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Abstract

Sesame is a software framework which aims at developing a mod-
eling and simulation environment for the efficient design space explo-
ration of heterogeneous embedded systems. Since Sesame recognizes
separate application and architecture models within a single system
simulation, it needs an explicit mapping step to relate these models for
co-simulation. The design trade-offs during the mapping stage, namely
the processing time, power consumption, and the architecture cost are
captured by a multiobjective nonlinear mixed integer program. This
paper aims at investigating the performance of multiobjective evolu-
tionary algorithms (MOEAs) on solving large instances of the mapping
problem. With two comparative case studies, it is shown that MOEAs
provide the designer with a highly accurate set of solutions in a rea-
sonable amount of time. Additionally, analyses for different crossover
types, mutation usage, and repair strategies for the purpose of con-
straints handling are carried out. Finally, a number of multiobjective
optimization results are simulated for verification.

Multiprocessor System-on-Chip (SoC) design, design space exploration,
multiobjective optimization, evolutionary algorithms, mixed integer pro-
gramming.

1 Introduction

Modern embedded systems come with contradictory design constraints. On
one hand, these systems target mass production and battery-based devices,
and therefore should be cheap and power efficient. On the other hand, they
still need to show high (sometimes real-time) performance, and often support
multiple applications and standards which requires high programmability.
This wide spectrum of design requirements leads to complex System-on-Chip
(SoC) architectures, consisting of several types of processors from fully pro-
grammable microprocessors to configurable processing cores and customized
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hardware components. The ensuant high complexity of embedded systems
design has led to a new design paradigm, known as the system-level design
[26], which has the following two important ingredients.

• Using a platform architecture that is shared among multiple applica-
tions, rather than designing one for each of them.

• Starting modeling and exploration with abstract executable compo-
nents, and gradually lowering the abstraction level by inserting more
implementation details in every step, with the intention of reaching an
optimal SoC architecture.

In system-level design, early exploration of the design space plays a cru-
cial role as it allows evaluate of different architecture alternatives without
the burden of low level primitives. In terms of design time it would other-
wise be impossible to evaluate several alternatives, if one started at a lower
level which requires the synthesis and verification of different parts of the
design. The models at the system-level normally capture the behavior of
the application, characteristics of the architecture, and the various relations
between the application and the architecture, such as the allocation (which
components of the platform architecture are used), the binding (mapping of
application processes onto architecture resources), or the scheduling (execu-
tion order of processes). The analytical and simulation models synthesized
at the system-level can provide reasonable estimations of performance [4],
power consumption [38], or cost of the design [20], while minimizing the
requirements in terms of modeling effort and simulation time that is needed
in the early design stages.

The Sesame framework1 [11], [31], which we develop within the context of
the Artemis project [32], provides methods and tools for the efficient design
space exploration of heterogeneous embedded multimedia systems. Using
Sesame, a designer can model embedded applications and SoC architec-
tures at the system-level, map the former onto the latter using evolutionary
optimizers which consider multiple design objectives simultaneously, and
perform application-architecture co-simulations for rapid performance eval-
uations. Based on these evaluations, the designer can further refine (parts
of) the design, experiment with different hardware/software partitionings,
perform co-simulations at multiple levels of abstraction, or mixed level co-
simulations where architecture model components operate at different levels
of abstraction. To achieve this flexibility, the Sesame environment recog-
nizes separate application and architecture models within a single system
simulation. The application model defines the functional behavior of an ap-
plication, including both computation and communication behaviors. The

1http://sesamesim.sourceforge.net
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architecture model defines architecture resources and captures their perfor-
mance constraints. An explicit mapping step maps an application model
onto an architecture model for co-simulation.

Until recently, the mapping step in Sesame was assumed to be per-
formed by an experienced designer, intuitively. However, this assumption
was increasingly becoming inappropriate for efficient design space explo-
ration. First of all, the Sesame environment targets exploration at an early
design stage where the design space is very large. At this stage, it is very
hard to make critical decisions such as mapping without using any analyt-
ical method or a design tool, since these decisions seriously affect the rest
of the design process, and in turn, the success of the final design. Besides,
modern embedded systems are already quite complicated, generally having
a heterogeneous combination of hardware and software parts possibly with
dynamic behavior. It is also very likely that these embedded systems will
become even more complex in the near future, and intuitive mapping deci-
sions will eventually become obsolete for future designs. Moreover, coping
with the design constraints of embedded systems, there exist multiple cri-
teria to consider, like the processing times, power consumption and cost of
the architecture, all of which further complicate the mapping decision.

In Sesame, these issues are captured by means of a multiobjective com-
binatorial optimization problem [17]. Due to its large size and nonlinear
nature, it is realized that the integration of a fast and accurate optimizer is
of crucial importance for this problem. The primary aim of the multiobjec-
tive optimization process is to provide the designer with a set of tradable
solutions, rather than a single optimal point. The evolutionary algorithms
(EAs), in general, seem to be the best choice for attacking such problems, as
they evolve over a population rather than a single solution. For this reason,
numerous multiobjective evolutionary algorithms (MOEAs) have been pro-
posed in the literature. The earlier MOEAs such as VEGA [35], MOGA [18],
and NSGA [37] have been followed by the elitist versions, e.g., NSGA-II [14]
and SPEA2 [47]. More recent work has focussed on the possible performance
improvements by incorporating sophisticated strategies into MOEAs. For
example, Jensen has employed advanced data structures to improve the run-
time complexity of some popular MOEAs (e.g. NSGA-II) [24], while Yen et
al. have proposed an approach based on the usage of dynamic populations
[44]. In another recent work [30], the idea of transforming a high-dimentional
multiobjective problem into a biobjective optimization problem is exploited
within an MOEA.

In this article, we extend the work of [17] with the following new contri-
butions:

• We employ two state-of-the-art MOEAs [14], [47] in two case studies
from system-on-chip (SoC) design, and report performance results.
Previously, these MOEAs have mostly been tested on simple and well-
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known mathematical functions, but detailed performance results on
real life engineering problems from different domains are very rare if
any.

• A mathematical model is developed to exploit the multiprocessor map-
ping problem under multiple objectives.

• In order to determine the accuracy of the MOEAs, the mathematical
model is first linearized and then solved by using an exact method,
namely the lexicographic weighted Tchebycheff method.

• We perform two case studies in which we demonstrate i) the success-
ful application of MOEAs to SoC design, especially in the early stages
where the design space is very large, ii) the quantitative performance
analysis of two state-of-the-art MOEAs examined in conjunction with
an exact approach with respect to multiple criteria (e.g., accuracy,
coverage of design space), and iii) the verification of multiobjective
optimization results by further investigating a number of tradable so-
lutions by means of simulation.

• In addition, we perform comparative experiments on variation opera-
tors and report performance results for different crossover types and
mutation usage. More specifically, we analyze the consequences of us-
ing one-point, two-point and uniform crossover operators on MOEA
convergence and exploration of the search space. Besides, we also show
that mutation still remains as a vital operator in multiobjective search
to achieve good exploration. Hence, the MOEAs stay in accordance
with the standard EAs in this respect.

