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Abstract—Demand side management (DSM) plays an impor-
tant role in smart grid. In this paper, a hierarchical day-ahead
DSM model is proposed, where renewable energy sources (RESs)
are integrated. The proposed model consists of three layers: the
utility in the upper layer, the demand response (DR) aggregator
in the middle layer, and customers in the lower layer. The utility
seeks to minimize the operation cost and give part of the revenue
to the DR aggregator as a bonus. The DR aggregator acts as
an intermediary, receiving bonus from the utility and giving
compensation to customers for modifying their energy usage
pattern. The aim of the DR aggregator is maximizing its net
benefit. Customers desire to maximize their social welfare, i.e.,
the received compensation minus the dissatisfactory level. To
achieve these objectives, a multiobjective problem is formulated.
An artificial immune algorithm is used to solve this problem,
leading to a Pareto optimal set. Using a selection criterion, a
Pareto optimal solution can be selected, which does not favor any
particular participant to ensure the overall fairness. Simulation
results confirm the feasibility of the proposed method: the utility
can reduce the operation cost and the power peak to average
ratio; the DR aggregator can make a profit for providing DSM
services; and customers can reduce their bill.

Index Terms—Artificial immune algorithm, demand response
aggregator, demand side management, multiobjective problem,
Pareto optimality, renewable energy sources, smart grid.

NOMENCLATURE

:= Assignment operator.

α, β Compensation coefficient.

µ Bonus coefficient.

θ Mutate coefficient.

ε Dissatisfactory coefficient.

A(nc) Current antibodies.

c0() Conventional generation cost without DSM.

c1() Conventional generation cost with DSM.

cres() RESs generation cost.

f() Multiobjective problem.

fa() Objective function for the aggregator.

fc() Objective function for customers.

fu() Objective function for the utility.

fbon Bonus function.

fcom Compensation function.

fdis Dissatisfactory function.
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ffit Fitness function.

gct Power obtained from conventional generators at time

slot t.

grest Power obtained from RESs at time slot t.

gt Expected power generation at time slot t.

nc Current iteration number.

Nmax Maximum population size of antibodies.

Nnom Nominal population size of antibodies.

p∗ Selected Pareto optimal solution.

qf Electricity price per kWh.

R(nc) Clone rate.

W Total consumption of electricity in one day.

x0t Load profile at time slot t without DSM.

x1t Load profile at time slot t with DSM.

I. INTRODUCTION

REnewable energy sources (RESs) are playing an increas-

ing role in power generation. For example, in the UK,

the percentage of energy derived from RESs rose from 6.7%

in 2009 to 24.6% in 2015 [1]. However, these RESs cause

intermittent problems due to their inherent characteristics,

which makes it difficult to schedule and manage conventional

generation facilities for compensating them.

Smart grid can offer a two-way flow of information and

a two-way flow of electricity. It includes several parts: smart

power generation systems, smart substations, smart power dis-

tribution networks, smart interactive terminals, smart schedul-

ing, smart building electricity, smart city power grids, smart

meters, smart appliances, and new types of energy storage

system [2], [3]. One of the key smart grid technologies is

demand side management (DSM) [4].

DSM refers to management activities that electricity utilities

adopt to achieve optimal allocation of resources and improve

the efficiency of terminal users [5]. Typically, two approaches

are generally used: 1) incentive-based DSM and 2) time-based

DSM [6]–[9]. The incentive-based DSM rewards consumers

for adjusting the load profile or giving some levels of control

over their equipments. It includes direct load control, inter-

ruptible service, demand bidding, capacity market program

and ancillary service market. An alternative way is the time-

based DSM, in which the electricity price is decided by the

generation and demand situations. Several schemes have been

proposed, e.g. critical-peak pricing, time-of-use pricing, real

time pricing and peak load reduction credits [10], [11]. It was

proved that both DSM approaches are feasible and thus widely

used for the residential sector, commercial sector and industry

sector [12]–[16].
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Although the development of DSM has a great future,

