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Abstract — In recent decades, the field of multi-objective 

optimization has attracted considerable interest among 

evolutionary computation researchers. One of the main features 

that makes evolutionary methods particularly appealing for 

multi-objective problems is the implicit parallelism offered by a 

population, which enables simultaneous convergence towards the 

entire Pareto front. While a plethora of related algorithms have 

been proposed till date, a common attribute among them is that 

they focus on efficiently solving only a single optimization 

problem at a time. Despite the known power of implicit 

parallelism, seldom has an attempt been made to multitask, i.e., 

to solve multiple optimization problems simultaneously. It is 

contended that the notion of evolutionary multitasking leads to the 

possibility of automated transfer of information across different 

optimization exercises that may share underlying similarities, 

thereby facilitating improved convergence characteristics. In 

particular, the potential for automated transfer is deemed 

invaluable from the standpoint of engineering design exercises 

where manual knowledge adaptation and re-use are routine. 

Accordingly, in this paper, we present a realization of the 

evolutionary multitasking paradigm within the domain of multi-

objective optimization. The efficacy of the associated 

evolutionary algorithm is demonstrated on some benchmark test 

functions as well as on a real-world manufacturing process 

design problem from the composites industry. 

 
Index Terms — Evolutionary Multitasking, Multi-objective 

Optimization, Memetic Computation.  

I. INTRODUCTION 

ULTI-OBJECTIVE Optimization Problems (MOOPs) are 
ubiquitous in real-world decision making. It is generally 

the case that a decision maker must simultaneously account 
for multiple criteria while selecting a particular plan of action, 
with each criterion contributing a different objective to be 
optimized. When no a priori preference relationship between 
the criterions can be established, one is forced to abandon the 
standard engines of single-objective optimization.  

Solving an MOOP involves obtaining a set of solutions 
that provide optimal trade-off among all the relevant 
objectives [1]. In other words, a solution is considered optimal 
in the multi-objective sense if an attempted improvement in 
any one of its objectives is necessarily accompanied by the 
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deterioration of at least one other objective. This is often 
found to be the case when the criterions facing the decision 
maker are mutually competing. In recent decades, population-
based optimization algorithms, such as those of Evolutionary 
Computation (EC), have emerged as the preferred choice for 
tackling MOOPs [2]-[10]. Some popular examples of Multi-
objective Evolutionary Algorithms (MOEAs) commonly in 
use today include NSGA-II [11], NSGA-III [12], [13], SPEA2 
[14], MOEA/D [15]-[17] and indicator-based MOEAs [18].  

In the field of computational intelligence, Evolutionary 
Algorithms (EAs) are stochastic optimization engines that 
draw inspiration from Darwinian principles of natural 

selection or survival of the fittest [19], [20]. Thus, they are 
often described as computational analogues of biological 
evolution. Their increasing popularity in the fields of science, 
operations research, and engineering, can be attributed to the 
fact that EAs are derivative-free global optimizers that do not 
impose any continuity and/or differentiability requirements on 
the underlying objective function landscapes. Moreover, with 
regard to MOOPs, the population-based approach of MOEAs 
provides notable advantages over their mathematical 
counterparts. While classical methods typically solve for the 
set of optimal solutions in a sequential manner [1], MOEAs 
are able to harness the implicit parallelism of a population to 
synchronously obtain a diverse set of near optimal trade-off 
points. Encouraged by this observation, a central goal of the 
present study is to investigate and further exploit the potential 
benefits of implicit parallelism as made available by a 
population-based search strategy. To this end, it is observed 
that a common feature among all MOEAs is that they focus on 
efficiently solving only a single MOOP at a time. Seldom has 
an effort been made to multitask, i.e. to solve multiple MOOPs 
concurrently using a single population of evolving individuals. 

It has been recently demonstrated in an introductory study 
on Multifactorial Optimization (MFO) that the process of 
evolutionary multitasking leads to implicit genetically-
encoded information transfer across optimization tasks, which 
often facilitates improved convergence characteristics [21]. In 
the real-world, where manual knowledge adaptation across 
related tasks is commonplace, automated transfer of pertinent 
information is a particularly attractive proposition. In fact, 
ignoring such useful information that may lie outside the self-
contained scope of a particular problem, as is generally the 
case with traditional optimization methods, is considered 
highly counterproductive. For instance, in complex 
engineering design exercises, the spontaneous refinement and 
transfer of relevant knowledge across similar design exercises 
can accelerate convergence towards near-optimal solutions of 
several optimization exercises at the same time, thereby 
significantly lowering the often exorbitant design time. Based 
on the aforesaid practical motivation, in this paper, we aim to 
push the envelope of existing EC methods by proposing an 
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amalgamation of multi-objective optimization with the notion 
of evolutionary multitasking. The resultant paradigm is 
referred to as Multi-Objective Multifactorial Optimization 
(MO-MFO), wherein each constitutive MOOP contributes a 
distinct factor influencing the evolutionary search process. 

While devising an EA with the capability of effective 
multitasking, it must be ensured that the population of 
navigating agents are appropriately steered through the 
multifactorial landscape. To this end, we turn to nature for 
inspiration. Specifically, we find the bio-cultural models of 
multifactorial inheritance [22], [23] to be well suited to our 
computational needs. These models have been widely studied 
by human geneticists for several years, and serve as a well-
established means to explain the transmission of complex 
developmental traits to offspring through the interactions of 
genetic and cultural factors [24]. For our conceived analogy 
with the computational world, we consider the assortment of 
MOOPs in a multitasking environment to represent multiple 
cultural traits (or memes [25]) that coexist in a unified 
genotype space and intervene in the evolutionary process by 
interacting with the genetic mechanisms. The algorithmic 
manifestation of this phenomenon leads to the formulation of 
the Multi-Objective Multifactorial Evolutionary Algorithm 
(MO-MFEA). As the working of the MO-MFEA is based on 
the transmission of biological and cultural building blocks 
from parents to offspring, the algorithm is regarded as 
belonging to the realm of memetic computation [26]-[28].  

In order to provide a thorough exposition of the ideas 
discussed so far, this paper has been organized as follows. In 
Section II, we present a brief overview of the preliminaries in 
multi-objective optimization and its extension to multitasking 
settings via MO-MFO, highlighting, in particular, the practical 
and theoretical distinctions between the two paradigms. 
Thereafter, in Section III, we delve into the details of MO-
MFO whilst describing its associated EA. After having 
established the conceptual and algorithmic foundations of our 
work, we proceed to computational studies in Section IV 
where we carry out experiments on some synthetic benchmark 
functions. Then, in Section V, we present a real-world case 
study from the composites manufacturing industry that 
demonstrates the practical value of our proposed method in 
complex engineering design exercises. To conclude, the main 
contributions of the paper are summarized in Section VI 
together with important directions for future research work. 

 

II. MULTI-OBJECTIVE AND MULTIFACTORIAL OPTIMIZATION 

In this section, we present a review of the major concepts 
in multi-objective and multifactorial optimization that form 
the crux of our explorations in this paper. Distinctions 
between the two paradigms shall also be highlighted. 

A. Multi-Objective Optimization  

In a generic multi-objective minimization problem, one 
attempts to find all solutions x ∈ X such that the vector-valued 
objective function F(x) = (f1(x), f2(x),…., fM(x)) is minimized. 
Here, X represents the design space and M is the number of 
objective functions. Note that in real-world settings the design 
space is often subject to a variety of stringent constraints that 
must be satisfied for a solution x to be considered feasible. 

