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Multiobjective Optimization of Switched Reluctance
Motors Based on Design of Experiments and Particle

Swarm Optimization
Cong Ma, Student Member, IEEE, and Liyan Qu, Member, IEEE

Abstract—This paper proposes a comprehensive framework for
multiobjective design optimization of switched reluctance motors
(SRMs) based on a combination of the design of experiments and
particle swarm optimization (PSO) approaches. First, the definitive
screening design was employed to perform sensitivity analyses to
identify significant design variables without bias of interaction ef-
fects between design variables. Next, optimal third-order response
surface (RS) models were constructed based on the Audze–Eglais
Latin hypercube design using the selected significant design vari-
ables. The constructed optimal RS models consist of only significant
regression terms, which were selected by using PSO. Then, a PSO-
based multiobjective optimization coupled with the constructed
RS models, instead of the finite-element analysis, was performed
to generate the Pareto front with a significantly reduced compu-
tational cost. A sample SRM design with multiple optimization
objectives, i.e., maximizing torque per active mass, maximizing ef-
ficiency, and minimizing torque ripple, was conducted to verify the
effectiveness of the proposed optimal design framework.

Index Terms—Design of experiments (DoE), multiobjective op-
timization, particle swarm optimization (PSO), response surface
(RS), sensitivity analysis, switched reluctance motor (SRM).

I. INTRODUCTION

SWITCHED reluctance motors (SRMs) have been used in
many applications over the past few decades owing to their

high robustness, low manufacturing cost, and simple structure.
However, a relatively high torque ripple caused by the doubly
salient pole structure is one of the primary disadvantages of
SRMs. Much research has been conducted to reduce the torque
ripples of SRMs via design optimization [1]–[4]. However, most
existing designs targeted on single objective of torque ripple
minimization, resulting in a relatively low average torque [5].
To improve the overall performance of SRMs, multiobjective
optimization to maximizing the average torque while minimiz-
ing the torque ripple have been studied in SRM designs [2],
[6]–[8]. Generally, the multiple objectives often conflict with
each other and it is difficult to obtain the optimal solution.
Moreover, an optimization processor was usually coupled with
a finite-element analysis (FEA) solver for the machine design
optimization, which has a high computational cost.
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Design of experiments (DoE) [1]–[2], [7]–[12] and stochas-
tic evolutionary methods [13]–[15] are two popular techniques
employed for electric machine design optimization. DoE is a sta-
tistical method that effectively quantifies the effects of changes
in design variables on machine responses. The one-factor-at-a-
time (OFAT) method, a method of DoE, was used to optimize
SRMs with only two design variables for electric vehicle appli-
cations [7]. The OFAT method will become impractical when
more design variables are considered, because the number of
experiments increases exponentially with the number of design
variables. The problem can be mitigated by using advanced DoE,
such as the central composite design (CCD) [8]–[11] and the
Latin hypercube design (LHD) [12]. These methods have been
utilized in the machine design optimization problems with up
to five design variables [8]–[12]. In the CCD, the sample points
are only distributed at the corner and center of the design space,
which makes it difficult to efficiently gather the global machine
response information within a wide design space. The LHD is a
random sampling method that has the benefits of flexibility and
a good space-filling property [16]. The number of experiments
in the LHD is controllable. However, the sample points cre-
ated by the LHD may poorly cover the design space. Stochastic
evolutionary methods, such as genetic algorithm (GA) and par-
ticle swarm optimization (PSO) [17], are favorable in machine
design optimization because they can search a high dimension
of the design space in a computationally efficient manner [13].
The stochastic evolutionary methods have been coupled with an
FEA solver to optimize the designs of SRMs [14]–[15]. How-
ever, due to the use of the computationally costly FEA solver,
the overall computational costs of the combined approaches
are intensive, especially for multiobjective optimization
problems.

