
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 1

Multiobjective Neural Network Ensembles based
on Regularized Negative Correlation Learning

Huanhuan Chen, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Negative Correlation Learning (NCL) [1], [2] is a neural network ensemble learning algorithm which introduces a correlation
penalty term to the cost function of each individual network so that each neural network minimizes its mean-square-error (MSE) together
with the correlation. This paper describes NCL in detail and observes that the NCL corresponds to training the entire ensemble as a
single learning machine that only minimizes the MSE without regularization. This insight explains that NCL is prone to overfitting the
noise in the training set. The paper analyzes this problem and proposes the multiobjective regularized negative correlation learning
(MRNCL) algorithm which incorporates an additional regularization term for the ensemble and uses the evolutionary multiobjective
algorithm to design ensembles. In MRNCL, we define the crossover and mutation operators and adopt nondominated sorting algorithm
with fitness sharing and rank-based fitness assignment. The experiments on synthetic data as well as real-world data sets demonstrate
that MRNCL achieves better performance than NCL, especially when the noise level is non-trivial in the data set. In the experimental
discussion, we give three reasons why our algorithm outperforms others.

Index Terms—Multiobjective algorithm, Multiobjective Learning, Neural Network Ensembles, Neural Networks, Negative Correlation
Learning, Regularization.

�

1 INTRODUCTION

ENsemble of multiple learning machines, i.e. a group
of learners that work together as a committee, has

attracted a lot of research interests in the machine
learning community since it is considered as a good
approach to improve the generalization ability [3]. Most
ensemble learning algorithms train the individual neural
network independently or sequentially, so the advan-
tages of interaction and cooperation among the individ-
ual networks are not exploited. However, Liu and Yao
[1], [2] have shown that the cooperation with ensemble
members is useful for obtaining better ensembles. This
new approach opens a new research area where the
design and training of the different networks can be
interdependent.

Negative Correlation Learning (NCL) [1], [2] empha-
sizes the interaction and cooperation among individual
neural networks in the ensemble and has performed
well on a number of empirical applications, including
regression problems [4] and classification problems [5].
NCL introduces a correlation penalty term to the cost
function of each individual network so that each neural
network minimizes its MSE together with the correlation
with the ensemble.

According to the definition of NCL, it seems that
the correlation term in the cost function acts as the
regularization term. However, we observe that the train-

• The authors are with The Centre of Excellence for Research in Computa-
tional Intelligence and Applications (CERCIA), School of Computer Sci-
ence, University of Birmingham, Birmingham B15 2TT, United Kingdom
(email: {H.Chen, X.Yao}@cs.bham.ac.uk).

Manuscript received May 19, 2008; revised March 19, 2009 and July 5, 2009;
accepted September 22, 2009.

ing of NCL with the penalty coefficient λ setting to 1
corresponds to treating the entire ensemble as a single
estimator and considering only the empirical training
error without regularization. In this case, NCL only re-
duces the empirical MSE of the ensemble, and it pays less
attention to regularizing the complexity of the ensemble,
which leads NCL to be prone to overfitting the noise in
the training set. Similarly, setting a zero or small positive
λ corresponds to independently training these estimators
without regularization and in this case, NCL is prone to
overfitting as well.

NCL can use the penalty coefficient λ to explicitly alter
the emphasis on the MSE and correlation portion of the
ensemble and thus alleviate the overfitting problem to
some extent. However, NCL could not totally overcome
the overfitting problem by tuning this parameter without
regularization, especially when dealing with data with
non-trivial noise, which will be implicitly evidenced by
the empirical work on multi-objective implementation
of NCL in this paper. The regularization term is espe-
cially beneficial to NCL since large weights are usually
connected with near linear dependence among groups of
units in the network, negative correlation learning would
seem to potentiate the appearance of large weights in the
ensemble.

Another problem with NCL is that the parameter λ,
which controls the trade-off between empirical error and
correlation, needs to be tuned. Although this parameter
is crucial to the performance of NCL, there is no formu-
lated approach to select the parameter. Optimization of
the parameter usually involves cross validation, whose
computation is extremely expensive.

In order to address these problems, this paper pro-
poses a multiobjective regularized negative correlation

Digital Object Indentifier 10.1109/TKDE.2010.26 1041-4347/10/$26.00 © 2010 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 2

learning (MRNCL) algorithm. MRNCL incorporates an
additional regularization term for the ensemble, which
can be decomposed into different parts for each network.
By incorporating an additional regularization term, the
training of an individual neural network in MRNCL
involves minimization of the three terms: empirical
training error term, correlation penalty term and the
regularization term.

However, how to balance the tradeoff among the three
terms is crucial for the generalization performance of
ensemble. Poor generalization occurs if the tradeoff is
unbalanced. The usual approach is to assign coefficient
parameters to these terms and choose the appropriate
coefficients based on tedious trial-and-error processes.

The idea of the paper is the introduction of an evo-
lutionary multiobjective algorithm to search the best
tradeoff among the three terms: the empirical error, cor-
relation and regularization. Evolutionary multiobjective
algorithms are well suited to search the optimal trade-
off among different objectives by parallelizing the search
using a population of networks and biasing toward the
Pareto front and, at the same time maintaining popu-
lation diversity to obtain as many candidate solutions
as possible. These properties are especially important in
ensemble design.

Since the regularization term is considered as one
objective in MRNCL, the networks with appropriate reg-
ularization are preferable in MRNCL. Thus the obtained
ensemble is regularized and is more robust to noise in
the training set.

MRNCL algorithm not only addresses the issues con-
cerned with NCL, but also provides the following advan-
tages: (1) Being a multiobjective algorithm, the approach
is able to produce a diverse ensemble. Some individuals
are good at minimizing the training error; some pay
more attention to cooperation and the others manage to
control the complexity. (2) The parameters of individual
networks can be effectively obtained in the evolutionary
multiobjective algorithm. (3) Due to the regularization
term, the obtained ensemble is regularized and is more
robust to noise in the training set. (4) There is no
need to weigh the different objectives by optimizing the
coefficient parameters.

The key contributions of this paper include a) we point
out that NCL is prone to overfitting and verify this claim
using theoretical and extensive empirical work; b) we
propose to add an additional regularization term to con-
trol the complexity of the ensemble; c) we implement the
algorithm using evolutionary multi-objective algorithm
and d) we carry out extensive experimental studies to
evaluate and compare MRNCL with some existing ones.

The rest of this paper is organized as follows. After
the background description in Section 2, the proposed
algorithm is introduced in Section 3. Experimental re-
sults and discussions are presented in Section 4. Finally,
Section 5 concludes the paper.

2 BACKGROUND

Neural network ensembles [3] are a learning paradigm
where a collection of neural networks is trained for the
same task. There have been many ensemble methods
studied in the literature, such as Bagging [6], Boosting
[7], ensemble of features [8] and so on. Most ensemble
learning algorithms train the individual neural network
independently or sequentially.

Negative correlation learning [1] [2] is a successful
neural network ensemble learning algorithm. It is dif-
ferent from previous works such as bagging or boost-
ing, since NCL emphasizes interaction and cooperation
among the individual learners in the ensemble by using
an unsupervised penalty term in the error function
to produce biased individuals whose errors tend to be
negatively correlated.

In 2000, Abbass [9] firstly proposed a memetic mul-
tiobjective evolutionary approach to evolve artificial
neural networks. Two objectives are considered in this
algorithm. One is to minimize the error and the other
is to minimize the number of hidden units, which can
be thought as a kind of regularization measure. This
method firstly proposed the idea to consider both regu-
larization and accuracy in the multiobjective algorithm
and to combine the individuals in the pareto front for
final predictions.

In 2001, McKay et al. [10] presented an alternative anti-
correlation measure, root-quartic negative correlation
learning (RTQRT–NCL) and used the anti-correlation
in training neural network ensembles. The empirical
results showed significant improvements for both arti-
ficial neural networks (ANN) and genetic programming
(GP) learning machines. They also derived a theoretical
explanation of the improved performance of RTQRT–
NCL in larger ensembles. Later, Abbass [11] employed
a multiobjective evolutionary algorithm and a gradient-
based local search method to train neural networks
and simultaneously optimize their architecture. A neural
network ensemble can be generated by combining the
networks in the final generation.

In 2004, Jin et al. [12] used a multi-objective evolu-
tionary algorithm to optimize the accuracy and regular-
ization of neural networks. As a natural by-product of
the multi-objective evolutionary approach to neural net-
work learning, neural network ensembles can be easily
constructed using the obtained networks with different
levels of model complexity.

Islam et al. [13] took a constructive approach to
building the ensemble, starting from a small group of
networks with a minimal architecture. The networks are
all partially trained using NCL. The approach can au-
tomatically determine weights, network topologies and
ensemble membership. In the following work, Brown
et al. [14] formalized NCL, providing a statistical inter-
pretation of its success. Furthermore, for estimators that
are linear combinations of other functions, they derive
an upper bound on the penalty coefficient, based on

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 3

properties of the Hessian matrix.