While constructing an algorithm for the purpose of multi-
objective optimization, it is important to devise a means of 
comparing candidate solutions. Following the principle of 
Pareto dominance [29] a feasible solution x1 is said to Pareto 
dominate another feasible solution x2 if and only if fi(x1) ≤ 
fi(x2), ∀i ∈ {1, 2, …, M}, with at least one strict inequality. 
Accordingly, a solution x* is said to be optimal in multi-
objective sense (or Pareto optimal) if x* is feasible and is non-
dominated with respect to all other feasible solutions in X.  

From the description above, it follows that for M > 1 there 
will exist a set of Pareto optimal solutions, especially when the 
objectives are conflicting in nature (i.e., an improvement in 
one is accompanied by the deterioration of another). The 
image of all the Pareto optimal solutions in the objective space 
is said to constitute the Pareto front (PF) [30]. 

B. Multi-Objective Multifactorial Optimization 

The Multi-Objective Multifactorial Optimization (MO-
MFO) paradigm serves as a means of fully unlocking the 
potential of implicit parallelism of population-based search. 
We begin the formulation by considering a theoretical 
scenario where K distinct optimization tasks (that are 
traditionally treated separately as self-contained MOOPs) are 
to be solved concurrently. Without loss of generality, all tasks 
are assumed to be minimization problems. The jth task, 
denoted as Tj, has design space Xj on which the vector-valued 
objective function is defined as Fj: Xj → ℝ𝑀𝑗 , where Mj is the 
number of elements in the objective function vector. Then, we 
define MO-MFO as an evolutionary multitasking approach 
that aims to simultaneously navigate the design space of all 
tasks, assisted by the potential for fruitful genetic transfer, so 
as to efficiently deduce argmin{F1(x), F2(x), …., FK(x)}. 
Since each Fj presents an added factor influencing the 
evolutionary processes of a single population, the combined 
problem may also be termed as a K-factorial environment.  

With the end goal of developing an effective evolutionary 
solver for MO-MFO, it is important to formulate a standard 
methodology for comparing candidate solutions during 
multitasking. In order to achieve this, we first define a set of 
properties for describing every individual pi, where i ∈ {1, 2, 
…, |P|}, in a population P. Note that every individual is 
encoded into a unified space Y that encompasses X1, X2, …, 
XK, and can be translated into a task-specific solution with 
respect to any of the K optimization tasks.  

 Definition 1 (Factorial Rank):  The factorial rank 𝑟𝑗𝑖  of pi 

for task Tj is the index of pi in the list of population members 
sorted in decreasing order of preference with respect to Tj. 

Definition 2 (Skill Factor): The skill factor τi of pi is the 
one task, amongst all other tasks in a K-factorial environment, 
with which the individual is associated. If pi is evaluated for 

all tasks then τi = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗{𝑟𝑗𝑖}, where j ∈ {1, 2, .., K}. 

Definition 3 (Scalar Fitness): The scalar fitness of pi in a 
multitasking environment is given by 𝜑𝑖 = 1 𝑟𝜏𝑖𝑖⁄ . 

With regard to Definition 1, we realize that prescribing an 
order of preference among individuals of a population is not 
trivial when the task is an MOOP. One possible approach for 
determining a meaningful order of preference, as has been 
employed in the Multi-Objective Multifactorial Evolutionary 
Algorithm (MO-MFEA), shall be presented in Section III. 



After the fitness of each individual is scalarized as per 
Definition 3, performance comparisons can be performed in a 
simplistic manner. To demonstrate, an individual p1 will be 
considered to dominate some other individual p2 in 
multifactorial sense simply if φ1

 > φ2. 

C. Distinguishing the Two Paradigms 

As multi-objective optimization and evolutionary 
multitasking (which is manifested as MO-MFO in this paper) 
are both concerned with optimizing a set of objective 
functions, conceptual similarities may be seen to exist between 
them. However, it must be noted that while evolutionary 
multitasking aims to leverage upon the implicit parallelism of 
population-based search to exploit latent complementarities 
between essentially separate (but possibly similar) tasks, 
multi-objective optimization deals with efficiently resolving 
conflicts among competing objectives of the same task. An 
illustration summarizing the statement is depicted in Fig. 1. 
The main feature distinguishing the two paradigms is the 
simultaneous existence of multiple heterogeneous design 
spaces in the case of multitasking. On the other hand, for the 
case of multi-objective optimization, there typically exists a 
single design space for a given task, with all objective 
functions depending on variables contained within that space. 
As a point of particular interest, note that a multitasking 
environment could in fact include a multi-objective 
optimization task as one among many other concurrent tasks. 
This aspect shall be thoroughly investigated in the subsequent 
sections of the paper. Most importantly, it highlights the 
greater generality of the multi-objective multifactorial 
optimization paradigm. 

 

 
 

Fig. 1. While multi-objective optimization generally comprises a 
single design space for all objective functions, evolutionary 
multitasking unifies multiple heterogeneous design spaces. 

 
On observing Fig. 1, it may be argued that once a unified 

search space encompassing all tasks has been defined, it is 
conceivable for standard MOEAs to be adapted for the 
purpose of evolutionary multitasking. In this regard, it must be 
noted that the concept of Pareto dominance, which forms the 
crux of most MOEAs, is not an explicit ingredient in the 
prescribed scope for multifactorial optimization. To be 
precise, the purpose of evolutionary multitasking is to 
optimize each constitutive task absolutely, instead of having to 
establish any kind of trade-off between individual tasks. Thus, 
the evolutionary selection pressure that is imparted to a 

population during multi-objective optimization may not be 
entirely well suited for the purpose of multitasking in 
optimization. 

We illustrate the effect of the selection pressure by 
considering the hypothetical 2-factorial environment in Fig. 2 
comprising a pair of ‘mono-objective’ tasks. From the notion 
of Pareto dominance in multi-objective optimization, it 
follows that individuals {p2, p3, p4, p5} belong to the first non-
dominated front while {p1, p6} belong to the second front. In 
other words, individuals {p2, p3, p4, p5} are considered 
incomparable to each other and are always preferred over {p1, 
p6} as they represent superior convergence to the true PF. In 
contrast, working out the scalar fitness of the individuals 
according to the definitions in Section II-B, we find that 
individuals p2 and p5 have scalar fitness = 1 (as they minimize 
task 1 and task 2, respectively), individuals p1 and p6 have 
scalar fitness = 0.5, and finally, individuals p3 and p4 have 
scalar fitness = 0.33. Thus, based on the fitness assignment 
scheme in multitasking, the evolutionary selection pressure 
favors individuals {p2, p5} over {p1, p6}, which are in turn 
favored over {p3, p4}. As is therefore clear, there emerges a 
disagreement between the outcomes deduced from the 
principles of multi-objective and multifactorial optimization. 

 

 
 

Fig. 2. Sample points in the combined objective space of two 
hypothetical mono-objective tasks in a 2-factorial environment. 

 

III. MULTI-OBJECTIVE MULTIFACTORIAL EVOLUTION 

In MO-MFO, a matter of significant importance is the 
prescription of a meaningful order of preference among 
candidate solutions to a constitutive MOOP. Doing so is 
necessary for determining the factorial rank (see Definition 1), 
and consequently, the scalar fitness (see Definition 3) of an 
individual in the Multi-Objective Multifactorial Evolutionary 
Algorithm (MO-MFEA). Thus, we begin this section by first 
describing a simple approach for achieving the above. 
Thereafter, based on the prescribed ordering scheme, we 
present details of the MO-MFEA.  

