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Abstract—This paper reviews the application of multiobjective optimization in the fields of bioinformatics and computational biology. A

survey of existing work, organized by application area, forms the main body of the review, following an introduction to the key concepts

in multiobjective optimization. An original contribution of the review is the identification of five distinct “contexts,” giving rise to multiple

objectives: These are used to explain the reasons behind the use of multiobjective optimization in each application area and also to

point the way to potential future uses of the technique.

Index Terms—Global optimization, clustering, classification and association rules, interactive data exploration and discovery,

experimental design, machine learning, bioinformatics (genome or protein) databases.
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1 INTRODUCTION

NUMEROUS problems encountered in bioinformatics and
computational biology can be formulated as optimiza-

tion problems and, thus, lend themselves to the application
of powerful heuristic search techniques [1], [2]. Tradition-
ally, the optimization is conducted with respect to a single
“goal,” but the possibility of optimizing multiple objectives
simultaneously is rapidly becoming more recognized [3], [4],
[5], [6], [7], [8], [9], [10], [11]. Recently, in biology,
multiobjective optimization has been shown to have
significant benefits compared to single-objective ap-
proaches, e.g., in classification [12], system optimization
[13], [14], and inverse problems [15].

In this paper, we aim to outline the potential scope of
methods for multiobjective optimization in biological
applications and to provide a review of existing work.
After a brief reminder of the basic concepts of multi-
objective optimization (Section 2), we proceed in Section 3
to identify five distinct contexts in which multiple objectives
may arise, or be used, in solving an optimization problem.
Sections 4, 5, 6, 7, and 8 contain the bulk of the survey
material, organized by application area. References to the
earlier categorization by context are made in these sections
in order to achieve our principal aim in this review: to
unravel the variety of motivations behind the uses of
multiobjective optimization in biological applications. Sec-
tion 9 discusses our findings and issues arising from the
survey, while Section 10 concludes.

2 MULTIOBJECTIVE OPTIMIZATION

Multiobjective optimization (MOO) concerns optimization
problems with multiple objectives (a.k.a. goals or criteria).

Typically, the objectives may estimate very different aspects
of the solutions, aspects that are, therefore, incommensurable
and often (partially or wholly) in conflict.

A general (unconstrained) multiobjective optimization
problem (MOP) can be defined mathematically as:

00minimize00 z ¼ fðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ
with x ¼ ðx1; x2; . . . ; xnÞ 2 X;

ð1Þ

where x is an n-dimensional decision vector or solution and
X is the decision space, i.e., the set of all expressible
solutions. The vector objective function fðxÞ maps X into
IRm, where m � 2 is the number of objectives. The vector
z ¼ fðxÞ is an objective vector or point. The image of X in
objective space is the set of all attainable points, Z (see
Fig. 1).

The term “minimize” appears above in quotation marks
because its meaning is not yet defined. Alternative mini-
mization problems exist, including lexicographic optimiza-
tion (e.g., as used in Olympic games medal tables),
minimizing the maximum of all the objectives (minmax),
and minimizing a scalarized combination of the objectives
(see [16], [17]). However, by far the most frequent under-
standing of “minimize,” above, is in the sense of Pareto
optimality. The Pareto optimal set X� of solutions consists of
all those that it is impossible to improve in any objective
without a simultaneous worsening in some other objective:

X� ¼ fx� 2 X j6 9x 2 X; fðxÞ � fðx�Þg;where fðx1Þ
� fðx2Þ iff 8i 2 1::m; fiðx1Þ � fiðx2Þ ^ 9j 2 1::m;

fjðx1Þ < fjðx2Þ:
ð2Þ

The points in objective space corresponding to the Pareto
optima are termed nondominated and form the Pareto front.

In most cases, the Pareto optimal set contains more than
one element because there exist different trade-off solutions
to the problem which offer different compromises of the
objectives. Thus, in practice, solving an MOP often means
that a human decision-maker (DM) is involved who then
chooses a solution that is Pareto optimal (ideally). Methods

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 2, APRIL-JUNE 2007 279

. The authors are with the School of Chemistry, The University of
Manchester, Faraday Building, PO Box 88, Sackville Street, Manchester
M60 1QD, UK.
E-mail: {j.handl, dbk, j.knowles}@manchester.ac.uk.

Manuscript received 1 Mar. 2006; accepted 1 June 2006; published online 12
Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBBSI-0034-0306.
Digital Object Identifier no. 10.1109/TCBB.2007.070203.

1545-5963/07/$25.00 � 2007 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



of decision-making (before, after, or interactively during
search) have been extensively investigated in a branch of
management science/operations research known as multi-
criterion decision making (MCDM) [18], [19] and may
include advanced methods of visualization, e.g., [20].

The a posteriori and interactive methods of decision-
making can be more effective as the decision-maker may be
helped by “seeing” what trade-off solutions are possible.
This view has led to a burgeoning of methods for
generating the whole Pareto set or an approximation to it.

Several distinct types of methods for generating good
approximations to the Pareto set have been developed, e.g.,
see [3], [4]. Evolutionary algorithm approaches have
become particularly popular and good overviews of these
can be found in [5], [6], [7], [8]. For the use of multiobjective
optimization techniques in specific application domains,
see, e.g., [9], [10], [11].

Note that, in the remainder of this review, when we use
the term “multiobjective optimization” or “MOO,” we refer
by default to the process of generating the whole Pareto
set/front or an approximation to it; when we refer to other
methods of tackling MOPs (e.g., combining objectives into a
scalar function), we point these out explicitly.