the application of DSM in residential sector still has many

problems. Due to the large scale of customers, the generation

side is less likely to negotiate directly with each customer. In

this context, an intermediary/representative is needed [17]. An

aggregator, as the name implies, bundles a group of customers

into a cluster, and therefore becomes an important aspect to

the grid. In the UK, the demand response (DR) aggregator

is allowed and supported by the government in the power

network. There already exists several DR aggregators in the

market, e.g., UK Power Reserve Ltd, KiWi Power Ltd, Npower

Ltd, and ESP Response Ltd [18]. As shown in Fig. 1, the

DR aggregator can bring several benefits into the system: for

distribution system operators (DSOs), it can achieve peak-load

shaving and distributed generation (DG) supply optimization;

for retailers, it can help with the internal portfolio balancing;

for market, it can deliver day-ahead/hour-ahead optimization,

frequency control and power reservation [7].

In [19]–[21], the role of the DR aggregator that balances

the generation and demand was studied. When the imbalance

occurred, an indirect signal was given in [19], and the DR

aggregator solved a quadratic program at each time slot.

In [20], customers are willing to modify their consumption

profile according to the electricity price. The DR aggregator

represented customers to bid energy in the market. In [21],

the regulatory, economic and technical perspectives of critical-

peak pricing were examined. The aggregator decided when

to employ the critical-peak price. In [19]–[21], the role of

the aggregator was involved, but the utility function was

not explicit. Only benefits for the generation side and the

customer side were considered, while the benefit for the DR

aggregator was neglected. In [17], [22], the DR aggregator

was mentioned, the layered structure and biding scheme were

used. The model in [17] included the utility, DR aggregators,

and customers. The utility provided rewards to aggregators for

providing DR services, and customers can receive monetary

compensation for their demand adjustment. In [22], The utility

set the target for demand curtailment at a certain time slot. The

aggregator tried to achieve this target by providing rewards

to customers, aiming to minimize its payment. Customers bid

their supply function to the aggregator, aiming to minimize the

dissatisfaction. However, in [17], [20], [22], only the conven-

tional generation was considered. In [23]–[25], the hierarchical

system was also presented, and the game theory was used to

solve the problem. In [23], [24], multiple utilities were in-

volved. Utilities aimed to maximize the profit, while customers

aimed to maximize the individual welfare. A Stackelberg game

was established based on that to solve the problem. In [25],

utilities were divided into two types, fossil-fuel based and

RESs based. The uncertainty of supply was considered. A

utility selection program which can minimize customers’ costs

was proposed. But in [23]–[25], the inconvenience caused by

DR program for customers was not detailed.

Although extensive studies of DSM programs have been

conducted, there are several gaps for implementing an effective

DSM:

• The DR aggregator has already emerged as an individual

unit in the market, so the revenue of it needs to be

Fig. 1. Functionality of the DR aggregator in a power grid [7].

analyzed to support the underlying power system.

• For customers, only considering consumption billing is

not comprehensive. The quality of electricity service/the

satisfactory level should also be included. The consider-

ation of this can promote active participation of DSM in

practical situations.

To tackle these issues, this paper formulates a multiobjective

problem (MOP). For maximizing the benefits of all partici-

pants, an artificial immune algorithm (AIA) is proposed, lead-

ing to a Pareto optimal set. After a selection, a Pareto optimal

solution can be obtained, which ensures a fair implementation

of DSM [26]. Overall, the main contributions of this paper can

be summarized as below:

• The inherent intermittent problems of RESs can be ad-

dressed by the proposed DSM scheme.

• The DR aggregator is modelled as an independent par-

ticipant. The role and the revenue of it are analyzed.

• For customers, the social welfare is considered. It is

presented by the received compensation minus the dis-

satisfactory level caused by DSM.

• The UK actual daily data of electricity generation and de-

mand from Grid Watch are applied to prove the feasibility

and effectiveness of the proposed model.

The rest of this paper is organized as follows. Section II

introduces a hierarchical model for the day-ahead market,

which includes the utility, the DR aggregator and customers.

Section III formulates an MOP, and proposes the AIA and

the selection criterion. It can work out a Pareto optimal set

and select an optimal solution. Section IV provides a practical

case study. Finally, Section V concludes this paper and lists

the future research.