A. Ordering Population Members in MOOPs 

For the sake of brevity, the concepts of Non-dominated 
Front (NF) and Crowding Distance (CD) in constrained multi-
objective optimization are directly adopted from the literature 



[11], [31]. We do not elaborate on their interpretations in this 
paper since these concepts have been well-established over 
several years of multi-objective optimization research. For an 
overview of the topic, the reader is referred to [32] and [33].  

Notice that for ordering individuals in a population, it is 
sufficient to define a preference relationship between two 
individuals and show that the binary relationship satisfies the 
properties of irreflexivity, asymmetry, and transitivity. To this 
end, let us consider a pair of individuals p1 and p2 with non-
dominated fronts NF1 and NF2 and crowding distances CD1 
and CD2, respectively. With the aim of obtaining a diverse 
distribution of points along the PF, we prescribe individual p2 
to be preferred over p1 (i.e., p2 ≻ p1) if any one of the 
following conditions holds: 
 NF2 < NF1 
 NF2 = NF1 and CD2 > CD1 

For the aforementioned preference relationship, the 
satisfaction of the necessary properties can be simply shown 
as below. 

Property 1 (Irreflexivity): pi ⊁ pi, for all pi ∈ P.  
Proof: Suppose pi ≻ pi. Then, either (a) NFi < NFi or (b) 

NFi = NFi and CDi > CDi. However, since NFi = NFi and CDi 
= CDi, the supposition leads to a contradiction.  

Property 2 (Asymmetry): If two individuals p1 and p2 
satisfy p2 ≻ p1, then p1 ⊁ p2. 

Proof: Suppose p1 ≻ p2. Then, either (a) NF1 < NF2 or (b) 
NF1 = NF2 and CD1 > CD2. However, according to p2 ≻ p1, we 
have either (a) NF2 < NF1 or (b) NF2 = NF1 `and CD2 > CD1. 
Thus, the supposition leads to a contradiction. 

Property 3 (Transitivity): If p2 ≻ p1 and p3 ≻ p2, then it 
must also be the case that p3 ≻ p1. 

Proof: We are given that p2 is preferred over p1 according 
to the conditions stated earlier. Since p3 ≻ p2 we also have 
either (a) NF3 < NF2 or (b) NF3 = NF2 and CD3 > CD2. If 
condition (a) is true then it implies NF3 < NF1. If condition (b) 
is true then it implies either (b.1) NF3 < NF1 or (b.2) NF3 = 
NF1 and CD3 > CD1. Therefore, if p2 is preferred over p1, and 
p3 is preferred over p2, then p3 must also be preferred over p1. 

 

B. The MO-MFEA 

Having set out the basic concepts of MO-MFO, we 
proceed to the development of the MO-MFEA. The 
pseudocode of the MO-MFEA is presented in Algorithm 1. 
The algorithm has been built upon the popular Non-dominated 
Sorting Genetic Algorithm (NSGA-II) [11]. In fact, in the 
special case of K = 1, the algorithm takes the exact form of 
NSGA-II. The interesting feature of the MO-MFEA is that it 
attempts to combine biological and cultural building blocks 
for the purpose of effective evolutionary multitasking. 
Accordingly, the algorithm has been attributed to the emerging 
area of memetic computation. 

The MO-MFEA begins by generating a random initial 
population of N individuals in a unified search space Y. 
Further, every individual in the population is assigned a 
specific skill factor (refer to Definition 2). The assignment 
technique must ensure that every task is uniformly 
represented. Note that, in the MO-MFEA, the skill factor of an 
individual is seen as a computational depiction of its assigned 
cultural trait. The importance of such an assignment is mainly 

to guarantee that every individual is evaluated with respect to 
only one task (i.e., its assigned skill factor) amongst all other 
tasks in the multitasking environment. This step is practically 
motivated as exhaustively evaluating every individual for 
every task will often be computationally too demanding, 
particularly when K is large (many-tasking).  

 

Algorithm 1: Pseudocode of the MO-MFEA 

1. Generate N individuals in Y to form initial population P0  

2. for every pi in P0 do 

Assign skill factor τi 

Evaluate pi for task τi only 

3. end for  

4. Compute scalar fitness φi for every pi based on NF and CD 

5. Set t = 0 

6. while (stopping conditions are not satisfied) do 𝑃𝑡′= Binary Tournament Selection(Pt) 

Ct = Offspring(𝑃𝑡′) → Refer Algorithm 2 

for every ci in Ct do 

Determine skill factor τi → Refer Algorithm 3 

Evaluate ci for task τi only 

end 

Rt = Ct ∪ Pt 

Update scalar fitness of all individuals in Rt. 

Select N fittest members from Rt to form Pt+1. 

Set t = t + 1 

7. end while 

 

1) Offspring creation 

For producing offspring, a pool of parent candidates is 
first created via binary tournament selection. The selection is 
performed purely based on the scalar fitness values of the 
individuals (see Definition 3), regardless of their respective 
skill factors. In other words, two individuals with different 
skill factors are considered comparable simply based on their 
scalar fitness values. Individuals in the parent pool are to 
undergo crossover and/or mutation in the unified search space 
Y, thereby passing down their genetic material to a new 
generation of offspring. At this juncture, in accordance with 
the phenomenon of assortative mating in multifactorial 
inheritance [22], [23], we establish a set of conditions that 
must be satisfied for two randomly selected parent candidates 
(from the pool) to undergo crossover. If these conditions are 
not satisfied, then the two candidate parents simply undergo 
mutation separately, producing two mutant offspring.  

 

Algorithm 2: Offspring creation via assortative mating 

Consider candidate parents p1 and p2 in 𝑃𝑡′ 
1. Generate a random number rand between 0 and 1. 

2. if τ1 == τ2 or rand < rmp then 

(c1, c2) = Crossover+Mutate(p1, p2) 

3. else 

c1 = Mutate(p1), c2 = Mutate(p2) 

4. end if 



The principle of assortative mating states that individuals 
prefer to mate with those belonging to a similar cultural 
background. Accordingly, in the MO-MFEA, parents having 
the same skill factor (i.e., having identical cultural traits) can 
crossover freely, while cross-cultural parents may only 
crossover with a prescribed random mating probability (rmp). 
An overview of the steps are presented in Algorithm 2.  
2) Offspring evaluation 

Besides inheriting the genetic material of their parents, 
offspring are also culturally influenced by them, as is 
explained by the natural phenomenon of vertical cultural 

transmission [24]. In gene-culture co-evolutionary theory [24], 
vertical cultural transmission is regarded as a type of 
inheritance that acts jointly with genetics and causes the 
phenotype of offspring to be affected by that of their parents. 
In the proposed framework, the aforementioned notion is 
algorithmically realized via a selective imitation strategy. To 
elaborate, the strategy mimics the natural tendency of 
offspring to imitate the cultural traits of their parents.  
Accordingly, an offspring created in the MO-MFEA randomly 
imitates the skill factor of any one of its parents. Thus, it is 
enforced that an individual can only be evaluated for one task 
with which at least one of its parents is associated. A summary 
of the proposed steps is provided in Algorithm 3. Recall that 
selective evaluation has a critical role in reducing the 
computational expense of the MO-MFEA, especially with 
increasing number of tasks to be handled at the same time.  