Recently, a new class of electric machine design optimization
methods combining DoE and stochastic evolutionary methods
is worth noting [18]–[21]. The methods reduced the computa-
tional cost of the traditional approaches coupling the FEA with
stochastic evolutionary methods. In [18], the CCD was used
to construct response surface (RS) models. Sensitivity analyses
were then performed to identify the significant design variables
based on the first-order regression coefficients of the RS mod-
els. However, the effects of the interactions between design
variables were not considered when using the first-order regres-
sion coefficients as the sensitivity indices. After the sensitivity
analysis, a differential evolutionary algorithm coupled with an
FEA solver was used to find the optimal values of the selected
significant design variables to optimize the machine design.
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The computational cost of this optimization process is still high
due to the use of the FEA for each candidate design. Instead
of coupling with the FEA solver, evolutionary methods were
coupled with RS models for optimization in [19]–[21], in which
second-order (2nd-order) RS models were constructed by per-
forming DoE and utilized to predict the machine responses dur-
ing the optimization searching process. The elimination of FEA
iterations in the search of the optimal designs effectively re-
duced the computational cost. However, the studies of the RS
model-based optimization were limited to the problems with
up to five design variables [22]. The electric machine design
problems usually involve a large number of design variables.
Therefore, it is necessary to investigate the possibility of the
RS model-based optimization with more than five design vari-
ables. A limitation of the 2nd-order RS models is that their
accuracy decreases with the increasing dimension of the design
space, which may lead to incorrect optimal solutions. In addi-
tion, more samples will be required to cover the design space
with a higher dimension for the construction of the RS models,
and the distribution of the samples is important to the accuracy
of the RS models. However, the samples obtained from a tra-
ditional CCD are proportional to the dimension of the design
space. As a result, it may be inappropriate to use the CCD to
solve the target problem. The number of the samples obtained
from the LHD is controllable; however, the distribution of the
samples should be carefully arranged to ensure the accuracy of
the RS model. Therefore, two major issues in the traditional RS
model-based methods need to be addressed: the accuracy of the
RS models and the choice of an appropriate DoE.

This paper proposes a comprehensive framework for multiob-
jective design optimization of SRMs. Starting with a 6/10 SRM
design problem with 14 independent design variables, a new
class of small three-level designs, known as definitive screening
designs (DSD), is employed to perform sensitivity analyses to
identify the significant design variables without the bias of inter-
action effects between design variables. The number of design
variables is reduced based on the sensitivity analyses. Next,
to improve the accuracy of the RS models and the feasibility
of DoE, optimal third-order (3rd-order) RS models are con-
structed by performing Audze–Eglais Latin hypercube designs
(AELHD). The constructed optimal RS models consist of only
significant regression terms, which are selected by using PSO.
Then, a PSO-based multiobjective optimization is performed
based on the constructed RS models, instead of the FEA of each
candidate design, to generate the Pareto front [22] with signifi-
cantly reduced computational cost. The optimal design can then
be obtained from the Pareto front generated. A sample SRM
design problem with multiple design objectives, which include
maximizing torque per active mass, maximizing efficiency, and
minimizing torque ripple, is solved using the proposed design
optimization framework. The results, including the generated
RS models, the Pareto front, and the optimal designs are com-
pared with those obtained from the traditional optimal design
methods using the 2nd-order RS models and an FEA solver
to verify the high accuracy and low computational cost of the
proposed design optimization framework.

Fig. 1. Cross section of a 6/10 SRM.

TABLE I
INDEPENDENT DESIGN VARIABLES OF A 6/10 SRM

Design Variable DEFINITION

D r i Inner diameter of rotor
D r o Outer diameter of rotor
D s o Outer diameter of stator
Lg Length of airgap
Lr y Length of rotor yoke
Ls y Length of stator yoke
L s t k Stack length
βr p Rotor pole arc angle at airgap
βs p Stator pole arc angle at airgap
αs Ratio between stator pole arc at stator back iron and stator pole arc

at airgap
αr Ratio between rotor pole arc at rotor back iron and rotor pole arc

at airgap
Dw Diameter of copper wire
Ic Chopping current
Nt Number of turns per pole

II. SRM DESIGN SPECIFICATIONS AND OPTIMIZATION

The relatively simple structure of SRMs makes their designs
less complex than other ac or dc machine designs. However, in
order to precisely determine the machine geometric structure,
there are still ten independent design variables to be considered
for the cross section of a 6/10 SRM, as shown in Fig. 1. In
addition, the stack length Lstk , the chopping current Ic , and
two winding design variables comprising the number of turns
per pole, Nt , and the diameter of copper wire, Dw , are consid-
ered. Therefore, the total number of independent design vari-
ables is 14, as listed in Table I. The major design specifications
are listed in Table II. The type of ferromagnetic material used
for the stator and rotor laminations is M19 steel (29 gauge).
The SRM is assumed to be operated with a unipolar current
excitation [23].