3 FIVE DISTINCT CONTEXTS GIVING RISE TO

MULTIPLE OBJECTIVES

In this review paper, our principal aim is to unravel the
different reasons underlying the need for multiobjective
optimization in biological applications. To achieve this, we
propose here a categorization based on the different types
of contexts in which multiple objectives may arise or be
usefully exploited. The literature reviewed in the survey
remains arranged by biological problem domain, but a
classification with respect to the five contexts introduced
here is provided at the end of this review, in Section 9.

3.1 Standard MOO

As a first category, we identify the “standard” context of
multiobjective optimization, where all objectives are clear,
measurable goals that we would genuinely like to optimize.
Assuming all important criteria have been included as
objectives, we may be unsure about their relative impor-
tance but we are certain that our “ideal” solution will be
Pareto optimal. Thus, using an approach that generates a
Pareto front (approximation), a decision maker can learn
something about the conflicts between the objectives, the

space of possible solutions, and may subsequently select a
single preferred solution.

An example of this type of problem setting is the
optimization of biochemical processes where trade-offs
exist between aspects of product quality and reaction time
or throughput (see Section 8.2).

3.2 Counterbalance for Bias

The second category is where MOO is used as a tool to
counterbalance a measurement bias affecting an objective
function. Such a measurement bias is, for example,
encountered in alignment problems, where short align-
ments can be trivially obtained and the number of
mismatches automatically increases with the length of the
alignment.

Mathematically, this setting can be described as follows,
assuming just one (primary) objective to be optimized:

fðxÞ ¼ f 0ðxÞ þmðgðxÞÞ; ð3Þ

where f 0 is an ideal (i.e., unknown), unbiased measure of
the primary objective, mðgðxÞÞ is a bias term where m is an
unknown but monotone function of a measurable function
g, and f is the measurable but biased sum of the two. In the
example of alignment problems, f (the scoring function
used) gives a (biased) quality estimate, g is the length of the
given alignment, m is assumed to be a monotone function,
and f 0 is the ideal (but unknown) quality of the alignment.

We would like to minimize f 0ðxÞ as follows:

minimize f 0ðxÞ ¼ fðxÞ �mðgðxÞÞ; ð4Þ

but, since m is unknown, we cannot formulate the problem
in this way. However, we may formulate the problem
instead as:

00minimize00 fðxÞ;�ðgðxÞÞð Þ;
with x ¼ ðx1; x2; . . . ; xnÞ 2 X;

ð5Þ

in terms of two measurable objectives. Hence, the frame-
work of MOO is used as a means of introducing an
additional objective, g, to counterbalance the bias of the
primary objective.1

The set of Pareto optimal solutions will certainly contain
the desired solution since each Pareto optimum is the best
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1. N.B. the equations above can be generalized to more than one primary
objective, where necessary.

Fig. 1. The n-dimensional parameter space maps to the m-dimensional objective space.



value of fðxÞ, given a fixed value of gðxÞ. In this scenario,
selection of the best solution does not usually depend on
preferences, but on the estimation of the biases. In some
applications, the biases may be estimated using random
control data and this may help to identify the best solution
in the Pareto front.

Examples of this type of problem include unsupervised
feature selection and sequence and structure alignment
problems (see Sections 4.2.2 and 6).

3.3 Multiple Source Integration

In the third category, MOO is used to integrate noisy data
from multiple sources. Hence, in this setting, it is used as an
alternative to an a priori or a posteriori integration
technique. The problems where this approach is used are
often originally single-objective. However, multiple noisy
views of the data need to be integrated as their combined
use may yield better results than the use of data from a
single information source.

Mathematically, this setting can be described by a set of
objective functions:

f1ðxÞ ¼ f 01ðxÞ þ �n1

..

.

fmðxÞ ¼ f 0mðxÞ þ �nm;

ð6Þ

where the function value of each objective function fi is
equal to the value of an ideal function f 0i with some
unknown random noise �ni on it, for i 2 1::m. In some cases,
the f 0 are all identical, i.e., the “views” of the data arise from
the same types of measurement but, e.g., taken at different
times. By formulating the problem as

00minimize00 z ¼ fðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ
with x ¼ ðx1; x2; . . . ; xnÞ 2 X

ð7Þ

and finding the Pareto optima, the impact of the noise may
be reduced if it is reasonably uncorrelated with the solution
space X. Nonetheless, note that it is not guaranteed that the
desired solution will be among the Pareto optima.

Examples of this type of problem are the inference of
phylogenetic trees and data clustering with several dissim-
ilarity matrices (see Sections 5.1 and 4.2.1).

3.4 Performance Approximation by Proxies

Category four is comprised of those applications in which
the “real,” underlying objective of the problem, f 0ðx;yÞ, is a
function of both the solution x and some “hidden” variables
y that are not available during optimization. For example,
in training a supervised classifier, y refers to the general-
ization ability of the classifier on future data (which may be
estimated using a test set after the optimization, but the
classifier must not be trained using these examples).

Since the function f 0 is not suitable for use in the
optimization process (because y is unavailable), it needs to
be replaced by “proxy” objectives fiðxÞ, which are functions
of x only. Often, such “proxy” objectives only capture
certain aspects of a good solution and different proxies are
complementary with respect to each other. Thus, it should
be expected that the desired solution(s) will score relatively
highly under all of the “proxy” objectives and a MOO

approach therefore seems useful, although the desired

solution cannot be guaranteed to be among the associated set

of Pareto optima.
Note that the difference between this context and that of

standard MOO (as introduced above) may seem unclear to

some readers. However, the distinction is clear: In the case

of standard MOO, the objective functions have primacy, i.e.,

it is they that define the Pareto set, e.g.: The concept of a

“best car” does not exist per se, but, given a search space, a

set of “best cars” is induced by the objectives chosen. In

contrast, in the context of proxy objectives, it is the solution

that has primacy and the objectives are only a means of

orienting the search in order to discover this solution, e.g.,

the real structure of a protein exists and we may try and

find it by employing a number of different energy/cost

functions.
Examples of this type of problem include supervised

classifier training (as explained above), data clustering, and

protein structure prediction (see Sections 4.1, 4.2.1, and 7).