• We define three new metrics which will allow us to compare different
aspects of MOEAs.

• We examine the performance consequences of using different fitness
assignment schemes (finer-grained and computationally more expen-
sive vs. more coarse-grained and computationally less expensive) in
MOEAs.

• We study the outcome of using three different repair algorithms in
constraint handling and compare them with respect to multiple criteria
such as convergence and coverage of search space.

The rest of the paper is organized as follows. Section 2 discusses re-
lated work. Problem and model definitions and constraint linearizations
are described in Section 3. Section 4 consists of four parts discussing the
preliminaries for multiobjective optimization, the lexicographic weighted
Tchebycheff method, the different attributes of multiobjective evolution-
ary algorithms and the repair algorithm, and the metrics for comparing

4



nondominated sets. In Section 5, two case studies are performed, compara-
tive performance analysis of MOEAs are given, followed by some simulation
results. The last section presents concluding remarks.

2 Related Work

In the domain of embedded systems and hardware/software codesign, sev-
eral studies have been performed for system-level synthesis [7], [15], [43] and
platform configuration [22], [21], [3], [42]. The former means the problem
of optimally mapping a task-level specification onto a heterogeneous hard-
ware/software architecture, while the latter includes tuning the platform
architecture parameters and exploring its configuration space.

Blickle et al. [7] partition the synthesis problem into two steps: the selec-
tion of the architecture (allocation), and the mapping of the algorithm onto
the selected architecture in space (binding) and time (scheduling). In their
framework, they only consider cost and speed of the architecture, power con-
sumption is ignored. To cope with infeasibility, they use penalty functions
which reduce the number of infeasible individuals to an acceptable degree.
In [43], a similar synthesis approach is applied to evaluate the design trade-
offs in packet processor architectures. But additionally, this model includes
a real-time calculus to reason about packet streams and their processing.

In the MOGAC framework [15], starting from a task graph specification,
the synthesis problem is solved for three objectives: cost, speed and power
consumption of the target architecture. To accomplish this, an adaptive
genetic algorithm which can escape local minima is utilized. However, this
framework lacks the management of possible infeasibility as it treats all non-
dominated solutions equally even if they violate hard constraints. No repair
algorithm is used in any stage of the search process, the invalid individuals
are just removed at the end of evolution.

In [22], the configuration space of a parameterized system-on-chip (SoC)
architecture is optimized with respect to a certain application mapped onto
that architecture. The exploration takes into account power/performance
trade-offs and takes advantage of parameter dependencies to guide the search.
The configuration space is first clustered by means of a dependency graph,
and each cluster is searched exhaustively for local Pareto-optimal solutions.
In the second step, the clusters are merged iteratively until a single cluster
remains. The Pareto-optimal configurations within this last cluster form the
global Pareto-optimal solutions. In [21], the exploration framework of [22]
is used in combination with a simulation framework. The simulation mod-
els of SoC components (e.g. processors, memories, interconnect busses) are
used to capture dynamic information which is essential for the computation
of power and performance metrics. More recently, Ascia et al. [3] have also
applied a genetic algorithm to solve the same problem.
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The work in [42] presents an exploration algorithm for parameterized
memory architectures. The inputs to the exploration algorithm are timing
and energy constraints obtained from the application tasks and the memory
architecture specifications. The goal is to identify the system time/energy
trade-off, when each task data member is assigned a target memory compo-
nent. Exact and heuristic algorithms are given for solving different instances
of the problem. However, only one type of heuristic (based on a branch and
bound algorithm) is used, and no comparison with other heuristics is given.

In the Sesame framework, we do not target the problem of system syn-
thesis. Therefore, a schedule is not constructed at the end of the design
process. Our aim is to develop a methodology which allows for evaluating a
large design space and provides us with a number of approximated Pareto-
optimal solutions. These solutions are then input to our simulation frame-
work for further evaluation. After simulation, figures about system-level
trade-offs (e.g. utilization of components, data throughput, communication
media contention) are provided to the designer. Thus, our goal is efficient
design space exploration in terms of simulation. In addition, our framework
also differs from the mentioned frameworks in the sense that it uses process
networks for algorithm specification rather than task graphs.

Most of the aforementioned system-level synthesis/exploration and plat-
form configuration frameworks have relied on evolutionary search techniques.
Besides these studies, evolutionary algorithms are utilized at many abstrac-
tion levels of electronic systems design, such as in analog integrated circuit
synthesis [2] and in the design of digital signal processing (DSP) systems [8]
and evolvable hardware [19].

3 Problem and Model Definition

In the Sesame framework, applications are modeled using the Kahn Process
Network (KPN) [25] model of computation in which parallel processes –
implemented in a high level language – communicate with each other via
unbounded FIFO channels. The workload of an application is captured by
instrumenting the code of each Kahn process with annotations. By executing
the application model, each process generates its own trace of application
events.

The architecture models in Sesame, simulate the performance conse-
quences of the application events generated by an application model. They
solely account for performance constraints and only model timing behavior,
since the functional behavior is already captured in the application model.
An architecture model is constructed from generic building blocks provided
by a library which contains template models for processing cores and various
types of memory.

Since Sesame makes a distinction between application and architecture
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Figure 1: The mapping problem on a simple example. The mapping function
has to consider multiple conflicting design objectives and should identify the
set of Pareto-optimal mappings.

models, it needs an explicit mapping step to relate these models for co-
simulation. In this step, the designer decides for each application process
and FIFO channel a destination architecture model component to simulate
its workload. Thus, this step is one of the most important stages in the
design process, since the final success of the design is highly dependent on
these mapping choices. In Figure 1, we illustrate this mapping step on a
very simple example. In this example, the application model consists of four
Kahn processes and five FIFO channels. The architecture model contains
two processors and one shared memory. To decide on an optimum mapping,
there exist multiple criteria to consider: maximum processing time in the
system, power consumption and the total cost. This section aims at defining
a mapping function, shown with f in Figure 1, to supply the designer with
a set of best alternative mappings under the mentioned system criteria.

3.1 Application Modeling

The application models in Sesame are represented by a graph KPN =
(VK , EK) where the set VK and EK refer to the Kahn nodes and the di-
rected FIFO channels between these nodes, respectively. For each node
a ∈ VK , we define Ba ⊆ EK to be the set of FIFO channels connected to
node a, Ba = {ba1, . . . , ban}. For each Kahn node, we define a computation
requirement, shown with αa, representing the computational workload im-
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posed by that Kahn node onto a particular component in the architecture
model. The communication requirement of a Kahn node is not defined ex-
plicitly, rather it is derived from the channels attached to it. We have chosen
this type of definition for the following reason: if the Kahn node and one of
its channels are mapped onto the same architecture component, the commu-
nication overhead experienced by the Kahn node due to that specific channel
is simply neglected. Only its channels that are mapped onto different archi-
tecture components are taken into account. So our model neglects internal
communications and only considers external communications. Formally, we
denote the communication requirement of the channel b with βb. To include
memory latencies into our model, we require that mapping a channel onto a
specific memory asks computation tasks from the memory. To express this,
we define the computational requirement of the channel b from the memory
as αb. The formulation of our model ensures that the parameters βb and αb

are only taken into account when the channel b is mapped onto an external
memory.