The design optimization of an SRM begins with the definition
of the optimization model, which includes design variables,
design constraints, and design objectives. In order to meet the
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TABLE II
DESIGN SPECIFICATIONS OF THE SRM

Rated speed 1 500 r/min
Rated torque 9.49 Nm
Rated power 2 hp
Efficiency > 85% at rated speed
Torque ripple < 35%
Mounting NEMA 143 (Outer diameter 139.7mm)

design requirements and achieve the optimal performance of the
SRM, three objectives, i.e., minimum torque ripple, maximum
efficiency, and maximum torque per active mass, are selected for
the multiobjective design optimization in this paper. The torque
ripple Tr is defined as

Tr =
Tmax − Tmin

Tavg
(1)

where Tmax , Tmin , and Tavg are the maximum, minimum, and
average torque, respectively. The efficiency η of an SRM is
estimated considering only core and copper losses

η =
Tavgω

Tavgω + Pcore + Pcu
(2)

where ω is the rotational speed, Pcore is the core loss, and Pcu is
the copper loss. To increase the torque output of the SRM while
reducing the machine weight (or the material cost), the average
torque per active mass Tm is considered

Tm =
Tavg

mCu + mFe
(3)

where mCu and mFe are the masses of the copper wire and steel
of the motor, respectively.

The optimization is subjected to the following constraints.
1) The average flux densities in the stator and rotor poles

at the aligned positions, Bsp and Brp , should meet to
following constraints to avoid significant saturation:

Bsp ≤ Bsat and Brp ≤ Bsat (4)

where Bsat is the saturation magnetic flux density of the
steel.

2) The current density J is limited due to the thermal con-
straints, which limit the operating temperature of the SRM

J ≤ JMax (5)

where Jmax is the maximum current density. The value
of Jmax can be determined from the maximum copper
loss Pcu(Pcu = J2

maxπD2
w R/4) that can be dissipated

during the SRM operation without exceeding the max-
imum winding temperature, where R is the winding resis-
tance. The maximum copper loss Pcu is determined by the
heat convection equation Pcu = hcAΔT , where hc is the
convective heat transfer coefficient, which can be calcu-
lated using the method in [24], A is the heat transfer area,
and ΔT is the difference between the maximum winding
temperature and the ambient temperature.

3) The stator slot space includes the net available space for
the copper wires plus slot lining or insulation. Usually,
the fill factor kfill is constrained by

30% ≤ kfill ≤ 60%. (6)

4) For the 6/10 SRM with a higher number of rotor poles,
the ratio αr should satisfy the geometrical limitation for
the pole configurations, which can be described as

αr ≤ 2π

Nrβrp
(7)

where Nr (= 10) represents the number of rotor poles.
Then, the optimization model can be formulated as follows,

where the objective function is expressed as a weighted sum of
individual objectives:

minz(x) = w1
Tr

T ′
r

+ w2
η′

η
+ w3

T ′
m

Tm
(8)

subject to : (4) − (7) (9)

xi ≤ xi ≤ x̄i , i = 1, 2, ..., 14 (10)

where x = [Dri , Dro , Dso , Lg , Lry , Lsy , Lstk , αr , αs , βrp , βsp ,
Dw , Ic , Nt] is the vector of design variables; w1 , w2 , w3 are
weight factors satisfying w1 + w2 + w3 = 1; Tr ’, η’ and Tm ’
are the base values; and xi and xiare the lower and upper bounds
of each design variable, respectively.

The aforementioned design optimization model has a high
dimension design space. In the traditional optimal design ap-
proaches, the constraints (1)–(4) and objective function (8) were
evaluated using an FEA solver for each candidate design, which
makes the process of finding the optimal solution of the SRM de-
sign problem computationally intensive. To solve this problem,
this paper proposes two methods: 1) design space reduction; and
2) using a surrogate model to replace the FEA solver to evaluate
the constraints in the process of searching the optimal solution.
In the next section, an optimization framework, which consists
of sensitivity analysis-based design space reduction, optimal RS
model construction, and PSO-based Pareto optimization, is pro-
posed to solve the multiobjective optimization problem with a
high-dimension design space.