3.5 Multiobjectivization

The fifth and final category we identify is where MOO may

be used solely as a way to obtain improved search

“guidance” in what is essentially a single-objective pro-

blem.2 Assuming a single objective that is measurable, a

problem may still be difficult because of its search

landscape. There are at least two difficulties in search

landscapes that can potentially be reduced by “multi-

objectivization”: 1) where a problem involves frustration (or

epistasis), which causes excessive local optima in the search

landscape and 2) where the search landscape contains

regions offering little or no objective function gradient. In

the first case, decomposition of the primary objective into

several different functions (each function either defined

over all of the variables or a subset of them) may help to

separate out the conflicting aspects of the problem, thus

reducing the number of local optima “seen” by a search

algorithm [21]. In the second case, the use of extra “helper

objectives” in addition to the primary objective may

provide helpful guidance in the flat regions of the land-

scape [22], [21].
Multiobjectivization may potentially be achieved by any

reformulation of the problem that respects the following

relation [21]:

8xopt 2 X 9x� 2 X; x� ¼ xopt; ð8Þ

where xopt is an optimal solution to the original single-

objective problem and x� is a Pareto optimum of the

multiobjectivized problem. This ensures that at least one of

the true Pareto optimal solutions will be optimal with

respect to the original primary objective and will corre-

spond to the best solution.
An example of this type of problem is structure

identification from X-ray powder diffraction data (see

Section 7.1).

HANDL ET AL.: MULTIOBJECTIVE OPTIMIZATION IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 281

2. N.B. there is no reason why multiobjectivization cannot also be
generalized to the case where the original problem is multiobjective.



4 CLASSIFICATION

A large number of problems typically encountered in
bioinformatics are classification problems. We will now
briefly introduce the main types of classification—unsu-
pervised, supervised, and semisupervised—and consider
the applicability of multiobjective approaches in these
different areas.

4.1 Supervised Classification

Supervised classification techniques require the presence of
training data, that is, a (sufficiently large) set of data
samples for which the correct classification is known. The
aim in supervised classification is to obtain a classifier with
good generalization properties, i.e., a classifier that performs
well on previously unseen test data. Evidently, this goal of
supervised classification cannot be measured objectively
during the training of a classifier, so “proxy” objectives
must be used to estimate expected generalization perfor-
mance, e.g., through the use of validation test scores.

4.1.1 Receiver Operating Characteristics (ROC) Curve

When considering the performance of binary classifiers
(e.g., for the distinction between tumor and healthy tissue),
sensitivity and specificity are often seen as more informa-
tive measures of the classification performance than the
overall classification accuracy. The sensitivity and specifi-
city of a classifier are always conflicting and, for a given
classifier, the trade-off between the two can be represented
in the form of a receiver operating characteristics (ROC)
curve [23]. Traditionally, this trade-off curve has not been
explicitly optimized and, instead, an a priori weighting of
the two objectives has been used during training. For the
classifier obtained for a given data set, an ROC curve can then
be generated by varying one or more of the parameters of the
classifier and plotting the impact on the values of sensitivity
and specificity. A practitioner could then pick any point on
the ROC curve that corresponds to the desired sensitivity or
specificity. However, an ROC curve obtained in this way is
unlikely to be optimal in the Pareto optimal sense and more
favorable trade-offs between sensitivity and specificity can be
obtained through the direct use of MOO [24]. ROC curves for
multiclass problems have also been optimized using multi-
objective evolutionary optimization [25].

4.1.2 Partial Classification/Rule Mining

In partial classification (also referred to as nugget mining or
classification rule mining), the aim is to identify and
describe interesting subsets of the data only. This has many
applications in data mining, where it may be (small) subsets
of the data (which show exceptional and/or unexpected
behavior) that are of real interest, e.g., in the analysis of
gene expression data [26]. Among the most established
performance measures in partial classification are the
measures of coverage and confidence [27], which reflect
the principles of sensitivity and specificity on a local basis.
Coverage gives the proportion of total members of a class
correctly described by a given rule (i.e., maximizing
coverage means minimizing the number of false negatives),
whereas confidence gives the proportion of the patterns to
which a given rule has been correctly applied (i.e.,

maximizing confidence means minimizing the number of
false positives). Evidently, coverage and confidence are
conflicting criteria and multiobjective evolutionary algo-
rithms have therefore been applied to their optimization in
rule mining [28], [29]. This is a flexible alternative to the use
of fixed thresholds on coverage and/or confidence during
or after the optimization process [30].

4.1.3 Balancing Model Accuracy and Complexity

A persistent problem in supervised classification is the
trade-off between model performance and model complex-
ity: If sufficiently trained, many types of classifiers can
obtain a very high classification accuracy on the training
data but may not generalize well subsequently. In general,
simple models are therefore preferred during classification
(this is also know as Occam’s Razor [31]) in order to avoid
overtraining and this principle needs to be integrated into
the optimization process. Traditional approaches to avoid
overtraining include cross-validation, early stopping in the
training of neural networks [32], or the pruning of decision
trees [33]. In contrast to these, multiobjective optimization
provides a more general and flexible framework to integrate
model complexity into the optimization process [34]. The
benefits of integrating model complexity as a second and/
or third objective have been previously demonstrated with
respect to fuzzy rule mining [35], learning classifier systems
[36], decision trees [37], support vector machines [38],
genetic programming (GP) [39], [40], [41], and artificial
neural networks [42], [43], [44], [45]. A specific application
in bioinformatics has been the use of multiobjective genetic
programming for the identification of quantitative struc-
tureactivity relationships (QSAR) [41], where model com-
plexity was measured using a number of different aspects,
including the total number of terms, the number of
nonlinear terms, and a knowledge-based measure of the
chemical interpretability of the descriptors used.

