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Multiobjective Optimization of Switched Reluctance

Motors Based on Design of Experiments and Particle

Swarm Optimization
Cong Ma, Student Member, IEEE, and Liyan Qu, Member, IEEE

Abstract—This paper proposes a comprehensive framework for
multiobjective design optimization of switched reluctance motors
(SRMs) based on a combination of the design of experiments and
particle swarm optimization (PSO) approaches. First, the definitive
screening design was employed to perform sensitivity analyses to
identify significant design variables without bias of interaction ef-
fects between design variables. Next, optimal third-order response
surface (RS) models were constructed based on the Audze–Eglais
Latin hypercube design using the selected significant design vari-
ables. The constructed optimal RS models consist of only significant
regression terms, which were selected by using PSO. Then, a PSO-
based multiobjective optimization coupled with the constructed
RS models, instead of the finite-element analysis, was performed
to generate the Pareto front with a significantly reduced compu-
tational cost. A sample SRM design with multiple optimization
objectives, i.e., maximizing torque per active mass, maximizing ef-
ficiency, and minimizing torque ripple, was conducted to verify the
effectiveness of the proposed optimal design framework.

Index Terms—Design of experiments (DoE), multiobjective op-
timization, particle swarm optimization (PSO), response surface
(RS), sensitivity analysis, switched reluctance motor (SRM).

I. INTRODUCTION

S
WITCHED reluctance motors (SRMs) have been used in

many applications over the past few decades owing to their

high robustness, low manufacturing cost, and simple structure.

However, a relatively high torque ripple caused by the doubly

salient pole structure is one of the primary disadvantages of

SRMs. Much research has been conducted to reduce the torque

ripples of SRMs via design optimization [1]–[4]. However, most

existing designs targeted on single objective of torque ripple

minimization, resulting in a relatively low average torque [5].

To improve the overall performance of SRMs, multiobjective

optimization to maximizing the average torque while minimiz-

ing the torque ripple have been studied in SRM designs [2],

[6]–[8]. Generally, the multiple objectives often conflict with

each other and it is difficult to obtain the optimal solution.

Moreover, an optimization processor was usually coupled with

a finite-element analysis (FEA) solver for the machine design

optimization, which has a high computational cost.
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Design of experiments (DoE) [1]–[2], [7]–[12] and stochas-

tic evolutionary methods [13]–[15] are two popular techniques

employed for electric machine design optimization. DoE is a sta-

tistical method that effectively quantifies the effects of changes

in design variables on machine responses. The one-factor-at-a-

time (OFAT) method, a method of DoE, was used to optimize

SRMs with only two design variables for electric vehicle appli-

cations [7]. The OFAT method will become impractical when

more design variables are considered, because the number of

experiments increases exponentially with the number of design

variables. The problem can be mitigated by using advanced DoE,

such as the central composite design (CCD) [8]–[11] and the

Latin hypercube design (LHD) [12]. These methods have been

utilized in the machine design optimization problems with up

to five design variables [8]–[12]. In the CCD, the sample points

are only distributed at the corner and center of the design space,

which makes it difficult to efficiently gather the global machine

response information within a wide design space. The LHD is a

random sampling method that has the benefits of flexibility and

a good space-filling property [16]. The number of experiments

in the LHD is controllable. However, the sample points cre-

ated by the LHD may poorly cover the design space. Stochastic

evolutionary methods, such as genetic algorithm (GA) and par-

ticle swarm optimization (PSO) [17], are favorable in machine

design optimization because they can search a high dimension

of the design space in a computationally efficient manner [13].

The stochastic evolutionary methods have been coupled with an

FEA solver to optimize the designs of SRMs [14]–[15]. How-

ever, due to the use of the computationally costly FEA solver,

the overall computational costs of the combined approaches

are intensive, especially for multiobjective optimization

problems.

Recently, a new class of electric machine design optimization

methods combining DoE and stochastic evolutionary methods

is worth noting [18]–[21]. The methods reduced the computa-

tional cost of the traditional approaches coupling the FEA with

stochastic evolutionary methods. In [18], the CCD was used

to construct response surface (RS) models. Sensitivity analyses

were then performed to identify the significant design variables

based on the first-order regression coefficients of the RS mod-

els. However, the effects of the interactions between design

variables were not considered when using the first-order regres-

sion coefficients as the sensitivity indices. After the sensitivity

analysis, a differential evolutionary algorithm coupled with an

FEA solver was used to find the optimal values of the selected

significant design variables to optimize the machine design.
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The computational cost of this optimization process is still high

due to the use of the FEA for each candidate design. Instead

of coupling with the FEA solver, evolutionary methods were

coupled with RS models for optimization in [19]–[21], in which

second-order (2nd-order) RS models were constructed by per-

forming DoE and utilized to predict the machine responses dur-

ing the optimization searching process. The elimination of FEA

iterations in the search of the optimal designs effectively re-

duced the computational cost. However, the studies of the RS

model-based optimization were limited to the problems with

up to five design variables [22]. The electric machine design

problems usually involve a large number of design variables.