III. PROPOSED COMPREHENSIVE FRAMEWORK FOR

MULTIOBJECTIVE DESIGN OPTIMIZATION OF SRMS

This section proposes a comprehensive framework for mul-
tiobjective design optimization of an SRM, as shown in Fig. 2.
The proposed framework begins with the optimization model
(8)–(10), and is followed by three main parts described in the
following sections: design space reduction through sensitivity
analyses, construction of the optimal 3rd-order RS models, and
PSO-based multiobjective optimization coupled with the con-
structed RS models.

A. Sensitivity Analysis for Design Space Reduction

To reduce the computational cost required for the optimiza-
tion, sensitivity analyses are performed first to reduce the num-
ber of design variables. Sensitivity analyses can also provide
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Fig. 2. Flow chart of the proposed multiobjective design optimization
framework.

important insights on how each design variable affects the
machine performance. Traditionally, local sensitivity analyses
were performed through the OFAT experiments for SRMs in
[25]–[27]. However, these methods neither measured the sen-
sitivities quantitatively nor considered the interaction effects
between design variables. The RS model-based sensitivity anal-
yses discussed in [18] did not consider the interaction effects
either by using the first-order regression coefficients as the sensi-
tivity indices. In this paper, a variance-based sensitivity analysis
approach is used to quantitatively measure the sensitivities of
the machine responses to each design variable.

The variance-based sensitivity analysis is a global sensitivity
analysis technique that quantitatively measures the contribution
of each variable to the machine responses [28]. No partial deriva-
tives or RS models are required. In order to examine the variance
in the machine responses, experiments need to be designed and
conducted to examine the design variables at different levels.
For example, in a three-level design, the values of each variable
are set at its minimum, medium, and maximum values within
its limits. A well-designed experiment can greatly reduce the

number of experiment runs without sacrificing the accuracy of
the sensitivity analysis. In this paper, the sensitivity analysis is
performed using the DSD. The DSD is a new class of three-level
design capable of capturing nonlinearity and guarantees that the
sensitivity indices of each design variable are unbiased by the
interaction effects between design variables [29]. Moreover, the
number of experiment runs is low, even if all of the independent
design variables are considered at the beginning. Specifically,
for a DSD with N design variables, only 2N + 1 experiment runs
are required, which is much lower than 2N + 2N + 1 required
by the CCD [2]. The DSD can greatly reduce the computational
cost of the sensitivity analysis. In this paper, the DSD is em-
ployed to test 14 independent design variables of SRMs, and
only 29 experiments (compared to 16 413 for the CCD) need to
be performed. The experiments were run in an FEA solver to
calculate the machine responses, and the variance is calculated
based on the simulation results. The sensitivity is measured by
a sensitivity index that reflects the relative importance of the
variable alone and is described as follows [28]:

Sxi
=

Vxi
(Ex∼i

(y|xi))
V (y)

(11)

where Ex∼i
(y|xi) is the average of y taken over x∼i (all factors

except for xi) when xi is fixed, Vxi
(Ex∼i

(y|xi)) is the condi-
tional variance of Ex∼i

(y|xi), and V (y) is the variance of y. A
higher sensitivity index indicates a larger influence to y by xi .

The variance-based sensitivity indices of the three machine
responses, Tr , η, and Tm , to the 14 design variables are eval-
uated and the results are shown in Fig. 3. According to Fig. 3,
Dro , Dw , Ic , Lg , Lstk , Nt , βsp , and βrp are significant design
variables for the SRM optimization. The changes in other de-
sign variables Dri , Dso , Lry , Lsy , αr , and αs have negligible
effects on any of the three responses. The values of the insignif-
icant design variables can be determined based on other design
considerations, or can be set at the levels where the optimal re-
sponses are obtained from the sensitivity analyses. For example,
αs can be set to a relatively large level to ameliorate vibration
[30]; the stator outer diameter Dso is predetermined by the ge-
ometrical constraint of the mounting frame. These insignificant
design variables are not selected as design variables and become
constants in the subsequent optimization process. In addition, a
significant design variable, chopping current Ic , is determined
by the nominal condition of the SRM and becomes a constant in
the optimization process as well. Therefore, the number of in-
dependent design variables in the following design optimization
process is reduced from 14 to 7. In other words, the dimension of
the design space is reduced, and the reduced design variables can
be expressed as xr = [Dro , Lg , Lstk , βrp , βsp ,Dw ,Nt ]. In this
paper, the forced air cooling is used for the SRM, the maximum
winding temperature is 150 °C and the ambient temperature is
25 °C. According to the discussion of the constraint 2) in Sec-
tion II, the maximum current density is calculated to be 7 A/
mm2. All design variables, constants, and their values or ranges
for optimal design of the 6/10 SRM are listed in Table III.