II. SYSTEM MODEL

In this section, the day-ahead market is considered and a

hierarchical framework for grid participants is introduced. This
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framework can help to define the specific role and goal of each

participant. The system operation model is shown in Fig. 2.

The utility is at the upper layer to supply electricity; the DR

aggregator is at the middle layer to communicate with both

the utility and customers; customers are at the lower layer to

consume electricity from the utility [17], [22].

Fig. 2. System operation model.

A. The role of the utility

In the day-ahead electricity market, the daily demand of

electricity fluctuates with the time according to customers’

behavior. What is more, due to the inherent intermittent

character of RESs, the power provided by RESs varies with

the external environment conditions, e.g. season, weather and

time period. In order to balance the demand and the supply,

the generation side needs to adjust the production, activate

the standby power plants, or even purchase power from third

parties [27], [28]. The term peak-to-average ratio (PAR) is

introduced to describe the stability of the system [29]:

PAR =
Peak Load

Average Load
. (1)

The cost of generation consists of two parts: conventional

generation cost and maintenance cost of RESs. For the con-

ventional generators, the cost and the marginal cost are propor-

tional to the total supplied electricity. The marginal cost means

the incremental cost of each new unit of production. Thus

the cost function c(·) is a strictly increasing convex function,

modelled by a quadratic equation in this paper [15], [23], [25],

[30]. For RESs, as there is no expense for resources, the cost is

mainly due to the maintenance. Thus the cost function cres(·)
is a constant value and independent of supplied electricity.

(Note: The installation of conventional generators and RESs

are not considered in this paper.)

Let qf denotes the selling price of per unit electricity. The

total consumption for one day is W MWh. For the day-ahead

market, the daily generation vectors are gc = {gct : t ∈ T} for

conventional generators and gres = {grest : t ∈ T} for RESs.

The utility aims to maximize the net revenue. Without the use

of DSM, the objective of the utility can be given by

max
gc,gres

:
∑

t∈T

qfx
0
t − [

∑

t∈T

c0(gct ) +
∑

t∈T

cres(grest )] (2)

s.t. :
∑

t∈T

grest +
∑

t∈T

gct >
∑

t∈T

x0t ,

gct,min 6 gct 6 gct,max, (3)

grest,min 6 grest 6 grest,max,

where x0t denotes the aggregated consumption at time slot

t without the DSM, c0 and cres denote the generation cost

for conventional generators and RESs without the DSM,

respectively. When the DSM is applied to customers, the peak

demand and the total generation cost could be reduced to a

certain degree. In this paper, the DR aggregator is considered

as the operator to implement the DSM. The utility will be

willing to share part of the saved cost as bonus to the DR

aggregator as an incentive. The bonus can be calculated as

[17]

fbon = ∆c(gct ) = µ
∑

t∈T

[c0(gct )− c1(gct )] (4)

where c1 denotes the generation cost for conventional gen-

erators with the DSM, and µ ∈ [0, 1) denotes the bonus

coefficient. When µ = 0, it means there is no bonus to the

DR aggregator, therefore indicates no DSM is implemented in

the system.

In order to ensure the basic needs, there is no curtailment

in demand. The flat price is chosen in this price, therefore the

total revenue from customers is fixed. The aim of the utility

can be defined as minimizing the operational cost. Hence, the

objective function of utility becomes

min
gc

: fu(g
c) =

∑

t∈T

[

c1(gct ) + ∆c(gct )
]

(5)

s.t. : 0 6 ∆c(gct ), 0 6 µ < 1, (6)

gct,min 6 gct 6 gct,max.

The first term of (5) corresponds to the generation cost for

conventional generators, and the second term corresponds to

the bonus given to the DR aggregator.

B. The role of the DR aggregator

The DR aggregator can group a number of individual cus-

tomers into a cluster for the purpose of carrying more weight

in the market. The DR aggregator acts as a mediator between

the utility and customers. It undertakes dual responsibilities:

on the one hand, ensuring DSM service can be provided to

the utility, therefore obtaining the bonus; on the other hand,

guaranteeing there will be a reduction in the electricity bill of

customers, encouraging customers to actively participate in a
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DSM program. By performing the duty, DR aggregator can

help with the security and efficiency of the supply.