3.2 Architecture Modeling

Similarly to the application model, the architecture model is also repre-
sented by a graph ARC = (VA, EA) where the sets VA and EA denote
the architecture components and the connections between the architecture
components, respectively. In our model, the set of architecture components
consists of two disjoint subsets: the set of processors (P ) and the set of
memories (M), VA = P ∪M and P ∩M = ∅. For each processor p ∈ P , the
set Mp = {mp1, . . . ,mpj} represents the memories which are reachable from
the processor p. We define processing capacities for both the processors and
the memories as cp and cm, respectively. These parameters are set such
that they reflect processing capabilities for processors, and memory access
latencies for memories.

One of the key considerations in the design of embedded systems is the
power consumption. In our model, we consider two types of power consump-
tion for the processors. We represent the power dissipation of the processor
p during execution with wpe, while wpc represents its power dissipation dur-
ing communication with the external memories. For the memories, we only
define wme, the power dissipation during execution. For both processors and
memories, we neglect the power dissipation during idle times. In our model,
we also consider the financial costs associated with the architecture model
components. Using an architecture component in the system adds a fixed
amount to the total cost. We represent the fixed costs as up and um for the
processors and the memories, respectively.
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3.3 The Mapping Problem

We have the following decision variables in the model: xap = 1 if Kahn node
a is mapped onto processor p, xbm = 1 if channel b is mapped onto memory
m, xbp = 1 if channel b is mapped onto processor p, yp = 1 if processor p

is used in the system, ym = 1 if memory m is used in the system. All the
decision variables get a value of zero in all other cases. The constraints in
the model are:

• Each Kahn node has to be mapped onto a single processor,

∑

p∈P

xap = 1 ∀a ∈ VK . (1)

• Each channel in the application model has to be mapped onto a pro-
cessor or a memory,

∑

p∈P

xbp +
∑

m∈M

xbm = 1 ∀b ∈ EK . (2)

• If two communicating Kahn nodes are mapped onto the same proces-
sor, then the communication channel(s) between these nodes have to
be mapped onto the same processor.

xaipxajp = xbp ∀b = (ai, aj) ∈ EK . (3)

• The constraint given below ensures that when two communicating
Kahn nodes are mapped onto two separate processors, the channel(s)
between these nodes are to be mapped onto an external memory.

xaipk
xajpl

≤
∑

m∈Mpk
∩Mpl

xbm ∀ai, aj ∈ VK ,

∀b ∈ Bai
∩Baj

,

∀pk 6= pl ∈ P. (4)

• The following constraints are used to settle the values of yp and ym’s
in the model. We multiply the right-hand side of the first equation
series by the total number of Kahn nodes and FIFO channels, since this
gives an upper bound on the number of application model components
that can be mapped to any processor. Similar logic is applied to the
equations related with memory.

9



∑

a∈VK

xap +
∑

b∈EK

xbp ≤ (| VK | + | EK |)yp ∀p ∈ P, (5)

∑

b∈EK

xbm ≤ | EK | ym ∀m ∈M. (6)

Three conflicting objective functions exist in the optimization problem:

• The first objective function tries to minimize the maximum process-
ing time in the system. For each processor and memory, fp and fm

represent the total processing time of the processor and memory, re-
spectively. We also show the total time spent by the processor for the
execution events as f e

p and for the communication events as f c
p .

fp = f e
p + f c

p , (7)

f e
p =

1

cp

∑

a∈VK

αaxap, (8)

f c
p =

1

cp

∑

a∈VK

xap

∑

b∈Ba,m∈Mp

βbxbm, (9)

fm =
1

cm

∑

b∈EK

αbxbm. (10)

So the objective function is expressed as

min max
i∈VA

fi. (11)

• The second objective function tries to minimize the power consump-
tion of the whole system. Similarly, gp and gm denote the total power
consumption of processor p and memory m.

gp = f e
pwpe + f c

pwpc, (12)

gm = fmwme. (13)

min
∑

i∈VA

gi. (14)

• The last objective function aims at minimizing the total cost of the
architecture model.

min
∑

p∈P

upyp +
∑

m∈M

umym. (15)
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Table 1: Table of symbols for the MMPN problem.
Application parameters
VK set of Kahn nodes
EK set of channels
Ba set of channels connected to node a

αa computation requirement of node a

βb communication requirement of channel b

αb computation requirement of channel b

Architecture parameters
VA set of architecture components
EA connectivity set of architecture components
P set of processors
M set of memories
cp processing capacity of processor p

cm processing capacity of memory m

wpe power dissipation of p during execution
wpc power dissipation of p during communication
wme power dissipation of m during execution
up fixed cost of p

um fixed cost of m

Binary decision variables
xap whether a is mapped onto p

xbm whether b is mapped onto m

xbp whether b is mapped onto p

yp whether p is used
ym whether m is used
Functions
fi total processing time of component i

gi total power dissipation of component i

Definition 1 (MMPN problem) Multiprocessor Mappings of Process Net-
works (MMPN) Problem is the following multiobjective integer optimization
problem:

min f = (max
i∈VA

fi,
∑

i∈VA

gi,
∑

p∈P

upyp +
∑

m∈M

umym) (16)

s.t. (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (12), (13),

xap, xbm, xbp, yp, ym ∈ {0, 1} ∀a ∈ VK , ∀b ∈ EK ,

∀m ∈M, ∀p ∈ P. (17)

For the sake of convenience Table 1 presents the set of mathematical
symbols for the MMPN problem.
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3.4 Constraint Linearizations

In Section 5, we will solve an instance of the MMPN problem using both
exact and heuristic methods. Because the problem has some nonlinear con-
straints, one has to linearize them before using a mathematical optimizer.
Next we show how this is done.

(3) can be linearized by replacing it with these three constraints:

xbp ≥ xaip + xajp − 1, (18)

xbp ≤ xaip, (19)

xbp ≤ xajp. (20)

Similarly, (4) can be linearized by introducing a new binary variable
xaipkajpl

= xaipk
xajpl

and adding the constraints:

xaipkajpl
≥ xaipk

+ xajpl
− 1, (21)

xaipkajpl
≤ xaipk

, (22)

xaipkajpl
≤ xajpl

. (23)

Finally, (9) can be linearized by introducing the binary variable xapbm =
xapxbm and adding the constraints:

xapbm ≥ xap + xbm − 1, (24)

xapbm ≤ xap, (25)

xapbm ≤ xbm. (26)

4 Multiobjective Optimization

4.1 Preliminaries

Definition 2 A general multiobjective optimization problem with k decision
variables and n objective functions is defined as:

minimize f(x) = (f1(x), . . . , fn(x))

subject to x ∈ Xf

where x represents a solution and Xf ⊆ X is the set of feasible solutions.
The objective function vector f(x) maps a decision vector x = (x1, . . . , xk)
in decision space (X) to an objective vector z = (z1, . . . , zn) in objective
space (Z).

