University Press, 1976.
[26] X. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, “A multi-facet survey on

memetic computation,” IEEE Trans. Evo. Comp., vol. 15, no. 5, pp. 591-
606, Oct. 2011.

[27] Y. S. Ong, M. H. Lim, and X. S. Chen, “Research Frontier: Memetic
Computation – Past, Present & Future,” IEEE Comp. Intel. Mag., vol. 5,
no. 2, pp. 24-36, 2010.

[28] Y. S. Ong and A. J. Keane, “Meta-Lamarckian learning in memetic
algorithms,” IEEE Trans. Evo. Comp., vol. 8, no. 2, pp. 99-110, 2004.

[29] S. Bechikh, A. Chaabani, and L. B. Said, “An efficient chemical reaction
optimization algorithm for multiobjective optimization,” IEEE

Transactions on Cybernetics, vol. 45, no. 10, pp. 2051-2064, 2015.
[30] R. Cheng, Y. Jin, K. Narukawa, and B. Sendhoff, “A multiobjective

evolutionary algorithm using Gaussian process-based inverse
modelling,” IEEE Trans. Evo. Comp., vol. 19, no. 6, pp. 838-856, 2015.

[31] K. Deb, “An efficient constraint handling method for genetic
algorithms,” Comp. Methods in Appl. Mech. and Engg., vol. 186, pp.
311-338, 2000.

[32] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithms: Analysing the state-of-the-art,” Evolutionary Computation,
vol. 8, no. 2, pp. 125-147, 2000.

[33] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary
algorithms in multiobjective optimization,” Evolutionary Computation,
vol. 3, no. 1, pp. 1-16, 1995.

[34] R. Mills, T. Jansen, and R. A. Watson, “Transforming evolutionary
search into higher-order evolutionary search by capturing problem
structure,” IEEE Trans. Evo. Comp., vol. 18, no. 5, pp. 628-642, 2014.

[35] M. Iqbal, W. N. Browne, and M. Zhang, “Reusing building blocks of
extracted knowledge to solve complex, large-scale Boolean problems,”
IEEE Trans. Evo. Comp., vol. 18, no. 4, pp. 465-480, 2013.

[36] J. Goncalves and M. Resende, “Biased random-key genetic algorithms
for combinatorial optimization,” J. Heuristics, vol. 17, no. 5, pp. 487–
525, 2011.

[37] J. C. Bean. Genetic algorithms and random keys for sequencing and
optimization. ORSA J. on Computing, 6:154–160, 1994.

[38] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, vol. 9, no. 2, pp. 115-148, 1995.

[39] K. Deb, S. Karthik, and T. Okabe, “Self-adaptive simulated binary
crossover for real-parameter optimization,” GECCO’07, pp. 1187-1194.

[40] S. J. Pan, Q. Yang, “A survey on transfer learning,” IEEE Trans.

Knowledge & Data Engg., vol. 22, no. 10, pp. 1345-1359, 2009.
[41] L. Feng, Y. S. Ong, M. H. Lim, and I. W. Tsang, “Memetic Search with

Inter-Domain Learning: A Realization between CVRP and CARP,”
IEEE Trans. Evo. Comp., vol. 19, no. 5, pp. 644-658, 2014.

[42] L. Feng, Y. S. Ong, A. H. Tan, and I. W. Tsang, “Memes as building
blocks: a case study on evolutionary optimization + transfer learning for
routing problems,” Memetic Computing, vol. 7, no. 3, pp. 159-180,
2015.

[43] K. Deb and D. Deb, Analyzing mutation schemes for real-parameter

genetic algorithms, KanGAL Report No. 2012016.
[44] E. A. Williams and W. A. Crossley, “Empirically-derived population

size and mutation rate guidelines for a genetic algorithm with uniform
crossover,” Soft computing in engineering design and manufacturing,
pp. 163-172, 1998.