4.1.4 Supervised Feature Selection

The problem of supervised feature selection is another
example in which the trade-off between classification
accuracy and model complexity is relevant. Given two
feature sets of different cardinality that result in the same
classification accuracy, the smaller of the two is expected to
result in a better generalization performance [46]. Multi-
objective formulations of the supervised feature selection
problem have been proposed which directly capture this
intuition [12], [47], [48], [49], [50], [51] and interesting
results have been obtained. For example, the analysis in [12]
revealed that certain subsets of features are present in many
of the feature subsets in the Pareto front and that an
analysis of the ensemble of feature sets present in the Pareto
front may, therefore, yield novel insight regarding the
relative importance of individual features.

A simpler and very common approach to supervised
feature selection is the selection of variables based on their
discriminatory power with respect to the target classes. This
can, for example, be established using statistical t-tests [52],
but, for high-dimensional data, as are typically encountered
in postgenomic data analysis [53], the approach inherently
suffers from multiple testing issues (i.e., a large number of
false positives will result due to random correlations).

282 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 2, APRIL-JUNE 2007



Alternative objectives regarding the properties of interest-
ing genes may exist, such as small intracluster dispersion,
large intercluster dispersion, or absolute differences be-
tween expression levels. The use of multiple, uncorrelated
criteria for gene selection may help to reduce multiple
testing issues. In recent work by Hero et al. [54], [55], the
use of a multiobjective formulation was therefore suggested
as a formalized way for the screening of genes in the
presence of more than one criterion.

4.1.5 Ensemble Learning

The potential of MOO to furnish a decision maker with a
choice of trade-off single classifiers from which she may
choose one has been dealt with before; an equally attractive
proposition is to use the trade-off set to make an ensemble
classifier (i.e., a classifier, which bases its output on a voting
between the classifiers in the ensemble).

The integration of several diverse classifiers by means of
ensemble techniques may prevent overfitting and increase
both classification accuracy and robustness of the individual
approaches, as well as the level of confidence in the results
returned [46], [56]. Diversity between the classifiers may be
obtained through the use of conceptually different classifiers,
training on different bootstrapping data sets, a reweighting of
the input data, or the introduction of noise.

In [57], the use of multiobjective optimization was
explored as a tool to simultaneously optimize the classifica-
tion accuracy on two different training sets and, thus,
ensure diversity in the resulting set of Pareto optimal
classifiers. An ensemble based on these classifiers was
found to produce results comparable to a well-known
technique for ensemble creation, negative correlation learn-
ing [49]. An alternative multiobjective formulation which
explicitly optimizes classification accuracy and diversity of
the members of the ensemble was suggested in [58].

4.2 Unsupervised Classification

Unsupervised classification works in the absence of any
training data as such, i.e., without knowledge of the class
memberships of individual samples. It therefore relies on
the presence of distinct structure in the data and it must be
hoped that a distance measure or a reduced feature space
can be identified under which related data items cluster
together in data space. The overall aim in unsupervised
classification is to identify interesting patterns in the data.
This concept of interestingness is even harder to quantify
than that of “generalization performance” in supervised
classification and, equally, calls for the use of “proxy”
objectives. The potential of multiobjective approaches in
this area has been little explored to date; in the following,
we summarize these few examples and consider promising
areas for future study.

4.2.1 Clustering

Clustering is the partitioning of data into subgroups and is
one of the fundamental tasks in unsupervised classification.
Many different formulations of the clustering problem exist,
the best known of which are based on minimizing
intracluster variance [59]. It is well-known that none of
the existing clustering criteria can capture all of the different
aspects that humans perceive as properties of a good

clustering, such as the compactness of clusters, spatial
separation between them, and compliance with local
density distributions [53]. One possibility to reduce the
problem of the failure of a clustering algorithm in scenarios
where the clustering criterion employed is inappropriate is
the use of ensemble techniques to integrate the results of a
variety of different clustering methods [60], [61]. An
alternative to this a posteriori integration of different
clustering results is the direct optimization of a partitioning
with respect to a number of complementary clustering
criteria. Recent work has shown that such multiobjective
approaches to clustering can indeed result in an improved
and robust performance across data exhibiting a range of
different data properties and may be superior to some
a posteriori integration approaches [62]. This work also
illustrated that good clustering solutions tend to give rise to
distinct “knees” in the Pareto front and may be automati-
cally identified through a comparison to random control
data [62].

The use of multiobjective optimization for clustering has
also been proposed for situations in which the clustering
criterion is biased with respect to the number of clusters
[63] or where multiple sources of data—in the form of
multiple dissimilarity matrices—should be integrated into a
single clustering [64], [65]. Such data may be tackled
through 1) an a priori fusion of the data and the use of a
standard clustering algorithm, 2) the use of ensemble
techniques for the a posteriori fusion of the different
partitionings obtained, or 3) the selection of a primary
clustering objective and the definition of all others as
constraints in a constrained optimization problem. How-
ever, some work [64], [65] argues that a MOO approach
may provide more information and choice to a decision
maker.