 
Algorithm 3: Vertical cultural transmission via selective 
imitation 
Consider offspring c ∈ Ct 

1. Generate a random number rand between 0 and 1. 

2. if c = Crossover+Mutate(p1, p2)  and rand ≤ 0.5 then 

c imitates skill factor of p1 

3. else if c = Crossover+Mutate(p1, p2)  and rand > 0.5 then 

c imitates skill factor of p2 

4. else if c = Mutate(p1) 

c imitates skill factor of p1  

5. else  

c imitates skill factor of p2 

6. end if 

 

C. Constructing the Unified Search Space  

For efficient inter-task implicit genetic transfer [21] in an 
evolutionary multitasking environment, it is essential to first 
describe a unified genotype space that encompasses the 
heterogeneous design spaces of all constitutive optimization 
tasks. In fact, the unification can be viewed as a higher-order 
abstraction [34] or meme space wherein genetic building 
blocks of encoded knowledge [35] are processed and shared 
across tasks. Thus, the schemata corresponding to different 
tasks are combined into a unified pool of genetic material, 
which enables the MO-MFEA to process them in parallel. 
With this background, consider a multitask setting where the 
design space dimensionality of task Tj is Dj, for j ∈ {1, 2, …, 
K}. Herein, the unified search space Y is constructed such that 
Dmultitask = maxj{Dj}. In other words, the chromosome y of an 

individual in Y is simply a vector of Dmultitask random-keys 
[36], [37]. While addressing the jth task, we extract Dj 
variables (random-keys) from y and decode them into a 
relevant solution representation. In many cases of practical 
interest where some a priori domain knowledge is available, 
an informed selection of Dj task-specific variables from the 
list of Dmultitask variables can significantly improve the 
utilization of shared knowledge. For instance, for the real-
world case study in Section V, variables belonging to different 
tasks but bearing the same phenotypic meaning are associated 
with the same keys in y. However, in many naive cases with 
no prior domain knowledge, extracting the first Dj variables 
from the chromosome can also be a viable alternative [21].  

Based on the above, we now describe a sample decoding 
procedure for a chromosome y to be translated into a task-
specific solution representation. For the case of continuous 
optimization, a straightforward linear mapping of the random-
keys from the genotype space to the box-constrained design 
space of the optimization task suffices. For example, consider 
task Tj for which the ith variable (xi) is box-constrained as [Li, 
Ui]. Assuming the ith random-key of y to be yi ∈ [0, 1], the 
decoding may simply be achieved as follows, 

 

 𝑥𝑖 =  𝐿𝑖  +  (𝑈𝑖  – 𝐿𝑖) · 𝑦𝑖 .       (1) 
 

D. The Mechanics of Implicit Genetic Transfer 

In any EA, ‘knowledge’ exists in the form of a population 
of genetically encoded solutions. Thus, for transfer of 
knowledge to occur across tasks in multitasking environments, 
an interesting proposition is the implicit transfer of genetic 
material between candidate solutions belonging to different 
tasks. In the MO-MFEA, this is achieved by two components 
of the algorithm acting in conjunction, namely, (a) the random 
mating probability, which allows individuals with distinct skill 
factors to crossover, and (b) the fact that their offspring can 
randomly select a parental skill factor for imitation. 

 

 
 

Fig. 3. The SBX crossover produces offspring (c1 and c2) that are 
located near their parents (p1 and p2) with high probability. If the 

parents possess different skill factors, a multicultural environment is 
created for offspring to be reared in. This condition leads to the 

possibility of implicit genetic transfer (refer to main text for details). 

 
In [21], the classical Simulated Binary Crossover (SBX) 

operator was employed in the chromosomal mating step. A 



salient property of the SBX operator, which happens to be of 
interest in the process of multitasking, is that it creates 
offspring that are located in close proximity of the parents 
with high probability [38], [39]. With this background, 
consider the situation in Fig. 3 where two parents p1 and p2 

perform crossover in a hypothetical 2-D search space. Note 
that p1 has skill factor T1 while p2 has skill factor T2, with T1 ≠ 
T2. As is generally the case, offspring c1 and c2 are created 
close to the parents. To elaborate, c1 inherits much of its 
genetic material from p1, while c2 is found to be genetically 
closer to p2. Given such a setup, if c1 randomly imitates the 
skill factor of p2 (i.e., c1 is evaluated for T2) and/or if c2 
randomly imitates the skill factor of p1 (i.e., c2 is evaluated for 
T1), then implicit genetic transfer is said to have occurred 
between the two tasks. Now, if the genetic material associated 
with T1 (being carried by c1) happens to be useful for T2 as 
well, or vice versa, then the transfer is beneficial. Else, there 
exists a possibility that the transfer turns out to be impeding 
(or negative) [40]-[42]. However, the remarkable feature of 
evolution is that when negative transfer occurs, the inferior 
genes get automatically depleted and eventually removed from 
the population (over the course of a few generations) by the 
natural process of survival of the fittest. 

With regard to the random mating probability, it plays an 
additional role of reflecting the intuition of the designer or 
decision maker towards the possibility of fruitful genetic 
transfer between tasks. If the tasks are known to be closely 
related, then rmp should be set close to 1 in order to facilitate 
unhindered exchange of genetic material. In contrast, when the 
relationship between tasks is uncertain, a lower value of rmp 
may be used to imply only occasional genetic exchange. The 
latter strategy acts as a means of lowering the chance of 
excessive negative transfer that could encumber the search. 

 

IV. THE BOON OF MULTITASKING 

In this section, we showcase the utility of the proposed 
evolutionary multitasking paradigm by presenting 
experimental studies for some synthetic benchmark functions 
that are expected to pose challenges for many existing 
optimization algorithms. The performance of the MO-MFEA 
(which executes multitasking) shall be compared against its 
base algorithm, i.e., the NSGA-II (which executes a single 
task at a time). Recall that in the special case of a 1-factorial 
environment, MO-MFEA is in fact equivalent in form to 
NSGA-II. Since the purpose of this comparison is to 
demonstrate the performance improvements achievable via 
multitasking alone, we employ identical solution encoding, 
genetic operators, and parameter settings in the MO-MFEA 
and in NSGA-II. 

 

A. Experimental Setup for Benchmark Functions 

Both algorithms are initiated with a total population of N 
= 100 individuals, and are executed for a maximum of 25000 
solution evaluations on each run. Note that in the present 
implementation of the MO-MFEA, the available budget of 
solution evaluations gets (roughly) evenly split among the 
various tasks in the multitasking environment. Thus, for the 2-
factorial benchmark experiments, there occur approximately 
12500 evaluations per task in the MO-MFEA.  

With regard to genetic operators, we employ SBX 
crossover and polynomial mutation [43]. Further, a crossover 
probability of pc = 1 is considered with no uniform crossover-
like variable swap between offspring. The latter condition 
helps reduce chromosome disruption [44] and allows the 
effects of inter-task implicit genetic transfer to be clearly seen. 
The mutation probability is set to pm = 1/D. Note that, for 
NSGA-II, D = Dj while solving Tj. On the other hand, for the 
MO-MFEA, D = Dmultitask. As we evaluate several difficult 
(Multimodal + Rotated) benchmark functions in our 
experiments (which pose a stiff challenge in terms of 
convergence to the true PF), we emphasize search space 
exploration by using relatively low distribution indices for the 
SBX and polynomial mutation operations. Accordingly, we fix 
the crossover index and the mutation index as ηc = 10 and ηm = 
10, respectively. Lastly, regarding the random mating 
probability of the MO-MFEA, we set it to 1 in order to 
facilitate unhindered exchange of genes between tasks. 