Diverse and accurate ensemble learning algorithm
[15], [16] is an approach that combines evolving neural
network and multiobjective algorithm. In this paper,
adaptive Gaussian variance is employed for generating
the offspring and memetic pareto artificial neural net-
work algorithm [9] is used for evolving neural networks.
Finally, diverse and accurate classifiers can be achieved
through these procedures. Oliveira et al. [17] use mul-
tiobjective evolutionary algorithms to generate an en-
semble to solve the handwritten recognition problem.
This algorithm produces a set of classifiers with a small
number of features and a low error rate by evolving
these classifiers with different randomly chosen features.
The combination weights of ensemble are obtained by
a multiobjective algorithm with two different objectives:
diversity and accuracy.

Cooperative coevolution of artificial neural network
ensembles [18] combines the coevolution of different
subpopulations of diverse networks and the evolution
of the combination weights of these networks. In this al-
gorithm, the cooperation with the rest of the population
is defined as one objective, and each network is evalu-
ated in the evolutionary process using a multiobjective
evolutionary method. Thus, the algorithm encourages
the collaboration among individuals and improves the
combination schemes for the ensemble.

Chen et al. [19] propose to incorporate bootstrap of
data, random feature subspaces [8] and evolutionary
algorithms with NCL to automatically design accurate
and diverse ensembles. The idea promotes the diversity
within the ensemble and simultaneously emphasizes the
accuracy and cooperation in the ensemble. Dam et al.
[20] apply the NCL algorithm to train the neural network
ensemble in learning classifier systems, where NCL is
shown to improve the generalization of the ensemble.

In [21], Chen and Yao propose the regularized nega-
tive correlation learning (RNCL) algorithm with λ set
to 1 and make use of Bayesian inference to infer the
explicit regularization parameters. In this paper, we
formulate the regularized negative correlation learning
as a multi-objective evolutionary learning problem. A
multi-objective evolutionary algorithm is used to search
effectively the best trade-off among these objectives
without searching for the combination parameters to
weigh these objectives. Compared with RNCL by gra-
dient descent with Bayesian inference in [21], MRNCL
often achieves a little better performance by considering
an additional weighting coefficient λ of the correlation
term. The potential advantages of the multiobjective
approach include: It enables us to observe the interaction
and trade-off among different objectives; and it enables
us to add or remove an objective easily without changing
the overall algorithm. However, the benefits come with
the price, more computational time to train MRNCL.

3 MULTIOBJECTIVE REGULARIZED NEGATIVE
CORRELATION LEARNING

This section analyzes NCL and its potential risk of over-
fitting. In order to address the problem, a multiobjective
regularized NCL algorithm is proposed.

3.1 Negative Correlation Learning

NCL introduces a correlation penalty term to the error
function of each individual network in the ensemble so
that all the networks can be trained interactively on the
same training data set.

Given the training set {xn, yn}N
n=1, NCL combines M

neural networks fi(x) to constitute the ensemble.

fens(xn) =
1
M

M∑
i=1

fi(xn).

In training network fi, the cost function ei for network
i is defined by

ei =
N∑

n=1

(fi(xn) − yn)2 + λpi, (1)

where λ is a weighting parameter on the penalty term
pi:

pi =
N∑

n=1

⎧⎨
⎩(fi(xn) − fens(xn))

∑
j �=i

(fj(xn) − fens(xn))

⎫⎬
⎭

= −
N∑

n=1

(fi(xn) − fens(xn))2 . (2)

The first term on the right-hand side of (1) is the
empirical training error of network i. The second term
pi is a correlation penalty function. The purpose of
minimizing pi is to negatively correlate each network’s
error with the error for the rest of the ensemble. The λ
parameter controls a trade-off between the training error
term and the penalty term. With λ = 0, we would have
an ensemble with each network trained independently.
If λ is increased, more and more emphasis would be
placed on minimizing the penalty.

Based on the individual error function, Equation (1),
the error function for the ensemble can be obtained by
averaging these individual network errors ei. If λ = 1,
the average error E of all the individual networks ei is
obtained as follows:

E

=
1
M

M∑
i=1

ei

=
1
M

N∑
n=1

M∑
i=1

{
(fi(xn) − yn)2 − (fi(xn) − fens(xn))2

}

=
N∑

n=1

(fens(xn) − yn)2. (3)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 4

As explained in [1], minimizing each ei individually
also minimizes E. According to Equation (3), the error
function of NCL is equivalent to training a single estima-
tor fens(xn) instead of training each individual network
separately. It is also observed that NCL only minimizes
the empirical training MSE

∑N
n=1(fens(xn) − yn)2 but

does not regularize the complexity of the ensemble. As
discussed in Section 1, only minimizing MSE leads to
overfitting. In Section 4, we will present the empirical
evidence showing that NCL is prone to overfitting1.

In order to improve the generalization ability of NCL,
the next section presents a new multiobjective regular-
ized NCL algorithm.

3.2 Multiobjective Regularized Negative Correlation
Learning (MRNCL)
Following the traditional strategy to avoid overfitting,
a regularization term is incorporated into the ensemble
error function:

Eens =
1
M

N∑
n=1

M∑
i=1

(fi(xn) − yn)2 − (4)

λ
1
M

N∑
n=1

M∑
i=1

(fi(xn) − fens(xn))2 +
M∑
i=1

αiwT
i wi,

where wi = (wi,1, · · · , wi,ni
)T is the weight vector of

neural network i and ni is the total number of weights
in network i.

This regularization term
∑M

i=1 αiwT
i wi is the weight

decay [22] term for the entire ensemble. In order to train
each neural network with its regularization, we have to
decompose the regularization term into M parts, each
part for a network. The error function for network i can
be obtained as follows:

ei =
1
M

N∑
n=1

(fi(xn) − yn)2 −

λ

M

N∑
n=1

(fi(xn) − fens(xn))2 + αiwT
i wi. (5)

Comparing this error function with the cost function
of NCL, Equation (1), MRNCL imposes a regularization
term on every individual neural network and MRNCL
needs to optimize both the correlation coefficient λ and
the regularization parameters αi.

According to Equation (5), the training of an individ-
ual neural network in MRNCL involves minimization
of three terms: empirical training error term, correlation
penalty term and the regularization term. The general-
ization of ensemble depends on the tradeoff among the
three terms and how to balance the tradeoff among the
three terms for different problems becomes an impor-
tant problem. This paper makes use of an evolutionary
multiobjective algorithm to balance the tradeoff.

1. We also notice that NCL performs well in the previous studies and
we suppose that those data sets used by NCL in the previous studies
do not have large noise.

The formulation of MRNCL is not heuristic but based
on the Bayesian statistical model. According to Ap-
pendix A, MRNCL is an application of the Bayesian
framework in an ensemble system. The squared weight
decay term, i.e. the regularization term, corresponds to
the prior of the weight vector in the ensemble. This is
the reason why we only include the squared weight
decay term as the regularization term in the multiob-
jective algorithm. This intrinsic Bayesian characteristic
of MRNCL potentially facilitates the incorporation of
Bayesian methods in evolutionary multiobjective algo-
rithms to improve the performance of MRNCL.

According to Equation (5), MRNCL defines the follow-
ing three objectives.

• Objective of Performance
∑N

n=1(fi(xn) − yn)2

This objective measures the empirical mean square
error based on the training set.

• Objective of Correlation −∑N
n=1(fi(xn)−fens(xn))2

This correlation term measures the amount of vari-
ability among the ensemble members and this term
can also be treated as the diversity measure [23].
From both theoretical and experimental results it
has been shown that, if the individual networks
in an ensemble are unbiased, the most effective
combination of them occurs when the errors of
the individual networks are negatively correlated.
This objective encourages individual networks to
negatively correlate their errors and thus helps to
generate a diverse ensemble.

• Objective of Regularization wT
i wi =

∑
j w2

j

Based on the regularization theory [24], the weight
decay term [22] is employed to punish large
weights. The weight decay term causes the weights
to converge to smaller absolute values than they
otherwise would. The regularization term helps the
generalization ability of a neural network because
large weights can hurt generalization in two dif-
ferent ways: a) excessively large weights leading
to hidden nodes can cause the output function to
be too rough, possibly with near discontinuities.
Excessively large weights leading to output nodes
can cause wild outputs far beyond the range of
the data if the output activation function is not
bounded to the same range as the data. b) Large
weights can cause excessive variance of the output
[25]. The regularization term is beneficial to NCL
since large weights are usually connected with near
linear dependence among groups of nodes in the
network, and NCL would seem to potentiate the
appearance of large weights in the ensemble.