4.2.2 Unsupervised Feature Selection

Feature selection as part of clustering can be beneficial as
the input data may contain many noisy or irrelevant
variables, which will hide the structure in the data. It is
therefore important to develop algorithms that can reduce
the set of input variables to those that contain clear cluster
structures and may, therefore, be interesting to analyze; this
can be achieved either through specialized clustering
algorithms, which explicitly search feature subspaces (such
as biclustering algorithms, see [66]), or algorithms for
feature selection that can be used as preprocessing methods
for the subsequent application of any clustering method.

While the subject of supervised feature selection has
been thoroughly explored in the literature, little work exists
on the topic of unsupervised feature selection. This is due to
the difficulty of the formalization of criteria for the objective
assessment of the quality of different feature subspaces.
One particular problem is the comparison of feature
subspaces of different cardinality as existing measures are
usually biased toward small or large feature subspaces [67].
Multiobjective optimization has recently been introduced as
a potential solution to this problem as it allows one to
optimize one of these objectives and to counterbalance its
bias through the simultaneous minimization or maximiza-
tion of feature cardinality [68], [69], [70].
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4.2.3 Association Rule Mining

Association rule mining is the unsupervised equivalent to
classification rule mining; thus, it is not pattern-class
relationships that are sought, but relationships between
patterns in the data space. The quality of association rules is
inherently difficult to assess and a range of different
objectives have been introduced in the literature [71]. These
include measures related to confidence and coverage in
classification rule mining, but are also comprised of
methods assessing the complexity of the rules found. As
several of these measures are complementary and conflict-
ing, their multiobjective optimization has been proposed by
a number of authors [72], [73]. For example, in [73], a five-
objective formulation of the problem was suggested and a
multiobjective evolutionary algorithm was employed for
the identification of an optimal set of association rules on a
gene expression data set.

4.2.4 Multidimensional Scaling

Next to clustering, rule discovery, and feature selection,
another important problem in unsupervised classification is
the projection of a data set to lower-dimensional subspaces.
Usually, a projection to a two or three-dimensional sub-
space will be used, with the aim of obtaining a visualization
of the data set that is interpretable by a human observer.

Multidimensional scaling (MDS, [74]) is an example of
such a visualization technique. Given information about the
dissimilarities between data items, MDS provides an
embedding of these data into a multidimensional space of
specified dimensionality such that distances between data
items are preserved, but the actual positions of individual
data items are meaningless. A range of different methods
for multidimensional scaling exist which differ in the loss
function (optimization criterion) used. Brusco [75] suggests
that a MOP formulation of the multidimensional scaling
problem may be advantageous for two different reasons. A
first advantage would be the opportunity to consider a
number of different loss functions simultaneously. Alter-
natively, the multiobjective framework could be used for
multidimensional scaling in the presence of multiple
dissimilarity matrices, where the same loss function is
optimized with respect to the individual dissimilarity
matrices.

4.3 Semisupervised Classification

Semisupervised classification combines the techniques of
supervised and unsupervised classification (reviewed
above) in order to exploit both a (small) number of samples
with known classes and a (larger) number of unlabeled
data. Data sets with both labeled and unlabeled elements
are frequently encountered in application domains where
the categorization of individual data items is accompanied
by high computational, analytical, or experimental costs, as
is the case, e.g., in protein classification [76].

Given the need for the integration of unlabeled and
labeled data, as well as a lack of knowledge regarding the
importance (weighting) to attach to each and their
respective correctness, their simultaneous consideration
within a multiobjective framework seems natural. In
preliminary work on this subject [77], [78], promising

results have been obtained. In particular, multiobjective
formulations of both semisupervised clustering and semi-
supervised feature selection were shown to outperform
single-objective approaches based on the linear and non-
linear combination of the objective components related to
unlabeled and labeled data.

5 INVERSE PROBLEMS

Inverse modeling problems arise in all of those applications
where the data generated by a biological process or system
can be measured and where we are aiming to infer the
original system from the observed data [79]. The challenges
typically encountered in these applications include noisy
data, the integration of several types of data, and the
underdetermination of the inference problem at hand. In
the following, we will review how multiobjective optimiza-
tion can serve as a tool to tackle some of these issues.

5.1 Phylogenetic Inference

Phylogenetic tree inference is a special example of an
inverse modeling problem encountered in the biochemical
domain. Phylogenetic trees, an important tool in evolu-
tionary biology, describe and visualize the evolutionary
relationships between species that are believed to have a
common ancestor [80]. Existing approaches for phyloge-
netic tree inference can be classed into three major groups,
namely, distance matrix methods, maximum parsimony
methods, and maximum likelihood methods [81], [82], [83].
These traditional approaches to phylogenetic tree inference
do not take the existence of multiple data sets from different
sources into account. While such data sets may often be
noisy and partially conflicting, they can usually be assumed
to complement each other and to be more informative in
combination than on their own. Currently, integration of
these different information sources is most commonly done
prior to, or after, the actual phylogenetic tree inference [84].
In very recent work, it has been suggested that MOO may
provide an alternative tool to integrate and trade-off such
conflicting data during the inference process and that such
an approach may in fact be more robust and informative
than the a priori or a posteriori integration currently used in
the literature [85].

5.2 Gene Regulatory Networks

Researchers working in the biological sciences today have
access to the complete genomes of an increasing number of
organisms, but an improved understanding of these
organisms requires more knowledge about the activation
patterns of the individual genes. Specifically, we need to
know and to predict at what level, at what time, under
which conditions, and at which location specific genes are
expressed in a given organism. The mechanism at the
bottom of these patterns of gene expression is a complex
interplay of interactions between DNA, RNA, proteins, and
metabolites which, at an abstract level, can be modeled as a
network of inhibitory and stimulatory interactions between
genes—a gene regulatory network (GRN).

