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The multiobjecti®e optimization of continuous countercurrent chromatography sepa-
( )ration units, such as simulated mo®ing bed SMB and Varicol, is considered. The

Varicol system is based on a nonsynchronous shift of the inlet and outlet ports instead
of the synchronous one used in the SMB technology. The optimization problem is com-
plicated by the relati®e large number of decision ®ariables, including continuous ®ari-
ables, such as flow rates and lengths, as well as discontinuous ones, such as column
number and configuration. It is also important to reformulate the optimization problem
as multiobjecti®e, since the factors affecting the cost of a gi®en separation process are
multiple and often in conflict with each other. A typical example is simultaneous maxi-
mization of the producti®ity of the process and the purity of the corresponding products.
A new optimization procedure based on a genetic algorithm allows handling these com-
plex optimization problems. An existing literature chiral separation model was used to
illustrate the potential of this optimization procedure. This work also offered a unique
opportunity to compare the optimal separation performance achie®able with the SMB
and Varicol technologies.

Introduction

Process industries aim at maximizing their production ca-
pacities while simultaneously maintaining or improving prod-
uct quality. Usually, a trade-off exists between these two re-
quirements. This is particularly true in chiral separation us-

Ž . Žing simulated moving-bed SMB systems cf Strube et al.,
.1999; Juza et al., 2000; Rekoske, 2001 where purities of the

products are crucial and have to satisfy relatively narrow
specifications. Thus, the design and operation of SMBs
Ž .Charton and Nicoud, 1995 require optimization using multi-
ple objective functions and constraints, which are often in

Ž .conflict Bhaskar et al., 2000a .
Several studies on the optimization of simulated moving-

Žbed systems have been reported in the open literature cf.
Storti et al., 1988, 1995; Dunnebier and Klatt, 1999; Karlsson

.et al., 1999; Wu et al., 1999 . These studies involve single
Ž .scalar objective functions, which can include several objec-
tives with weightage factors. This parametric approach is not
efficient and also has the drawback that it could lose certain
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optimal solutions when the nonconvexity of the objective
function gives rise to a duality gap, something that is very
difficult to check out for complex, real-life problems. The use
of multiobjective optimization with objective functions, which
are vectors, provides a much better picture of the process
and allows for more educated final decisions on the optimal
operating point.

It is worth noting that single- and multiple-objective func-
tion optimization problems are conceptually different. In
multiple-objective function optimization, there may not be a

Ž .best solution global optimum with respect to all objectives.
Instead, there could be an entire set of optimal solutions that
are equally good. These solutions are known as Pareto-opti-

Ž .mal or nondominated solutions. A Pareto set is defined such
that when we go from any one point to another, at least one
objective function improves and at least one other worsens.
Thus, one cannot say that any one of these points is superior
Ž .or dominant to any other, and, therefore, any one of the
nondominated solutions in the Pareto set is an acceptable
solution. The choice of one solution over the other requires
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additional knowledge of the problem, and often, this knowl-
edge is intuitive and nonquantifiable. The Pareto set is very
useful, however, since it narrows the choices and helps to
guide a decision maker in selecting a desired operating point
Ž . Ž .called the preferred solution from among the restricted
set of Pareto-optimal points.

Multiobjective optimization has been an object of interest
to engineers for a long time. But very few studies on multiob-
jective optimization have been reported in the mainstream
chemical engineering literature, which recently has been re-

Ž .viewed by Bhaskar et al. 2000a . In that article, it was men-
tioned that an important process like the operation of SMB
would be a suitable choice to explicate the importance of the
idea of multiobjective optimization in chemical engineering.
It is emphasized here that the work described herein is the
first comprehensive multiobjective optimization study that has
been made in this area.

SMB has been used in the petrochemical, sugar, and fine
chemical industry for decades, due mostly to its separating
power. Since the 1990s, SMB has drawn more and more at-
tention for enantioseparation among drug producers, due to

Ž .recent developments in chiral stationary phases CSPs and
Žnonlinear chromatographic theory Storti et al., 1993; Maz-

.zotti et al., 1994, 1996, 1997; Migliorini et al., 1999 , as well
as a stringent drug administration policy. Even though the
separating power of SMB is widely acknowledged, re-
searchers are still trying to improve the performance of the
SMB process to decrease the operating cost.

SMB is a practical implementation of true moving bed
Ž .TMB , where the problems caused by solid movement in the

Ž .latter are avoided Ruthven and Ching, 1989 . In TMB, by
properly arranging the relative flow rates between the fluid
and solid phases in each of the four sections, each of which
has its own specific separation task, weak and strongly ad-
sorbed products can be separated and withdrawn from the
raffinate port and extract port, respectively. In an equivalent
SMB system, a fixed bed is used, and the movement of the
solid is simulated by successive switching of the feed and
product positions at timed intervals. The solid phase velocity
can be defined as the ratio of the column length and the
switching time. One obvious shortcoming of the SMB operat-
ing mode is that the velocity of the solid is constant in all
sections, as constant values of both switching time and length

Ž .are used. Recently, Ludemann-Hobourger et al. 2000 devel-
oped a novel process, Varicol, which is based on a nonsyn-
chronous switch of the inlet and outlet ports. For illustrative

Ž .purposes, they considered chiral enantio separation of
1,2,3,4-tetrahydro-1-naphthol racemate, using 20 �m of Chi-
ralpak AD20 as the CSP and n-heptane, 2-propanol, and tri-
fluroacetic acid as the eluent. They showed both experimen-
tally and numerically that Varicol is indeed superior to SMB
in terms of product purity and productivity. They found that
similar purities could be achieved by a 5-column Varicol
compared to a 6-column SMB process for the same produc-
tivity. They reported an 18.5% improvement in productivity
for a 5-column Varicol system at almost the same eluent flow
rate and product purity over a 6-column SMB process. How-
ever, this comparison was not definitive because no system-
atic optimization of the column configuration or operating
conditions in the Varicol process was attempted.

In this work, a comprehensive optimization study of SMB
and Varicol processes is reported using a state-of-the-art ro-

Ž .bust optimization technique, that is, a genetic algorithm GA .
ŽGA is a nontraditional search and optimization method Hol-

.land, 1975; Goldberg, 1989; Deb, 1995 that has become quite
popular in engineering optimization. It mimics the principles
of genetics and the Darwinian principle of natural selection
Ž .that is, survival of the fittest . The same chiral separation

Ž .system reported by Ludemann-Hombourger et al. 2000 is
considered to be an illustrative example. The optimization
study is aimed either at improving the separation quality
Ž . Žproduct purities with the same capital cost fixed number

. Ž .and size of columns and productivity feed flow rate , or at
reduced capital cost andror eluent consumption andror in-
creased productivity for the same product purity require-
ments. Furthermore, by comparing the performance of the
Varicol process with an equivalent SMB process, this work
tries to determine to what extent operation of a SMB system
can be improved by applying nonsynchronous switching with
varying zone lengths.

The optimization method used in this work is very general,
and can easily be applied to almost any other applications. In
fact, in this article we illustrate the procedure to be used, and
present solutions of a few relatively simple optimization prob-
lems with one or two objective functions. A whole variety of
other problems can, indeed, be formulated and solved, de-
pending upon one’s interest.