For the purpose of effective performance comparison 
between the MO-MFEA and NSGA-II, we make use of the 
Inverted Generational Distance (IGD) metric [45]. For 
benchmark functions where the true PF is known beforehand, 
the IGD simply measures the Euclidean distance between the 
true PF and the approximate PF obtained by the algorithms. 
The metric has been especially defined to provide a reasonable 
representation of the convergence and diversity of the 
approximate PF.  

 

B. Specification of Benchmark MOOPs 

We consider a set of highly multimodal MOOPs. The 
challenge with multimodality lies in convergence to the true 
PF, given how easy it is to get trapped at a local PF. However, 
during evolutionary multitasking, the MO-MFEA is expected 
to autonomously exploit the genetic complementarities 
between tasks whenever available, thereby bypassing 
obstacles more easily to converge faster. 

The task specifications presented hereafter are essentially 
variants of the ZDT4 benchmark function introduced by 
Zitzler et al. in [46]. Similar variants have also been used by 
Deb and Goel in [47] while verifying the effects of controlled 
elitism in the NSGA-II. The basic structure of the ZDT4 
function is as follows, 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝒙) = (𝑓1(𝑥1), 𝑓2(𝒙)), 
 𝑤ℎ𝑒𝑟𝑒, 𝑓1 = 𝑥1 𝑎𝑛𝑑 𝑓2 = 𝑔(𝒙)[1 − √𝑥1 𝑔(𝒙)⁄ ].  (2) 

 
In the above, by simply using different multimodal functions 
as g(x), a variety of difficult multi-objective test problems 
may be constructed.  Four such MOOPs are described next. 
1) ZDT4-R 

This problem is similar to the original ZDT4 where g(x) 
takes the form of the Rastrigin function [48], 
 𝑔(𝒙) = 1 + 10(𝐷 − 1) +  ∑ 𝑧𝑖2 − 10cos (4𝜋𝑧𝑖)𝐷−1𝑖=1 , 
 𝑤ℎ𝑒𝑟𝑒, 𝒛 = 𝑀 ∙ (𝑥2, 𝑥3, … , 𝑥𝐷)𝑇,    (3) 

 
M being a randomly generated (D-1) × (D-1) rotation matrix. 



2) ZDT4-G 

Here, g(x) takes the form of the Griewank function [49], 
 𝑔(𝒙) = 2 + ∑ 𝑧𝑖2 4000⁄𝐷−1𝑖=1 − ∏ cos (𝑧𝑖/√𝑖)𝐷−1𝑖=1 , 
 𝑤ℎ𝑒𝑟𝑒, 𝒛 = 𝑀 ∙ (𝑥2, 𝑥3, … , 𝑥𝐷)𝑇,    (4) 

  
3) ZDT4-A 

Here, g(x) takes the form of the Ackley function [50], 
 𝑔(𝒙) =  21 + exp (1) − 20 exp (−0.2√∑ 𝑧𝑖2𝐷−1𝑖=1𝐷−1 ) − exp (∑ cos (2𝜋𝑧𝑖)𝐷−1𝑖=1 𝐷−1 ), 

 𝑤ℎ𝑒𝑟𝑒, 𝒛 = 𝑀 ∙ (𝑥2, 𝑥3, … , 𝑥𝐷)𝑇,    (5) 
 

4) ZDT4-RC 

This is a constrained version of ZDT4-R. As prescribed in 
[51], the constraints are imposed as follows, 

 cos(𝜃) (𝑓2 − 𝑒) − sin(𝜃) 𝑓1 ≥ 𝑎|sin (𝑏𝜋(sin(𝜃) (𝑓2 − 𝑒) + cos (𝜃)𝑓1)𝑐)|𝑑,  
 𝑤ℎ𝑒𝑟𝑒 𝜃 = −0.05𝜋, 𝑎 = 40, 𝑏 = 5, 𝑐 = 1, 𝑑 = 6, 𝑒 = 0. (6) 

 
Details of the design space corresponding to the four 

MOOPs are reported in Table I. In all cases, the 
dimensionality of the design space is assumed to be 10, i.e., D 
= 10 in Eq. (3) to Eq. (5).  

TABLE I 

SUMMARY OF THE BENCHMARK TEST FUNCTIONS 

Task Label Extent of Design Space Properties 

ZDT4-R 
x1 ∈ [0,1];  

xi ∈ [-5, 5] for i = 2, …, D 
Multimodal + Rotated 

ZDT4-G 
x1 ∈ [0,1];  

xi ∈ [-512, 512] for i = 2, …, D 
Multimodal + Rotated 

ZDT4-A 
x1 ∈ [0,1];  

xi ∈ [-32, 32] for i = 2, …, D 
Multimodal + Rotated 

ZDT4-RC 
x1 ∈ [0,1];  

xi ∈ [-5, 5] for i = 2, …, D 
Multimodal + Rotated 

+ Constrained 

 

C.  Numerical Results and Discussions 

We construct a pair of 2-factorial multitasking instances 
by combining the multimodal MOOPs described earlier. In the 
first instance, we integrate ZDT4-R and ZDT4-G into a single 
multitasking environment. The combined problem is referred 
to as (ZDT4-R, ZDT4-G). Similarly, in the second instance, 
we combine ZDT4-RC and ZDT4-A, with the combined 
problem denoted as (ZDT4-RC, ZDT4-A). Observe that each 
multitasking instance comprises tasks with heterogeneous 
design spaces, thereby highlighting the utility of the unified 
search space. Moreover, the true PFs of the tasks are known to 
intersect in the unified search space, thereby reflecting the 
prevalence of transferrable knowledge between distinct tasks 
in the real-world. Finally, note that all performance results 
reported in the subsection are averaged across 31 independent 
runs of the optimizers. The performance of evolutionary 
multitasking via the MO-MFEA is compared against the 

performance of NSGA-II which operates only on a single 
MOOP at a time. 
1) Instance 1: (ZDT4-R, ZDT4-G) 

On analyzing the landscapes of ZDT4-R and ZDT4-G, it 
is noted that while the former comprises 219 local PFs, the 
latter has 1639 local PFs (of which only one is the global 
optimum). Interestingly, we find that the basin of attraction 
corresponding to each local PF of ZDT4-G is narrow, at least 
when measured in the unified search space. This implies that it 
is relatively straightforward for a population of searching 
individuals to quickly jump across local optimums, without 
getting trapped in one. In contrast, the ZDT4-R function 
possesses wide basins of attraction corresponding to each local 
optimum, making it much harder for individuals to escape. 
Thus, while combining ZDT4-R and ZDT4-G in a single 
multitasking environment, it is expected that ZDT4-G will 
experience faster convergence, thereby making refined genetic 
material continuously available for transfer to ZDT4-R.  