The DR aggregator tries to adjust customers’ consumption

pattern to smooth the peak and follow the generation pattern.

The ideal scenario is the demand completely following the

generation. Because of the participation of DSM, customers

can receive compensation from the DR aggregator for the in-

convenience it may cause. The compensation scheme depends

on the difference between the aggregated consumption vector

x1 =
{

x1t : t ∈ T
}

and the generation expectation vector

g = {gt : t ∈ T} at time slot t. Suppose the generated power

from conventional power plants is a constant value I at each

time slot, and the generated power from RESs is time-varying

represented by gres = {grest : t ∈ T}, thus, the expected

generation vector is g = {gt = I + grest : t ∈ T}. To make

demand follows supply, the difference between generation and

consumption should be reduced. A compensation function is

introduced at that point to promote DSM and can be modelled

by a quadratic equation [17]

fcom =
∑

t∈T

[

−α
(

x1t − gt
)2

+ β
]

(7)

s.t. : α > 0, β > 0, (8)

where α and β are compensation coefficients.

The objective of the DR aggregator is to maximize its

net payoff. Since the aggregator receives the bonus from the

utility and provides compensations to customers, the objective

function can be given by

max
gc,x1

: fa(g
c, x1) =

∑

t∈T

{µ∆c(gct )− [−α(x1t −gt)
2+β]} (9)

s.t. : x1t > 0 ∀t ∈ T, xt,min 6 x1t 6 xt,max. (10)

gct,min 6 gct 6 gct,max.

The first term of (9) corresponds to the received bonus from

the utility, and the second term corresponds to the compensa-

tion to customers.

C. The role of customers

Typically, customers’ electricity consumption causes a peak

demand around 17:00 to 22:00 and a valley demand around

0:00 to 6:00 [31]. As explained before, a group of customers

are organized as a cluster. The reference aggregated electricity

demand at the time slot t is defined as x0 =
{

x0t : t ∈ T
}

, and

the total demand for one day is
∑

t∈T x
0
t =W .

Smart meters can provide customers detailed information

about their electricity consumption. By equipping them, cus-

tomers can have a comprehensive understanding of their usage.

And customers are assumed to be price-sensitive. With the

financial incentive, they are willing to modify their con-

sumption pattern by adjusting deferrable appliances to some

extent. After the negotiation with the DR aggregator, the

aggregated consumption vector becomes x1 =
{

x1t : t ∈ T
}

,

and
∑

t∈T x
1
t ≥W . (Note: The energy conservation approach

is not considered in this paper.)

Clearly, DSM would cause inconvenience on customers’

daily life. The incurred discomfort should be considered. It

depends on the difference between the actual consumption and

the reference consumption. As this difference increases, the

marginal discomfort also increases. Hence the dissatisfactory

function should be convex and can be modelled by a quadratic

equation [17]

fdis = ε
(

x1t − x0t
)2
, (11)

s.t. : ε > 0, xt,min 6 x1t 6 xt,max, (12)

where ε is the inelasticity coefficient of demand that charac-

terizes consumers’ personal preference. A larger ε means the

consumption modification will result in more discomfort, and

vice verse. The objective of customers is to maximize their

social welfare

max
x1

: fc(x
1) =

∑

t∈T

{[−α(x1t −gt)
2+β]−ε(x1t −x

0
t )

2} (13)

s.t. : α > 0, β > 0, ε > 0,

x1t > 0 ∀t ∈ T,
∑

t∈T

x1t >W, (14)

gct,min 6 gct 6 gct,max, xt,min 6 x1t 6 xt,max.

The first term of (13) corresponds to the received compensa-

tion from the DR aggregator, and the second term corresponds

to the dissatisfactory level.

III. METHODOLOGY

In this section, an MOP is formulated for maximizing

the benefits of all participants. An AIA is then proposed

to solve the problem. To stabilize the normal operations of

the electricity market, it is important to maintain the fairness

among all participants.

A. Formulation

To maintain fairness, three objectives are considered. The

objective of utility is to minimize the operation cost, i.e.,

the generation cost plus the bonus to the DR aggregator.