In the past, multiobjective optimization problems were
usually solved using a single scalar objective function, which

Žwas a weighted-average of several objectives ‘‘scalarization’’
.of the vector objective function . This process allows a sim-

pler algorithm to be used, but unfortunately, the solution ob-
tained depends largely on the values assigned to the weight-
ing factors used, which is done quite arbitrarily. An even more
important disadvantage of the scalarization of the several ob-
jectives is that the algorithm may miss some optimal solu-
tions, which can never be found, regardless of the weighting
factors chosen. This happens if the nonconvexity of the objec-

Žtive function gives rise to a duality gap Deb, 1999; Fonseca
.and Fleming, 1998; Goicoechea et al., 1982 . Several methods

are available for solving multiobjective optimization prob-
Žlems, for example, the �-constraint method Chankong and

.Haimes, 1983; Hollingdale, 1978 , goal attainment method
Ž .Fonseca and Fleming, 1998; Fleming, 1986 , and the non-

Ž . Ždominated sorting genetic algorithm NSGA Goldberg,
.1989; Srinivas and Deb, 1995; Mitra et al., 1998; Deb, 1999 .

In this study we use NSGA to obtain the Pareto set. This
Ž .technique offers several advantages Deb, 1999, 2001 , as for

Ž .example, 1 its efficiency is relatively insensitive to the shape
Ž .of the Pareto optimal front, 2 problems with uncertainties,

stochasticities, and with discrete search spaces can be han-
Ž .dled efficiently, 3 the ‘‘spread’’ of the Pareto set obtained is

Žexcellent in contrast, the efficiency of other optimization
.methods decides the spread of the solutions obtained , and

Ž .4 it involves a single application to obtain the entire Pareto
Žset in contrast to other methods, such as the �-constraint

.method, which needs to be applied several times over .
Indeed, NSGA has been applied recently to optimize sev-

eral processes of industrial importance in chemical engineer-
Žing, including an industrial nylon-6 semibatch reactor Mitra
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. Žet al., 1998 , a wiped-film polyester reactor Bhaskar et al.,
. Ž .2000b, 2001 , PMMA film reactor Zhou et al., 2000 , a steam

Ž . Ž .reformer Rajesh et al., 2000 , beer dialysis Yuen et al., 2000 ,
Ž . Žcyclone separators Ravi et al., 2000 , hydrogen plant Rajesh

. Žet al., 2001 , and MTBE synthesis in SMBR Zhang et al.,
.2002 .

Simulated Moving-Bed System and Varicol
Process

Figure 1a shows a 6-column SMB and the principle of its
operation. It consists of columns of uniform cross section,
each of length L and packed with an adsorbent. The columns
are connected in series in a circular array. Two incoming fluid

Ž .streams Feed and Eluent and two outgoing fluid streams
Ž . ŽExtract and Raffinate divide the system into four sections I

.to IV , with 1, 2, 2, and 1 columns in each section, respec-
tively, corresponding to the column configuration 1r2r2r1.
Parameters Q , Q , Q , Q are the fluid flow rates in sec-1 2 3 4
tions I, II, III, and IV, respectively, while F and E are inlet
flow rates of feed and eluent, respectively, and Ra and Ex
are the outlet flow rates of raffinate and extract. However,
only four of these eight flow rates are independent, as the
remaining four are determined from the mass balance at

Ž .points A, B, C and D see Figure 1a . In particular, by fixing
Q , Q , E, and F, all the other flow rates can be calculated1 2
using the following relations

Point D: ExsQ yQ 1Ž .1 2

Point A: Q sQ qF 2Ž .3 2

Point C: Q sQ yE 3Ž .4 1

Point B: RasQ yQ 4Ž .3 4

Simulation of the countercurrent movement of the solid and
the fluid is achieved by advancing the inlet and withdrawal
ports, column by column, in the same direction as the fluid
flow, at a predetermined switching time, t . Switching times

Žand column configuration the number of columns in each
.section in SMB processes are usually decided a priori and

remain constant during the entire operation.
In contrast to SMB, the Varicol process is based on the

nonsimultaneous and unequal shift of the inletroutlet ports.
The concept and the principle of operation of the Varicol
process, together with the equivalent SMB process, are illus-
trated in Figure 1b for one switching period. The switching

( ) ( ) (Figure 1. a SMB system with 6 columns. b Principle of operation of SMB and 4-subinterval Varicol systems port
)switching schedule .
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time, t , which is related directly to the solid flow rate ins
SMB, is also a key parameter in the Varicol process, al-
though the relationship is not straightforward. In the Varicol
operation, a nonsynchronous shift of the inlet and outlet
ports, is usually employed within a switching period, which is
again kept constant in time. This is shown as an illustrative
example in Figure 1b for a 4-subinterval Varicol process.

Ž .Within one global switching period, t , the column configu-s
Ž . Žration changes from 1r2r2r1 0� t r4 to 2r1r2r1 t r4�s s

.t r2 by shifting the extract port by one column forward, thens
Ž .to 2r2r1r1 t r2� t 3r4 by shifting the feed port one columns s

Ž .forward, then to 1r2r1r2 t 3r4� t by shifting the eluents s
port one column forward, and finally returns to the original
configuration of 1r2r2r1 by shifting the raffinate port one
column forward. As a result, due to local switching during
one global switching period, there are four different column
configurations for the four subintervals in the 4-subinterval
Varicol process. The number of columns in each zone varies
with time within a global switching period, but the number of
columns in each zone returns to the starting value at the end
of the global switching period. In terms of the average num-
ber of columns per zone, this corresponds to the
1.5r1.75r1.5r1.25 configuration. Note that the average num-
ber for any particular zone is obtained as follows: for zone I,

Ž .1.5 is obtained from 1q2q2q1 r4, where the numbers in
the parentheses are the number of columns in zone I in the
4-subintervals.

Therefore, the locations of the inputroutput ports in Vari-
col processes are quite different from those in SMB pro-
cesses. Note that in principle it is possible that a port can
shift more than once during one global switching period, ei-
ther forward or even in the backward direction. As a result,
Varicol processes can have several column configurations,
which provide more flexibility compared to SMB processes.
SMB processes can be regarded as a special case of the more
flexible Varicol processes. It is remarkable that the Varicol
process does not add any additional fixed cost.

Mathematical Model
In the open literature, the only reported results on the

Varicol process are those of Ludemann-Hombourger et al.
Ž .2000 for the enantioseparation of 1,2,3,4-tetrahydro-1-
naphthol, using the 20-�m Chiralpak AD as the CSP. They
reported experimental results of both SMB and Varicol for
this chiral separation, and also developed a model, which they
showed could satisfactorily predict experimental results. In
this article, we have adopted the same model for the SMB

and the Varicol processes as that developed by Ludemann-
Ž .Hombourger et al. 2000 , which is based on the mixing cells

Ž .in a series model Charton and Nicoud, 1995 . For SMB, dur-
ing the Nth switching period, the mass-balance equation for
component i in mixing cell k is given by

Žk .t � dCŽ .0 i , NŽky1. Žk .C sC qi , N i , N J dt

Žk .1y� t � dCŽ .0 i , Nq 0F tF t 5Ž .s� J dt

whereas, for the Varicol process during the Mth subinterval
of the Nth switching period, it is given by

Žk .t � dC 1y� t �Ž . Ž .0 i , N , M 0Žky1. Žk .C sC q qi , N , M i , N , M J dt � J

Žk .dCi , N , M
� 0F tF t r4; Ms1, 2, 3, or 4 6Ž .sdt

where J is the theoretical number of cells in the column, and
Ž . Žt � is the zero retention time of the column in section � I,0

.II, III, or IV and is given by

�Vcol
t � s 7Ž . Ž .0 Q �Ž .col

Ž .where Q � is the volumetric flow rate in the column incol
section �, and � is the column external porosity, used as 0.4.
Suitable boundary conditions must be used to properly simu-
late the process. The boundary conditions change with time
due to the periodic operation scheme of the process accord-
ing to the position of the various process streams. The con-

oŽ .centration, C i , can be easily calculated at the inlet ofi col
the column, i .col