3.3 Component Networks and Evolutionary Opera-
tors

The component network in the ensemble is a radial basis
function (RBF) network. The output of RBF network is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 5

computed as a linear combination of K basis functions

f(x) =
K∑

k=1

wkφk(x) = ΦT w,

where w = (w1, · · · , wK)T denotes the weight vector in
the output layer and Φ = (φ1, · · · , φk) is the vector
of basis functions. The Gaussian basis functions φk are
defined as

φk(x) = exp(
‖ x − μk ‖2

2σ2
k

),

where μk and σk denote means and widths of the
Gaussian, respectively. The training of RBF network is
separated into two steps. In the first step, the means μk

are initialized with randomly selected data points from
the training set and the variances σk are determined
as the Euclidean distance between μk and the closest
μi(i �= k, i ∈ {1, · · · , K}). Then in the second step
we perform gradient descent in the regularized error
function (weight decay)

min e =
1
2

N∑
n=1

(yn − f(xn))2 + α
K∑

k=1

w2
k. (6)

In order to fine-tune the centers and widths, we si-
multaneously adjust the output weights, the RBF centers
and variances. Taking the derivative of Equation (6) with
respect to RBF means μk and variances σ2

k we obtain

∂e

∂μk
=

N∑
n=1

(f(xn) − yn)
∂f(xn)

∂μk
, (7)

with ∂f(xn)
∂μk

= wk
xn−μk

σ2
k

φk(xn) and

∂e

∂σk
=

N∑
n=1

(f(xn) − yn)
∂f(xn)

∂σk
, (8)

with ∂f(xn)
∂σk

= wk
‖x−μk‖2

σ3
k

φk(xn). These two derivatives
are employed in the minimization of Equation (6) by
scaled conjugate gradient descent, where we always
compute the optimal output weights in every evaluation
of the error function. The optimal output weights w can
be computed in closed form by

w = (ΦT Φ + αI)−1ΦT y, (9)

where y =(y1, · · · , yn)T denotes the output vector, and
I is an identity matrix.

We use RBF networks as the base learners because of
the following advantages. 1) If the centers and widths of
the basis functions have been chosen, the optimal output
weights w can be efficiently computed in closed form,
which means the performance mostly depends on the
selection of basis functions. 2) It is reasonable to define
crossover and mutation operators in structural-evolving
RBF networks by tuning these basis functions.

Based on the above reasons, the crossover and muta-
tion operators for RBF networks are described as follows.

• Crossover Operator

Since the performance of a RBF network mostly
depends on the basis functions, i.e. the centers and
the widths, the crossover operator is defined to
exchange the basis functions of two RBF networks.
Many crossover techniques exist in the literatures,
such as one-point crossover, two-point crossover
and “cut and splice” crossover [26]. In a RBF net-
work ensemble, as different networks may have
different numbers of basis functions, the “cut and
splice” approach has been adopted by randomly
choosing separate crossover points for two RBF
networks and swap their basis functions beyond
those points.

• Mutation Operator
This paper defines two structural mutation opera-
tors for RBF networks.

1) Deleting one basis function. Randomly select
one basis function and delete it.

2) Adding one basis function. The center of the
new basis function is determined by a ran-
domly selected data point from the training set.
Then, the width of the basis function is chosen
as the minimal distance from other centers in
this RBF network.

As the crossover and mutation operations may not
generate the optimal combination of basis functions,
in order to fine-tune the center, width and the weight
vector, we simultaneously adjust the output weights, the
RBF centers and widths based on Equations (7), (8) and
(9). This procedure is also called parametric mutation
[18], which modifies the parameters of the network with-
out modifying its topology. This parametric mutation is
performed for a few iterations (in our experiments, only
one scaled-conjugate-gradient update is employed).

3.4 Multiobjective Evolution of Ensemble and Rank-
based Fitness Assignment

In this paper, we will consider a population of indi-
viduals who have three objectives and a multiobjective
algorithm is employed to select a set of best classifiers
with respect to the three objectives. There are a lot of
multiobjective algorithms available and the selection of
the most suitable algorithm is not a trivial task [27].

In this paper, nondominated sorting with fitness shar-
ing [28] and rank-based fitness assignment are em-
ployed. The idea underlying nondominated sorting is
the use of a ranking selection method to emphasize
current nondominated individuals and a niching method
to maintain diversity in the population. Nondominated
sorting is based on layers of Pareto front, which ranks
the individuals in the population by fronts that lead to
fast convergence to Pareto front in the final population
and the diversity is maintained by a niching method in
the population.

The nondominated sorting algorithm consists of two
stages: One is to obtain the nondominated fronts of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 6

different layers and every individual of these fronts is as-
signed an equal dummy fitness. The algorithm used for
obtaining the nondominated set of solutions compares
the individuals pairwise and marks as dominated all the
individuals that are dominated by at least one member
of the population. The second is that the members of
every front share their fitness [29] with the constraints
that none of the members of a front gets a higher fitness
than any of the members of the previous front.

Since the dummy fitness assigned by nondominated
sorting is raw, sometimes the range of the raw fitness
is too large, leading to the situation that some networks
reproduce too rapidly, taking over the population too
quickly, and preventing the evolutionary algorithm from
searching other areas of the solution space. This paper
employs rank-based fitness assignment to reassign the
fitness to the networks because rank-based fitness as-
signment behaves in a more robust manner than pro-
portional fitness assignment. In rank-based fitness as-
signment, the population is sorted according to the raw
fitness values. The fitness assigned to each individual
depends only on its position in the individuals’ ranking
and not on the actual raw fitness value.

Assume the best individual in a population ranks the
first. The probability of selecting individual i can be
calculated as follows [30]:

pi =
1
M

(ηmax − (ηmax − ηmin)
i − 1

M − 1
)

where M is the population size, ηmax and ηmin are two
parameters.

ηmax ≥ ηmin ≥ 0,

ηmax + ηmin = 2.

In order to encourage diversity in the population, our
algorithm uses the recommended values [30], ηmax = 1.1
and ηmin = 0.9, to have an appropriate selection pres-
sure. Since we compare the children with the parents
before being admitted into the population, a large selec-
tive pressure will lead some individuals to reproduce
too rapidly and thus limits the search ability of the
evolutionary algorithm. It is the reason why we use
ηmax = 1.1 and ηmin = 0.9 in our paper.

3.5 Algorithm Description
The details about Multiobjective Regularized Negative
Correlation Learning (MRNCL) are summarized in Fig-
ure 1. Note that in the crossover and mutation oper-
ations, the comparison of the child network with the
parent network is conducted as follows.

1) Evaluate the three objective values of the child
network.

2) Include the child network into the population, then
apply non-dominant sorting with fitness sharing
algorithm to obtain the raw fitness values2 of the

2. The raw fitness values depend on their ranked layers (fronts)
in the population. If they are in the same layer (front), e.g. they are
both non-dominant solutions, the one in less crowded area will receive
greater fitness according to the fitness sharing algorithm.

child network and the parent network.
3) Compare the raw fitness values and keep the better

one.
To determine the time to stop evolution, we selected

three threshold values (t1 = t2 = t3 = 10−3 in this paper)
and compare the thresholds with the differences between
the old minimal objective values with the new minimal
objective values. If all the differences are lower than the
thresholds, the algorithm will be terminated. Otherwise,
continue. The maximal number of generations is 200.

4 EXPERIMENTAL STUDIES

In this section we present the experimental results of
MRNCL and MNCL, which employs a multiobjective
algorithm (two objectives: training error and correlation
term) to train negative correlation ensemble. We use
MNCL instead of gradient-based NCL because MRNCL
uses multiobjective algorithm and it is fair and natural
to employ the multiobjective algorithm to train NCL.

In order to compare our algorithm with previous work
on multi-objective ensemble learning, we have obtained
the source code from Dr. Yaochu Jin and used the same
parameters as their algorithm in [12]. This algorithm
evolves multi-layer perception (MLP) using two objec-
tives (training error and regularization, i.e. number of
connections in MLP) and we name the algorithm as
multiobjective neural network (MoNN) in this paper.

In this section, firstly, we present experimental results
of MRNCL and other algorithms on four synthetic clas-
sification problems in order to understand the behavior
of these algorithms. We also design two experiments
with different noise levels to study the characteristics
of MRNCL, MNCL and MoNN on noisy data. Secondly,
we carry out extensive experiments on 16 benchmark
classification data sets to compare the performance of
MRNCL, MNCL and other classifiers.

4.1 Experimental Setup
In our experiments, radial basis function (RBF) networks
are used as the individual classifiers. The number of
hidden nodes is randomly selected but restricted in the
range of 5 to 15. The parameters in the evolutionary
algorithm are set to: the population size M (100), the
number of crossover in one generation 20, the number
of mutation in one generation 10, the number of genera-
tions (200), the parameter of fitness sharing σshare (0.2).
These parameters are chosen after some preliminary
experiments. They are not meant to be optimal.

In the experiments, we restrict the minimal hidden
nodes of RBF networks as 3 in MRNCL and MNCL to
discourage improperly simple networks.