Therefore, it is necessary to investigate the possibility of the

RS model-based optimization with more than five design vari-

ables. A limitation of the 2nd-order RS models is that their

accuracy decreases with the increasing dimension of the design

space, which may lead to incorrect optimal solutions. In addi-

tion, more samples will be required to cover the design space

with a higher dimension for the construction of the RS models,

and the distribution of the samples is important to the accuracy

of the RS models. However, the samples obtained from a tra-

ditional CCD are proportional to the dimension of the design

space. As a result, it may be inappropriate to use the CCD to

solve the target problem. The number of the samples obtained

from the LHD is controllable; however, the distribution of the

samples should be carefully arranged to ensure the accuracy of

the RS model. Therefore, two major issues in the traditional RS

model-based methods need to be addressed: the accuracy of the

RS models and the choice of an appropriate DoE.

This paper proposes a comprehensive framework for multiob-

jective design optimization of SRMs. Starting with a 6/10 SRM

design problem with 14 independent design variables, a new

class of small three-level designs, known as definitive screening

designs (DSD), is employed to perform sensitivity analyses to

identify the significant design variables without the bias of inter-

action effects between design variables. The number of design

variables is reduced based on the sensitivity analyses. Next,

to improve the accuracy of the RS models and the feasibility

of DoE, optimal third-order (3rd-order) RS models are con-

structed by performing Audze–Eglais Latin hypercube designs

(AELHD). The constructed optimal RS models consist of only

significant regression terms, which are selected by using PSO.

Then, a PSO-based multiobjective optimization is performed

based on the constructed RS models, instead of the FEA of each

candidate design, to generate the Pareto front [22] with signifi-

cantly reduced computational cost. The optimal design can then

be obtained from the Pareto front generated. A sample SRM

design problem with multiple design objectives, which include

maximizing torque per active mass, maximizing efficiency, and

minimizing torque ripple, is solved using the proposed design

optimization framework. The results, including the generated

RS models, the Pareto front, and the optimal designs are com-

pared with those obtained from the traditional optimal design

methods using the 2nd-order RS models and an FEA solver

to verify the high accuracy and low computational cost of the

proposed design optimization framework.

Fig. 1. Cross section of a 6/10 SRM.

TABLE I
INDEPENDENT DESIGN VARIABLES OF A 6/10 SRM

Design Variable DEFINITION

D r i Inner diameter of rotor

D r o Outer diameter of rotor

D s o Outer diameter of stator

L g Length of airgap

L r y Length of rotor yoke

L s y Length of stator yoke

L s t k Stack length

βr p Rotor pole arc angle at airgap

βs p Stator pole arc angle at airgap

α s Ratio between stator pole arc at stator back iron and stator pole arc

at airgap

α r Ratio between rotor pole arc at rotor back iron and rotor pole arc

at airgap

Dw Diameter of copper wire

Ic Chopping current

N t Number of turns per pole

II. SRM DESIGN SPECIFICATIONS AND OPTIMIZATION

The relatively simple structure of SRMs makes their designs

less complex than other ac or dc machine designs. However, in

order to precisely determine the machine geometric structure,

there are still ten independent design variables to be considered

for the cross section of a 6/10 SRM, as shown in Fig. 1. In

addition, the stack length Lstk , the chopping current Ic , and

two winding design variables comprising the number of turns

per pole, Nt , and the diameter of copper wire, Dw , are consid-

ered. Therefore, the total number of independent design vari-

ables is 14, as listed in Table I. The major design specifications

are listed in Table II. The type of ferromagnetic material used

for the stator and rotor laminations is M19 steel (29 gauge).

The SRM is assumed to be operated with a unipolar current

excitation [23].