When the feed stream is connected to the inlet of a col-
umn, i , the concentration is given bycol

Q i yF C J i qFCw xŽ . Ž .col i prev i , foC i s 8Ž .Ž .i col Q iŽ .col

Table 1. Feed Composition, Adsorption Isotherm, and Column Hydrodynamics Used in the Optimization Studies

Feed Concentration C sC s10 grLf ,1 f ,2
Modified competitive Langmuir adsorption isotherms grL

1.23C1
C s2.2C q grL1 1 1q0.0647C q0.04655C1 2

1.35C2
C s2.63C q2 2 1q0.0647C q0.04655C1 2

6Ž Ž .Pressure drop of each column 10 MM ID, � PrLs 632.3�10 � u SI units
.100 mm length

y5Ž .Column efficiency HETP H s8�10 q0.200 � u SI units1 y5H s8�10 q0.244 � u2

Ž .Source: Ludemann-Hombourger et al. 2000 .
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When the eluent stream is connected to the inlet of a col-
umn, i , the concentration is given bycol

Q i yE C J iw xŽ . Ž .col i prevoC i s 9Ž .Ž .i col Q iŽ .col

whereas in all other situations, we have

C o i sC J i 10Ž .Ž . Ž .i col i prev

with

i s i y1 if i �1prev col col
11Ž .½ i sN if i s1prev col col

The outlet concentration of a component, i, at the exit of a
JŽ .column, i , is simply equal to the concentration, C i .col i col

The extract and raffinate concentration can be obtained sim-
ply by using mass balances at points D and B, respectively
Ž .see Figure 1a .

Ž .Ludemann-Hombourger et al. 2000 also reported experi-
mentally measured adsorption isotherms and column hydro-

Ždynamics column efficiency and pressure drop as a function
.of the flow rates . They characterized the separation of the

Žtwo enantiomers using an analytical column 4.6 mm ID, 250
.mm long packed with the stationary phase 20-�m Chiralpak

AD. The adsorption isotherms and hydrodynamic equations,
as well as the feed conditions used in their and our simula-
tions, are summarized in Table 1.

The stiff initial-value ODEs were solved using the subrou-
Ž .tine DIVPAG which is based on Gear’s method , in the IMSL

library. Since periodic switching is imposed on the system,
the separators work under transient conditions. However, a

Ž .cyclic periodic steady state with a period equal to the global
switching time is eventually reached after several switches.
For both SMB and Varicol processes, the periodic steady state
was always reached after about 20 cycles around the unit,
that is, a number of switches equal to twenty times the total
number of columns in the unit.

Optimization of SMB and Varicol Processes
Case I. Single-objecti©e optimization: Maximization of
throughput

In order to test the optimization procedure based on GA,
we first compare our results with those reported by Lude-

Ž . Žmann-Hombourger et al. 2000 which were obtained by trial
and error without following a systemic optimization proce-

.dure , by considering the following optimization problem:

w xMax JsF Q , F , t , � 12aŽ .2 s

Subject to PurEs95%�0.2% 12bŽ .

PurRs95%�0.2% 12cŽ .

Q s27.09 mLrmin, Es6.24 mLrmin,1

N s5, Ls0.1 m 12dŽ .col

Model Eqs. 1�11, Table 1. 12eŽ .

The objective function chosen is the feed flow rate, F, sub-
ject to the target purities of both extract, PurE, and raffinate,

Ž .PurR, streams of 95%. The objective function Eq. 12a was
modified in order to incorporate the two equality constraints
Ž .Eqs. 12b and 12c by introducing suitable penalty functions.
In addition, since the optimization code developed was for
minimization of the objective function, the modified objective
function actually used is given by

2 21 PurE PurR
Min Is qw 1y qW 1y . 13Ž .

1q J 0.95 0.95

Ž 4.A large value, w f5�10 , was used to achieve PurE and
PurR within �0.2% of the desired purity of 95%.

Four decision variables were used for this optimization
study, as indicated by Eq. 12: flow rate in section II, Q ; feed2
flow rate, F; switching time, t ; and column configuration, � .s
In order to be able to compare our results with those of

Ž .Ludemann-Hombourger et al. 2000 , we determined the to-
tal number of columns, N s5, and two of the flow rates,col

Table 2. Optimization Problems Solved in this Study and Bounds of Decision Variables

Problem No. Obj. Func. Constraints Decision Variables Fixed Parameters

PurEs x� d 1.5� F �2.2 mLrmin N s5col
Case SMB Max F PurRs x� d 21�Q �21.7 mLrmin Q s27.09 mLrmin2 1

I Varicol xs95% 0.8� t �0.85 min Es6.24 mLrmins
w xds0.2% � see Table 3 Ls0.1 m

21�Q �23 mLrmin N s5 or 6, Ls0.1 m2 col
Case SMB Max PurE PurEG90% 0.78� t �0.85 min Q s27.5 mLrmins 1

w xII Varicol Max PurR PurRG90% � see Table 3 Fs1.62 mLrmin
Es6.24 mLrmin

21�Q �24 mLrmin2
SMB Max F PurEs x� d 0.45� F �2.7 mLrmin N s5col

Case Min E PurRs x� d 4.5� E�7.0 mLrmin Q s27.5 mLrmin1
III Varicol xs90, 95, 99% 0.72 � t �0.88 min Ls0.1 ms

w xds0.2% � see Table 3

ŽNote that the bounds of the decision variables were restricted to even narrower ranges in some optimization refinement runs to achieve smooth less
.scatter distribution for the decision variable plots.
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( )Table 3. Possible Column Configurations distribution for
N s5 and N s6col col

�
� Column Configuration � Column Configuration

N s5col
A 2r1r1r1 C 1r1r2r1
B 1r2r1r1 D 1r1r1r2

N s6col

A 1r1r2r2 F 2r2r1r1
B 1r2r1r2 G 3r1r1r1
C 1r2r2r1 H 1r3r1r1
D 2r1r1r2 I 1r1r3r1
E 2r1r2r1 J 1r1r1r3

�Column distribution 2r1r1r1 implies two columns in section I and one
column in sections II to IV.

Q s27.09 mLrmin and Es6.24 mLrmin, to the optimum1
values obtained in their work. Since only four flow rates are
free, while the other four are determined by Eqs. 1�4, the
remaining two flow rates were used as decision variables: the
feed flow rate, F, which is also the objective function, and
Q . The third decision variable is the switching time, t , which2 s
clearly has a strong influence on the purity of the outlet
streams. The bounds for t lie between the breakthroughs
times of the two components for a specific CSP. The opti-
mization formulation and the bounds of the decision vari-
ables are summarized in the first row of Table 2. It is to be
noted that a very narrow range is used for the bounds. This is
required, as there exist narrow ‘‘windows’’ for the decision
variables in order to get meaningful optimum solutions. Such
boundaries can be estimated very conveniently using equilib-
rium theory and some preliminary sensitivity analysis of the
model.

The fourth decision variable used is the column configura-
Ž . Ž .tion � . For a fixed number of total columns N s5 , therecol

exist four possible column configurations, as reported in the
first part of Table 3. In a SMB system, there is only one
column configuration, which is fixed with time. However, in a
Varicol process there are in principle infinite possible col-
umn configurations. In order to somehow restrict this variety,
we consider here only 4-subinterval Varicol processes, assum-
ing that in each subinterval the unit can take any one of the
configurations possible for the SMB unit. For example, for a
SMB process, � s B indicates the column configuration
1r2r1r1, whereas, for a 4-subinterval Varicol process, � sB-
A-D-C indicates that the sequence of column configurations

B-A-D-C was used within the 4-subinterval global switching
period. In terms of time-average column lengths, this corre-
sponds to the configuration 1.25r1.25r1.25r1.25.