The actual inference task is typically highly under-
determined, i.e., there may exist (infinitely) many different
GRNs that are consistent with the observed data and the
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integration of additional information may be necessary to
differentiate between these. As discussed in several pre-
vious sections, multiobjective optimization can serve as a
tool for the flexible integration of data from several sources.
In GRN inference, we may additionally use MOO as a
means to integrate topological constraints and prior knowl-
edge, which we view as forms of proxy objectives. Some
preliminary work [86], [15], [87] has exemplified these uses
of MOO for GRN inference and the results obtained seem
highly promising.

Clearly, multiobjective approaches are equally relevant
when considering related inverse modeling tasks such as
time series prediction [88] or the inference of protein
networks and metabolic pathways from experimental
data [89].

6 SEQUENCE AND STRUCTURE ALIGNMENT

In this section, we will highlight applications related to the
assessment of sequential and structural similarities of DNA
and RNA macromolecules, as well as proteins. Tools for the
assessment of similarity and the identification of related
sequences or structures are among the most important tools
in bioinformatics as they may serve for the functional
categorization of novel genes or proteins of unknown
function. This is because sequential and structural simila-
rities may provide evidence of evolutionary relationships
between entities and may indicate shared or related
functional properties and/or whether evolution is conver-
gent or divergent.

6.1 Sequence Alignment

Sequence alignment aims to arrange two or more DNA,
RNA, or protein sequences in a way that highlights their
similarities. For this purpose, the sequences are set down
one upon the other and are padded with gaps so that a
scoring model which assesses the quality of an alignment as
a function of the number/type of mismatches, matches, and
gaps is optimized [90]. Specifically, the scoring model
requires the definition of an appropriate substitution matrix
and gap penalty, which indicate the rewards for the
alignment of any two characters in the alphabet and the
penalty for the insertion of gaps, respectively.

In light of the difficulty of deriving suitable substitution
matrices and gap penalties, a multiobjective approach to
sequence alignment was proposed in [91]. It is based on a
modified form of dynamic programming and, instead of a
scalar scoring function (combining all reward and penalty
values), a vector of all substitution values and gap penalties
is optimized. The same authors have also investigated a
biobjective approach to sequence alignment in which only
the gap penalties are treated as a separate objective [92].
While a multiobjective formulation may be too expensive to
use in certain practical applications, it may certainly prove a
useful tool for a thorough analysis of the trade-offs inherent
to the problem and for use in the design of novel and
improved substitution matrices.

An important distinction in sequence alignment is that
between global and local alignments. Global alignment
aims to align the sequences given along their entire range.
In contrast, local alignment only tries to identify subregions

of the sequences in which their patterns concur. As far as
local sequence alignment is concerned, a further trade-off
can be observed between the length of the patterns
compared and the quality scores obtained: Evidently, the
number of adverse substitutions or of gap penalties tends to
increase for longer alignments, i.e., there is a bias causing
the preference of short alignments. In recent research [93], a
multiobjective evolutionary approach was used for the
simultaneous optimization of these two conflicting aspects
during the identification of short interspersed repetitive
elements in the DNA sequence of Tripanosoma cruzi: The
method obtained all of the solutions identified by alter-
native single-objective approaches and discovered addi-
tional efficient trade-offs between the two objectives used
[93]. MOO approaches to motif identification have also been
explored in [94], [95], [96], with the aim of integrating
several information sources [96], or to better specify the
properties of the patterns sought [94], [95].

6.2 Structure Alignment

Due to the high evolutionary pressure on the structure of
RNA and proteins which determines the function of these
macromolecules, structural similarities are preserved to a
much higher degree than are sequence similarities and may,
consequently, still be identified in the absence of any
apparent sequence similarities.

Analogously to the case in sequence alignment, structur-
al alignment can be performed both on a global or a local
level. Global sequence alignment serves to provide in-
formation on the evolutionary distance between macro-
molecular structures, usually to predict functional
relationships or evolutionary relationships between mole-
cules. In contrast, alignments on a local basis are more
specifically aimed at the identification of shared function-
ally active regions, so-called pharmacophores. In applica-
tions involving local structure alignment, MOO approaches
have been applied by a number of researchers [97], [98],
[99], [100]. Here, the main two motivations for the use of
multiobjective optimization were 1) to counterbalance the
bias related to the length of the alignments compared [97],
[99], [100] and 2) to simultaneously capture different
aspects of solution quality [98].

An application related to pharmacophore identification
is the search for median molecules that are representative
for a given set of macromolecules [101]. The search for such
median molecules, which will share properties with all of
the target molecules, is an important technique in compu-
ter-aided molecular design [102]. Traditional approaches to
the evolution of median molecules use a single-objective
approach based on the sum of the distances to all target
molecules or the distance to an average description
molecule. As pointed out by Brown et al. [103], such an
approach may be suboptimal as the objective value may be
dominated by one of the target molecules and the resulting
solution may be more representative of the corresponding
molecule than of any of the other molecules. They therefore
suggest a multiobjective evolutionary approach to the
problem in which the distance to each target molecule is
treated as a separate objective [103]. The advantages of the
algorithm proposed were demonstrated in an application
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involving the evolution of potential medians for sets of two
target molecules.