An initial design of the SRM is obtained based on the re-
sults of the sensitivity analyses and the designer’s experience.
In the initial design, the seven important design variables are
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Fig. 3. Sensitivity indices of torque ripple, efficiency, and torque per active mass to the 14 design variables for a 6/10 SRM.

TABLE III
VARIABLES AND CONSTANTS FOR THE OPTIMAL DESIGN OF THE 6/10 SRM

Design Parameter Type Unit Value

D r o Variable mm 60.0–85.0
Dw Variable mm 0.912–1.628
Lg Variable mm 0.30–0.75
L s t k Variable mm 40.0–90.0
Nt Variable N/A 40–90
βr p Variable deg 14.0–19.0
βs p Variable deg 14.0–20.0
D r i Constant mm 17
D s o Constant mm 139.7
Lr y Constant mm 16.5
Ls y Constant mm 15
Ic Constant A 15
αr Constant N/A 1.98
αs Constant N/A 1.05
B s a t Constraint T 1.65
Jm a x Constraint A/mm2 7
k f i l l Constraint N/A 30%–60%

determined as follows: Dro , Lstk , and Lg are set at the levels
where the best responses are achieved among the three levels of
these variables in the sensitivity analyses; Nt , βrp , and βsp are
first set at the best levels obtained from the sensitivity analyses,
and then, are adjusted to avoid significant saturation and main-
tain a wide unaligned position of the SRM, as discussed in [31]
and [32]; and Dw is determined by the available space in the
stator slots and Nt .

B. Constructing the Optimal RS Models

After sensitivity analyses, the RS models are constructed by
performing the DoE. In order to replace the FEA solver with
the RS models in the optimization searching process, the RS
models should accurately predict the machine responses. The
accuracy of the RS models highly depends on both the DoE and
the form of the RS models.

In this paper, the AELHD is employed to ensure a uniform
space filling within the whole design space [33]. The AELHD
distributes the experimental points as uniformly as possible by
minimizing the potential energy EAE between the points

EAE =
Np∑

i=1

Np∑

j=i+1

1
L2

ij

(12)

Fig. 4. Examples of (a) LHD and (b) AELHD for a problem with two design
variables of ten levels.

where Np is the number of experimental points in the AELHD
and Lij is the Euclidean distance between points i and j. The
comparison between the traditional LHD and the AELHD for a
simple case with two design variables of ten levels is shown in
Fig. 4. It can be seen that the AELHD has a better space-filling
performance than the traditional LHD. In addition, the quality
of AELHD depends on the number of experiments Np . In this
paper, a medium-size AELHD [34] is employed. The number
of experiments for a medium-size design is twice the number
of regression terms in a full 3rd-order model. Therefore, for the
design optimization problem with N = 7 design variables, an
AELHD with 240 experiments is performed to construct the RS
models. In this study, the machine responses of Tr , η, Tm , Bsp ,
and Brp are calculated in the FEA solver for each experiment,
and are then used to construct the RS models.

Traditionally, 2nd-order RS models were usually applied to
machine design problems with up to five selected design vari-
ables. As described in [22], the 2nd-order RS model did not
converge even when a large number of experiments were used
to build up the model. For the optimization problem with seven
selected design variables in this paper, an optimized 3rd-order
RS model is proposed to improve the approximation accuracy
of the RS models. In the literature, the RS models higher than
2nd order were rarely discussed due to the following reasons.
First, a 2nd-order RS model is usually accurate enough for
most problems [35]. Second, RS models were generally applied
to nondeterministic problems with noticeable random errors.
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In these problems, the responses may differ for the same com-
bination of design variables due to stochastic errors, and the
accuracy of the approximation is not the sole goal. However,
for the machine design problems which are deterministic, the
accuracy of RS models is highly desirable. A full 3rd-order RS
model can be expressed as