In Table 4 the optimum results obtained with GA when
the feed flow rate was maximized for a SMB process are
compared with the results of Ludemann-Hombourger et al.
Ž .2000 obtained by trial and error. It is seen that the GA
optimization leads to a slightly larger feed flow rate, Fs1.71
mLrmin, compared to 1.62 mLrmin. The same optimum col-

Ž .umn configuration 1r2r1r1r � sB was obtained, as were
rather close values of the optimal Q and t . For the equiva-2 s
lent 5-column Varicol process, the GA optimization leads to
an optimum Fs2.0 mLrmin, with an increase of 17% over
the SMB process. When this result is compared with that of
Ludemann-Hombourger et al., a 10% increase in the F value
is found, as is a different optimum column configuration. In
particular, the configuration � sC-C-C-B was found to be
optimal, which, using the notation based on time-average
column lengths, corresponds to 1r1.25r1.75r1 instead of
1r1.5r1.5r1. These comparisons, relative to single-objective
optimization problems, show the reliability and efficiency of
GA in finding optimal operating conditions, which compare
well with previous results in the literature, and actually lead
to slightly improved values of the objective functions. The
unique capabilities and superiority of the GA will clearly ap-
pear later when we consider multiobjective optimization
problems. We note in passing that it has been established
that the Varicol process shows improvements over SMB op-
eration.

Multiobjective Optimization of the SMB and Varicol
Processes

Ž .The nondominated sorting genetic algorithm NSGA
Ž .Srinivas and Deb, 1995; Bhaskar et al., 2000 was used with
the model described earlier to optimize the SMB and Varicol
processes. NSGA generates a set of solutions that are non-
dominating over each other, and constitute multiobjective
Pareto optimal solutions representing optimal operating con-
ditions for the SMB and Varicol processes. We emphasize
that there is no end to the variety of multiobjective optimiza-
tion problems that can be formulated and studied, and we
present a few examples here, to illustrate the concepts, tech-
niques, and interpretation of results. We consider two multi-
objective optimization cases in this study, which are typically
encountered when considering separation processes of the

Table 4. Optimal Values for the Optimization Problem Described in Case I
�Ž .Ludemann-Hombourger et al. 2000 This Work

SMB Varicol SMB Varicol

F, mLrmin 1.62 1.82 1.71 2.0
Q , mLrmin 27.09 27.04 27.09 27.091
Q , mLrmin 21.31 21.27 21.35 21.562
E, mLrmin 6.24 6.22 6.24 6.24
t , min 0.83 0.83 0.82 0.81s ��†� B 1r1.5r1.5r1 B C-C-C-B
PurE 95% 95% 95% 95%
PurR 95% 95% 95% 95%

�Numbers in italic are optimum values obtained in this study from GA.
��Corresponding to 1r1.25r1.75r1.

† Ž .The average number of columns per zone described by Ludemann-Hombourger et al. 2000 as 1r1.5r1.5r1 could be achieved by many column
distribution sequences such as B-B-C-C , B-C-B-C, B-C-C-B, C-B-B-C, C-C-B-B.
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type under examination: the maximization of purity in both
outlet streams and the maximization of throughput with min-
imization of eluent consumption.

Case II. Multiobjecti©e optimization: Maximization of
purity for the extract and raffinate streams

The first multiobjective optimization problem solved is the
simultaneous maximization of the purity in the extract, PurE,
and in the raffinate, PurR, stream for a given feed flow rate,
F and eluent consumption, E. High product purity is typi-
cally an important requirement in drug manufacture. How-
ever, for a binary mixture with a low separation factor
Ž .K rK �1.2 , the high-purity requirement entails high costA B
and low throughput. In this case, the optimal design of the
SMB and Varicol processes were performed for fixed capital

Žand operation costs number and length of column, that is,
chiral stationary-phase volume, eluent flow rate, E, and over-

. Ž .all system pressure drop , and throughput feed flow rate, F .
ŽHaving also fixed the flow rate in section I, Q which comes1

.directly from fixing the maximum allowable pressure drop ,
the decision variables are Q , t , and � . The optimization2 s
problem is represented mathematically as follows

w xMax J s PurE Q , t , � 14aŽ .1 2 s

w xMax J s PurR Q , t , � 14bŽ .2 2 s

Subject to PurEG90% 14cŽ .

PurRG90% 14dŽ .

Fs1.62 mLrmin, Q s27.5 mLrmin,1

Es6.24 mLrmin

N s5 or 6, Ls0.1 m 14eŽ .col

Model Eqs. 1�11, Table 1. 14fŽ .

The choice of the two objective functions, J and J , in1 2
Eqs. 14a and 14b enable the simultaneous maximization of
the purity of the raffinate and extract streams. The inequality

Ž .constraints Eqs. 14c and 14d , which indicate the lowest ac-
ceptable purity values, were incorporated using penalty func-

Figure 2. Pareto optimal solution for case II for SMB and
Varicol systems.

Ž .tions. The optimization problems Eqs. 14a�14d have then
been written as

21
2Min I s qw f 15aŽ .Ý1 i1q J1 is1

21
2Min I s qw f 15bŽ .Ý2 i1q J2 is1

where

� �w x w xf s PurEy0.90 y PurEy0.90 16aŽ .1

� �w x w xf s PurRy0.90 y PurEy0.90 . 16bŽ .2

In Eqs. 15a and 15b, the large numerical weighting factor on
the operational constraints penalizes objectives, I and I , in1 2
the event of constraint violation. The bounds of the decision
variables are given in Table 2.

The results of the optimization run are shown in Figure 2,
where the purity of the extract, PurE, is plotted as a function
of the purity of the raffinate, PurR, for a 5-column and a
6-column SMB, and a 5-column Varicol process. The values

( )Figure 3. Decision variables Q , t corresponding to2 s
the points on Pareto sets in Figure 2.
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Table 5. Optimum Column Configurations for the Paretos
Shown in Figures 2 and 8

Figure No. Process Pareto Line Column Configuration, �

5-column ABC C
SMB DBE B

6-column NOP C
2 SMB QOS E

5-column FGH C-C-B-B
Varicol IGLJ C-C-C-B

KLM C-C-C-A

Q s26 TU C-C-B-B1
mLrmin UV C-C-C-B

8 VW C-C-C-A
Ž .5-column Varicol

Q s29 XY C-C-B-B1
mLrmin YZ C-C-B-A

ZA C-C-C-A

of PurR and PurE are plotted rather than those of I and I ,1 2
since the penalty functions have no contribution to the objec-
tive functions on attainment of convergence. Plotting the
physical objectives directly rather than the actual objective
function gives a better perspective when one is required to
choose or discriminate among the various operating scenar-
ios.