4.2 Synthetic Data Sets
As the first experiment, we demonstrate the results of
MRNCL on four synthetic data sets in two dimensions
in order to illustrate graphically the decision boundaries.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 7

1. Generate an initial RBF network population: Generate an initial population of M RBF Net-
works, the number of hidden nodes for each network, ni(i = 1, ..., M) is specified randomly
restricted by the maximal number of hidden nodes. The centers μi,k are initialized with ran-
domly selected data points from the training set and the width σi,k are determined as the
Euclidian distance between μi,k and the closest μi,j(j �= k, j ∈ {1, · · · , ni}).

2. Train the initial RBF network population and recode the three objective values for each net-
work.

3. Apply nondominated sorting with rank-based fitness assignment algorithm to obtain the rank-
based fitness.

4. For 1 to maximal generation

• Perform a desired number of crossover operations.

Choose parents based on roulette wheel selection algorithm and perform crossover. Then
perform a few number of updates for weight, center and width. Compare the children
with parents and keep the better ones.

• Perform a desired number of mutation operations.

Choose parents based on roulette wheel selection algorithm and perform mutation. Then
perform a few number of updates for weight, center and width. Compare the children
with parents and keep the better ones.

• Apply nondominated sorting algorithm and obtain the rank-based fitness for the new
population.

5. Combine all the classifiers in the population to form the ensemble. (The members of ensemble
have equal weights)

Fig. 1. Multiobjective Regularized Negative Correlation Learning Algorithm

These four data sets are as follows (1) synth is gen-
erated from mixtures of two Gaussians by [31]. (2)
Overlap comes from two Gaussian distributions with
equal covariance, and is expected to be separated by a
linear plane. (3) Bumpy comes from two equal Gaussians
but being rotated by 90 degrees. Quadratic boundaries
are required. (4) Relevance is a case where only one
dimension of the data is relevant to separating the data.

In Figure 2 we present a comparison of MRNCL,
MNCL and MoNN. We can observe a similar perfor-
mance of MRNCL and MNCL in the case of Relevance.
Since the data set is noise-free, MRNCL and MNCL suc-
cessfully separate the two classes. In this data set, MoNN
generates two linear lines with unnecessary training error.

The reason is that MoNN can reduce the regularization
by deleting connections and nodes of MLP while it
could not always reduce the MSE due to the intrinsic
complexity of the data set. In the end, MoNN tends to
select the networks with small regularization and thus
over-regularizes the ensemble in some cases.

The situation is similar in the case of Overlap. Since it is
difficult for RBF networks, which are used as component
learners in MRNCL and MNCL, to obtain linear decision
boundaries [32], MRNCL produces near-linear boundary,
while the boundary of MNCL is a little twisty. MoNN

generates a linear line according to the expectation to
separate the data set.

We observe that MRNCL gives more accurate results
in other cases. In the cases of Synth and Bumpy, MRNCL
produces smooth boundary and disregards the outliers
in the training points. In the case of Synth, MoNN tries to
use a near-linear boundary to separate the non-linear data
set consisted of four Gaussians. The generated model is
over-regularized and thus degrades the performance. In
the case of Bumpy, although the decision boundary of
MoNN is smooth, it does not generate an appropriate
boundary according to expectation. (The optimal bound-
ary is a quadratic one.) Since the noise level is large
because of these overlapping points in the case of Bumpy,
MNCL does not generalize and produces the twisty
boundary. In the case of Synth, MNCL concentrates on
several outliers and generates a corner in the boundary.

Figure 3 illustrates the mean values of these three ob-
jectives in different generations. The arrow points from
the first generation to the final generation. According
to these figures, MRNCL algorithm tries to minimize
the three objectives. However, based on the analysis in
Section 3, the empirical training error is negatively cor-
related with the correlation term. Instead of minimizing
the three objectives simultaneously, MRNCL seeks to

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 8

(a) Synth (b) Overlap

(c) Bumpy (d) Relevance

Fig. 2. Comparison of MRNCL, MNCL and MoNN on four
synthetic classification data sets. Two classes are shown
as crosses and dots. The separating lines were obtained
by projecting test data over a grid.

(a) Synth (b) Overlap

(c) Bumpy (d) Relevance

Fig. 3. Illustration of the mean value of these three
objectives in different generations. The arrow points from
the beginning (Generation = 1) to end (Generation = 100).
The gray scale indicates generations.

find a good balance between the two objectives, training
error and the correlation term, and MRNCL always
minimizes the third objective, the regularization term,
in the evolutionary algorithm.

In order to illustrate the effect of negative correlation
term in these algorithms, we employ a popular diversity
measure, Q statistics3 [33], and measure the diversity

3. The definition and calculation of Q statistics have been described
in Appendix B.

(a) Synth (b) Overlap

(c) Bumpy (d) Relevance

Fig. 4. Illustration of diversity (measured by a commonly-
use diversity measure Q statistics) during the evolution.

in each generation for these three algorithms. The re-
sults are presented in Figure 4. In this figure, MRNCL
and MNCL encourage diversity4 in the evolution while
MoNN does not pay much attention to increasing diver-
sity in the evolution. In Figure 4(d), since Relevance is
a noise-free data set, most networks concentrate on the
training error and MRNCL does not need more diversity
to classify this data set. This indicates that MRNCL
can choose the best tradeoff among these objectives for
different problems. Based on the formulation of MRNCL
and the observations, the main function of the negative
correlation term is to encourage diversity in the ensem-
ble.

The 3D view of the last population is illustrated in
Figure 5. The negative correlation between the empirical
error term and the correlation term has been confirmed
by these figures. The final population distributes a good
tradeoff between these three objectives for all the data
sets. According to this figure, we also notice that almost
80%-90% of the solutions in the last generation are non-
dominated solutions. In Section 4.5, we will present
the performance of ensembles by using only the non-
dominated solutions in MRNCL.

4.3 Experimental Results on Noisy Data
In order to explore the behavior of MRNCL and other
multi-objective learning methods with different noise
levels, we conduct two additional experiments. In the
experiments, we select two data sets: synth and banana5

.
To change the noise level, we randomly select different

percentages of data points and reverse their labels. We

4. Small Q statistics indicates large diversity.
5. http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 9

(a) Synth (b) Overlap

(c) Bumpy (d) Relevance

Fig. 5. 3D view of the last population with three objec-
tives: training error, regularization and correlation for four
synthetic classification data sets.

run 100 times and report the average results in Figure
6. Figure 6(a) and Figure 6(b) visualize the decision
boundaries of MRNCL, MNCL and MoNN with 20%
noise.

Though the noise level is high, MRNCL produces
smooth boundaries. MNCL tries to minimize the training
error and it does not generalize well. MoNN generates
an over-smooth (inappropriate) decision boundary dis-
regarding the data distribution for the synth data set.
Both boundaries are biased from the optimal boundary.

We also plot the curves, Figures 6(c) and 6(d), of
classification error vs. noise level for these two data
sets. In these two figures, MRNCL is a little better in
the beginning, but as the noise level increases, MRNCL
significantly outperforms MNCL and MoNN.

In both data sets, MoNN exhibits similar curves in
Figures 6(c) and 6(d). In the beginning, the added noise
is very small. MoNN over-regularized the ensemble and
the obtained performance is worse than MRNCL. When
the noise levels are increased (less than 0.1∼0.15), MoNN
achieves a similar performance to MRNCL since the
large regularization in MoNN helps. However, with the
increase of noise levels, MoNN could not be compa-
rable to MRNCL due to the large regularization and
small diversity in the obtained ensembles. The results of
MRNCL are promising on these classification problems.
After the analysis with synthetic data sets, the next
section presents the results of the real-world benchmark
problems.

4.4 Benchmark Results

In order to evaluate the performance of MRNCL, we
compare MRNCL, MNCL and other algorithms on 16

(a) Synth with 20% noise (b) Banana with 20% noise

(c) Synth with different noise
Levels

(d) Banana with different noise
Levels

Fig. 6. Comparison of MRNCL, MNCL and MoNN on
two classification data sets. Two classes are shown as
crosses and dots. The separating lines were obtained
by projecting test data over a grid. In Figure 6(a) and
6(b), these decision boundaries are MRNCL (gray thick),
MNCL (black medium) and MoNN (dotted), respectively.
The randomly-selected noise points are marked with a
circle. Figure 6(c) and 6(d) show classification error of
MRNCL, MNCL and MoNN vs. noise levels on synth and
banana data sets. The results are based on 100 runs.

TABLE 1
Summary of Classification Data Sets.