Our expectations are closely borne out by the numerical 
results depicted in Fig. 4. The figure shows that while solving 
ZDT4-R separately using NSGA-II, the IGD progresses 
slowly, which highlights the tendency of the population to get 
trapped in a local PF. Notably, when ZDT4-R and ZDT4-G 
are integrated, convergence characteristics are significantly 
improved due to the exploitation of shared genetic building 
blocks during evolutionary multitasking. This fact is aptly 
demonstrated by the accelerated convergence of the curve 
MO-MFEA(ZDT4-R**, ZDT4-G) in Fig. 4. 

It is also noteworthy that the convergence characteristic of 
the less challenging ZDT4-G function is not impeded by 
multitasking. In fact, the rapid convergence of the curve MO-
MFEA(ZDT4-R, ZDT4-G**), as shown in Fig. 4, implies that 
(at least in this case) evolutionary multitasking successfully 
aids both functions. In other words, the continuous exchange 
of genetic material between tasks allows the exploitation of 
both landscapes simultaneously, thereby enabling the 
population to effectively avoid obstacles to converge faster.  

 
 

 
 

Fig. 4. Comparing averaged convergence characteristics of the 
normalized IGD metric for instance (ZDT4-R, ZDT4-G). Note that 
the curve corresponding to a particular task in MO-MFO is denoted 

by appending asterisks (**) to the task label. 



 
 

Fig. 5. Comparing averaged convergence characteristics of the 
normalized IGD metric for instance (ZDT4-RC, ZDT4-A). Note that 
the curve corresponding to a particular task in MO-MFO is denoted 

by appending asterisks (**) to the task label. 

 
2) Instance 2: (ZDT4-RC, ZDT4-A) 

In the second multitasking instance, both constitutive 
optimization tasks are considered to be significantly 
challenging. ZDT4-RC is a constrained version of ZDT4-R, 
thereby adding to the complexity of the MOOP. Further, 
ZDT4-A introduces its own challenges. In particular, when the 
population is far from the true PF, the local optimum structure 
of the ZDT4-A function poses difficulties in accurately 
identifying the progress made by population members. This is 
because distantly located local PFs are found to have 
approximately the same objective function values. 

Based on the above-stated observations, the second 
instance provides an ideal setting to showcase the manner in 
which evolutionary multitasking facilitates a fruitful interplay 
between the objective function landscapes of constitutive 
tasks. Specifically, in (ZDT4-RC, ZDT4-A), the landscape of 
ZDT4-RC drives evolution during the initial stages (when the 
population is far from the true PF) while ZDT4-A takes over 
during the latter stages. As depicted in Fig. 5, the implicit 
genetic transfer lends a strong impetus to the evolutionary 
search process of both tasks, which explains the accelerated 
convergence characteristics achieved by the MO-MFEA. 

V. A REAL-WORLD CASE STUDY FROM THE COMPOSITES 

MANUFACTURING INDUSTRY 

Among humans, the inherent ability to multitask is 
brought to the fore on a daily basis while simultaneously 
dealing with a variety of responsibilities or tasks. Whenever a 
family of tasks possesses some underlying commonalities or 
complementarities, the process of multitasking provides the 
means for spontaneous exchange of information among them, 
which can often assist in improved task execution. In [21], this 
anthropic phenomenon was executed computationally in the 
form of evolutionary multitasking. For demonstrating the 
utility of this novel paradigm in real-world problem solving, 
we present an illustrative case study from the field of complex 
engineering design where the practice of manual adaption and 
re-use of relevant knowledge is routine. 

A. A Brief Introduction to Composites Manufacturing 

We consider two distinct composites manufacturing 
techniques that belong to the same family of rigid-tool Liquid 
Composite Molding (LCM) processes [52]. To elaborate, (a) 
Resin Transfer Molding (RTM) and (b) Injection/Compression 
Liquid Composite Molding (I/C-LCM) are popular techniques 
for high volume production of Fiber-Reinforced Polymer 
(FRP) composite parts, and are distinguished by the use of 
highly stiff (rigid) molds.  As the mold undergoes negligible 
deflection in response to the large internal forces originating 
from the combined effect of high injection pressure of liquid 
resin and compaction of the (solid) fibrous reinforcement, 
rigid-tool LCM processes find numerous applications in areas 
requiring high geometrical precision, such as the automobile 
and aerospace industries. However, in order to ensure 
feasibility of the manufacturing cycle, sophisticated peripheral 
equipment is often needed to equilibrate the large internal 
forces. Accordingly, two crucial objectives emerge in the 
optimal design of LCM processes: (a) maximization of 
throughput, and (b) minimization of estimated capital layout 
and running costs of the peripheral equipment. While the 
former objective is directly related to the manufacturing time 
per part, the second objective is estimated to be proportional to 
the magnitude of internal force [53], [54].  

Next, we briefly describe the two composites 
manufacturing processes under consideration in this study. 

 

 
 

Fig. 6. Workflow of RTM [52]: (a) placement of preform, (b) 
complete mold closure to desired part thickness, (c) high pressure 

liquid resin injection, (d) extraction of final part. 
 

1) Resin transfer molding 

The setup of the RTM process typically consists of a 
metallic mold machined according to the geometry of the FRP 
part to be manufactured. The first step is to place a preform of 
the fibrous reinforcement inside the mold cavity (as shown in 
step [a] of Fig. 6). The mold is then completely closed, fully 
compressing the preform to the final thickness of the part (step 
[b] in Fig. 6). Before liquid resin injection, the mold is heated 
to a desired (optimum) operation temperature. Then, a 
thermosetting resin is injected into the closed mold at high 
pressure until the resin reaches the vents (refer to step [c] in 



Fig. 6). To conclude, the filled mold is allowed to rest until the 
liquid resin sufficiently solidifies, followed by extraction of 
the final part (step [d] in Fig. 6). The optimization of the RTM 
cycle involves four design variables, namely, (a) speed of 
mold closure (Vclosure), (b) resin injection pressure (Pinj), (c) 
preheated mold temperature (Tmould), and (d) preheated resin 
temperature (Tresin). Thus, a design vector for the RTM cycle 
can be summarized as (Vclosure, Pinj, Tmould, Tresin). 
2) Injection/compression liquid composite molding 

While mold filling in RTM is generally viewed as a single 
phase process, the same occurs in a two-phase manner in I/C-
LCM. As illustrated in Fig. 7, during I/C-LCM, the mold is 
only partially closed prior to resin injection (as shown in step 
[b] in Fig. 7). After the required volume of liquid resin has 
been injected into the (partially) open mold (step [c] in Fig. 7), 
the mold is fully closed to the desired part thickness using a 
velocity-controlled mechanism (refer to step [d] in Fig. 7). 
Due to the inclusion of the in situ mold closure phase (step [d] 
in Fig. 7), the I/C-LCM cycle introduces two additional design 
variables, namely, (a) mold cavity thickness during resin 
injection (Hinj), and (b) velocity of final mold closure 

(𝑉𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑓𝑖𝑛𝑎𝑙
). Thus, a design vector for the I/C-LCM cycle can be 

summarized as (𝑉𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , Pinj, Tmould, Tresin, Hinj,𝑉𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑓𝑖𝑛𝑎𝑙
).  