First let us consider the optimization of the 5-column SMB
process. When the optimization run is carried out using the

Ž .column configuration � as a decision variable parameter,
as stated in the optimization, formulation, Eqs. 14�16, and
Table 2, line DBC is obtained. It can be easily observed that
the points on line DBC do, indeed, constitute a Pareto set,
that is, as we move from point D to point C along line DBC,
PurR increases while PurE decreases. One cannot improve
purity of one stream without sacrificing purity of the other
stream, unless by violating the process constraints given by

Ž .Eq. 14e. Each point referred to as a chromosome on the
Pareto set is associated with a set of decision variables. Fig-

Ž .ure 3a is a plot of the decision variables Q and t that2 s
correspond to each of the points on the Pareto set. Table 5
shows the corresponding optimal column configuration, � . To
obtain the operating conditions for a desired purity level, a
designer has to read the values of the decision variables cor-
responding to the desired abscissa value from Figure 3a, and
the corresponding optimum � from Table 5. It can be seen
that the Pareto DBC exhibits a discontinuity at the point B.
This is due to the fact that the optimum column configura-
tion changes, that is, it is found to be � sB along branch

Ž .DB and � sC along BC see Table 3 . In order to confirm
these results, we ran two additional optimization runs identi-
cal to those described by Eqs. 14�16 and Table 2, except fix-
ing � sB or C instead of allowing it to vary. Pareto lines

Ž . Ž .ABC when � sC and DBE when � sB were obtained.
The comparison with Pareto line DBC obtained earlier shows
the flexibility and effectiveness of the optimization package
Ž .NSGA in finding the Pareto optimal solution in a single run
Ž .given by line DBC when the column configuration was left
free as a decision variable.

Ž .Similarly, Pareto line NOS Figure 2 was obtained for a
6-column SMB process when � was allowed to vary accord-
ing to values given in Table 3, while Pareto lines NOP and

ŽQOS were obtained when � was fixed at C and E see Table

.5 , respectively. The corresponding optimal values of decision
variables Q and t are shown in Figure 3b. When optimiza-2 s
tion for the 4-subinterval 5-column Varicol process was car-
ried out with � as a decision variable, Pareto line FGLM in
Figure 2 and the optimal values of Q and t shown in Figure2 s
3c were obtained. Likewise, Pareto lines FGH, IGLJ, and
KLM were obtained when the sequence for � was fixed as
C-C-B-B, C-C-C-B, and C-C-C-A, respectively, as reported in
Table 5.

The following noteworthy conclusions can be drawn from
the results shown in Figure 2. First, the Pareto optimal solu-

Žtions obtained line DBC for the 5-column SMB, line NOS
for the 6-column SMB, and line FGLM for the 5-column

.Varicol represent the maximum possible product purities of
raffinate and extract streams for either the Varicol or the
SMB process. The benefit of a multiobjective optimization is
evident upon observing the wide choice of operating points
available in the optimal Pareto set. If conventional tech-
niques were used, we would have been able to predict only
one point at a time on the optimal Pareto curves, by fixing
either one of the purity values and maximizing the other.

Second, from Figure 2 we can see that for the same CSP
Ž . Ž . Ž .volume N , L , productivity F , eluent flow rate E , andcol

Ž .maximum allowable pressure drop Q , a 5-column, 4-subin-1
terval Varicol system can attain higher purity levels com-
pared to an equivalent 5-column SMB system, if the operat-
ing process parameters are properly chosen. It is found that
the improvement is significant when high purities are re-
quested for both products. For example, if the desired purity
of raffinate stream, PurR, is set equal to 96%, then the maxi-
mum possible attainable extract purity, PurE, is 98% in a
5-column Varicol system compared to only about 95.6% in a
5-column SMB system. However, in the case where only one
very high-purity product stream is required, the difference
between Varicol and SMB system decreases. In the limit
where a high purity level of one or the other stream is de-

Ž .sired, the two extreme points for example, points D and F
Ž .of the two Pareto lines DBC and FGLM may become very

similar, although it has to be appreciated that even small dif-
ferences at such very high purity values can be very signifi-
cant.

Third, the maximum attainable purities in a 5-column
Varicol system are less than those that can be obtained in a
6-column SMB. In other words, in this case, the increase in
achievable product purities in a 6-column SMB system due to

Žthe increase of one column which implies a 20% increase of
.stationary phase outweighs the improvement attainable due

to the increase in flexibility in a 5-column, 4-subinterval Vari-
col system, which, on the other hand, does not imply any ad-
ditional cost.

In order to better appreciate the reliability of the optimiza-
tion procedure, it is worth commenting on the results ob-
tained using the simple findings of the equilibrium theory ap-

Ž .plied to countercurrent chromatography Storti et al., 1995 .
These findings show that the unit behavior can be explained
in terms of the flow-rate-ratio parameters relative to the four
sections of the unit

Q t yV �j s col
m s , js1�4 17Ž .j V 1y�Ž .col
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( )Figure 4. Complete separation region in the m , m3 2
plane for the binary separation in Table 1.

In particular, flow-rate-ratio parameter, m , has to be larger1
than a critical value in order to achieve complete regenera-

Ž .tion of the solid phase from the strongly adsorbed heavy
component, while m has to be smaller than a critical value4
in order to achieve complete regeneration of the liquid phase

Ž .from the weakly adsorbed light component. Once both such
Žconditions are satisfied, it is possible to identify in the m y3

.m parameter plane a triangular region, which includes all2
pairs of values leading to a complete separation, that is, the
two components are recovered pure in the extract and in the
raffinate, respectively. This region, which depends only on
the adsorption isotherms and the feed concentrations, has

Ž .been calculated according to Gentilini et al. 1998 and is
represented in Figure 4. In the upper right region, with re-
spect to that of complete separation, a pure extract stream is
obtained, while the raffinate is polluted. In the lower left re-
gion, only the raffinate and not the extract is obtained pure.
Finally, it is worth mentioning that the distance from the di-

Ž .agonal of a point in the m ym plane is directly propor-3 2
tional to productivity and inversely proportional to the desor-
bent requirement. Thus, the optimal operating point with re-
spect to these two process performances, which also provides
complete separation, is given by the vertex of the complete
separation triangular region.

In order to interpret the results of the optimization, let us
replot the optimal values of the decision variables in Figure 3
in terms of the four flow-rate-ratio parameters, m , as shownj
in Figures 5 to 7 for the 5-column SMB, the 6-column SMB,
and the 5-column Varicol process, respectively. Starting with
Figure 5, we see that all operating points on the Pareto line
correspond to a substantially constant value of m , in agree-1
ment with the equilibrium theory, which predicts a constant
lower bound for this parameter. We observe an increase in
m only for the points corresponding to the higher raffinate1
purity values. This is due to the necessity of improving the
solid regeneration in section I in order to avoid having the
heavier component enter section IV and then pollute the raf-
finate. The flow-rate ratio in section IV, m , follows similar4
behavior to m . This is again in agreement with the equilib-1
rium theory, and it is also a consequence of the fact that E
and Q are fixed in this problem, thus, providing a fixed rela-1

Figure 5. Flow-rate ratio parameter m to m corre-1 4
sponding to the points on the Pareto sets of
5-column SMB in Figure 2.

tion between m and m . This justifies the increase in m at1 4 4
large raffinate purity values, which on the other hand, affects
negatively the purity of the extract in a region where this
purity is expected to be low anyway. The values of m and2
m do not vary much, according to equilibrium theory, which3
would see them constant and corresponding to the vertex of
the complete separation region. However, due to dispersion
phenomena, the same change in m and m is observed, and2 3
actually they both tend to decrease, as moving along the
Pareto line from points with high extract and low raffinate
purities to points with low extract and high raffinate purities.
This can be understood by noting that it corresponds in the
Ž .m and m plane in Figure 4 to a movement from the high2 3
extract purity to the high raffinate purity region. Another in-
teresting observation is that when passing from the ABC
branch of the Pareto line to the DBE branch, both m and2
m decrease. This is in agreement with the fact that in branch3

Ž .ABC the SMB configuration is 1r1r2r1 � sC , while in the
Ž .DBE branch it is 1r2r1r1 � sB . This means that going

Žfrom ABC to DBE, the job of section III which is to adsorb
.the heavier component becomes more difficult, since we have
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one column less and, thus, have to decrease m , while the job3
Ž .of section II which is to desorb the weaker component be-

comes easier, since we have one column more, and, there-
fore, we can operate with lower values of m . Similar behav-2
ior can be observed in Figures 6 and 7 for the 6-column SMB
process and the 5-column Varicol process, respectively. The
only additional comment required is that higher raffinate pu-
rities are achieved in these cases, and, therefore, the increase
in m , and consequently in m , is more pronounced than in1 4
the case of a 5-column SMB.