Data Sets Training Points Test Points Input Dimensions
Banana 400 4900 2
Cancer 200 77 9

Diabetics 468 300 8
Solar 666 400 9

German 700 300 20
Heart 170 100 13
Image 1300 1010 18

Ringnorm 400 7000 20
Splice 1000 2175 60

Thyroid 140 75 5
Titanic 150 2051 3

Twonorm 400 7000 20
Waveform 400 4600 21
Magic04 19020 10-fold-cv 10
Satellite 6435 10-fold-cv 36
Spam 4601 10-fold-cv 57

benchmark problems. These data sets used in this paper
have been summarized in Table 1.

The first 13 data sets have been preprocessed and
organized by Rätsch et al.6 These data sets include one
synthetic set (banana) and 12 data sets come from the
UCI [34], DELVE7 and STATLOG repositories. The main
difference between the original and Rätsch’s data is that

6. http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
7. http://www.cs.toronto.edu/ delve/data/datasets.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 10

Rätsch converted every problem into binary classes and
randomly partitioned every data set into 100 training
and testing folds (Splice and Image have only 20 folds
in Rätsch’s implementation). In addition, every instance
is normalized dimension-wise to have zero mean and
unit standard deviation. The last three data sets in-
cluding magic04, satellite and spam are obtained from
UCI machine learning repository [34]. The 10-fold cross-
validation is used and the results are based on the 100
runs for each dataset.

For Adaboost and Bagging, we combine 200 based
learners. Clearly, this number of ensemble size is some-
what arbitrary and may not be optimal. As the base
learner we use RBF nets with adaptive centers as de-
scribed in Section III.C. The parameters of SVM (σ,C)
(C is the regularization constant and σ is the width of
the RBF-kernel being used) are optimized on the first five
training folds of each data set. On each of training folds,
a 10-fold-cross validation procedure with grid search
will be performed8. Finally, the model parameters are
computed as the median of the five estimations.

The performance of MRNCL, MNCL, MoNN, Ad-
aboost, Bagging, SVM and RBF network over 100 runs
(20 runs for Splice and Image) is summarized in Table
2. The performance of RBF network, Adaboost and
SVM for the first 13 data sets is obtained from Rätsch’s
implementation9. We followed the similar methodology
for parameter selection and reported the performance of
these algorithms for the last three data sets.

According to Table 2, MRNCL outperforms all the
other methods in 10 out of 16 data sets, comes second
in 6 cases. In comparison with MNCL, MRNCL wins
14 times out of 16 and of them 9 wins are statistically
significant. In the results, MNCL performs well in the
cases with little noise: Image, Thyroid and Twonorm,
which are all synthetic data with little noise (see the
lower error rates). The observation validates that MNCL
achieves better results when noise is small.

Adaboost with 200 learners seems to overfit the noise
and it does not achieve comparable performance to other
methods. SVM with cross validation search obtains a
good performance in these algorithms as it ranks 1st
place on 4 out of 16 data sets.

Based on the empirical results, we notice that MoNN is
prone to generate “simple” neural networks with small
regularization. The reason is that there are only two
objectives, regularization and mean square error (MSE),
in MoNN and the regularization term can be reduced to
an arbitrary small value while MSE could hardly do it
due to the intrinsic complexity of the data set, especially
when the data lies in a high-dimensional space.

MoNN uses an elitist non-dominated sorting genetic
algorithms (NSGA-II) algorithm [35], which will archive

8. The ranges of cross validation search for SVM are C ∈
{1, 10, · · · , 100} and θ ∈ {0.1, 0.3, · · · , 10} (The data has been nor-
malized to unit standard deviation) in both synthetic data sets and
benchmark data sets.

9. http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

non-dominated solutions in this evolution. In this case,
the final population is consisted of many individuals
with very small regularization but large MSE, leading
the pareto front to be biased to include more individuals
with smaller regularization but large error. This is the
reason of performance degradation in both synthetic and
benchmark experiments for MoNN.

Our algorithm makes use of an additional objective,
negative correlation term, to encourage diversity in the
population. This objective encourages these networks to
behave differently in the population, and thus alleviates
the above problem in MoNN. In the experiments, we
further restrict the minimal hidden nodes in RBF net-
works as 3 in MRNCL and MNCL to further discourage
improperly simple networks.

Note that in [12], a regression problem, three-
dimensional Ackley function, is employed to validate
the algorithm ability. The Ackley function is a contin-
uous, multimodal function obtained by modulating an
exponential function with a cosine wave of moderate
amplitude. For this kind of data sets with lots of local
maxima and minima, “simple” networks are beneficial
to address the overfitting problems.

4.5 Ensemble Size and Non-dominated Solutions
In the previous section, we have reported the perfor-
mance of MRNCL using all the networks in the popula-
tion. It is suggested in [36], [37] that it might be better
to use a subset of available neural networks than to use
all. For this purpose, we will use the non-dominated
solutions to construct a neural network ensemble.

Figure 5 shows the non-dominated solutions in the
population and more than 80% of the solutions are non-
dominated. We also report the performance and the en-
semble size of MRNCL using the entire population and
the non-dominated solutions only on the 16 benchmark
data sets in Table 3, respectively.

According to this table, the performance of the ensem-
ble using non-dominated solutions is a little better than
that using all solutions in the population. The ensemble
size is reduced to almost 80%-90% of the population
size by adopting the non-dominated solutions. Based on
these results, adopting the non-dominated solutions in-
stead of the entire population can improve the ensemble
performance and reduce its size. It also gives a potential
direction to improve our work by selecting a subset
of the non-dominated solutions to constitute a smaller
ensemble.

As we observed in Figure 5, although some individu-
als in the population have large regularization and some
have small regularization, most individuals will have
appropriate regularization according to different prob-
lems. For example, since the data are linear-separable
in the relevance data set (Figure 5(d)), the ensemble
does not need large regularization. In this case, most
of the networks have small regularization. Therefore, an
ensemble of all networks would have an appropriate
regularization.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 11

TABLE 2
Comparison among 7 methods on 16 benchmark Data Sets: MRNCL, MNCL, MoNN, Adaboost, Bagging, support
vector machine and single RBF classifier. The generalization error in % (standard deviation) on 16 data sets (best

method in bold face) has been reported. A win-loss-tie summarization based on mean value and t test (significance
level α = 0.05) is attached at the bottom of the table. The performance is based on 100 runs (20 runs for Splice and

Image). MRNCL gives the best overall performance.

MRNCL MNCL MoNN Adaboost Bagging SVM RBF
Banana 10.7±0.7 11.2±0.7 11.0±0.7 12.3±0.7 11.2±0.7 11.5±0.7 10.8±0.6
Cancer 26.4±4.6 28.2±4.8 27.4±4.9 30.4±4.7 27.3±4.6 26.0±4.7 27.6±4.7

Diabetics 23.2±1.7 25.3±1.9 24.0±1.7 26.5±2.3 24.2±1.8 23.5±1.7 24.3±1.9
German 24.2±2.1 26.1±2.3 24.2±2.2 27.5±2.5 24.9±2.5 23.6±2.1 24.7±2.4

Heart 15.6±3.0 16.2±3.1 16.7±3.1 20.3±3.4 17.2±3.4 16.0±3.3 17.6±3.3
Image 2.6±0.7 2.6±0.7 2.7±0.7 2.7±0.7 3.0±0.6 3.0±0.6 3.3±0.6

Ringnorm 1.6±0.2 1.9±0.2 1.7±0.2 1.9±0.3 1.6±0.2 1.7±0.1 1.7±0.2
Solar 33.1±1.7 33.4±1.5 33.1±1.8 35.7±1.8 34.1±1.9 32.4±1.8 34.4±2.0
Splice 9.9±0.6 10.2±0.5 10.1±0.8 10.1±0.5 10.0±0.5 10.9±0.7 10.0±0.8

Thyroid 4.4±2.1 4.3±2.1 4.3±2.3 4.4±2.2 4.4±2.1 4.8±2.2 4.5±2.1
Titanic 22.3±1.1 22.2±1.3 23.6±1.6 22.6±1.2 22.8±1.2 22.4±1.0 23.3±1.3

Twonorm 2.3±0.1 2.4±0.1 2.4±0.1 3.0±0.3 2.8±0.2 3.0±0.2 2.9±0.3
Waveform 10.4±0.6 10.6±0.7 10.8±0.8 10.8±0.6 10.2±0.5 9.9±0.4 10.7±1.1
Magic04 12.0±0.6 15.2±0.8 12.8±0.6 13.1±0.8 14.0±0.6 13.1±0.6 15.6±0.8
Satellite 9.8±1.1 12.4±1.3 11.5±1.2 10.9±1.3 11.8±1.1 10.6±1.0 12.8±1.3
Spam 5.9±1.1 7.4±1.3 7.0±1.2 6.3±1.1 7.2±1.1 7.0±1.0 8.0±1.2
W-L-T - 1-14-1 1-15-0 0-15-1 0-14-2 4-12-0 0-16-0

Significant - 0-9-7 0-6-10 0-10-6 0-5-11 1-6-9 0-8-8

TABLE 3
Comparison of the performance and the ensemble size

of MRNCL using the entire population and the
non-dominated solutions on 16 benchmark Data Sets.