The objective of the DR aggregator is to maximize the net

income, i.e., the bonus from the utility minus compensation

to customers. The objective of customers is to maximize the

social welfare, i.e., the compensation from the DR aggregator

minus the dissatisfactory level. By considering the day-ahead

market, the resultant MOP can be formulated as

min
gc

: fu(g
c) =

∑

t∈T

[

c1(gct ) + µ∆c(gct )
]

(15)

min
gc,x1

: −fa(g
c, x1) =

∑

t∈T

[−µ∆c(gct )− α
(

x1t − gt
)2

+ β]

(16)
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min
x1

; −fc(x
1) =

∑

t∈T

[

α
(

x1t − gt
)2

− β + ε
(

x1t − x0t
)2
]

(17)

s.t. : x1t > 0 ∀t ∈ T,
∑

t∈T

x1t >W,

fa(g
c, x1) > 0, fc(x

1) > 0, (18)

gct,min 6 gct 6 gct,max, xt,min 6 x1t 6 xt,max

which is solved hourly. To ensure that all the constraints can be

strictly followed, an additional objective fr(x) is introduced

to simplify (18)

fr(g
c, x1) =

∑

[max(−fa(g
c, x1), 0) + max(W −

∑

t∈T

x1t , 0)

+ max
(

−fc(x
1), 0

)

+ max
(

−x1t , 0
)

]
(19)

The constraints in (18) hold true if and only if fr(x) = 0.

Using (19), the resulting MOP can be written as:

min
gc,x1

: f(gc, x1) =
[

fu(g
c), −fa(g

c, x1), −fc(x
1), fr(g

c, x1)
]

(20)

If the MOP is feasible, there should be a possible consump-

tion schedule satisfying all the requirements. To address the

process, Pareto optimality is used [26].

Definition 1 (Pareto Optimality): A state of allocation pro-

cedure, in which it is impossible to improve one participant’s

situation without making at least one participant’s situation

worse.

Definition 2 (Pareto Dominance): For a strategy set with

H as the minimum objective function, each vector in the set

means a possible strategy. For two different vectors u and k, k
is Pareto dominated by u if H(u)i ≤ H(k)i holds true for all

i and at least one inequality exists, where i is the ith element

of objective vector. It means the strategy u can make at least

one participant better without making anyone worse than the

strategy k .

Definition 3 (Pareto Optimal Solution): A strategy p is a

Pareto optimal solution if p is feasible and there are no other

strategies that dominate it.

Definition 4 (Pareto Optimal Set): The collection of Pareto

optimal solutions is termed a Pareto Optimal Set.

Definition 5 (Pareto Front (PF)): When plotted in the

objective space, the image of Pareto Optimal set is termed

Pareto Front.

B. Algorithm

To attain the Pareto Optimal Set for MOP, the AIA can

be used [26], [32], [33]. The AIA is a global search method

that uses an iterative process. Compared to traditional search

algorithms, AIA is easy to use, robust, and suitable for parallel

processing. In using the AIA, the terminology antibody is used

to describe a point in the decision variable space.

Fig. 3 shows flowchart of the AIA algorithm used to solve

the MOP in (20). The antibody p represents the decision

variables x1 in the MOP. A group of antibodies are first

randomly generated over the interval [Pmin, Pmax] following

the uniform distribution, where Pmin and Pmax are the

minimum and maximum values of the decision variables, re-

spectively. Dominated antibodies are removed gradually. Next,

gene operation is applied to the nondominated antibodies.

The antibodies then mutate in order to produce a diversified

population. The dominated antibodies are removed as well.

After that, the condition fr(p) = 0 is used to eliminate

the infeasible antibodies. If the population size is still too

large, the antibody population update operation will be adopted

till the population size reduces to Nnom. The above process

repeats until the maximum number of iteration is reached.

At this stage, a Pareto optimal set is obtained. According to

the selection criterion, the most fit antibody is chosen as the

output, which can maximize the minimum improvement in all

dimensions. This solution can maintain fairness, and does not

favour any particular participants. Detailed search steps are

described as follows.

Step 1: Generate the initial population of antibodies ran-

domly. Let nc = 0 and

A(0) = {p1, p2, p3, ...pnom} (21)

where pi is a random vector from [Pmin, Pmax].
Step 2: Remove dominated antibodies and maintain the

nondominated antibodies.