Definition 3 (Dominance relations) Given two objective vectors z1 and z2,
we say

• z1 ≪ z2 (z1 strictly dominates z2) iff z1
i < z2

i , ∀i ∈ {1, . . . , n}.
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Figure 2: The lexicographic weighted Tchebycheff method can be considered
as drawing probing rays emanating from zref towards the Pareto front. The
points equidistant from zref form a family of rectangles centered at zref.

• z1 < z2 (z1 dominates z2) iff z1
i ≤ z2

i and z1 6= z2, ∀i ∈ {1, . . . , n}.

• z1 ≤ z2 (z1 weakly dominates z2) iff z1
i ≤ z2

i , ∀i ∈ {1, . . . , n}.

• z1 ∼ z2 (z1 is incomparable with z2) iff ∃i 6= j ∈ {1, . . . , n} such that
z1
i < z2

i and z2
j < z1

j .

Definition 4 A decision vector x ∈ A ⊆ Xf is said to be nondominated in
set A iff ∄a ∈ A such that f(a) < f(x).

Definition 5 (Nondominated set and front) The set containing only non-
dominated decision vectors Xnd ⊆ Xf is called nondominated set. Its image
on the objective space, Znd = {z : z = f(x),x ∈ Xnd} is called nondominated
front.

Definition 6 (Pareto set and front) The set Xpar = {x : x is nondominated
in Xf} is called Pareto set. Its image on the objective space Zeff = {z :
z = f(x),x ∈ Xpar} is called Efficient set or equivalently Pareto front.

Definition 7 (Euclidean distance) The Euclidean distance between two vec-

tors (of dimension n) z1 and z2 is defined as ‖z1−z2‖ =
√

∑n
i=1

(z1
i − z2

i )2.
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After these ground-laying definitions, in the rest of this section we first
briefly explain an exact method for solving multiobjective optimization prob-
lems, namely the lexicographic weighted Tchebycheff method which was in-
troduced by Steuer and Choo [40]. Then we will move to heuristic methods
and introduce two state-of-the-art highly competitive Multiobjective Evo-
lutionary Algorithms (MOEAs) [14], [47]. The discussion on MOEAs is
performed within the context of the MMPN problem, especially when it
comes to those problem specific parameters. We conclude this section by
defining three new metrics for MOEA performance comparisons.

4.2 Lexicographic Weighted Tchebycheff Method

Definition 8 (Weakly Pareto-optimal point) A solution x∗ ∈ Xf is weakly
Pareto-optimal if there is no x ∈ Xpar such that f(x)≪ f(x∗).

The lexicographic weighted Tchebycheff method [40] works in two steps.
In the first step, we take a reference vector in objective space with compo-
nents

zref
i = min{fi(x | x ∈ Xf )} − ǫi,

where ǫi are small positive values. Generally, it is common to set ǫi to the
value which makes zref

i = ⌊min{fi(x | x ∈ Xf )}⌋. In this step we solve

min α (27)

subject to α ≥ λi|fi(x)− zref
i |,

n
∑

i=1

λi = 1, 0 < λi < 1 and x ∈ Xf ,

which guarantees weak Pareto optimality [16]. We denote the set of solutions
found in this first step with Xw. In the second step, solutions in Xw are
checked for Pareto optimality using

min
n

∑

i=1

fi(x) (28)

x ∈ Xw

and all weakly Pareto-optimal points are eliminated. After this step, the
retained Pareto-optimal solutions form Xpar. In Figure 2, we illustrate this
graphically. The first step in the lexicographic weighted Tchebycheff method
can be considered as drawing probing rays emanating from zref towards the
Pareto front. The points equidistant from zref form a family of rectangles
centered at zref. Moreover, the vertices of these rectangles lie in the probing
ray in the domain of the problem [39]. The objective in (27) is optimized
when the probing ray intersects the Pareto front. In this step, points z1,
z2 and z3 can be located. In the second step, weakly Pareto-optimal z3 is
eliminated.
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Algorithm 1 A General Elitist Evolutionary Algorithm

input: N : Size of the population
T : Maximum number of generations.

output: Nondominated individuals in Pt+1.
step1. Initialization: Generate a random initial population P0, and cre-
ate an empty child set Q0. t← 0.
step2. Fitness assignment: Pt+1 ← Pt∪Qt, and then calculate the fitness
values of the individuals in Pt+1.
step3. Truncation: Reduce size of Pt+1 by keeping best N individuals
according to their fitness values.
step4. Termination: If t = T , output nondominated individuals in Pt+1

and terminate.
step5. Selection: Select individuals from Pt+1 for mating.
step6. Variation: Apply crossover and mutation operations to generate
Qt+1. t← t + 1 and go to step2.

4.3 Multiobjective Evolutionary Algorithms (MOEAs)

Evolutionary algorithms have become very popular in multiobjective op-
timization, as they operate on a set of solutions. Over the years, many
multiobjective evolutionary algorithms have been proposed [9], [10]. In this
section, we study two state-of-the-art MOEAs: SPEA2 which was proposed
by Zitzler et al. [47] and NSGA-II by Deb et al. [14]. Both algorithms are
similar in the sense that they follow the main loop in Algorithm 1. To form
the next generation, they employ a deterministic truncation by choosing N

best individuals from a pool of current and offspring populations. In addi-
tion, they both employ binary tournament selection [5]. Nevertheless, the
main difference lies in their fitness assignment schemes. Despite the fact
that both MOEAs apply a lexicographic fitness assignment scheme, objec-
tives of which are to give first priority to nondominance and second priority
to diversity, SPEA2 does so by using a finer-grained and therefore a more
computationally expensive approach than its rival NSGA-II. The interesting
question here is whether this additional computation effort pays off when
we look at the overall performance of SPEA2 and NSGA-II. This issue is
investigated experimentally in Section 5.

The distinctive characteristic of SPEA2 and NSGA-II is that both al-
gorithms employ elitism, that is to guarantee a strictly positive probability
for selecting at least one nondominated individual as an operand for varia-
tion operators. In both MOEAs, the following procedure is carried out to
introduce elitism: the offspring and current population are combined and
subsequently the best N individuals in terms of nondominance and diversity
are chosen to build the next generation. Unlike single optimization studies,
elitism has attracted high attention from the researchers in multiobjective
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optimization. Although it is still a very active research subject, elitism is
believed to be an important ingredient in search with multiple objectives.
For example in [28] and [46], experiments on continuous test functions show
that elitism is beneficial, while in [45] similar results are also reported for
two combinatorial (multiobjective 0/1 knapsack and travelling salesman)
problems. Apart from these experimental studies, Rudolph has theoreti-
cally proven that an elitist MOEA can converge to the Pareto-front in finite
number of iterations [34].