The design optimization of an SRM begins with the definition

of the optimization model, which includes design variables,

design constraints, and design objectives. In order to meet the
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TABLE II
DESIGN SPECIFICATIONS OF THE SRM

Rated speed 1 500 r/min

Rated torque 9.49 Nm

Rated power 2 hp

Efficiency > 85% at rated speed

Torque ripple < 35%

Mounting NEMA 143 (Outer diameter 139.7mm)

design requirements and achieve the optimal performance of the

SRM, three objectives, i.e., minimum torque ripple, maximum

efficiency, and maximum torque per active mass, are selected for

the multiobjective design optimization in this paper. The torque

ripple Tr is defined as

Tr =
Tmax − Tmin

Tavg
(1)

where Tmax , Tmin , and Tavg are the maximum, minimum, and

average torque, respectively. The efficiency η of an SRM is

estimated considering only core and copper losses

η =
Tavgω

Tavgω + Pcore + Pcu
(2)

where ω is the rotational speed, Pcore is the core loss, and Pcu is

the copper loss. To increase the torque output of the SRM while

reducing the machine weight (or the material cost), the average

torque per active mass Tm is considered

Tm =
Tavg

mCu + mFe
(3)

where mCu and mFe are the masses of the copper wire and steel

of the motor, respectively.

The optimization is subjected to the following constraints.

1) The average flux densities in the stator and rotor poles

at the aligned positions, Bsp and Brp , should meet to

following constraints to avoid significant saturation:

Bsp ≤ Bsat and Brp ≤ Bsat (4)

where Bsat is the saturation magnetic flux density of the

steel.

2) The current density J is limited due to the thermal con-

straints, which limit the operating temperature of the SRM

J ≤ JMax (5)

where Jmax is the maximum current density. The value

of Jmax can be determined from the maximum copper

loss Pcu(Pcu = J2
maxπD2

w R/4) that can be dissipated

during the SRM operation without exceeding the max-

imum winding temperature, where R is the winding resis-

tance. The maximum copper loss Pcu is determined by the

heat convection equation Pcu = hcA∆T , where hc is the

convective heat transfer coefficient, which can be calcu-

lated using the method in [24], A is the heat transfer area,

and ∆T is the difference between the maximum winding

temperature and the ambient temperature.

3) The stator slot space includes the net available space for

the copper wires plus slot lining or insulation. Usually,

the fill factor kfill is constrained by

30% ≤ kfill ≤ 60%. (6)

4) For the 6/10 SRM with a higher number of rotor poles,

the ratio αr should satisfy the geometrical limitation for

the pole configurations, which can be described as

αr ≤
2π

Nrβrp
(7)

where Nr (= 10) represents the number of rotor poles.

Then, the optimization model can be formulated as follows,

where the objective function is expressed as a weighted sum of

individual objectives:

minz(x) = w1
Tr

T ′
r

+ w2
η′

η
+ w3

T ′
m

Tm
(8)

subject to : (4) − (7) (9)

xi ≤ xi ≤ x̄i , i = 1, 2, ..., 14 (10)

where x = [Dri , Dro , Dso , Lg , Lry , Lsy , Lstk , αr , αs , βrp , βsp ,

Dw , Ic , Nt] is the vector of design variables; w1 , w2 , w3 are

weight factors satisfying w1 + w2 + w3 = 1; Tr ’, η’ and Tm ’

are the base values; and xi and xiare the lower and upper bounds

of each design variable, respectively.

The aforementioned design optimization model has a high

dimension design space. In the traditional optimal design ap-

proaches, the constraints (1)–(4) and objective function (8) were

evaluated using an FEA solver for each candidate design, which

makes the process of finding the optimal solution of the SRM de-

sign problem computationally intensive. To solve this problem,

this paper proposes two methods: 1) design space reduction; and

2) using a surrogate model to replace the FEA solver to evaluate

the constraints in the process of searching the optimal solution.

In the next section, an optimization framework, which consists

of sensitivity analysis-based design space reduction, optimal RS

model construction, and PSO-based Pareto optimization, is pro-

posed to solve the multiobjective optimization problem with a

high-dimension design space.

III. PROPOSED COMPREHENSIVE FRAMEWORK FOR

MULTIOBJECTIVE DESIGN OPTIMIZATION OF SRMS

This section proposes a comprehensive framework for mul-

tiobjective design optimization of an SRM, as shown in Fig. 2.

The proposed framework begins with the optimization model

(8)–(10), and is followed by three main parts described in the

following sections: design space reduction through sensitivity

analyses, construction of the optimal 3rd-order RS models, and

PSO-based multiobjective optimization coupled with the con-

structed RS models.

A. Sensitivity Analysis for Design Space Reduction

To reduce the computational cost required for the optimiza-

tion, sensitivity analyses are performed first to reduce the num-

ber of design variables. Sensitivity analyses can also provide
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Fig. 2. Flow chart of the proposed multiobjective design optimization
framework.

important insights on how each design variable affects the

machine performance. Traditionally, local sensitivity analyses

were performed through the OFAT experiments for SRMs in

[25]–[27]. However, these methods neither measured the sen-

sitivities quantitatively nor considered the interaction effects

between design variables. The RS model-based sensitivity anal-

yses discussed in [18] did not consider the interaction effects

either by using the first-order regression coefficients as the sensi-

tivity indices. In this paper, a variance-based sensitivity analysis

approach is used to quantitatively measure the sensitivities of

the machine responses to each design variable.