f (x) = a0 +
N∑

i=1

aixi +
N∑

i=1

N∑

j≥i

aij xixj

+
N∑

i=1

N∑

j≥i

N∑

k≥j

aijkxixjxk + ε (13)

where a0 , ai , aij , and aijk are the regression coefficients and
ε is an error term. Compared with a full 2nd-order RS model
with 1 + N + N(N + 1)/2 regression coefficients, the num-
ber of regression coefficients in the full 3rd-order RS model is
increased significantly to 1 + N + N(N + 1)/2 + N(N + 1)
(N + 2)/6. For example, when N = 7, there are 36 and 120
regression coefficients, respectively, in the 2nd-order and 3rd-
order RS models. The number of regression coefficients in the
3rd-order RS model increases rapidly as N increases. As a result,
the number of experiments and the computational cost required
to determine these coefficients increase significantly. To reduce
the size of the 3rd-order RS model, the terms that have negligible
contributions to the response can be omitted from the model;
and the RS model can be represented by the combination of
the significant regression terms only. The reduction of the size
of the 3rd-order RS model can reduce the computational effort
in the optimization process without sacrificing the accuracy and
the number of experiments required to determine the values of
regression coefficients. This paper proposes a method to auto-
matically select significant regression terms to be included in
the 3rd-order RS model. The proposed method is based on PSO
and consists of two steps explained as follows.

1) Define an Objective (Fitness) Function and Constraints:
The fitness of a candidate RS model is evaluated based on two
metrics: the quality of approximation of the experimental data
by the candidate model and the size of the candidate model. The
quality of the model is quantified by calculating the coefficient
of determination R2 [35]

R2 = 1 −
∑Np

i=1 (yi − fi)
2

∑Np

i=1 (yi − ȳ)2
(14)

where yi is the desired value obtained from FEA, fi is the
value predicted by the RS model, and ȳ is the mean value of
yi . R2 is an indicator of how well the RS model approximates
the experimental data points. The better the model fits the data,
the closer the value of R2 is to one. The size of the model is
measured in terms of the number of regression terms, Nr , in the
model. Then, the objective function is formulated as

minzRS = w
Nr

N ′
r

+ (1 − w)
R2 ′

R2 (15)

subject to : 36 ≤ Nr ≤ 120 (16)

where w is the weighting factor, and R2’ and Nr ’ are the base
values.

2) Perform the Optimization Using PSO: The PSO is ap-
plied to solve the optimization problem (15)–(16). PSO is a
population-based stochastic optimization technique suitable for
solving multiobjective optimization problems. It uses a popula-
tion of particles to perform a multidirectional search for the op-
timal solution in the problem space. Each particle has a position
Pk (i.e., Nr in this problem) representing a candidate solution in
the design space defined by (16). The PSO algorithm is imple-
mented iteratively to search for the optimal position according
to the fitness evaluation using (15). In each iteration, once the
value of Nr is determined for a particle, the coefficients of all
1st-order and 2nd-order terms and (Nr − 36) 3rd-order regres-
sion terms are then determined using the least-square method to
construct the RS model. Then, the fitness value ZRS of each par-
ticle is calculated by using (15) and the constructed RS model.
The fitness function values are then used in the PSO search-
ing process to find the optimal value of Nr , based on which
the optimal set of coefficients of (13) can be obtained using
the least-square method to construct an optimal RS model. The
optimal RS models of Tr , η, Tm , Bsp , and Brp are built using
the proposed method. The constructed optimal RS models are
used to calculate the values of Tr , η, Tm , Bsp , and Brp analyt-
ically for the multiobjective optimization. This eliminates the
use of a computationally intensive FEA solver to estimate these
quantities numerically in the process of searching the optimal
solution.