After the mentioned validatory studies, NSGA-II has been proposed as
an elitist version of its predecessor NSGA. Besides elitism, NSGA-II has ad-
ditional benefits over NSGA such as: i) a lower computational complexity,
ii) a parameterless mechanism for maintaining diversity among nondomi-
nated solutions, iii) a deterministic selection algorithm to form the next
generation by lexicographically sorting the combination of the current pop-
ulation and the offspring.

Similar to NSGA-II, SPEA2 is an improved successor of SPEA which
was one of the first MOEAs with elitism. SPEA2 differs from SPEA in
terms of i) a finer-grained fitness assignment mechanism, ii) a new density
estimation technique for maintaining diversity, and iii) a new truncation
method which prevents the loss of boundary solutions.

In the remainder of this section, we concentrate on problem-specific por-
tions of MOEAs, and the discussion will be based on the MMPN problem,
our focus of interest in this paper. The discussion is divided into three parts:
individual encoding, constraint violations and variation operations. We con-
clude this section by defining three new metrics in the interest of comparing
MOEAs under different criteria.

4.3.1 Individual Encoding

Each genotype consists of two main parts: a part for Kahn process nodes
and a part for FIFO channels. Each gene in the chromosome has its own
feasible set which is determined by the type of the gene and the constraints
of the problem. For genes representing Kahn process nodes, only the set of
processors in the architecture model form the feasible set, while for genes
representing the FIFO channels, both the set of processors and the set of
memories constitute the feasible set.

The constraints of the problem may include some limitations which
should be considered in individual coding. For example, if there exists a
dedicated architecture component for a specific Kahn process, then this ar-
chitecture component has to be included only in the feasible set of this Kahn
process.

In Figure 3, an example chromosome is given. The first three genes are
those for Kahn process nodes, and the rest are those for FIFO channels. We
have placed closely related genes together in order to maintain locality. The
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Figure 3: An example individual coding. The closely related genes are put
together in order to preserve locality.

latter is vital for the success of an evolutionary algorithm [23], [15]. For
this gene, the second Kahn process is mapped onto an Application Specific
Instruction Processor (ASIP) while the second FIFO channel is mapped onto
a DRAM. We also see that the feasible sets for these two genes are different.

4.3.2 Constraint Violations

We have developed a repair mechanism to deal with constraint violations.
Due to randomness in MOEAs (in initialization, crossover and mutation
steps), the constraints (1), (2), (3) and (4) are prone to violation. The
repair mechanism given in Algorithm 2 first considers whether each Kahn
process is mapped onto a processor from its feasible set, and if not, it repairs
by randomly mapping the Kahn process to a feasible processor. After having
finished processing the Kahn process genes, it proceeds along with the FIFO
channel genes. For the latter, the repair algorithm simply checks for each
FIFO channel whether the Kahn processes it is connected to are mapped
onto the same processor. If this condition holds, then it ensures that the
FIFO channel is also mapped onto that processor. If the condition does
not hold, which means that the Kahn processes are mapped onto different
processors (say, P1 and P2), it finds the set of memories reachable from both
P1 and P2 (mathematically, MP1

∩MP2
). Then it selects a memory from

this set randomly and maps the FIFO channel onto that memory. However,
it is interesting to note here that if MP1

∩MP2
= ∅, then the problem itself

may become infeasible2. Therefore, we exclude these architectures.

2Although, it is possible to repair by mapping both the FIFO channel and one of the
Kahn processes onto the processor that the other Kahn process is mapped onto, this would
require the individual to re-enter repair as it may cause additional infeasibilities for other
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Algorithm 2 Individual Repair Algorithm

input: I (individual)
output: I (individual)

for all Kahn process genes do

check if it is mapped onto a processor from its feasible set.
if mapping is infeasible then

repair: map on a random processor from its feasible set.
end if

end for

for all FIFO channel genes do

K1 ← source Kahn process of the FIFO channel.
K2 ← sink Kahn process of the FIFO channel.
P1 ← processor that K1 is mapped onto.
P2 ← processor that K2 is mapped onto.
if P1 = P2 then

repair: map FIFO channel onto P1.
else

M ← a randomly chosen memory from MP1
∩MP2

.
repair: map FIFO channel on M .

end if

end for

With respect to repair we have developed and tested three strategies. In
the first (no-repair) strategy none of the individuals is repaired during any
step, all are treated as valid individuals during the optimization process.
Once the optimization is finished, repair is applied to the invalid individ-
uals, and all nondominated solutions are output. Although this approach
does not sound very promising as it neglects infeasibility, it is included here
for two reasons: the first reason is that some researchers have applied this
strategy to multiobjective combinatorial problems and reported positive re-
sults [15]; and the second reason is to see the performance gain/loss when
constraint handling is taken into account. In the second strategy, which we
call moderate-repair, at the end of each variation (step6 in Algorithm 1) all
invalid individuals are repaired. This allows infeasible individuals to enter
the mutation step. The latter may help to explore new feasible areas over
unfeasible solutions. This is especially important for combinatorial prob-
lems in which the feasible region may not be connected. The last strategy
we employ here is called extensive-repair, as it repairs all invalid individuals
immediately after every variation step. Hence, all individuals entering mu-
tation are feasible. The experimental results concerning the repair strategies
are discussed in Section 5.

FIFO channels. In the worst case, this can be an infinite loop.
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4.3.3 Variation Operations

As we have already mentioned, experiments in Section 5 should give us
some feedback about i) whether the finer-grained computationally-expensive
fitness assignment in SPEA2 pays off, and ii) the effect of using different
repair schemes (no-repair, moderate-repair and extensive-repair strategies).
Therefore, we have fixed other factors that may effect MOEA performance.
We have used only one type of mutation and crossover operations in all
standard runs. For the former, we have used independent bit mutation (each
bit of an individual is mutated independently with respect to bit mutation
probability), while for the latter standard one-point crossover (two parent
chromosomes are cut at a random point and the sections after the cut point
are swapped) is employed.

Many researchers have reported comparative performance results on dif-
ferent crossover types and mutation for traditional EAs solving single ob-
jective problems [23], [36], [41]. Therefore, it may well be interesting to
perform similar comparative experiments with some variation operators in
the multiobjective case. In this respect, we have performed additional ex-
periments in Section 5.2 for the comparison of different crossover operators
and the effect of mutation usage.

In our analysis with respect to crossover operators we have compared
the performance of the one-point crossover with that of the two-point and
uniform crossover operators. In two-point crossover the individual is con-
sidered as a ring formed by joining the ends together. The ring is cut at
two random points forming two segments, and the two mating parents ex-
change one segment in order to create the children. One should note that
the two-point crossover performs the same task as the one-point crossover
by exchanging a single segment, however is more general. Uniform crossover
is rather different from both one-point and two-point crossover; two parents
are selected for reproducing two children, and for each bit position on the
two children it is randomly decided which parent contributes its bit value
to which child.

4.4 Metrics for Comparing Nondominated Sets

To properly evaluate and compare MOEA performances, one can identify
three important criteria [13]:

• Accuracy. The distance of the resulting nondominated set to the
Pareto-optimal front should be minimal.