The variance-based sensitivity analysis is a global sensitivity

analysis technique that quantitatively measures the contribution

of each variable to the machine responses [28]. No partial deriva-

tives or RS models are required. In order to examine the variance

in the machine responses, experiments need to be designed and

conducted to examine the design variables at different levels.

For example, in a three-level design, the values of each variable

are set at its minimum, medium, and maximum values within

its limits. A well-designed experiment can greatly reduce the

number of experiment runs without sacrificing the accuracy of

the sensitivity analysis. In this paper, the sensitivity analysis is

performed using the DSD. The DSD is a new class of three-level

design capable of capturing nonlinearity and guarantees that the

sensitivity indices of each design variable are unbiased by the

interaction effects between design variables [29]. Moreover, the

number of experiment runs is low, even if all of the independent

design variables are considered at the beginning. Specifically,

for a DSD with N design variables, only 2N + 1 experiment runs

are required, which is much lower than 2N + 2N + 1 required

by the CCD [2]. The DSD can greatly reduce the computational

cost of the sensitivity analysis. In this paper, the DSD is em-

ployed to test 14 independent design variables of SRMs, and

only 29 experiments (compared to 16 413 for the CCD) need to

be performed. The experiments were run in an FEA solver to

calculate the machine responses, and the variance is calculated

based on the simulation results. The sensitivity is measured by

a sensitivity index that reflects the relative importance of the

variable alone and is described as follows [28]:

Sx i
=

Vx i
(Ex∼i

(y|xi))

V (y)
(11)

where Ex∼i
(y|xi) is the average of y taken over x∼i (all factors

except for xi) when xi is fixed, Vx i
(Ex∼i

(y|xi)) is the condi-

tional variance of Ex∼i
(y|xi), and V (y) is the variance of y. A

higher sensitivity index indicates a larger influence to y by xi .

The variance-based sensitivity indices of the three machine

responses, Tr , η, and Tm , to the 14 design variables are eval-

uated and the results are shown in Fig. 3. According to Fig. 3,

Dro , Dw , Ic , Lg , Lstk , Nt , βsp , and βrp are significant design

variables for the SRM optimization. The changes in other de-

sign variables Dri , Dso , Lry , Lsy , αr , and αs have negligible

effects on any of the three responses. The values of the insignif-

icant design variables can be determined based on other design

considerations, or can be set at the levels where the optimal re-

sponses are obtained from the sensitivity analyses. For example,

αs can be set to a relatively large level to ameliorate vibration

[30]; the stator outer diameter Dso is predetermined by the ge-

ometrical constraint of the mounting frame. These insignificant

design variables are not selected as design variables and become

constants in the subsequent optimization process. In addition, a

significant design variable, chopping current Ic , is determined

by the nominal condition of the SRM and becomes a constant in

the optimization process as well. Therefore, the number of in-

dependent design variables in the following design optimization

process is reduced from 14 to 7. In other words, the dimension of

the design space is reduced, and the reduced design variables can

be expressed as xr = [Dro , Lg , Lstk , βrp , βsp , Dw , Nt ]. In this

paper, the forced air cooling is used for the SRM, the maximum

winding temperature is 150 °C and the ambient temperature is

25 °C. According to the discussion of the constraint 2) in Sec-

tion II, the maximum current density is calculated to be 7 A/

mm2. All design variables, constants, and their values or ranges

for optimal design of the 6/10 SRM are listed in Table III.

An initial design of the SRM is obtained based on the re-

sults of the sensitivity analyses and the designer’s experience.

In the initial design, the seven important design variables are
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Fig. 3. Sensitivity indices of torque ripple, efficiency, and torque per active mass to the 14 design variables for a 6/10 SRM.

TABLE III
VARIABLES AND CONSTANTS FOR THE OPTIMAL DESIGN OF THE 6/10 SRM

Design Parameter Type Unit Value

D r o Variable mm 60.0–85.0

Dw Variable mm 0.912–1.628

L g Variable mm 0.30–0.75

L s t k Variable mm 40.0–90.0

N t Variable N/A 40–90

βr p Variable deg 14.0–19.0

βs p Variable deg 14.0–20.0

D r i Constant mm 17

D s o Constant mm 139.7

L r y Constant mm 16.5

L s y Constant mm 15

Ic Constant A 15

α r Constant N/A 1.98

α s Constant N/A 1.05

B s a t Constraint T 1.65

Jm a x Constraint A/mm2 7

k f i l l Constraint N/A 30%–60%

determined as follows: Dro , Lstk , and Lg are set at the levels

where the best responses are achieved among the three levels of

these variables in the sensitivity analyses; Nt , βrp , and βsp are

first set at the best levels obtained from the sensitivity analyses,

and then, are adjusted to avoid significant saturation and main-

tain a wide unaligned position of the SRM, as discussed in [31]

and [32]; and Dw is determined by the available space in the

stator slots and Nt .