Population Size Pareto Size
Banana 10.7±0.7 100 10.6±0.7 82.3±4.7
Cancer 26.4±4.6 100 26.6±4.3 79.6±6.1

Diabetics 23.2±1.7 100 23.0±1.8 87.6±5.2
German 24.2±2.1 100 24.0±1.9 90.1±3.6

Heart 15.6±3.0 100 15.8±3.1 80.3±5.8
Image 2.6±0.7 100 2.5±0.6 84.9±4.7

Ringnorm 1.6±0.2 100 1.7±0.2 84.7±5.1
Solar 33.1±1.7 100 32.8±1.6 79.6±7.9
Splice 9.9±0.6 100 9.6±0.7 81.5±5.3

Thyroid 4.4±2.1 100 4.3±2.2 75.3±6.2
Titanic 22.3±1.1 100 22.1±1.2 78.4±8.4

Twonorm 2.3±0.1 100 2.4±0.1 86.7±3.2
Waveform 10.4±0.6 100 10.4±0.7 81.6±3.9
Magic04 12.0±0.6 100 12.1±0.7 73.6±9.2
Satellite 9.8±1.1 100 9.5±1.3 80.1±4.9
Spam 5.9±1.1 100 6.0±1.0 86.1±5.8

TABLE 4
The mean rank of MRNCL, MNCL, MoNN and SVM

based on 16 data sets.

Algorithm MRNCL MNCL MoNN SVM
Mean Rank 1.5313 3.0938 2.6875 2.6875

4.6 Statistical Comparisons over Multiple Data Sets

Statistical tests on multiple data sets for multiple algo-
rithms are preferred for comparing different algorithms
over multiple data sets [38]. In this section, we will
conduct statistical tests over multiple data sets by using
the Friedman test [39] with the corresponding post-hoc
tests.

The Friedman test is a non-parametric equivalence of

the repeated-measures analysis of variance (ANOVA)
under the null hypothesis that all the algorithms are
equivalent and so their ranks should be equal [39], [40].
This paper uses an improved Friedman test proposed by
Iman and Davenport [40].

The Friedman test [39] is carried out to test whether all
the algorithms are equivalent. If the test result rejects the
null hypothesis, i.e. these algorithms are equivalent, we
can proceed to a post-hoc test. The power of the post-
hoc test is much greater when all classifiers are compared
with a control classifier and not among themselves. We
do not need to make pairwise comparisons when we in
fact only test whether a newly proposed method is better
than the existing ones.

Based on this point, we would like to choose MRNCL
as the control classifier to be compared with. Since the
baseline classification algorithms are not comparable to
other algorithms, this section will analyze only three
algorithms: MNCL, MoNN and SVM against the control
algorithm MRNCL.

The Bonferroni-Dunn test [41] is used as post-hoc tests
when all classifiers are compared to the control classifier.
The performance of pairwise classifiers is significantly
different if the corresponding average ranks10 differ by
at least the critical difference

CD = qα

√
j(j + 1)

6T
, (10)

where j is the number of algorithms, T is the number of
data sets and critical values qα can be found in [38]. For

10. We rank these algorithms based on the metric on each data set
and record the ranking of each algorithm as 1, 2 and so on. Average
ranks are assigned in case of ties. The average rank of one algorithm
is obtained by averaging over all of data sets. Please refer to Table 4
for the mean rank of these algorithms.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 12

example, when j = 4, q0.05 = 2.394, where the subscript
0.05 is the significance level.

Table 4 lists the mean rank of these algorithms using
different training algorithms. Table 5 gives the Friedman
test results. Since we employ the same threshold 0.05 for
these ensemble training algorithms, the critical difference
CD = 1.0927, where j = 4 and T = 16, is the same for
these algorithms. Several observations can be made from
our results.

Firstly, the null hypothesis that all the algorithms
are equivalent is rejected for each algorithm in Ta-
ble 4. Secondly, the differences between MRNCL and
other algorithms including MNCL, MoNN and SVM are
greater than the critical difference, so the differences
are significant, which means the MRNCL is significantly
better than these algorithms in this current experimental
setting.

There are at least three reasons why the performance
of our algorithm is better than the performance of others.

1) Effective parameters of RBF ensemble, obtained
by the evolutionary algorithm, improve the per-
formance of the ensemble. The performance of
RBF networks mostly depends on the number of
basis functions and the selection of centers and the
widths in these basis functions. In RBF network
ensemble, better performance is achieved when
these individuals cooperate with each other. How
to select these parameters is crucial for the ensem-
ble. In most of the existing ensemble algorithms,
we have to tune these parameters manually, suf-
fering from the tedious trial-and-error process in
practice. However, our algorithm can determine
these parameters automatically according to dif-
ferent problems given that you specify some pa-
rameters for the evolutionary algorithm. We do not
observe great sensitivity to GA parameters, such as
the population size, crossover rate and generation
number, within their commonly accepted ranges.

2) The multiobjective algorithm promotes the accu-
racy, diversity and regularization in the ensem-
ble. The accuracy and diversity are considered as
two important factors in ensemble algorithms. Our
analysis reveals that besides these two factors, reg-
ularization of ensemble is another important part
for ensemble performance. The regularization term
controls the complexity of ensemble and improves
the performance of ensemble against noise. The
existing ensemble algorithms either focus on accu-
racy, e.g. Adaboost, and/or diversity, e.g. Bagging
and NCL. In order to take all these terms into
consideration, our strategy adopts a multiobjective
algorithm to generate the accurate, diverse and
regularized ensemble.

3) Our algorithm uses a multiobjective algorithm to
construct an ensemble to balance the tradeoff for
different problems. There is no need to weigh
objectives by selecting the coefficients.

4.7 Computational Complexity and Running Time

Based on the algorithm in Figure 1, the major running
time of MRNCL is consumed by the training of RBF
networks. In the initialization step, we need to train each
component RBF network, totally M , in the population. In
each generation, indicated by G, we need to train 2C +u
RBF networks, where C is the number of crossover in
one generation and u is the number of mutation in one
generation. In total, we need to train M + (2C + u)G
RBF networks in MRNCL. To train each RBF network
after performing crossover and mutation, we only need
to perform a few scaled-conjugate-gradient updates (in
our experiments, only one scaled-conjugate-gradient up-
date is employed) to simultaneously adjust the output
weights and the RBF centers and widths. This can be
performed quickly.

In MRNCL and MNCL, we perform three scaled-
conjugate-gradient (SCG) updates on each RBF network
in the initialization step. Since only one SCG update is
employed to simultaneously adjust the output weights
and the RBF centers and widths after crossover and
mutation, the total number of SCG is 3M +(2C +u)G =
10, 300 given that these parameters are set with the size
of population M = 100, the number of crossover in
one generation C = 20, the number of mutation in one
generation u = 10 and the number of generation G = 200
in this algorithm. The number of training epoches is
similar for different data sets.

In MoNN [12], the RProp+ algorithm [42] is employed
to train neural networks. The population size is 100 the
maximal generation is 200. In each generation, MoNN
generates a new population of 100 offspring. With this
parameter setting, in total, it will call 100×200 = 20, 000
RProp+ algorithm. Note that RProp+ is implemented in
C++ and the training is faster than SCG.

Table 6 shows the average running time of MRNCL,
MNCL and MoNN over 100 runs. The running time is
the “training and evaluation” time (in seconds) of these
algorithm including MRNCL, MNCL and MoNN in one
run, which includes the execute time of the algorithm
in Figure 1 (for MRNCL) and the evaluation time to
calculate the error statistic on test set. The running time
in Table 6 is averaged over 100 runs. Note that the
running time is not CPU time since there are two CPUs
in our computational platform.

The computational environment is windows XP with
Intel Core 2 Duo 1.66G CPU and 2G RAM. The al-
gorithms are implemented in Matlab and C language,
where C language is used for MATLAB MEX files to
implement the RBF network training algorithm and non-
dominated sorting algorithm. From Table 6, MRNCL and
MNCL consume similar computational time and MoNN
takes less time because MoNN is implemented by C++
and our algorithm is programmed by MATLAB. In fact,
if MRNCL is implemented by C++, it will cost less time
than MoNN since the RBF training is faster than MLP.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 13

TABLE 5
Friedman tests with the corresponding post-hoc tests, Bonferroni-Dunn, to compare estimators and classifiers for

multiple data sets. The significance level is 0.05, and q0.05 = 2.394.

Algorithms Friedman test CD0.05 MNCL MoNN SVM
Test Results 0.000 1.0927 1.5625 1.1562 1.1562

TABLE 6
Running Time of MRNCL, MNCL and MoNN using different data sets in seconds. Results are averaged over 100

runs.