7 STRUCTURE PREDICTION AND DESIGN

In this section, we continue to focus on optimization tasks
related to the structure of macromolecules, in particular, the
task of structure prediction and design. As mentioned
previously, the functional properties of macromolecules
derive from their three-dimensional shape (tertiary struc-
ture), which, in turn, is, predominantly, determined by their
sequence of bases or amino acids (primary structure):
Specifically, the native tertiary structure of a macromolecule
is assumed to correspond to its lowest free-energy
conformation. In theory, this direct relation between
sequence and structure, which has been known for several
decades, opens the door to in silico structure/function
prediction (for a given sequence), as well as the design of
new RNAs and proteins (for a given structure/function).

7.1 Protein Structure Prediction

In protein structure prediction, two fundamentally different
approaches can be identified; those based on comparative
modeling and those based on de novo modeling. Compara-
tive modeling approaches predict structure based on that of
homologous proteins: They are therefore only applicable if
there are proteins with a high sequence similarity and
known structure. In contrast to this, de novo modeling
approaches can be applied to any protein sequence, but are,
currently, less effective. The inherent difficulty of de novo
protein structure prediction arises from two different issues:
1) the intricacy of formulating an energy function that
realistically models the different local and global interac-
tions contributing to protein folding and 2) the size of the
space of possible conformations, which cannot be explored
exhaustively. Progress in de novo protein structure predic-
tion therefore crucially relies on progress both in the design
of appropriate (i.e., more accurate) energy functions and the
development of specialized efficient sampling methods.

Traditionally, empirical energy functions consist of a
sum of the different energetic components contributing to
the process of the folding of the macromolecule. Only
recently have researchers aimed to identify the optimal
weighting between these components using regression on a
set of training data [104]. While this approach may lead to
promising results, it is unclear whether such a fixed linear
combination can provide optimal discrimination for all
types of macromolecules and in all regions of the search
space. Multiobjective optimization may therefore be a more
principled approach and its use in protein structure
prediction has recently been suggested by a number of
authors [105], [106], [107].3

Schulze-Kremer [107] suggested the decomposition of
the energy function into a nine-dimensional vector. Among
others, the torsion energy, the van der Waals energy, the
electrostatic energy, and a penalty energy term promoting
compact folding patterns were taken into account and
optimized using a multiobjective evolutionary algorithm. In

[105], [106], a simpler two-objective formulation based on
the CHARMM energy potential was proposed, where local
and nonlocal interactions were treated as separate objec-
tives. Promising results were obtained in a comparison to
other algorithms across five different proteins [105].

A conceptually different approach has been suggested in
[109]. Here, a weighted sum approach was used for the
integration of different objectives in the prediction of
protein structure from X-ray powder diffraction diagrams.
Importantly, the objectives used related to fundamentally
different types of information sources: One involved the
minimization of the difference between the calculated and
the measured diffraction patterns, while the other was
based on the minimization of the potential energy of the
system. In [109], the problem was optimized for a single
weighting only (using single-objective simulated anneal-
ing), but, in subsequent work, a more rigorous exploration
of different weights was proposed [110]. As discussed in
[110], the attractiveness of this approach derives from the
properties of the search landscapes created by the two
individual objectives. The objective based on the diffraction
is assumed to have a distinct global minimum, which can be
unambiguously identified; unfortunately, the search for this
minimum is hampered by the presence of multiple local
minima and a small basin of attraction. In contrast, the
objective based on free energy is assumed to have multiple
local minima, which cannot be reliably differentiated, but
have large basins of attraction; one of these minima can be
expected to coincide with the global minimum in the first
objective. The combination of both objectives may therefore
serve as a way of facilitating the search problem by
increasing the basin of attraction surrounding the optimal
solution.

7.2 Directed Evolution

Directed evolution refers to the iterative production,
evaluation, and selection of macromolecules in an in vitro
environment. The aim of directed evolution is to evolve
molecules with one or a number of desired functional
properties by a process inspired by the process of selective
breeding. As discussed previously, the function of a
macromolecule is determined by its three-dimensional
structure. While this can, in theory, be predicted from the
sequence of a macromolecule, such rational design methods
remain very limited in practice. Directed evolution (pur-
portedly) avoids the need for efficient structure prediction
methods through the evaluation of the performance of the
macromolecules in vitro [111].

Recently, the success of techniques of directed evolution
has been demonstrated by a number of researchers [112],
[113], [114]. These studies have considered different types of
macromolecules and objectives, but have been limited to a
single objective. However, it may be argued that, in many
applications, the aim of directed evolution may be better
described as a multiobjective optimization problem, for
example, if we aim to optimize the stability and the reaction
rate of a given enzyme. A multiobjective evolutionary
approach to the directed evolution of DNA sequences has
recently been explored in [115]. The aim in this work was to
obtain DNA sequences suitable for use in DNA computing,
which results in a number of different objectives. Specifically,
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the authors identified four different groups of objectives:
those aimed at

1. the prevention of undesired reactions,
2. controlling the secondary structure,
3. controlling the chemical characteristics of the mole-

cule, and
4. restricting the use of particular bases.

Using a multiobjective evolutionary algorithm, Shin et al.
[115] implemented a six-objective version of the problem
within a DNA sequence design system. The results obtained
were compared to those obtained using traditional, single-
objective formulations of the problem and, overall, the
experiments indicated an increased robustness of the
sequences generated using multiobjective optimization.

8 SYSTEM OPTIMIZATION AND EXPERIMENTAL

DESIGN

In the previous section, we saw that multiobjective
optimization can be useful in the design of improved
macromolecules. It may also be used to investigate the
degree of optimality of naturally occurring biochemical
systems or to design optimal biochemical processes, and
these ideas have been explored in a number of papers.

8.1 Study of the Optimality of Biochemical Systems

In [116], an experimentally derived kinetic model was
optimized in order to study the trade-off between max-
imizing ethanol production in the yeast Saccharomyces

cerevisiae while minimizing each of the internal metabolite
concentrations. The optimization method employed was a
linear programming approach, which was made publicly
available [117].