B. Constructing the Optimal RS Models

After sensitivity analyses, the RS models are constructed by

performing the DoE. In order to replace the FEA solver with

the RS models in the optimization searching process, the RS

models should accurately predict the machine responses. The

accuracy of the RS models highly depends on both the DoE and

the form of the RS models.

In this paper, the AELHD is employed to ensure a uniform

space filling within the whole design space [33]. The AELHD

distributes the experimental points as uniformly as possible by

minimizing the potential energy EAE between the points

EAE =

Np
∑

i=1

Np
∑

j=i+1

1

L2
ij

(12)

Fig. 4. Examples of (a) LHD and (b) AELHD for a problem with two design
variables of ten levels.

where Np is the number of experimental points in the AELHD

and Lij is the Euclidean distance between points i and j. The

comparison between the traditional LHD and the AELHD for a

simple case with two design variables of ten levels is shown in

Fig. 4. It can be seen that the AELHD has a better space-filling

performance than the traditional LHD. In addition, the quality

of AELHD depends on the number of experiments Np . In this

paper, a medium-size AELHD [34] is employed. The number

of experiments for a medium-size design is twice the number

of regression terms in a full 3rd-order model. Therefore, for the

design optimization problem with N = 7 design variables, an

AELHD with 240 experiments is performed to construct the RS

models. In this study, the machine responses of Tr , η, Tm , Bsp ,

and Brp are calculated in the FEA solver for each experiment,

and are then used to construct the RS models.

Traditionally, 2nd-order RS models were usually applied to

machine design problems with up to five selected design vari-

ables. As described in [22], the 2nd-order RS model did not

converge even when a large number of experiments were used

to build up the model. For the optimization problem with seven

selected design variables in this paper, an optimized 3rd-order

RS model is proposed to improve the approximation accuracy

of the RS models. In the literature, the RS models higher than

2nd order were rarely discussed due to the following reasons.

First, a 2nd-order RS model is usually accurate enough for

most problems [35]. Second, RS models were generally applied

to nondeterministic problems with noticeable random errors.
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In these problems, the responses may differ for the same com-

bination of design variables due to stochastic errors, and the

accuracy of the approximation is not the sole goal. However,

for the machine design problems which are deterministic, the

accuracy of RS models is highly desirable. A full 3rd-order RS

model can be expressed as

f (x) = a0 +

N
∑

i=1

aixi +

N
∑

i=1

N
∑

j≥i

aijxixj

+

N
∑

i=1

N
∑

j≥i

N
∑

k≥j

aijkxixjxk + ε (13)

where a0 , ai , aij , and aijk are the regression coefficients and

ε is an error term. Compared with a full 2nd-order RS model

with 1 + N + N(N + 1)/2 regression coefficients, the num-

ber of regression coefficients in the full 3rd-order RS model is

increased significantly to 1 + N + N(N + 1)/2 + N(N + 1)
(N + 2)/6. For example, when N = 7, there are 36 and 120

regression coefficients, respectively, in the 2nd-order and 3rd-

order RS models. The number of regression coefficients in the

3rd-order RS model increases rapidly as N increases. As a result,

the number of experiments and the computational cost required

to determine these coefficients increase significantly. To reduce

the size of the 3rd-order RS model, the terms that have negligible

contributions to the response can be omitted from the model;

and the RS model can be represented by the combination of

the significant regression terms only. The reduction of the size

of the 3rd-order RS model can reduce the computational effort

in the optimization process without sacrificing the accuracy and

the number of experiments required to determine the values of

regression coefficients. This paper proposes a method to auto-

matically select significant regression terms to be included in

the 3rd-order RS model. The proposed method is based on PSO

and consists of two steps explained as follows.