Step 3: Mutate the remaining nondominated antibodies. The

current population is

A(nc) = {p1, p2, p3, ...p(nc)} (22)

The current population size is NP (nc) = ‖A(nc)‖. Define the

clone rate as

R (nc) = ⌊
Nmax

Np(nc)
⌋ (23)

where ⌊.⌋ is a floor function. The clone and mutation operation

is implemented to each element p in the set A(nc), according

to the equation

pji = θpi + (1− θ)p
′

i (24)

where θ is randomly chosen from [0, 1], and p
′

i is a random

vector belonging to [Pmin, Pmax]. Through the mutation, a

new set of antibodies is produced

C =
{

p11, p
2
1, ..., p

R(nc)−1
1

}

∪
{

p12, p
2
2, ..., p

R(nc)−1
2

}

∪ ... ∪
{

p1Np(nc)
, p2Np(nc)

, ..., p
R(nc)−1
Np(nc)

}

.
(25)

Let A(nc) := A(nc) ∪ C.

Step 4: Repeat Step 2, and remove the dominated antibodies

from the new population.

Step 5: The remaining antibodies are all nondominated, but

not all of them are feasible. The antibodies with fr(p) > 0
are not applicable for the MOP formulated in this paper. The

antibodies with the largest fr(p) will be removed first. If

fr(p1) > fr(p2) > 0, then p1 is removed first. The process

continues until the condition fr(p) = 0 holds true for all

antibodies.
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Fig. 3. Flowchart of the AIA algorithm.

Step 6: After Step 4 and Step 5, if the population size is still

larger than the nominal size, the antibody population update

procedure needs to be applied to normalize the antibodies. For

a crowded region, a fitness value is allocated to antibodies

ffit(pn) =
J
∑

j=1

F (pn)j − F (pn−1)j

Fnc,up
j − Fnc,low

j

(26)

where J is the number of objectives, Fnc,up
j = max

p∈A(nc)
F (p)j

and Fnc,low
j = min

p∈A(nc)
F (p)j .

The antibody with the smallest fitness value will be removed

first. If ffit(p1) > ffit(p2), then p2 is removed first. The

procedure stops when the current population size is no large

than the nominal size. It is noted that this procedure will not

be carried out for extreme vectors in F (P ), where extreme

vector means at least one element in this vector reaches its

extreme value, i.e, F (p′) is an extreme vector if there exists j
such that F (p′)j = maxp∈A(nc) F (p)j or minp∈A(nc) F (p)j .

Step 7: Let nc = nc + 1 and A(nc + 1) = A(nc). Repeat

Step 3 to Step 7, until nc = nmax.

Step 8: As the iteration counter nc increases gradually,

A(nc) forms a Pareto optimal set. All vectors in it are possible

solutions to F (P ). A solution that can maximize the minimum

improvement in all dimensions is selected as the output. This

output can guarantee the fairness among all the participants

rather than giving advantage to one particular participant. The

criterion can be written as

p⋆ = arg max
p∈A(nmax)

min
j=1...J

Fup
j − F (p)j

Fup
J − F low

j

(27)

where Fup
j = max

p∈A(nmax)
F (p)j and F low

j = min
p∈A(nmax)

F (p)j .

IV. SIMULATION RESULTS

In this section, a practical case study is presented. The

modelled system consists of one utility with 2500 wind tur-

bines, one aggregator and one cluster of customers. The utility

comprises 2500 wind turbines with the rating of 2.75MW. In

the day-head market, a calendar day is equally divided into 24

time slots, i.e., T = 24. The UK actual daily data from Grid

Watch is fed into the model. The UK average electricity price

0.18 £/kWh is applied. For conventional generators, the cost

function is given as

c(gct ) = 5(gct )
2 + 400gct + 100 £/GWh (28)