B. The Multi-Objective Optimization Tasks 

The I/C-LCM cycle is often considered less competitive 
than RTM due to the practical difficulty of in situ mold 
compression (step [d] in Fig. 7) [55]. The difficulty arises 
particularly in the manufacture of FRP parts of large size 
and/or complex curvature. Furthermore, while the RTM cycle 
only requires simple perimeter clamps as peripheral 
equipment, I/C-LCM demands the equivalent of a hydraulic 
press. Nevertheless, a significant advantage of I/C-LCM can 
be that it allows notably faster manufacturing times as 
compared to RTM [52]. Thus, while determining a preferred 
manufacturing technique for a particular FRP composite part, 
the manufacturer is expected to carefully explore both 
processes in terms of practicality, setup and running costs, as 
well as the production rate. To this end, the optimization task 
corresponding to each manufacturing technique may be 
formulated as [54], 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑀𝑜𝑙𝑑 𝐹𝑖𝑙𝑙𝑖𝑛𝑔 𝑇𝑖𝑚𝑒, 𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑜𝑟𝑐𝑒), 
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐹𝑓𝑙𝑢𝑖𝑑 + 𝐹𝑓𝑖𝑏𝑟𝑒 ≤ 𝐹𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 .   (7) 

 

Here, Ffluid represents the internal force originating from resin 
pressure, Ffibre is the response of the compressed fibrous 
reinforcement, and Fcapacity is the maximum allowable internal 
force as dictated by the availability of peripheral equipment. 
The values of Ffluid, Ffibre, mold filling time, and peak internal 

force (for a given combination of input design variables) are 
obtained via a process simulation software [56], [57] which 
evaluates a set of partial differential equations (see Appendix) 
that govern the complex non-isothermal and chemically 
reactive resin flow through porous media. As is well known, 
such simulations are generally computationally time 
consuming, often taking several minutes for a single 
evaluation of sufficiently high fidelity. This feature presents a 
considerable roadblock to efficient optimization. 

 
 

Fig. 7. Workflow of I/C-LCM [52]: (a) placement of preform, (b) 
partial mold closure, (c) high pressure liquid resin injection, (d) in 

situ mold closure to desired part thickness, (e) extraction of final part. 

 
1) The potential utility of evolutionary multitasking in 

engineering design 

The described composites manufacturing problem provides 
an ideal setting for us to demonstrate the real-world utility of 
exploiting knowledge overlaps in evolutionary multitasking. 
Since RTM and I/C-LCM belong to the same family of rigid-
tool LCM processes and have several recurring design 
variables, one intuitively expects there to exist some 
underlying synergy between the two techniques, especially 
when dealing with the manufacture of the same FRP 
composite part. In particular, referring to Fig. 8, the common 
knowledge is expected to be (primarily) contained in the 
intersecting region of the phenotype space, i.e., in xoverlap = 
(Pinj, Tmould, Tresin). Note that despite the phenotypic overlap, 
the variables Pinj, Tmould, and Tresin need not assume identical 
numeric values with respect to both tasks. 

Situations such as the above, where distinct optimization 
tasks have several overlapping design variables, frequently 
occur in the conceptualization phase of most product/process 
development cycles [58]. Taking the current example of 
manufacturing process design, the fabrication of a product 
typically follows careful selection of a process that minimizes 
capital layout on equipment and running costs while 
maximizing throughput [59].  To this end, the set of all 
candidate processes must be thoroughly explored before 
making a (delayed) decision about the most suitable one [60]. 
Since different processes often exhibit several recurrent design 
variables, the designer instinctively anticipates there to exist 
some useful or adaptable knowledge that may be common 
across various design exploration exercises. Thus, in such 



situations, instead of having to investigate each candidate 
manufacturing process serially with manual knowledge 
adaptation, evolutionary multitasking provides the scope for 
knowledge refinement and exchange to occur spontaneously in 
the form of implicit genetic transfer. The resultant stimulus 
provided to the evolutionary search can significantly shorten 
the often exorbitantly time consuming design stage. 

 

 
Fig. 8. A summary of the 2-task environment in composites 

manufacturing. Here, x1 represents a solution in the phenotype space 
of the RTM cycle, and x2 represents a solution in the phenotype space 

of the I/C-LCM cycle. The interesting aspect of this multitasking 
instance is that there exists an overlap in the phenotype space, giving 

rise to synergies that can be exploited during multitasking. 
 

Through a comparative study between MO-MFEA and 
NSGA-II for the described composites manufacturing 
problem, we present a substantiation of our claims. 

C. Computational Results 

Herein, we carry out the simulation-based exploration (via 
multi-objective optimization) of two candidate manufacturing 
processes for a FRP composite disc (or plate). The plate 
diameter is 1 m, with a central injection hole of 2 cm (as 
shown in Fig. 9). The desired part thickness is 0.75 cm. A 
glass-fiber reinforced epoxy resin matrix is considered, with 
fiber volume fraction of the finished part to be 50%. Further, it 
is prescribed that the availability of peripheral equipment 
restricts Fcapacity to 30 tons (3E+05 N). For full details of 
material properties required for numerical simulations the 
reader is referred to [59]. We do not reproduce the data in this 
paper for the sake of brevity.  

 

 
 

Fig. 9. Plan of a FRP composite disc with a circular injection gate. 

TABLE II 

DESIGN VARIABLES AND EXTENT OF THE DESIGN SPACE FOR 

THE RTM AND I/C-LCM MANUFACTURING CYCLES 

Design Variable Lower Bound Upper Bound 𝑉𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙/𝑓𝑖𝑛𝑎𝑙
 1 mm/min 10 mm/min 

Pinj 1 MPa 10 MPa 

Tmould 293 K 348 K 

Tresin 293 K 348 K 

Hinj 0.8 cm 1 cm 

 
 
The extent of the design space for all design variables are 

provided in Table II (the table includes variables 
corresponding to the RTM cycle and the I/C-LCM cycle. In 
order to account for the computational expense of the 
numerical simulations, we consider a small population of N = 
50 individuals (in the MO-MFEA and the NSGA-II) which are 
evolved for a limited budget of 5000 solution evaluations. 
Recall that the MO-MFEA causes the evaluation budget to be 
(roughly) equally shared among constitutive optimization 
tasks, thereby limiting the available evaluations to 
approximately 2500 per task in this 2-factorial environment. In 
order to compare the convergence characteristics of the MO-
MFEA and NSGA-II, we make use of the normalized 
Hypervolume (HV) metric [45], as described in Fig. 10. The 
reference point is set to (220 sec, 33 tons) and the prior 
estimate of the ideal point is (18 sec, 13.5 tons). The IGD 
metric is no longer preferred in this case as the true PF is not 
known beforehand for real-world problems. Note that, in 
contrast to IGD, HV is expected to increase gradually for an 
evolving population, with higher HV values indicating 
superior convergence and diversity of the population. The 
values of the normalized HV metric reported hereafter are 
averages across 3 independent runs of the optimizers. 

 
 

 
Fig. 10. The normalized Hypervolume metric. 

 
Figs. 11 and 12 represent the evolution of the HV for the 

case of RTM and I/C-LCM, respectively. As is clear from 
both figures, when the two manufacturing processes are 
explored simultaneously in a single multitasking environment 



(as is the case in the MO-MFEA), the overall convergence 
characteristics can be significantly improved as opposed to 
tackling a single optimization task at a time with NSGA-II. 
Since the MO-MFEA has several identical features as the 
NSGA-II, the improved performance during multitasking can 
be credited majorly to the effective utilization of the 
underlying synergies between the two tasks. The resultant 
impetus to the evolutionary search enables higher HV values 
to be achieved within significantly fewer number of solution 
evaluations, as is revealed in Figs. 11 and 12. Thus, in typical 
engineering design exercises involving time consuming 
computational simulations, the potential for multitasking can 
greatly accelerate the design stage. 