The optimal column configurations obtained for the three
processes reported in Table 5 can be rationalized by recalling
that in countercurrent chromatography units, sections I and
III are responsible for the purity of the raffinate, while sec-
tions II and IV control the purity of the extract. Thus, for the
5-column SMB we see that, as the raffinate purity increases,
we go from branch DBE to branch ABC, which means from
a 1r2r1r1r to a 1r1r2r1 configuration, that is, the extra col-
umn moves from the second to the third section. For the 6-
column SMB process, by increasing the raffinate purity, we
go from branch NOP with configuration 1r2r2r1 to branch

Figure 6. Flow-rate ratio parameter m to m corre-1 4
sponding to the points on the Pareto sets of
6-column SMB in Figure 2.

Figure 7. Flow-rate ratio parameter m to m corre-1 4
sponding to the points on the Pareto sets of
5-column Varicol in Figure 2.

QOS with configuration 2r1r2r1. In this case, since section
III already has two columns, the second column in section II
is moved to section I. This confirms that in the conditions of
very high raffinate purity, it is section I that becomes critical,
as indicated by the increase in m observed in Figures 5 to 7.1
Finally, for the 5-column Varicol process, three branches ap-
pear in series corresponding to C-C-B-B, C-C-C-B and C-C-
C-A, which in the alternative notation based on time-average
column length corresponds to 1r1.5r1.5r1, 1r1.25r1.75r1, and
1.25r1r1.75r1, respectively. This shows again that in order to
achieve higher raffinate purities sections III and I are rein-
forced at the expense of section II. Note that the flexibility of
Varicol allows such a transition to be made more smoothly
and the separation requirements to be followed more closely
than does the SMB process. This justifies the improvement in
its performance. It is worth observing that the preceding in-
terpretation, which is based on the basic concepts of equilib-
rium theory, helps to rationalize the results of the optimiza-
tion procedure, which when plotted in terms of the original

Ž .variables that is, Figure 3 indeed appear a bit confusing.
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Figure 8. Effect of Q for case II optimization in a 5-col-1
umn Varicol system.

Effect of flow rate in section I, Q . Figure 8 illustrates the1
shift in the optimal Pareto set of the 5-column Varicol pro-
cess when the flow rate in section I, Q , is changed with re-1
spect to the reference value Q s27.5 mLrmin considered in1
the previous section. The corresponding distributions of opti-
mal decision variables are shown in Figures 9 and 10 in terms
of the flow-rate-ratio parameters, while the optimal column
configurations are reported in Table 5.

These results are at first glance surprising, since an in-
crease in the value of Q would seem to imply better regen-1
eration of section I, and, therefore, larger raffinate purities,
which is the opposite of what is shown in Figure 8. These
results can be interpreted by considering that, since in this
problem the flow rates of feed and eluent are kept constant,
all the internal flow rates in the unit increase as Q is in-1
creased. However, in the previous section we have seen that
the optimal values of m and m should remain substantially2 3
unchanged, and that the system, therefore, reduces the ts
values in contrast to the increase in Q and Q . The problem2 3
is that this leads to smaller values of m and m , too, and1 4
while the latter is beneficial for the extract purity, instead it
has a negative effect for the raffinate purity. This can be seen
in Figures 9 and 10, where by increasing Q from 26 mLrmin1
to 29 mLrmin the largest observed change in the m values is
that for m , which actually decreases from about 4.1 to about1
4.0, thus, justifying the results in Figure 8, which show that at
larger Q values the unit achieves better performances when1
high extract purities are requested, but poorer performances
when high raffinate purities are requested.

Note that this result is consistent with the sequence of op-
timal column configurations reported in Table 5. For Q s261
and 27.5 mLrmin, this in fact changes from 1r1.5r1.5r1 to
1r1.25r1.75r1 to 1.25r1r1.75r1 as the required raffinate pu-
rity increases. On the other hand, for Q s29 mLrmin, this1
goes from 1r1.5r1.5r1 to 1.25r1.25r1.5r1 to 1.25r1r1.75r1,
which, in this case, indicates that section I becomes more
critical, and, therefore, an extra column has to be transferred
to section I at lower raffinate purities than in the previous
cases at lower Q values.1

Case III. Multiobjecti©e optimization: Maximization of
throughput and minimization of eluent consumption

Another application situation of interest is one where the
product purities are fixed, and the objectives for the optimal

Figure 9. Flow-rate ratio parameters m to m corre-1 4
sponding to the points on the Pareto sets of

(5-column Varicol in Figure 8 Q s26 mLrrrrr1
)min .

process operation are to reduce operating costs and increase
production. Hence, in this case, for a fixed target product
purity of both the extract and raffinate streams, we seek to
determine the optimal process parameters for the 5-column
SMB and Varicol systems, which maximize production using
a minimum amount of eluent. The optimization problem is
represented mathematically as follows

w xMax J sF Q , F , E, t , � 18aŽ .1 2 s

w xMin J sE Q , F , E , t , � 18bŽ .2 2 s

Subject to PurEs x�0.002, xs0.90, 0.95, 0.99 18cŽ .
PurRs x�0.002, xs0.90, 0.95, 0.99

18dŽ .

Q s27.5 mLrmin, N s5, Ls0.1 m1 col

18eŽ .

Model Eqs. 1�11, Table 1. 18fŽ .
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Figure 10. Flow-rate ratio parameters m to m corre-1 4
sponding to the points on the Pareto sets of

(5-column Varicol in Figure 8 Q s29 mLrrrrr1
)min .

The choice of the two objective functions, J and J , in1 2
Eqs. 18a and 18b allows the simultaneous maximization of
production and minimization of eluent consumption for fixed

Ž .target product purity Eqs. 18c and 18d . The inequality con-
straints were incorporated using penalty functions in the ob-
jective functions as follows

2 21 PurEy x PurRy x
Min I s qw qw1 1q J x x1

19aŽ .

2 2PurEy x PurRy x
Min I s J qw qw 19bŽ .2 2 x x

where xs0.90, 0.95 and 0.99.
As in case II, Q , the column flow rate in section I was1

fixed at 27.5 mLrmin to keep the maximum system pressure
drop constant, and the total CSP used was also set by fixing

N s5 and Ls0.1 m. The details of the optimization for-col
mulation are reported in Table 2, together with the bounds
used for the decision variables. Note that the two variables
Ž .F and E appear in the objective functions as well as in the

Ž .decision variables. The optimal Pareto solutions E vs. F
Žand the values of the related decision variables in terms of

.the m parameters are shown in Figures 11 to 13 for the
desired purity requirement of 90%, 95% and 99%, respec-
tively, for both the extract and raffinate streams. The corre-
sponding optimal column configurations are reported in Table
6. The Pareto lines shown in Figures 11 to 13 indicate, as
expected, that as the treated feed flow rate increases, the
minimum required eluent also increases. On the other hand,
it is seen that the values of m and m obtained in both2 3
cases change very little as the feed flow rate increases. This is
consistent with the equilibrium theory result discussed in the
context of Figure 4, which indicates that the optimal operat-

Ž .ing point the vertex of the triangle is independent of the
feed and eluent flow rates. It may be seen, however, that as