Time(s) Banana Cancer Diabetics Solar German Heart Image Ringnorm
MRNCL 81.3 29.4 68.6 83.0 121.5 26.7 236.2 183.7
MNCL 80.6 28.6 62.7 84.6 126.1 26.3 220.0 192.6
MoNN 38.7 13.1 24.7 37.2 48.6 12.9 92.5 87.9
Time(s) Splice Thyroid Titanic Twonorm Waveform Magic04 Satellite Spam
MRNCL 288.7 19.4 45.6 193.8 145.7 2316.7 1674.6 1217.4
MNCL 283.6 19.1 46.9 186.8 132.1 2289.7 1617.2 1206.8
MoNN 114.6 5.4 14.7 76.4 53.1 672.8 432.6 386.2

5 CONCLUSIONS

This paper analyzes NCL and points out that NCL is
prone to overfitting the noise because NCL does not reg-
ularize its complexity. We have proposed a new multiob-
jective regularized NCL (MRNCL), which incorporates
an additional regularization term for NCL. This paper
adopts a multiobjective algorithm and treats the training
MSE, regularization and correlation as three separate
objectives.

In MRNCL, the crossover and mutation operators are
defined to vary the structure of RBF networks. The non-
dominated sorting algorithm with fitness sharing and
rank-based fitness assignment are employed to promote
diversity in MRNCL.

Several experiments have been carried out to evaluate
MRNCL. The experiments on four synthetic classifica-
tion problems demonstrate the behavior of MRNCL,
MNCL and MoNN. These results showed clearly about
the advantages and effectiveness of MRNCL due to
its regularization term for noisy data. The higher the
noise level, the better MRNCL’s performance is in com-
parison with MNCL. The experiments also show that
MoNN tends to over-regularize the ensemble and thus
degrade the performance. The experiments on two addi-
tional classification problems with different noise levels
demonstrate further that MRNCL achieves better per-
formance than MNCL, especially when the noise is non-
trivial in data sets.

Then, we carry out extensive experiments on 16 bench-
mark classification data sets to compare the performance
of MRNCL, MNCL and other state-of-the-art algorithms.
MRNCL performs quite favorably on these data sets.
The three major reasons why the performance of our
algorithm was so good are given in this paper. 1) Ef-
fective parameters of the RBF ensemble, obtained by
the evolutionary algorithm, improve the performance of
ensembles. 2) The multiobjective algorithm promotes the
accuracy, diversity and regularization in the ensemble. 3)
The best tradeoff of the three objectives can be achieved

by constructing an ensemble generated by multiobjective
algorithm.

In [37], Chen et al. demonstrated that the performance
of the ensemble can be improved by selecting a small
subset of ensemble members using a probabilistic en-
semble pruning method. It is one of our future work to
incorporate the ensemble selection/pruning algorithms
into the multiobjective ensemble learning algorithms to
generate more compact ensembles.

Other future work for this study includes a more
in-depth study of different evolutionary operators and
other fitness ranking methods used in the multi-objective
evolutionary algorithms.

ACKNOWLEDGMENT

This work is partially supported by a Dorothy Hodgkin
Postgraduate Scholarship to the first author and an
EPSRC grant (GR/T10671/01) to the second author.
The authors also thank Dr. Yaochu Jin for providing
the source code on regularizing neural networks using
multi-objective evolutionary algorithms [12] for compar-
ison with our algorithm.

APPENDIX A
BAYESIAN INTERPRETATION OF MRNCL
This subsection describes the probabilistic interpretation
of MRNCL and the function of the regularization term.

Given the training set D = {xn, yn}N
n=1, we follow the

standard probabilistic formulation and assume that the
targets are sampled from the model with additive noise:

yn = fens(xn) + en =
1
M

M∑
i=1

fi(xn) + en,

where en is independent sample from some noise pro-
cess which is further assumed to be mean-zero Gaussian
with variance β−1.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 14

According to the Bayesian theorem, given the hyper-
parameters μ = (μ1, · · · , μM)11 and β. We obtain the
weigh parameters w = (wT

1 , · · · ,wT
M)T by maximizing

the posterior P (w | D).

P (w | D) =
P (D | w,β)P (w | μ)

P (D | μ, β)
, (11)

where the probability P (D | μ, β) is a normalization
factor which is independent of w.

The weight vector of each network wi is assumed to
have a Gaussian distribution with zero mean and vari-
ance μ−1

i . The prior of the weight vector w is obtained
as follows.

P (w | μ) =
∏

M
i=1

(μi

2π

)ni/2

exp
(
−1

2
μiwT

i wi

)
, (12)

where ni is the total number of weights in network i.
Since noise en follows a Gaussian distribution with

zero mean and variance β−1, the likelihood P (D | w,β)
can be written as

P (D | w,β) =
∏

N
n=1

(
β

2π

)1/2

exp
(
−β

2
e2
n

)
. (13)

We omit all constants and normalization factor, and
apply Bayesian rules:

P (w | D) ∝ exp

(
−β

2

N∑
n=1

e2
n

)
· exp

(
−

M∑
i=1

μi

2
wT

i wi

)
.

(14)
Taking the negative logarithm, the maximum of the

posteriori model parameters w is obtained as the solu-
tion to the following optimization problem:

min J1(w)

= β

N∑
n=1

e2
n +

M∑
i=1

μiwT
i wi (15)

=
N∑

n=1

e2
n +

M∑
i=1

αiwT
i wi,

=
1
M

N∑
n=1

M∑
i=1

(fi(xn) − yn)2 −

1
M

N∑
n=1

M∑
i=1

(fi(xn) − fens(xn))2 +
M∑
i=1

αiwT
i wi,

where αi = μi/β. We substitute μi and β with one pa-
rameter αi because the minimization of J1 only depends
on the ratio αi = μi/β.

Comparing Equation (15) with (4), MRNCL is equiv-
alent to maximization of the posterior under Bayesian
framework when λ = 1. The likelihood P (D | w,β)
corresponds to the empirical training error terms and the
prior over weight vector P (w | μ) corresponds to the
regularization term. The regularization term penalizes

11. μi, i = 1, 2, · · ·M, is the inverse variance of the Gaussian
distribution of weights for network i.

TABLE 7
A 2 × 2 table of the relationship between a pair of

classifiers fi and fj . Nab is the number of data points for
which fi and fj are correct/wrong when a = 1/0 and

b = 1/0.

fj correct(1) fj wrong(0)
fi correct(1) N11 N10

fi wrong(0) N01 N00

large weights, causing the weights to converge to smaller
absolute values than they otherwise would.

Based on the above analysis, MRNCL is an application
of Bayesian framework in ensemble system.

APPENDIX B
Q STATISTICS

Yule’s Q statistics [33] computes the “coefficient of asso-
ciation” for two classifiers, fi and fj , is

Qi,j =
N11N00 − N01N10

N11N00 + N01N10
.

Q statistics varies between -1 and 1. For statistically
independent classifiers, the expectation of Qi,j is 0.
Classifiers that tend to classify the same objects correctly
will have positive values of Q, and those which commit
errors on different objects will produce negative Q value.
For an ensemble of M classifiers, the average Q statistics
over all pairs of classifiers is,

Q =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

Qi,j . (16)

REFERENCES

[1] Y. Liu and X. Yao, “Ensemble learning via negative correlation,”
Neural Networks, vol. 12, no. 10, pp. 1399–1404, 1999.

[2] ——, “Simultaneous training of negatively correlated neural net-
works in an ensemble,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 29, no. 6, pp. 716–725, 1999.

[3] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 10, pp. 993–1001, 1990.

[4] X. Yao, M. Fischer, and G. Brown, “Neural network ensembles and
their application to traffic flow prediction in telecommunications
networks,” in Proceedings of International Joint Conference on Neural
Networks, 2001, pp. 693–698.

[5] Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with
negative correlation learning,” IEEE Transaction on Evolutionary
Computation, vol. 4, no. 4, pp. 380–387, 2000.

[6] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[7] R. E. Schapire, “A brief introduction to boosting,” in Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence,
1999, pp. 1401–1406.

[8] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transaction on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 8, pp. 832–844, 1998.

[9] H. A. Abbass, “A memetic pareto evolutionary approach to arti-
ficial neural networks,” in Proceedings of the fourteenth Australian
Joint Conference on Artificial Intelligence, vol. 2256, 2000, pp. 1–12.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 15

[10] R. McKay and H. A. Abbass, “Anti-correlation: A diversity pro-
moting mechanisms in ensemble learning,” The Australian Journal
of Intelligent Information Processing Systems, vol. 3, no. 4, pp. 139–
149, 2001.

[11] H. A. Abbass, “Speeding up backpropagation using multiobjec-
tive evolutionary algorithms,” Neural Computation, vol. 15, no. 11,
pp. 2705–2726, 2003.

[12] Y. Jin, T. Okabe, and B. Sendhoff, “Neural network regular-
ization and ensembling using multi-objective evolutionary algo-
rithms,” in Proceedings of IEEE Congress on Evolutionary Computa-
tion (CEC’04), 2004, pp. 1–8.