For RESs, wind power is considered. The wind speed vt in

m/s can be predicted in advance. The relationship between

the output power zt in MW and vt is set as [34]

zt = σ(τ, ψ)
ρS

2
v3t (29)

where the performance coefficient σ(τ, ψ) can be calculated

from experiential arithmetic, based on the blade tip speed ratio

τ and blade pitch angle ψ. The air density and swept area are

set as ρ = 1.225 kg/m3 and S = 1257 m3. The rated wind

speed and maximum wind speed are specified as: vrate =
15 m/s and vmax = 30 m/s. When vt > vmax, vt = 0,

since the extreme fast speed will produce an undesirable large

moment on the blade, which may damage the wind turbine,

so the turbine will be forced to stop for safety. When vrate <
vt < vmax, vt = vrate, since the turbine is already fully

operated when the wind speed reaches the rated speed. Even

with a faster wind speed, the turbine is not able to generate

more power. Fig. 4(a) shows the statement above, and Fig.

4(b) shows the predicted wind power output gres for the day-

ahead market. The electricity generated from wind turbines

will be consumed first. The remaining electricity demand will

be satisfied by the conventional power generators.

For the utility, the bonus coefficient µ = 0.7 in (3) has been

set, indicating 70% of the DSM gain will be given to the DR
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Fig. 4. The wind turbine output performance.

Fig. 5. The example of Pareto Front.

aggregator. For the DR aggregator, the compensation strategy

is defined as

fcom =
∑

t∈T

[−0.01(x1t − gt)
2 + 30]. (30)

For customers, it is assumed 20% of the load profile can

be deferred with xt,max = 1.2xt and xt,min = 0.8xt. The

dissatisfactory function is given by

fdis = 0.01(x1t − x0t )
2. (31)

Using the AIA, the Approximate Pareto Front (APF) for

the day-ahead market model can be generated. Fig. 5 gives an

example of the APF. It illustrates the interaction between three

objectives. For a solution p, if an arbitrary element yields an

extreme objective value F (p)j = Fup
j or F (p)j = F (p)lowj ,

it means this solution advantages a particular participant. To

ensure the fairness, an optimal solution p∗ can be chosen

based on the APF by using (27), which can maximize the

minimum improvement in all dimensions. As shown in Fig.

5, the selected optimal solution p∗ is located in the centre

of the APF graphically. It proves that through the proposed

multiobjective approach, a fair design can be obtained.

Fig. 6 shows the optimized load profile and the reference

load profile in the UK for the selected day, 5th May 2017.

It is clearly shown that after the optimization, during the off-

Fig. 6. The optimized usage pattern for the day-ahead market.

peak time (i.e., 0:00-6:00), the demand increases. While during

the peak-time (i.e., 17:00-22:00), the demand decreases. The

utility, the DR aggregator, and customers can benefit from

using the proposed approach. The detailed information can be

found in Table. 1 below.

TABLE I
COMPARISON OF THE REFERENCE LOAD PROFILE AND THE OPTIMAL

LOAD PROFILE IN THE UK, 5TH MAY 2017

Reference
Load Profile

Optimized
Load Profile

Total (GWh) 2892 2898

Average (GW) 120.5 120.8

PAR 1.182 1.119

Generation Cost (£) 2956774 2951090

Bonus to DR aggregator (£) – 12632

Compensation to Customers (£) – 620

For that day, the utility can save £ 5684 for the generation

cost. The PAR is reduced about 5.33%, from 1.182 to 1.119.

By providing the DSM, the DR aggregator can make a profit

of £ 12632. For customers, the electricity bill can be cut down

by £ 620 in total.

V. CONCLUSION

This paper has proposed a multiobjective optimization ap-

proach for enabling DSM. A hierarchical framework has been

studied, which consists of the utility, the DR aggregator,

and customers. The role of the DR aggregator has been

defined as an intermediary communicating with both the utility

and customers. The modelled system has led to an MOP,

which can be solved by the AIA. Through the proposed

AIA, a Pareto optimal set has been obtained. After that,

a Pareto optimal solution has been selected that maximizes

the minimum improvement in all dimensions. The simulation

results have shown that all the participants can benefit from

the proposed design: the utility can reduce the generation

cost; the DR aggregator can make profit by providing DR

service; customers can save money on their bill. For future

research, the focus will be on two research topics. The first

topic is to develop a fair allocation mechanism among the
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customers that meets their needs. The second topic is related

to a feasible information exchange method that can protect

customers’ privacy.
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