[45] S. Jiang, Y. S. Ong, J. Zhang, and L. Feng, “Consistencies or
Contradictions of Performance Metrics in Multiobjective
Optimization,” IEEE Transactions on Cybernetics, vol. 44, no. 12, pp.
2391 - 2404, 2014.

[46] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multi-objective
evolutionary algorithms: Empirical results,” Evo. Comp., vol. 8, no. 2,
pp. 173-195, 2000.

[47] K. Deb and T. Goel, “Controlled elitist non-dominated sorting genetic
algorithms for better convergence,” Evolutionary Multi-Criterion

Optimization, LNCS, vol. 1993, pp. 67-81, 2001.
[48] L. A. Rastrigin, Systems of extreme control. 1974.
[49] A. O. Griewank, “Generalized decent for global optimization,” J. Opt.

Th. Appl., vol. 34, no. 1, pp. 11-39, 1981.
[50] D. H. Ackley, A connectionist machine for genetic hillclimbing. Boston:

Kluwer Academic Publishers, 1987.
[51] K. Deb, A. P. Mathur, T. Meyarivan, Constrained test problems for

multi-objective evolutionary optimization, Tech. Report No. 200002,
Kanpur Genetic Algorithms Lab, IIT Kanpur, India.

[52] W. A. Walbran. Experimental validation of local and global force

simulations for rigid tool liquid composite moulding processes. PhD
Thesis – University of Auckland, 2011.

[53] A. Gupta. Numerical modelling and optimization of non-isothermal,

rigid tool liquid composite moulding processes. PhD Thesis – University
of Auckland, 2013.

[54] S. Hsu, M. Ehrgott, and P. Kelly, “Optimization of mould filling
parameters of the compression resin transfer moulding process,”
Proceedings of the 45th Annual Conference of the ORSNZ, 2010.

[55] S. G. Advani and K. T. Hsiao (Eds.). Manufacturing techniques for

polymer matrix composites (PMCs). Elsevier, 2012.
[56] P. A. Kelly and S. Bickerton, “A comprehensive filling and tooling force

analysis for rigid mould LCM processes,” Composites Part A, vol. 40,
no. 11, pp. 1685-1697, 2009.

[57] A. Gupta and P. A. Kelly, “Optimal Galerkin finite element methods for
non-isothermal liquid composite moulding process simulations,”
International Journal of Heat and Mass Transfer, vol. 64, pp. 609-622,
2013.

[58] G. Avigad and A. Moshiaov, “Interactive evolutionary multiobjective
search and optimization of set-based concepts,” IEEE Trans. SMC Part

B (Cybernetics), vol. 39, no. 4, pp. 1013-1027, 2009.
[59] A. Gupta, P. A. Kelly, S. Bickerton, and W. A. Walbran, “Simulating

the effect of temperature elevation on clamping force requirements
during rigid-tool liquid composite moulding processes,” Composites

Part A, vol. 43, no. 12, pp. 2221-2229, 2012.

[60] G. Avigad and A. Moshaiov, “Set-based concept selection in multi-
objective problems with delayed decisions,” Journal of Engineering

Design, vol. 21, no. 6, pp. 619-646, 2010.
[61] Y. S. Ong and A. Gupta. “Evolutionary Multitasking: A Computer

Science View of Cognitive Multitasking,” Cognitive Computation, pp.
1-18, 2016.

[62] I. Arnaldo, K. Veeramachaneni, A. Song, and U. -M. O'Reilly, “Bring
Your Own Learner: A Cloud-Based, Data-Parallel Commons for
Machine Learning,” IEEE Computational Intelligence Magazine, vol.
10, no. 1, pp. 20-32, 2015.

[63] M. Guzek, P. Bouvry, E.-G. Talbi, “A Survey of Evolutionary
Computation for Resource Management of Processing in Cloud
Computing,” IEEE Computational Intelligence Magazine, vol. 10, no. 2,
pp. 53-67, 2015.

[64] M. Kamal and S. Sourour, “Kinetics and thermal characterization of
thermoset resin,” Polymer Engineering and Science, vol. 13, no. 1, pp.
59-64, 1973.