• Uniformity. The solutions should be well distributed (in most cases
uniform).

• Extent. The nondominated solutions should cover a wide range for
each objective function value.
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Figure 4: Metrics for comparing nondominated sets. For the sake of sim-
plicity, illustrations for the two dimensional case are given. However, the
metrics are also valid for any higher dimension.

Unlike single objective optimization problems, where the single aim is
to locate a global optimum without being trapped at local optima, multi-
objective optimization requires multiple aims to be satisfied simultaneously.
Besides the obvious accuracy criterion, that is locating a set of solutions
being at minimal distant from the Pareto front, multiobjective optimizers
also need to maintain a well distributed solution set (i.e. uniformity) for a
more complete view of the trade-off curve and should catch boundary points
(i.e. extent) for a better coverage of the objective space.

There has been some effort for measuring the performance assessments
of MOEAs [46], [27]. Metrics, in general, can be classified as i) metrics
evaluating only one nondominated set, ii) metrics comparing two nondom-
inated sets, iii) metrics requiring knowledge of the Pareto-optimal set, and
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iv) metrics measuring single or multiple assessment(s).
In the rest of this section, we propose one metric for each of the three

identified criteria. Due to the fact that every objective function scales inde-
pendently, one should map the limits of the objective function values to a
unique interval, before doing any arithmetic operation. Therefore, we first
present normalization of vectors, before defining the performance metrics.

4.4.1 Normalization of Vectors in Objective Space

To make calculations scale independent, we normalize vectors before doing
any arithmetic. At the end of normalization, each coordinate of the objective
space is scaled such that all points get a value in the range [0, 1] for all
objective values. Assume we have p nondominated sets, Z1 . . . Zp. First we
form Z = Z1∪ . . .∪Zp. Then we calculate fmin

i = min{fi(x), f(x) = z ∈ Z}
and fmax

i = max{fi(x), f(x) = z ∈ Z} which correspond to the minimum
and maximum values for the ith coordinate of the objective space. Then we
scale all points according to

f i(x) =
fi(x) − fmin

i

fmax
i − fmin

i

. (29)

We repeat this process for all coordinates, i.e. i = 1 . . . n. We show the
normalized vector of a vector z as z. Similarly, the set of normalized vectors
are shown as Z.

4.4.2 D-metric for Accuracy

Given two normalized nondominated sets Z1 and Z2, ∀a ∈ Z1 we look for
∃b ∈ Z21 ⊆ Z2 such that b < a. Then we compute Euclidean distances from
a to all points b ∈ Z21. We define ‖a− b‖max = max{‖a− b‖,a ∈ Z1,b ∈
Z21} to be the maximum of such distances. If Z21 = ∅ then ‖a−b‖max = 0.

D(Z1, Z2) =
∑

a∈Z1

‖a− b‖max√
n|Z1|

, (30)

where n is the dimension of the objective space. The D-metric returns a
value in the range [0, 1] where a smaller value is better. As seen in Fig-
ure 4(a), the maximum distance from a dominating point is taken as a basis
for accuracy.

4.4.3 ∆-metric for Uniformity

Given a normalized nondominated set Z, we define di to be the Euclidean
distance between two consecutive vectors, i = 1 . . . (|Z | − 1). Let d̂ =
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∑|Z|−1

i=1
di

|Z|−1
. Then we have

∆(Z) =

|Z|−1
∑

i=1

|di − d̂|√
n(|Z| − 1)

, (31)

where n is the dimension of the objective space. Note that 0 ≤ ∆(Z) ≤ 1
where 0 is the best. The underlying idea is to first calculate the average
distance between any two consecutive points, and then to check all distances
and penalize with respect to the deviation from the average distance. In the
ideal case, all distances d1, d2, · · · , dn−1 in Figure 4(b) are equal to each
other and the metric gets a value of 0.

4.4.4 ∇-metric for Extent

Given a nondominated set Z, we define fmin
i = min{fi(x), f(x) = z ∈ Z}

and fmax
i = max{fi(x), f(x) = z ∈ Z}. Then

∇(Z) =
n

∏

i=1

|fmax
i − fmin

i |, (32)

where n is the dimension of the objective space. For this metric, normaliza-
tion of vectors is not needed. As shown in Figure 4(c), a bigger value spans
a larger portion of the hypervolume and therefore is always better.

5 Experiments

For the experiments we have taken two media applications and a platform
architecture to map the former onto the latter. The first application is
a modified Motion-JPEG encoder which differs from traditional encoders
in three ways: it only supports lossy encoding while traditional encoders
support both lossless and lossy encodings, it can operate on YUV and RGB
video data whereas traditional encoders usually operate on the YUV format,
and finally it can change quantization and Huffman tables dynamically while
the traditional encoders have no such behavior. We omit giving further
details on the M-JPEG encoder as they are not crucial for the experiments
performed here. Interested readers are pointed to [33].

The second application is a Philips in-house JPEG decoder from [12].
Regarding this application, we only have the topology information but not
the real implementation. Therefore, we have synthetically generated all its
parameter values. Both media applications and the platform architecture
are given in Figure 5. Although these two applications match in terms
of complexity, the JPEG decoder has a more complex structure since its
processes are defined at a finer granularity. In two case studies performed
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Figure 5: Two multimedia applications and a platform architecture is shown.
The M-JPEG encoder application and the multiprocessor System-on-Chip
(SoC) architecture model are given on the left; on the right is shown the
JPEG decoder process network with 26 processes and 75 FIFO channels.

here, we have mapped these media applications successively onto the same
platform architecture consisting of a general purpose microprocessor (mP),
three ASIPs, an Application Specific Integrated Circuit (ASIC), an SRAM
and three DRAMs. For these architecture components, realistic latency
values from [33] have been used to calculate their processing capacities: cp

and cm. Similarly, for the Kahn processes and FIFO channels in the M-
JPEG decoder, computational and communicational requirements (namely
the parameters αa for the nodes and the parameters αb and βb for the
FIFO channels) have been calculated using statistics obtained from the C++
implementation code of its Kahn process network.

We have implemented the MMPN problem as an optimization problem
module in PISA – A platform and programming language independent in-
terface for search algorithms [6]. In PISA, the optimization process is split
into two modules. One module contains all parts specific to the optimiza-
tion problem such as individual encoding, fitness evaluation, mutation, and
crossover. The other module contains the problem-independent parts such
as selection and truncation. These two modules are implemented as two
separate processes communicating through text files. The latter provides
huge flexibility because a problem module can be freely combined with an
optimizer module and vice versa. Due to the communication via file sys-
tem, platform, programming language and operating system independence
are also achieved.