The optimality of the heat shock response in cells was
studied in [118]. Here, the term heat shock refers to the
unfolding or misfolding of proteins, which is caused by
sudden increases in temperature and is counteracted inter

alia by an increased production of chaperones and
proteases, which repair or degrade the damaged proteins.
The costs related to this repair process and the costs related
to the presence of damaged proteins can be seen as
conflicting objectives, and El Samad et al. used a model of
Differential Algebraic Equations and numerical optimiza-
tion methods to identify the corresponding Pareto front.
The results indicated that the heat response exercised by
cells is close to optimal in the Pareto sense.

8.2 Optimization of Biochemical Processes

Optimal protocols for polymerization processes have been
studied by a number of authors [13], [119], [120], [121].
Polymerization is the reaction process that joins single
molecules into polymer chains and is of fundamental
importance in the chemical and biochemical industries.
Optimal polymerization is subject to a range of different
conflicting objectives, including the polymerization degree
and the reaction time, and it is thus naturally suited to a
multiobjective approach. The problem has been approached
using a number of different objectives and optimization
algorithms.

Other examples of the use of multiobjective optimization
for process optimization are applications related to the beer
fermentation process [122], the citric acid fermentation of
Aspergillus niger [14], the production of gluconic acid [123],
as well as investigations regarding optimal liver function
[124] and the production of oil in the yeast Yarrowia
lipolytica [125].

8.3 Experimental Design

Combinatorial library design refers to the optimization of
the collection of compounds to be used in a screening test
for the identification of compounds that interact with a
target enzyme or receptor. Despite the development of
high-throughput screening tests, the proportion of poten-
tially interesting compounds that can be subjected to the
screening test in practice remains negligibly small. For this
reason, a careful design of combinatorial libraries remains
of fundamental importance in the field of drug design. It
has been appreciated by a number of researchers that
effective combinatorial drug design involves the optimiza-
tion of a number of conflicting design criteria and may be
best tackled using methods of multiobjective optimization
[126], [127], [128].

The use of multiobjective approaches has also been
investigated for a number of other design problems in
bioinformatics, including the selection of single-nucleotide
polymorphisms [129], oligonucleotide-design [130], [131],
multiplex PCR assay design, and instrument optimization
[132], [133].

9 DISCUSSION AND OUTLOOK

In the previous sections, we have seen that multiobjective
optimization has widespread applications in computational
biology and bioinformatics. The performance gains and
flexibility afforded by multiobjective optimization have
been illustrated in a range of initial studies, but, in many of
these problem domains, the full potential of multiobjective
approaches in comparison to the current state-of-the art
techniques remains to be explored.

The reasons underlying the use of multiobjective
optimization differ widely across these application domains
and we believe this aspect to be more interesting and
revealing than a distinction between the specific techniques
used. In Section 3, we put forward five different motiva-
tions for the use of multiobjective optimization and have
referred to these different contexts along the way. Table 1
summarizes this classification of the different application
areas. Note that several of the problems considered can
potentially fall into more than one category, dependent on
the specific viewpoint taken. In the table, we have only
indicated those categorizations that correspond to views
taken in the literature reviewed within the scope of this
paper, but this categorization is clearly not final.

9.1 Visualization and Solution Identification

The large majority of MOPs we have identified in this
review have been tackled by generating a whole Pareto
front and by then applying (or hoping to apply) some form
of decision-making process afterward to choose a single
solution. This strategy defers decision making until “all of
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the information is in” (a good thing when little is known
about the possible trade-offs), but the problem remains how
to identify/select a single best solution. The really success-
ful application of this mode of MOO thus calls for advanced
methods for the visualization of the Pareto front and for the
support of the decision maker in selecting solutions from it.

Evidently, straightforward visualizations of the Pareto
front are only possible in two or three dimensions and a
representation of the solutions obtained and the relation-
ships between them becomes much more intricate for
higher dimensions. To date, only a few methods for
effective visualization have been introduced that can deal
with the truly multidimensional case (one of the main
examples is a parallel axis plot [134]) and visualization
remains a major topic for future research.

Automatic identification of promising solutions from
Pareto front approximations has been investigated in
several recent works [135], [136], [137], [138], [139].
However, these papers have generally dealt with methods
for steering/focusing the search toward the (potentially)
more important areas without the need for additional
preference information from the decision maker (usually by
searching more strongly in regions of the Pareto front that
have highest local curvature). An alternative approach is to
first obtain the most complete Pareto front approximation
set possible and then to, a posteriori, reduce this set to a
single solution by some automated process, taking into
account the whole Pareto front shape and other informa-
tion. This approach has been investigated for several
unsupervised classification tasks [62], [68], but remains to
be explored in many other application domains.

More broadly, other approaches to support decision-
making in MOO exist, too. Where expert knowledge on
how to balance conflicting measures/goals is available, this
can be extracted by using preference articulation techniques

[18], [19], [140]. These have yet to be seen in biological
applications, but we believe there is plenty of potential for
future successes in this area.

10 CONCLUSION

This paper has outlined the wide applicability of multi-
objective optimization in biological problem domains and
has illustrated its potential with references to existing
results from the literature, where available. Rather than
differentiating between differences in the optimization
techniques used, we have opted to emphasize differences
in the reasons underlying the attractiveness of multi-
objective approaches in different problem domains. We
hope that this viewpoint will help to provide additional
insight into the advantages afforded by multiobjective
optimization with regard to the applications listed and/or
additional problems encountered in the field.
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