1) Define an Objective (Fitness) Function and Constraints:

The fitness of a candidate RS model is evaluated based on two

metrics: the quality of approximation of the experimental data

by the candidate model and the size of the candidate model. The

quality of the model is quantified by calculating the coefficient

of determination R2 [35]

R2 = 1 −

∑Np

i=1 (yi − fi)
2

∑Np

i=1 (yi − ȳ)2
(14)

where yi is the desired value obtained from FEA, fi is the

value predicted by the RS model, and ȳ is the mean value of

yi . R2 is an indicator of how well the RS model approximates

the experimental data points. The better the model fits the data,

the closer the value of R2 is to one. The size of the model is

measured in terms of the number of regression terms, Nr , in the

model. Then, the objective function is formulated as

minzRS = w
Nr

N ′
r

+ (1 − w)
R2 ′

R2
(15)

subject to : 36 ≤ Nr ≤ 120 (16)

where w is the weighting factor, and R2’ and Nr ’ are the base

values.

2) Perform the Optimization Using PSO: The PSO is ap-

plied to solve the optimization problem (15)–(16). PSO is a

population-based stochastic optimization technique suitable for

solving multiobjective optimization problems. It uses a popula-

tion of particles to perform a multidirectional search for the op-

timal solution in the problem space. Each particle has a position

Pk (i.e., Nr in this problem) representing a candidate solution in

the design space defined by (16). The PSO algorithm is imple-

mented iteratively to search for the optimal position according

to the fitness evaluation using (15). In each iteration, once the

value of Nr is determined for a particle, the coefficients of all

1st-order and 2nd-order terms and (Nr − 36) 3rd-order regres-

sion terms are then determined using the least-square method to

construct the RS model. Then, the fitness value ZRS of each par-

ticle is calculated by using (15) and the constructed RS model.

The fitness function values are then used in the PSO search-

ing process to find the optimal value of Nr , based on which

the optimal set of coefficients of (13) can be obtained using

the least-square method to construct an optimal RS model. The

optimal RS models of Tr , η, Tm , Bsp , and Brp are built using

the proposed method. The constructed optimal RS models are

used to calculate the values of Tr , η, Tm , Bsp , and Brp analyt-

ically for the multiobjective optimization. This eliminates the

use of a computationally intensive FEA solver to estimate these

quantities numerically in the process of searching the optimal

solution.

C. Multiobjective Design Optimization for SRM

After the sensitivity-based design space reduction and optimal

RS model construction, the optimization model (8)-(10) can be

simplified as follows:

minxz(xr ) = w1
Tr (xr )

T ′
r

+ w2
η′

η(xr )
+ w3

T ′
m

Tm (xr )
(17)

subject to : (4) − (7) (18)

xri ≤ xri ≤ x̄ri , i= 1, 2, . . . , 7 (19)

Compared to the original optimization model (8)–(10) with

14 design variables, in the problem (17)–(19), the dimension of

the design space has been reduced to 7 and the optimal 3rd-order

RS models, instead of the FEA solver, are used to calculate Tr , η,

and Tm in (17) and Bsp , and Brp in (18). Next, the constrained

optimization problem is converted to the following form by

using the Lagrangian relaxation technique [36],

minxz(xr ) = w1
Tr (xr )

T ′
r

+ w2
η′

η(xr )

+w3
T ′

m

Tm (xr )
+ p(xr ) (20)

subject to : (19)

where p(xr ) is the penalty function for constraints (4)–(7). A

larger penalty function value indicates a poor design that vio-

lates the constraints more severely. If all of the constraints are
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TABLE IV
COMPARISON OF THE RESPONSE SURFACES WITH DIFFERENT DOE

RS models 2nd-order

by CCD

(143)

2nd-order

by AELHD

(143)

2nd-order

by AELHD

(720)

3rd-order by

AELHD

(240)

R2 Tr 0.8831 0.9165 0.9256 0.9782

η 0.9853 0.9934 0.9967 0.9993

Tm 0.9845 0.9970 0.9980 0.9997

RMSE Tr 0.1014 0.0926 0.0910 0.0889

η 0.0349 0.0309 0.0295 0.0275

Tm 0.0867 0.0801 0.0780 0.0752

satisfied, the value of p(xr ) is zero. The model (19) and (20)

will be used for multiobjective SRM design optimization.

One of the challenges of multiobjective optimization is that

the objectives usually conflict with each other and no unique

solution can be found. In this paper, the Pareto optimality [22]

is utilized to manage the tradeoffs among different objectives.

Pareto optimal solutions are defined as a set of feasible solutions

that cannot be improved without deteriorating other objectives.

The Pareto front, which includes all Pareto optimal solutions,

can provide a clear view of how much penalty is induced by the

improvement of another objective. The generation of the exact

Pareto front can be computationally intensive. In this paper, a

PSO algorithm is adopted to search efficiently for the Pareto

optimal designs within the design space based on (19) and (20).

The process of finding the optimal solution includes three steps.