For M-JPEG encoder and JPEG decoder mapping problems, we have
utilized the state-of-the-art highly competitive SPEA2 and NSGA-II multi-
objective evolutionary optimizers. As already mentioned in Section 4.3.2, we
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Figure 6: Pareto front for the M-JPEG encoder case study.

have used a repair algorithm (Algorithm 2) to handle constraint violations.
In order to examine the effect of repair usage on the MOEA performance,
we have utilized three different repair strategies (no-repair, moderate-repair,
and intensive-repair), the details of which have already been discussed in
Section 4.3.2. In the rest of the paper we present the results obtained un-
der the no-repair strategy with SPEA2 (NSGA-II), while the results for
the moderate-repair and intensive-repair strategies are shown by SPEA2r
(NSGA-IIr) and SPEA2R (NSGA-IIR), respectively.

In the experiments, we have used the standard one-point crossover and
independent bit mutation variators. The population size is kept constant.
All performance analyses are carried out at different numbers of generations,
ranging from 50 to 1000, collecting information on the whole evolution of
MOEA populations. The following values are used for the specific parame-
ters:

• Population size, N = 100.

• Maximum number of generations,
T = 50, 100, 200, 300, 500, 1000.

• Mutation probability3 0.5, bit mutation probability4 0.01.

• Crossover probability 0.8.

The D-metric for measuring convergence to the Pareto front requires a ref-
erence set. To this end, we implemented the lexicographic weighted Tcheby-
cheff method and solved the M-JPEG encoder mapping problem by using

3i.e., the likelihood of mutating a particular solution.
4i.e., the likelihood of mutating each bit of a solution in mutation.
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Figure 7: Convergence analyses of the D-metric for the M-JPEG encoder
(left) and the JPEG decoder (right). In the case of the M-JPEG decoder,
the reference set is obtained by CPLEX, while for the JPEG decoder it is
obtained by running SPEA2r with T = 10000.
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Figure 8: Convergence analyses of the ∆-metric for the M-JPEG encoder
(left) and the JPEG decoder (right).

the CPLEX Mixed Integer Optimizer [1]. The outcome of numerous runs
with different weights has resulted in 18 Pareto-optimal points which are
plotted in Figure 6. The JPEG decoder is not solved by this exact method
due to its size, instead the result obtained by running SPEA2 for T = 10, 000
is taken as the reference set.

The following table summarizes the experimental setup.

MOEA repair strategy crossover mutation
SPEA2 no-repair one-point indep. bit
SPEA2r moderate-repair one-point indep. bit
SPEA2R intensive-repair one-point indep. bit
NSGA-II no-repair one-point indep. bit
NSGA-IIr moderate-repair one-point indep. bit
NSGA-IIR intensive-repair one-point indep. bit

In the experiments we have performed 30 runs (varying the random
generator seed from 1 to 30) for each setup. An MOEA with some chosen
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Figure 9: Convergence analyses of the ∇-metric for the M-JPEG encoder
(left) and the JPEG decoder (right).

T makes up a setup: SPEA2 with T = 50 or NSGA-IIR with T = 500 are
two examples. As a result we have obtained 30 nondominated sets for each
setup. All experiments have been performed on an Intel Pentium M PC
with 1.7 GHz CPU and 512 MB RAM running Linux OS.

5.1 MOEA Performance Comparisons

Table 3 in the appendix presents averages and standard deviations of the
three performance metrics for each experimental setup with respect to 30
runs. The results for the same number of generations are grouped and
compared. The best values obtained for all metrics are given in bold. To
visualize the metrics convergence, we have plotted average metrics values
against the numbers of generations in Figures 7, 8, and 9. We have the
following conclusions:

• In terms of all three metrics, SPEA2 and NSGA-II score very close
numbers and overall can be considered evenly matched. The same
is true between SPEA2r and NSGA-IIr, and also for SPEA2R and
NSGA-IIR. However with respect to run-times, NSGA-II, NSGA-IIr
and NSGA-IIR outperform SPEA2, SPEA2r and SPEA2R by only
demanding on average 44% of their rivals’ run-times. The latter is
also demonstrated in Figure 10 where we plot D-metric values with re-
spect to wall clock time. Therefore, the finer-grained computationally-
expensive fitness assignment in SPEA2 (also in SPEA2r and SPEA2R)
does not seem to pay off in general.

• In terms of accuracy (D-metric), SPEA2R and NSGA-IIR clearly out-
perform SPEA2r and NSGA-IIr. The worst performance is obtained
when no repair is used, as clearly observed in Figure 7, SPEA2 and
NSGA-II fail to converge to the Pareto front. Therefore, constraint
handling is of crucial importance.
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• From D-metric plots in Figure 7 and Figure 10 we observe that con-
vergence to the Pareto front accelerates with higher usage of repair. In
this respect we observe an exponential convergence curve for SPEA2R
and NSGA-IIR, while the convergence of SPEA2r and NSGA-IIr ap-
proximates a linear curve. However, as the number of generations
increase, the difference in terms of D-metric between SPEA2R (NSGA-
IIR) and SPEA2r (NSGA-IIr) diminishes.

• In terms of uniformity, all algorithms perform indifferently. Although
they start from a good initial value, they all fail to converge towards
the optimal value zero. It is also very difficult to come to any conclu-
sion about their behaviors from Figure 8, e.g. it is unclear whether
repair has any positive or negative effect on the ∆-metric. Overall, all
algorithms can be considered as good in terms of uniformity, as they
all score below 0.06 which is reasonably close to the optimal value.

• SPEA2r and NSGA-IIr clearly outperform other variants in terms of
the extent metric. The reason behind this may be the higher explo-
rative capacity of SPEA2r and NSGA-IIr, as they can locate diverse
feasible regions by mutating the invalid individuals. In this metric,
SPEA2R and NSGA-IIR come second. Also from the ∇-metric plot
for JPEG decoder problem in Figure 9, we observe convergence behav-
ior for SPEA2r, NSGA-IIr, SPEA2R, NSGA-IIR, but not for SPEA2
and NSGA-II. Therefore, repair is essential for good extension but
there seems to be no linear relation between the two.

• In the M-JPEG encoder case study, we compare nondominated sets
generated by the MOEAs against the exact Pareto set (obtained by
the lexicographic weighted Tchebycheff method in CPLEX). As the
numbers are very close to the ideal value 0 for T ≥ 300, especially
for SPEA2R and NSGA-IIR, we consider them as highly promising
optimizers. Convergence to Pareto front is also achieved with SPEA2r
and NSGA-IIr, but this takes considerably larger amount of time.
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Figure 11: Notched boxplots showing the distribution of D-metric values
for reciprocal comparison of MOEAs. Each nondominated set of a MOEA
is compared with respect to each nondominated set from the other, and
the resulting 900 comparisons is plotted. The plots are given for the JPEG
decoder case study in ascending number of generations (50, 100, 200, 300,
500, and 1000) in the order from left to right and top to bottom. Hence, the
top leftmost plot corresponds to MOEA comparisons with N = 50, while the
bottom rightmost is for comparisons with N = 1000. The abbreviations s1,
s2, n1, n2 are used in places of SPEA2R, SPEA2r, NSGA-IIR, NSGA-IIr,
respectively. Comparisons regarding SPEA2 and NSGA-II are not given as
they fail to converge (Section 5.1). Since D-metric is non-symmetric, i.e.
D(Z1, Z2) 6= D(Z2, Z1), both comparisons are performed. Note that smaller
values are always better.