 

 
 

Fig. 11. Comparing the evolution of the HV metric for the case of 
RTM. Note that the curve corresponding to a particular task in MO-

MFO is denoted by appending asterisks (**) to the task label. 

 

 
 

Fig. 12. Comparing the evolution of the HV metric for the case of 
I/C-LCM. Note that the curve corresponding to a particular task in 
MO-MFO is denoted by appending asterisks (**) to the task label. 

 
Finally, to conclude the real-world case study, we present 

the approximate PFs of the RTM and I/C-LCM cycle, as are 
obtained by the MO-MFEA, in Fig. 13. We find that the I/C-

LCM cycle does indeed provide the scope for considerably 
faster mold filling (thereby reducing the overall manufacturing 
time). On the other hand, the internal force that may be 
achieved during RTM is lower than what is achievable during 
I/C-LCM. This indicates that the capital layout on equipment 
and running cost of the RTM cycle may be lower. Armed with 
such information, the designer/manufacturer can make an 
informed a posteriori decision regarding the most suitable 
manufacturing process; that which presents an ideal balance 
between practicality, maximizing throughput, and minimizing 
cost of layout and running peripheral equipment. 

 

 
 

Fig. 13. Approximate PFs of the RTM and I/C-LCM cycles. 
 

VI. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

In this paper, we have presented an amalgamation of 
multi-objective optimization with the notion of evolutionary 
multitasking. We label the resultant paradigm as Multi-

Objective Multifactorial Optimization (MO-MFO), where 
each MOOP in a multitasking environment acts as an 
additional factor influencing the evolution of a single 
population of individuals. The mechanics of evolution are 
carried out via a new multitasking engine labelled as the 
Multi-Objective Multifactorial Evolutionary Algorithm (MO-
MFEA). It is contended that the process of multitasking in 
optimization opens doors to the so far underexplored 
possibility of harnessing the underlying commonalities 
between different optimization tasks. In fact, evolutionary 
multitasking is deemed to be particularly well suited for 
automated transfer, adaptation, and refinement of knowledge 
(in the form of encoded genetic material), without the need for 
any external human intervention.  

The claims stated above have been substantiated through 
computational studies on some benchmark MOOPs as well as 
on a real-world manufacturing process design problem from 
the composites industry. It is found that the phenomenon of 
implicit genetic transfer in multitasking can exploit the 
presence of transferrable knowledge between optimization 
tasks, thereby facilitating improved performance 
characteristics for multiple tasks at the same time. In the field 
of complex engineering design, which typically involves 
computationally expensive simulation-based optimization, the 



impetus provided to evolutionary search during multitasking 
can considerably shorten the exorbitantly time consuming 
design process.   

Although the results presented in the paper are 
encouraging and demonstrate the potential implications of 
evolutionary multitasking towards real-world problem solving, 
we acknowledge that the concept gives rise to several research 
questions that must be thoroughly studied in the future. For 
instance, it must be noted that evolutionary multitasking 
cannot always be expected to provide performance 
improvements. As has been discussed in the paper, while some 
genetic transfer may be useful, others may impede the search. 
The chance of predominantly negative transfer may be high if 
the unification scheme, decoding mechanism, and genetic 
operators are not appropriately designed to comply with the 
features of the underlying optimization tasks. While even the 
simple schemes used in this study have shown promising 
performance enhancements, there is indeed the scope for 
development of more advanced techniques that are better 
suited for multitasking under different circumstances. In 
particular, the design of unified representations and decoding 
mechanisms which incorporate domain knowledge and/or 
account for the associations between variables of different 
tasks are considered invaluable for consistently effective 
evolutionary multitasking.  

Finally, notice that in the real-world application presented 
in this paper, an explicit overlap is known to exist between the 
phenotype spaces of the optimization tasks, which can be 
exploited during multitasking. However, our methods can in 
principle be utilized for a variety of other real-world instances 
where the amount of overlap may be lower or less apparent. 
Admittedly, this may at times reduce the success rate of 
multitasking. However, according to the study carried out in 
[21], in many cases the multifactorial evolutionary algorithm 
was found to successfully harness hidden complementarities 
even among cross-domain optimization tasks (i.e., including 
continuous and combinatorial problems). From the standpoint 
of conceived cloud-based on-demand machine learning and 
optimization services [61]-[63], the implication of such a 
feature calls for further research attention. 

APPENDIX 

The filling of the mold with a liquid resin in a generic 
composites manufacturing process is governed by the 
following PDEs: 
 𝛻 .  (ℎ 𝑲𝜇   𝛻 𝑝) =  𝜕ℎ𝜕𝑡 ,       (8) 
 𝜌 𝐶𝑝 𝜕𝑇𝜕𝑡 +  𝜌𝑟𝐶𝑝𝑟(𝒖 . ∇𝑇)  =  ∇. (𝑘 ∇𝑇) + (1 − 𝑉𝑓) ∙ �̇�, (9) 

 𝜑 𝜕𝛼𝜕𝑡 + 𝒖. 𝛻𝛼 =  (1 − 𝑉𝑓) ∙  𝑅𝛼.    (10) 

 
Here, Eq. 8 represents Darcy’s Law that governs fluid flow in 
porous media, h is the thickness of the mold cavity, p is the 
local resin pressure, K is the reinforcement permeability 
tensor, t is the time, and ∂h/∂t represents the speed of mold 
closure. Note that while ∂h/∂t is zero throughout the RTM 
cycle, it is strictly negative for the I/C-LCM cycle during in 

situ mold compression. The viscosity μ of the resin is a 

function of the local temperature T and the degree of resin 
cure α. The relation may be captured by the following widely 
used rheological model,  
 𝜇 = 𝐴𝜇𝑒𝐸𝜇 𝑅 𝑇⁄ ( 𝛼𝑔𝛼𝑔− 𝛼)𝑎+𝑏𝛼

,     (11) 

 
where αg is the degree of cure at which resin gel conversion 
occurs, R is the universal gas constant, Eµ is the activation 
energy, and Aµ, a and b are other experimentally determined 
constants.  

Eq. 9 is a lumped energy equation which governs the 
temperature distribution within the mold. The material 
properties ρ, Cp, and k represent the average density, specific 
heat capacity, and thermal conductivity of the resin-fiber 
system, respectively. Further, u is the volume averaged resin 

flow velocity, Vf is the fiber volume fraction, and �̇� is a source 
term representing the thermal energy generated by the resin 
during its exothermic polymerization reaction.  

Finally, Eq. 10 models how the degree of resin conversion 
varies in the part during filling. Therein, Rα (= 𝑑𝛼 𝑑𝑡⁄ ) 
represents the rate of resin polymerization. Kamal and Sourour 
[64] proposed the following general model which is widely 
used to describe the polymerization reaction, 
 𝑑𝛼𝑑𝑡 =  (𝐴1 .  𝑒(−𝐸1 𝑅 𝑇⁄ ) + 𝐴2 .  𝑒(−𝐸2 𝑅 𝑇⁄ ). 𝛼𝑚1) . (1 −  𝛼)𝑚2, (12) 

 
where A1, A2, E1, E2, m1, and m2 are experimentally determined 
constants.  

For complete details on the material properties and values 
of empirical constants used in the composites manufacturing 
case study, the reader is referred to [59]. 
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