First, define Nw different combinations of the three weighting

factors in (20). Next, the PSO is adopted to search for the optimal

solution of (20) with each set of weighting factors; and Nw

optimal solutions corresponding to Nw sets of weighting factor

combinations are obtained. Finally, all of the Pareto optimal

solutions are used to approximate the Pareto Front for the design

problem, from which the final optimal solution can be obtained.

IV. SIMULATION RESULTS

The design optimization of the SRM is performed using the

proposed optimization framework. This section verifies the pro-

posed method by using two statistical criteria as well as a direct

comparison of the machine responses predicted by the proposed

method and calculated by an FEA solver.

A. Accuracy of the Proposed Optimal RS Models

In this section, the accuracy of the 3rd-order RS models con-

structed by using the proposed method is compared with the

traditional 2nd-order RS models using two statistical criteria:

the coefficient of determination R2 and the root-mean-square

error (RMSE). As described in Section III-B, the quality of the

RS model can be quantified by R2 . First, the 2nd-order RS mod-

els are constructed using the traditional CCD and the AELHD,

respectively, with the same number of experiments (143 experi-

ments). The qualities of the 2nd-order models constructed by the

two different methods in terms of R2 are compared in Table IV.

The results show that the 2nd-order RS models constructed us-

ing the AELHD have higher R2 (closer to one), meaning a better

approximation of the experimental data by the models. Next, the

2nd-order RS models are constructed using the AELHD with

a higher number of experiments (720 experiments) generated

using the algorithm described in [34], representing a large-size

design. Table IV shows that the quality of the approximation of

the experimental data by the 2nd-order models has only been

improved slightly using a large-size design. Particularly, the R2

of the 2nd-order model of the torque ripple is only 92.56%

even with the large-size design. This means that only 92.56%

of the total variation can be represented by the model. There-

fore, the 2nd-order RS models are not suitable for the optimiza-

tion problem even with a high-dimension design space. Then,

the proposed optimal 3rd-order RS models are constructed us-

ing the AELHD with a medium-size design (240 experiments).

Table IV shows that the optimal 3rd-order RS models have

the best approximation for the experimental data indicating by

higher R2s compared to the 2nd-order models constructed using

different DoE. Specifically, the accuracy of the approximation

for torque ripple response by the optimal 3rd-order model is

much higher than that of the best 2nd-order model. Therefore,

the relationship between the responses and the design variables

can be more accurately represented by the optimal 3rd-order RS

models.

To evaluate the approximation accuracy of the RS models

within the whole design space, the following RMSE is defined:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − fi)2 (21)

where n is the number of test points, which are randomly gener-

ated within the design space and were not used for constructing

the RS models. Table IV also compares the RMSEs of different

RS models. Lower values of the RMSE indicate less prediction

errors of the RS models. From the comparison, the RMSE values

of all the responses produced by the proposed 3rd-order models

are all the lowest ones among different RS models. These results

verified the improved fitness of the proposed 3rd-order models

over the traditional 2nd-order models.

B. Accuracy and Computational Efficiency of the Proposed

Method

After evaluating the accuracy of the proposed RS models us-

ing the statistical criteria R2 and RMSE, the accuracy and com-

putational efficiency of the proposed method are further com-

pared with the traditional design optimization methods. Based

on the 3rd-order RS models, the Pareto front is generated effi-

ciently by solving (19)-(20) using the PSO. The PSO is designed

to have a population size of 35 and the maximum iteration of

1000. The value of Nw is chosen to be 20. The Pareto opti-

mal solutions with high efficiency, low torque ripple, and high

torque per active mass are represented by the Pareto front shown

in Fig. 5.

To evaluate the accuracy of the Pareto front obtained by the

proposed method, two other Pareto fronts are generated for

comparison. One is generated as a benchmark by using the PSO

coupled with an FEA solver; the other is generated by using the
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Fig. 5. Pareto front of the multiobjective optimization obtained from the
proposed 3rd-order RS model-based method.

Fig. 6. Comparison of the Pareto fronts obtained by a PSO and FEA coupled
method, a PSO and 2nd-order RS model coupled method, and the proposed PSO
and 3rd-order RS model coupled method.

PSO coupled with the 2nd-order RS model obtained from the

AELHD with 720 experiments. Fig. 6 compares the three Pareto

fronts. The results show that the Pareto front obtained by the op-

timal 3rd-order RS model matches the benchmark Pareto front

better than that obtained by the 2nd-order RS model. Moreover,

the number of FEA iterations performed throughout the opti-

mization process of the proposed method is only 240, which is

much lower than 4 131 FEA iterations involved in the bench-

mark case combining the PSO and FEA. During the optimization

process, the FEA iterations are the most time-consuming part.