• In Figure 11 we perform reciprocal comparison of nondominated sets
at numbers of generations 50, 100, 200, 300, 500, and 1000 for the
JPEG decoder case study. To perform one comparison at a certain
number of generations, 30 nondominated sets from an MOEA is com-
pared one by one with the 30 nondominated sets from the other. The
resulting distribution of 900 D-metric comparisons is given as a single
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Figure 12: Crossover analysis for the JPEG encoder case study.
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Figure 13: Using no mutation results in poor ∇-metric values in the JPEG
encoder case study. This is an expected result as the mutation operator is
responsible for exploration of the search space.

notched boxplot in Figure 11. The comparisons unveil that SPEA2R
and NSGA-IIR beat SPEA2r and NSGA-IIr in all comparisons; and
SPEA2R and NSGA-IIR can be considered as equally matched. The
same is true between SPEA2r and NSGA-IIr. However, as the number
of generations increase, the difference in D-metric between SPEA2R
(NSGA-IIR) and SPEA2r (NSGA-IIr) diminishes as a result of the
belated convergence of SPEA2r and NSGA-IIr. This difference in con-
vergence speed is also apparent in Figure 7, where we observe an ex-
ponential convergence curve for SPEA2R and NSGA-IIR in contrast
to a linear curve for SPEA2r and NSGA-IIr.

5.2 Effect of Crossover and Mutation

In this section we have performed two independent experiments with the
JPEG decoder case study in order to analyze the effect of crossover and
mutation operators on different MOEA performance criteria. The purpose
of the first experiment is to examine the correlation between crossover type
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Table 2: Three solutions chosen for simulation.
Solution Max. Processing Time Power Cons. Arch. Cost

cplex1 129338.0 1166.2 160.0
cplex2 162203.7 966.9 130.0
ad-hoc 167567.3 1268.0 170.0

and convergence to the Pareto front. In this respect, besides the default
one-point crossover operator, we have implemented two-point and uniform
crossover operators (see Section 4.3.3 for how they work). When we look at
the resulting D-metric plots in Figure 12 we observe a better performance
with uniform crossover in the early generations; however after T = 500,
all crossover operators exhibit very close performance. With respect to
extent (∇-metrics in Figure 12) two point crossover shows the worst perfor-
mance, while once again one-point and uniform crossover operators match
each other. The relatively fast convergence but coincidentally poor coverage
of the search space in the case of the two-point crossover implies that the
operator is biased more towards exploitation than exploration. One-point
and uniform crossover operators seem to find a better balance of the two in
this case.

In the second experiment we analyze the effect of the mutation operator
on MOEA performance. To realize this we have taken our original exper-
imental setup (see Section 5) and repeated the experiments without the
mutation operator. The resulting D-metric and ∇-metric plots are given
in Figure 13. With respect to both metrics omitting the mutation opera-
tor has resulted in very poor performance. MOEAs without mutation seem
to converge towards the local optima and fail to collect variant solutions.
Both observations imply that insufficient exploration has been realized in
the search. These implications are in accordance with the widely accepted
role of mutation as providing a reasonable level of population diversity in
the standard EAs [36]. This experiment suggests that the explorative role
of mutation is of high importance for MOEAs as well.

5.3 Simulation Results

In this section, we use the Sesame framework in order to evaluate three
selected solutions of the M-JPEG encoder problem by means of simulation.
Two of the solutions are taken from the Pareto-optimal set (referred here as
cplex1 and cplex2), while the third solution is an ad-hoc solution (referred as
ad-hoc) which is very similar to those proposed and studied in [29], [33]. It
is clear from their objective function values in Table 2 that Pareto-optimal
cplex1 and cplex2 outperform the ad-hoc solution in all objectives. The
outcome of simulation experiments are also in accordance with optimization
results, as the results in Figure 14 reveal that similar performance can be
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Figure 14: Simulation results showing the utilization of architecture compo-
nents in all three solutions. The throughput values are 52.2, 47.8 and 51.3
frames/sec for the cplex1, cplex2 and ad-hoc solutions, respectively.

achieved using less processing cores (cplex1 and cplex2 use three while ad-
hoc uses four processors), which in turn results in less power consumption
and cheaper implementation.

6 Conclusion

In this paper, we studied a multiobjective design problem from the multi-
processor system-on-chip domain: mapping process networks onto heteroge-
neous multiprocessor architectures. The mathematical model for the prob-
lem takes into account three objectives, namely the maximum processing
time, power consumption, and cost of the architecture, and is formulated
as a nonlinear mixed integer programming. We have used an exact (lexi-
cographic weighted Tchebycheff) method and two state-of-the-art MOEAs
(SPEA2 [47] and NSGA-II [14]) in order to locate the Pareto-optimal so-
lutions. To apply the exact method, we first linearized the mathematical
model by adding additional binary decision variables and new constraints.
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Three new performance metrics have been defined to measure three at-
tributes (accuracy, uniformity and extent) of nondominated sets. These
metrics are subsequently used to compare SPEA2 and NSGA-II with each
other and also with the Pareto-optimal set. The two elitist MOEAs mainly
differ in their fitness assignment schemes. SPEA2 uses a finer-grained and
computationally more expensive scheme with respect to its rival NSGA-II.
Performing two case studies, we have shown that SPEA2 is not superior
than NSGA-II in any of the three defined metrics. Therefore regarding the
MMPN problem, the computationally more expensive fitness assignment
scheme of SPEA2 does not seem to pay off, as NSGA-II is on average 2.2
times faster. Comparing the two MOEAs with the exact set in the M-JPEG
encoder case study, we have shown that both SPEA2 and NSGA-II find
solution sets very close to the Pareto-optimal set.

Constraint violations have been tackled by three repair strategies differ-
ing in terms of repair intensity, and the outcome of each strategy is evaluated
with respect to the defined metrics. The main result is that using sufficient
amount of repair is necessary for good convergence, but allowing some infea-
sibility may help the MOEA to explore new feasible regions over infeasible
solutions. Thus, a balance should be established in terms of repair frequency.

Additionally, one-point, two-point, and uniform crossover operators have
been comparatively evaluated in terms of accuracy and extent. To summa-
rize, one-point and uniform crossover operators seem to find a good balance
of exploitation vs. exploration, while two-point crossover is more biased to-
wards exploitation. With respect to mutation usage, the experiments reveal
that mutation retains its importance for exploration.

We have also compared and simulated two Pareto-optimal solutions and
one ad-hoc solution from previous studies [29], [33]. The results indicate
that multiobjective search of the design space improves all three objectives,
i.e. a cheaper implementation using less power but still performing the same
in terms of system throughput can be achieved.
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A Performance Metrics

Table 3 presents the mean values and the standard deviations for the three
metrics obtained in the M-JPEG encoder and JPEG decoder case studies.
Best values are shown in bold.
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