[13] M. M. Islam, X. Yao, and K. Murase, “A constructive algorithm for
training cooperative neural network ensembles,” IEEE Transaction
on Neural Networks, vol. 14, no. 4, pp. 820–834, 2003.

[14] G. Brown, J. Wyatt, and P. Tino, “Managing diversity in regression
ensembles,” Journal of Machine Learning Research, vol. 6, pp. 1621–
1650, 2005.

[15] A. Chandra and X. Yao, “Evolving hybrid ensembles of learning
machines for better generalisation,” Neurocomputing, vol. 69, no.
7-9, pp. 686–700, 2006.

[16] ——, “Ensemble learning using multi-objective evolutionary algo-
rithms,” Journal of Mathematical Modelling and Algorithms, vol. 5,
no. 4, pp. 417–445, 2006.

[17] L. S. Oliveira, M. Morita, R. Sabourin, and F. Bortolozzi, “Multi-
objective genetic algorithms to create ensemble of classifiers,”
in Proceedings of the Third International Conference on Evolutionary
Multi-Criterion Optimization, vol. 87, 2005, pp. 592–606.

[18] N. Garcı́a, C. Hervás, and D. Ortiz, “Cooperative coevolution
of artificial neural network ensembles for pattern classification,”
IEEE Transactions on Evolutionary Computation, vol. 9, no. 3, pp.
271–302, 2005.

[19] H. Chen and X. Yao, “Evolutionary random neural ensemble
based on negative correlation learning,” in Proceedings of IEEE
Congress on Evolutionary Computation (CEC’07), 2007, pp. 1468–
1474.

[20] H. H. Dam, H. A. Abbass, C. Lokan, and X. Yao, “Neural-based
learning classifier systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 20, no. 1, pp. 26–39, 2008.

[21] H. Chen and X. Yao, “Regularized negative correlation learning
for neural network ensembles,” IEEE Transactions on Neural Net-
works, 2009, accepted.

[22] A. Krogh and J. A. Hertz, “A simple weight decay can improve
generalization,” in Advances in Neural Information Processing Sys-
tems, vol. 4, 1992, pp. 950–957.

[23] A. Krogh and J. Vedelsby, “Neural network ensembles, cross
validation, and active learning,” in Advances in Neural Information
Processing Systems 7, Denver, Colorado, USA, 1995, pp. 231–238.

[24] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[25] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and
the bias/variance dilemma,” Neural Computation, vol. 4, no. 1, pp.
1–58, 1992.

[26] D. Goldberg, K. Deb, H. Kargupta, and G. Harik, “Rapid, accu-
rate optimization of difficult problems using fast messy genetic
algorithms,” in Proceedings of the Fifth International Conference on
Genetic Algorithms, 1993, pp. 56–64.

[27] E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. G.
d. Fonseca, “Performance assessment of multiobjective optimiz-
ers: An analysis and review,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 117–132, 2003.

[28] N. Srinivas and K. Deb, “Multiobjective function optimization
using nondominated sorting genetic algorithms,” Evolutionary
Computation, vol. 2, no. 3, pp. 221–248, 1995.

[29] P. Darwen and X. Yao, “Every niching method has its niche: fitness
sharing and implicit sharing compared,” in Proceedings of Parallel
Problem Solving from Nature (PPSN) IV, vol. 1141, Berlin, Germany,
1996, pp. 398–407.

[30] J. Baker, “Adaptive selection methods for genetic algorithms,”
in Proceedings of International Conference on Genetic Algorithms and
Their Applications, 1985, pp. 100–111.

[31] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge
University Press, 1996.

[32] R. B. Gramacy and H. K. H. Lee, “Gaussian processes and
limiting linear models,” Department of Applied Mathematics and
Statistics, University of California, Santa Cruz, Technical Report
ams2005-01, 2005.

[33] U. Yule, “On the association of attributes in statistics,” Philosophi-
cal Transactions of the Royal Society of London. Series A, vol. 194, pp.
257–319, 1900.

[34] A. Asuncion and D. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[35] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist
non-dominated sorting genetic algorithm for multi-objective opti-
mization: Nsga-ii,” in Parallel Problem Solving from Nature, vol. VI,
2000, pp. 849–858.

[36] X. Yao and Y. Liu, “Making use of population information in evo-
lutionary artificial neural networks,” IEEE Transactions on Systems,
Man and Cybernetics, Part B: Cybernetics, vol. 28, pp. 417–425, 1998.

[37] H. Chen, P. Tiňo, and X. Yao, “Predictive ensemble pruning by
expectation propagation,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, no. 7, pp. 999–1013, 2009.

[38] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine learning research, vol. 7, pp. 1–30,
2006.

[39] M. Friedman, “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, vol. 32, pp. 675–701, 1937.

[40] R. L. Iman and J. M. Davenport, “Approximations of the critical
region of the friedman statistic,” Communications in Statistics, pp.
571–595, 1980.

[41] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American Statistical Association, vol. 56, pp. 52–64, 1961.

[42] C. Igel and M. Hüsken, “Improving the rprop learning algo-
rithm,” in Proceedings of the 2nd ICSC International Symposium on
Neural Computation, 2000, pp. 115–121.

Huanhuan Chen received the B.Sc. degree
from the University of Science and Technology
of China, Hefei, China, in 2004, and Ph.D. de-
gree, sponsored by Dorothy Hodgkin Postgradu-
ate Award (DHPA), in computer science at the
University of Birmingham, Birmingham, UK, in
2008. His PhD thesis “Diversity and Regulariza-
tion in Neural Network Ensembles ” has received
the 2009 CPHC/British Computer Society (BCS)
Distinguished Dissertations Award as the runner
up.

He is a Research Fellow with the Centre of Excellence for Research
in Computational Intelligence and Applications (CERCIA) in School of
Computer Science, University of Birmingham. His research interests
include statistical machine learning, data fusion, data mining and evolu-
tionary computation.

Dr. Chen is the recipient of the BCS Distinguished Dissertations
Award as the runner up (2009), the Value in People (VIP) award
from The Wellcome Trust (2009), Dorothy Hodgkin Postgraduate Award
(DHPA) from EPSRC (2004) and the Student Travel Grant for the 2006
Congress on Evolutionary Computation (CEC06).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XX 200X 16

Xin Yao (M’91-SM’96-F’03)received the B.Sc.
degree from the University of Science and Tech-
nology of China (USTC), Hefei, Anhui, in 1982,
the M.Sc. degree from the North China Institute
of Computing Technology, Beijing, in 1985, and
the Ph.D. degree from USTC in 1990.

He was an Associate Lecturer and Lecturer
from 1985 to 1990 at USTC, while working to-
wards his Ph.D on simulated annealing and evo-
lutionary algorithms. He took up a Postdoctoral
Fellowship in the Computer Sciences Labora-

tory, Australian National University (ANU), Canberra, in 1990, and con-
tinued his work on simulated annealing and evolutionary algorithms. He
joined the Knowledge-Based Systems Group, CSIRO (Commonwealth
Scientific and Industrial Research Organisation) Division of Building,
Construction and Engineering, Melbourne, in 1991, working primarily
on an industrial project on automatic inspection of sewage pipes. He
returned to Canberra in 1992 to take up a lectureship in the School of
Computer Science, University College, University of New South Wales
(UNSW), Australian Defence Force Academy (ADFA), where he was
later promoted to a Senior Lecturer and Associate Professor. Attracted
by the English weather, he moved to the University of Birmingham,
U.K., as a Professor (Chair) of Computer Science on the April Fool’s
Day in 1999. Currently, he is the Director of the Centre of Excellence
for Research in Computational Intelligence and Applications (CERCIA)
and a Changjiang (Visiting) Chair Professor (Cheung Kong Scholar) at
the University of Science and Technology of China, Hefei. He was the
Editor-in-Chief of the IEEE Transactions on Evolutionary Computation
(2003-08), an associate editor or editorial board member of twelve
other journals, and the Editor of the World Scientific Book Series on
Advances in Natural Computation. He has given more than 50 invited
keynote and plenary speeches at conferences and workshops world-
wide. His major research interests include evolutionary artificial neural
networks, automatic modularization of machine learning systems, evolu-
tionary optimization, constraint handling techniques, computational time
complexity of evolutionary algorithms, coevolution, iterated prisoner’s
dilemma, data mining, and real-world applications. He has more than
300 refereed publications. He was awarded the President’s Award for
Outstanding Thesis by the Chinese Academy of Sciences for his Ph.D.
work on simulated annealing and evolutionary algorithms in 1989. He
won the 2001 IEEE Donald G. Fink Prize Paper Award for his work on
evolutionary artificial neural networks.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Leeds. Downloaded on March 12,2010 at 12:48:43 EST from IEEE Xplore. Restrictions apply.