The proposed method greatly reduces the number of FEA it-

erations, and therefore, greatly reduces the computational cost

and time. Specifically, in this case study, the optimization per-

formed by the proposed method takes only several hours, which

are much less than a few days taken by the PSO and FEA-

coupled optimization on a same personal desktop computer with

Intel core i7-3770 and 6 GB memory. The results show that the

proposed optimization framework is capable of obtaining more

accurate Pareto optimal solutions than the traditional 2nd-order

RS model-based method and can obtain the Pareto optimal so-

lutions more efficiently than the traditional FEA solver-based

method without sacrificing the accuracy.

TABLE V
COMPARISON OF THE OPTIMAL DESIGNS

Term Initial design D1 D2 D3

Dr o (mm) 80.00 79.97 80.00 80.00

Dw (mm) 1.151 1.151 1.290 1.369

Lg (mm) 0.30 0.30 0.30 0.30

Ls t k (mm) 90.00 86.20 86.94 90.00

Nt 80 90 90 90

β r p (deg) 15.00 16.38 15.70 15.21

β s p (deg) 16.00 15.30 14.71 14.29

kf i l l (%) 50.96 45.92 52.89 59.81

Tr (%) RS N/A 16.70 18.36 20.92

FEA 25.12 18.30 20.13 24.38

η (%) RS N/A 89.40 90.31 90.95

FEA 89.50 88.70 89.37 90.00

Tm (Nm/kg) RS N/A 1.371 1.350 1.332

FEA 1.251 1.370 1.348 1.331

Fig. 7. Flux and field distributions of the three optimal designs in the nominal
condition (upper: D1, medium: D2, and lower: D3).

C. Performance of the Optimal SRMs

To further evaluate the effectiveness of the Pareto optimal

solutions obtained by the proposed method, four candidate de-

signs, i.e., the initial design based on the sensitivity analyses

and three optimal designs D1 , D2 , and D3 selected from the

Pareto front obtained by the proposed 3rd-order model shown

in Fig. 5, are compared in Table V. For the initial design, the

machine responses Tr , η, and Tm are calculated by the FEA

solver. While for the three optimal designs obtained from the

proposed method, the machine responses are calculated by the

proposed RS models and the FEA solver, respectively. Table V

shows that the initial design has the worst performance among

the four cases. For example, Tr and Tm of D1 are improved by



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA AND QU: MULTIOBJECTIVE OPTIMIZATION OF SWITCHED RELUCTANCE MOTORS BASED ON DESIGN OF EXPERIMENTS 9

Fig. 8. Comparison of torque performance of the three optimal SRMs and the
SRM obtained from the initial design.

27.15% and 9.51%, respectively, while η is 0.89% lower than

those of the initial design. In addition, the machine responses

calculated by the proposed RS models match well with those

calculated by the FEA solver. As in Table V, D1 has the lowest

torque ripple, the highest torque per active mass, and the lowest

efficiency as indicated by the Pareto front shown in Fig. 5. D3

has the highest efficiency, the highest torque ripple, and the low-

est torque per active mass. A tradeoff among these three design

objectives exists and an optimal design can be selected based

on the designer’s preference.

Fig. 7 shows the flux and field distributions of the three op-

timal designs, where Bmax is the maximum flux density in the

pole tips and Bavg is the average flux density in the poles. It

shows that the designed SRMs operate near the knee points at

the nominal conditions. The torque waveforms of the four de-

signs in the nominal condition are compared in Fig. 8, and the

average torque of the initial design is lower than the optimal

designs. These results verified that the optimal designs can be

obtained by the proposed method effectively.

V. CONCLUSION

This paper proposed a comprehensive framework of multi-

objective design optimization for SRMs with a large number of

design variables based on a combination of DoE and PSO. A

DSD and variance-based sensitivity analysis method was pro-

posed to identify significant design variables to construct the

RS models for the subsequent optimization. In the meantime,

the design space of the original design optimization problem

was reduced. A PSO-based method was proposed to obtain the

optimal 3rd-order RS models based on an appropriate fitness

evaluation to accurately represent the relationships between the

design variables and the machine responses. A method com-

bining the PSO and the optimal 3rd-order RS models was then

proposed to solve the multiobjective design optimization prob-

lem with the reduced-dimension design space to generate the

Pareto front efficiently. Simulation studies were conducted for a

sample design of a 6/10 SRM using the proposed optimal design

framework as well as the traditional 2nd-order RS model-based

and FEA solver-based methods. The results showed that the

proposed method has higher accuracy than the traditional 2nd-

order RS model-based optimal design methods and can be used

for problems with a larger number of design variables. More-

over, compared to the traditional optimal design methods using

an FEA solver, the proposed method has a much lower compu-

tational cost without sacrificing the accuracy of the design.
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