Figure 11. Pareto sets and corresponding values of
flow-rate ratio parameter m to m for case1 4
III with 90% purity requirement for both ex-
tract and raffinate.
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Figure 12. Pareto sets and corresponding values of
flow-rate ratio parameter m to m for case1 4
III with 95% purity requirement for both ex-
tract and raffinate.

the required purities increase, that is, going from Figure 11
to Figure 13, the values of m increase, as, to a lesser extent,2
do the values of m . This can be understood by considering3
that, since more stringent purity specifications have to be sat-
isfied, the operating point leaves the vertex and enters the
complete separation region more deeply, as shown in Figure
4, in order to balance the effect of the dissipative processes,
and this corresponds to the changes in m and m just men-2 3

Ž .tioned. On the other hand, the difference m ym de-3 2
creases significantly in agreement with the decrease in the
feed flow rate that can be treated as the purity specifications
increase from Figure 11 to Figure 13. The values of m that1
marginally increase with increasing F are consistent with the
need to improve the regeneration conditions in section I due
to the increased flow rates to be treated. This indicates that
section I is critical in controlling the purity in the raffinate as
production increases. We need to better control the regener-
ation of the solid from the heavy component in section I.
This conclusion is confirmed by the fact that such changes

Figure 13. Pareto sets and corresponding values of
flow-rate ratio parameter m to m for case1 4
III with 99% purity requirement for both ex-
tract and raffinate.

become more pronounced as the purity specifications be-
come stricter, that is, going from Figure 11 to Figure 13. On
the other hand, m undergoes smaller changes, indicating that4
section IV is much less critical in achieving the desired sepa-
ration performance in the particular case under examination.
As a consequence of the fact that the performance of the

Ž .separation that is, the flow-rate-ratio parameter values re-

Table 6. Optimum Column Configurations for the Paretos
Shown in Figures 11 to 13 for 5-Column SMB and Varicol

Systems

Desired
Figure No. Product Purity Process �

11 0.90 SMB B
Varicol D-C-C-B

12 0.95 SMB B
Varicol D-C-C-B

13 0.99 SMB B
�Varicol D-C-C-B

�
� for Varicol in Figure 13 for Fs1.15 mLrmin is C-C-C-B.
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mains substantially constant for all the operating points along
the Pareto line, the optimal column configuration also re-
mains the same both for the SMB and the Varicol processes,
and equal to 1r2r1r1 and 1r1.25r1.50r1.25, respectively, as
reported in Table 6. This result again shows the flexibility of
Varicol in distributing the columns in the various sections of
the unit in order to improve the separation performance.

To summarize, the following conclusions can be drawn. For
fixed purity specifications, both the SMB and the Varicol
processes must increase eluent consumption in order to in-
crease the feed flow rate. Second, under the same conditions,
the Varicol process consumes less eluent, E, than an equiva-
lent SMB process for the same feed flow rate, F; or for the
same eluent consumption, E, the Varicol process can treat
more feed, F. Thus, it is confirmed and quantified that the
flexibility due to the nonsynchronous shift of the inputrout-
put ports in a Varicol process allows the same desired target
purity to be achieved with less eluent andror allows more
feed to be treated. However, the degree of improvement de-
pends on the purity specifications. The larger the desired pu-
rity requirement, the larger the improvement achieved by a
Varicol over a SMB system. For example, at E s 5.6
mLrmin, the improvement in productivity, F, of a Varicol
system over an equivalent SMB process is 10%, 25%, and
127% for the desired target purity requirement of both the
extract and raffinate streams of 90%, 95%, and 99%, respec-
tively. Finally, the optimum number of columns in each sec-

Ž .tion column configuration, � obtained is the same irrespec-
tive of the desired target purity requirement for both SMB

Ž .and Varicol processes see Table 6 , while the feed flow rate
that can be treated decreases as the purity specifications be-
come more stringent.

Effect of Number of Subinter®als and Columns in the Varicol
Process. So far we have considered only the 4-subinterval,
5-column Varicol process. It can be easily seen that when the
number of subintervals and columns is increased in a Varicol
system, its flexibility increases, and this leads to better sepa-
ration performances. In this section, we compare the opti-
mum eluent flow rate required for a 5-subinterval, 5-column
Varicol process, a 4-subinterval, 6-column Varicol process,
and a 4-subinterval, 5-column Varicol process. The formula-
tion and results of the optimization problem are summarized

in Table 7. The 5-subinterval Varicol process is the same as
that of a 4-subinterval Varicol process, except that the
inputroutput ports are allowed to shift every 1rfifth instead
of every quarter of the global switching period, t . In the 6-s
column Varicol configuration, we have added one column,
but of reduced column length, in order to keep the total vol-

Ž .ume of the solid V equal to that of the 5-column VaricolCSP
system. The optimization results show that more subintervals
and columns in a Varicol setup indeed favor optimal perfor-
mance, as the eluent required is less for the same separation
task. It is also confirmed that increasing the number of
columns has greater effect on the optimum process perfor-
mance than does increasing the number of subintervals.

Conclusions
Continuous large-scale chromatographic separations using

Ž .simulated moving bed SMB technology have received a great
deal of interest in recent years, particularly in the area of
chiral separations. The countercurrent movement of the solid
is achieved by switching the inlet and outlet ports in unison
at a fixed predetermined switching time. Recently, Lude-

Ž .mann-Hombourger et al. 2000 reported a new system, that
is, the Varicol process, that is based on the nonsynchronous
shift of the inlet and outlet ports. They reported a mathemat-
ical model, which well reproduces the experimental results
for the chiral separation of the 1,2,3,4-tetrahydro-1-naphthol
racemate for both the SMB and the Varicol process. Their
study showed that the performance of the Varicol process
can exceed the performance of SMB systems due to the flexi-
bility offered by the former in choosing variable column
switching sequences. In this work, we presented a systematic
study of the optimal operation of the SMB and Varicol pro-
cesses using as an illustrative example the model of Lude-

Ž .mann-Hombourger et al. 2000 . The selection of the operat-
ing parameters, such as column configuration, switching time

Ž . Ž .interval in SMB and sequence in Varicol , and liquid flow
rates in different sections, is not straightforward. In most
cases, conflicting requirements and constraints govern the
optimal choice of the decision variables. In addition, the SMB
and Varicol processes operate at high feed concentrations,
leading to nonlinear competitive adsorption behaviors.

Table 7. Role of the Number of Columns and Subintervals on the Performance of an Optimized Varicol Process

Objective Function Constraints Decision Variables Fixed Parameters

Min E PurEs0.95�0.002 18�Q �27 mLrmin N s5 or 62 col
PurEs x�0.002 4� E�6 mLrmin Fs1.8 or 1.05 mLrmin
xs0.95 or 0.99 0.5� t �1.0 min Q s27.5 mLrmins 1 y5 3Ž .� see Table 3 V s3.93�10 mCS P

Optimum Solution

Varicol Process 4-Subinterval, 5-Column 5-Subinterval, 5-Column 4-Subinterval, 6-Column

PurR, % 95.02 98.86 94.89 98.81 94.80 98.85
PurE, % 94.94 98.86 94.93 98.80 94.99 99.00
F, mLrmin 1.8 1.05 1.8 1.05 1.8 1.05
E, mLrmin 5.275 5.700 5.140 5.650 4.862 5.225
Q , mLrmin 22.593 22.886 22.773 23.041 23.000 23.1982
t , min 0.783 0.817 0.779 0.813 0.773 0.806s
� D-C-C-B D-C-C-B D-C-C-B-A D-C-C-B-A A-A-C-E A-B-C-E

Note: Numbers in shaded cell are the optimum values.
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Ž .The economical operation of the SMB and Varicol pro-
cesses is governed by many factors depending on capital and
operation costs, productivity, and product quality. One may
be interested in higher productivity using minimum solvent
Ž .eluent , or may be interested in achieving as high purity as
possible for the raffinate and extract product streams. In this
work, we have considered two typical multiobjective opti-
mization problems of interest in applications, which involve
simultaneous optimization of more than one objective func-
tion. These included two cases: the simultaneous maximiza-
tion of the purity of the raffinate and extract streams, and
the maximization of the productivity with simultaneous mini-
mization of eluent consumption. The optimization is done us-
ing a very robust, nondominated sorting genetic algorithm
Ž .NSGA . An optimal Pareto curve, which provides a set of
optimal solutions that are equally good, is obtained for both
the SMB and Varicol systems. It was found that the perfor-
mance of a Varicol process is superior to that of a SMB pro-
cess in terms of treating more feed using less eluent or pro-
ducing better product quality for fixed productivity and sol-
vent consumption. It is to be emphasized that there is no end
to the variety of multiobjective optimization problems that
can be formulated and studied, and we presented a few sim-
ple examples here to illustrate the concepts, techniques, and
interpretation of our results. For the latter it has been shown
that the concepts of the so-called triangle theory, based on
the equilibrium theory of chromatography, are useful in ra-
tionalizing the results of this complex optimization problem.
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Notation
Asstrongly adsorbed component
Bsweakly adsorbed component
Csconcentration, grL

CSPschiral stationary phase
Eseluent flow rate, mLrmin

Exsflow rate of extract stream, mLrmin
Fsfeed flow rate, mLrmin
Hscolumn efficiency
Isobjective function
Jstheoretical number of cells, objective function
Lslength of each column, m
msflow-rate ratio parameter
Nsnumber of columns

PurEspurity of extract stream, %
PurRspurity of raffinate stream, %

Qsfluid flow rate, mLrmin
Rasflow rate of raffinate stream, mLrmin

SMBssimulated moving bed
tstime, min
usvelocity, mrs
Vsvolume, mL

Varicolsvariable column system

Greek letters
� scolumn configuration

� Pspressure drop

�sbed porosity
�ssection numbers in SMB and Varicol

Subscripts and superscripts
colscolumn

fsfeed
iscomponent i
jssection j

kskth mixing cell
NsNth switching period
MsMth subinterval in Varicol

prevsprevious
ssswitching
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(Appendix: A Note on Genetic Algorithm Srinivas
)and Deb, 1995; Deb, 2001

Ž .The GA is a search technique developed by Holland 1978
that mimics the process of natural selection and natural ge-
netics. In this algorithm, a set of decision variables is first
coded in the form of a set of randomly generated binary

Ž .numbers 0 and 1 , called strings or chromosomes, thereby
Ž .creating a ‘‘population gene pool ’’ of such binary strings.

Each chromosome is then mapped into a set of real values of
the decision variables, using the upper and lower bounds of
each of these. A model of the process is then used to provide
values of the objective function for each chromosome. The
value of the objective function of any chromosome reflects its

‘‘fitness.’’ The Darwinian principle of ‘‘survival of the fittest’’
Žis used to generate a new and improved gene pool new gen-

.eration . This is done by preparing a ‘‘mating pool’’ that com-
prises copies of chromosomes, the number of copies of any

Žchromosome being proportional to its fitness Darwin’s prin-
.ciple . Pairs of chromosomes are then selected randomly, and

pairs of daughter chromosomes generated using operations
similar to those in genetic reproduction. The gene pool
evolves, with fitness improving over the generations.

wThree common operators are used in GA called simple
Ž . xGA SGA , to distinguish it from its various adaptations to

Ž .obtain an improved next generation of chromosomes. These
are referred to as reproduction, crossover, and mutation. Re-
production is the generation of the mating pool, where the
chromosomes are copied probabilistically, based on their fit-
ness values. However, no new strings are formed in the re-
production phase. New strings are created using the crossover
operator by exchanging information among pairs of strings in
the mating pool. A pair of daughter chromosomes is pro-

Ž .duced by selecting a crossover site chosen randomly and
exchanging the two parts of the pair of parent chromosomes
Ž .selected randomly from the mating pool . The effect of
crossover can be detrimental or beneficial. It is hoped that
the daughter strings are superior. If they are worse than the
parent chromosomes, they will slowly die a natural death over

Ž .the next few generations the Darwinian principle at work .
In order to preserve some of the good strings that are already
present in the mating pool, not all strings in the pool are
used in crossover. A crossover probability, P , is used,cross
where only 100P % of the strings in the mating pool arecross
involved in crossover, while the rest continue unchanged to
the next generation. After a crossover is performed, mutation
takes place. The mutation operator changes a binary number
at any location in a chromosome from a 1 to a 0 and vice
versa, with a small probability, P . Mutation is needed tomute
create a point in the neighborhood of the current point,
thereby achieving a local search around the current solution
and to maintain diversity in the population. The entire pro-

Žcess is repeated until some termination criterion is met the
specified maximum number of generations is attained, or the
improvements in the values of the objective functions become

.lower than a specified tolerance .
The optimal solutions to a multiobjective function opti-

Ž .mization problem are nondominated or optimal Pareto so-
lutions. In order to handle multiple objective functions and
find optimal Pareto solutions, the SGA has been modified.
The new algorithm, nondominated sorting genetic algorithm
Ž .NSGA , differs from the SGA only in the way the selection
operator works.

The NSGA uses a ranking selection method to emphasize
the good points and a niche method to create diversity in the
population without losing a stable subpopulation of good
points. In the new procedure, several groups of nondomi-
nated chromosomes from among all the members of the pop-
ulation at any generation are identified and classified into
‘‘fronts.’’ Each of the members in a particular front is as-

Ž .signed a large, common, front fitness value a dummy value
Žarbitrarily. To evenly distribute the points in this or any

.other front evenly in the variable decision domain, the
dummy fitness value is then modified according to a sharing
procedure by dividing it by the niche count of the chromo-
some. The niche count is a quantity that represents the num-
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ber of neighbors around it, with distant neighbors contribut-
ing less than those nearby. The niche count, thus, gives an
idea of how crowded the chromosomes are in the variable
decision space. Using the shared fitness value for reproduc-
tion, thus, helps spread the chromosomes in the front, since
crowded chromosomes are assigned lower fitness values. This
procedure is repeated for all members of the first front. Once
this is done, these chromosomes are temporarily removed
from consideration, and all the remaining ones are tested for
nondominance. The nondominated chromosomes in this
round are classified into the next front. These are all as-
signed a dummy fitness value that is a bit lower than the
lowest shared fitness value of the previous front. Sharing is
performed thereafter. The sorting and sharing is continued
until all the chromosomes in the gene pool are assigned
shared fitness values. The usual operations of reproduction,
crossover, and mutation are now performed. It is clear that
the nondominated members of the first front with fewer
neighbors will get the highest representation in the mating
pool. Members of later fronts, which are dominated, will get

Žlower representations they are still assigned some low fitness
values, rather than ‘‘killed,’’ in order to maintain the diversity

.of the gene pool . Sharing forces the chromosomes to be
spread out in the variable decision space. The population is
found to converge very rapidly to the Pareto set. It should

Žalso noted that any number of objectives both minimization
.and maximization problems can be solved using this proce-

dure. A flow chart describing this technique is presented be-
low. Manuscript recei®ed No® 12, 2001, and re®ision recei®ed May 29, 2002.
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