C. Multiobjective Design Optimization for SRM

After the sensitivity-based design space reduction and optimal
RS model construction, the optimization model (8)-(10) can be
simplified as follows:

minxz(xr ) = w1
Tr (xr )

T ′
r

+ w2
η′

η(xr )
+ w3

T ′
m

Tm (xr )
(17)

subject to : (4) − (7) (18)

xri ≤ xri ≤ x̄ri , i= 1, 2, . . . , 7 (19)

Compared to the original optimization model (8)–(10) with
14 design variables, in the problem (17)–(19), the dimension of
the design space has been reduced to 7 and the optimal 3rd-order
RS models, instead of the FEA solver, are used to calculate Tr , η,
and Tm in (17) and Bsp , and Brp in (18). Next, the constrained
optimization problem is converted to the following form by
using the Lagrangian relaxation technique [36],

minxz(xr ) = w1
Tr (xr )

T ′
r

+ w2
η′

η(xr )

+w3
T ′

m

Tm (xr )
+ p(xr ) (20)

subject to : (19)

where p(xr ) is the penalty function for constraints (4)–(7). A
larger penalty function value indicates a poor design that vio-
lates the constraints more severely. If all of the constraints are



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MA AND QU: MULTIOBJECTIVE OPTIMIZATION OF SWITCHED RELUCTANCE MOTORS BASED ON DESIGN OF EXPERIMENTS 7

TABLE IV
COMPARISON OF THE RESPONSE SURFACES WITH DIFFERENT DOE

RS models 2nd-order
by CCD

(143)

2nd-order
by AELHD

(143)

2nd-order
by AELHD

(720)

3rd-order by
AELHD

(240)

R2 Tr 0.8831 0.9165 0.9256 0.9782
η 0.9853 0.9934 0.9967 0.9993

Tm 0.9845 0.9970 0.9980 0.9997
RMSE Tr 0.1014 0.0926 0.0910 0.0889

η 0.0349 0.0309 0.0295 0.0275
Tm 0.0867 0.0801 0.0780 0.0752

satisfied, the value of p(xr ) is zero. The model (19) and (20)
will be used for multiobjective SRM design optimization.

One of the challenges of multiobjective optimization is that
the objectives usually conflict with each other and no unique
solution can be found. In this paper, the Pareto optimality [22]
is utilized to manage the tradeoffs among different objectives.
Pareto optimal solutions are defined as a set of feasible solutions
that cannot be improved without deteriorating other objectives.
The Pareto front, which includes all Pareto optimal solutions,
can provide a clear view of how much penalty is induced by the
improvement of another objective. The generation of the exact
Pareto front can be computationally intensive. In this paper, a
PSO algorithm is adopted to search efficiently for the Pareto
optimal designs within the design space based on (19) and (20).
The process of finding the optimal solution includes three steps.
First, define Nw different combinations of the three weighting
factors in (20). Next, the PSO is adopted to search for the optimal
solution of (20) with each set of weighting factors; and Nw

optimal solutions corresponding to Nw sets of weighting factor
combinations are obtained. Finally, all of the Pareto optimal
solutions are used to approximate the Pareto Front for the design
problem, from which the final optimal solution can be obtained.

IV. SIMULATION RESULTS

The design optimization of the SRM is performed using the
proposed optimization framework. This section verifies the pro-
posed method by using two statistical criteria as well as a direct
comparison of the machine responses predicted by the proposed
method and calculated by an FEA solver.

A. Accuracy of the Proposed Optimal RS Models

In this section, the accuracy of the 3rd-order RS models con-
structed by using the proposed method is compared with the
traditional 2nd-order RS models using two statistical criteria:
the coefficient of determination R2 and the root-mean-square
error (RMSE). As described in Section III-B, the quality of the
RS model can be quantified by R2 . First, the 2nd-order RS mod-
els are constructed using the traditional CCD and the AELHD,
respectively, with the same number of experiments (143 experi-
ments). The qualities of the 2nd-order models constructed by the
two different methods in terms of R2 are compared in Table IV.
The results show that the 2nd-order RS models constructed us-
ing the AELHD have higher R2 (closer to one), meaning a better

approximation of the experimental data by the models. Next, the
2nd-order RS models are constructed using the AELHD with
a higher number of experiments (720 experiments) generated
using the algorithm described in [34], representing a large-size
design. Table IV shows that the quality of the approximation of
the experimental data by the 2nd-order models has only been
improved slightly using a large-size design. Particularly, the R2

of the 2nd-order model of the torque ripple is only 92.56%
even with the large-size design. This means that only 92.56%
of the total variation can be represented by the model. There-
fore, the 2nd-order RS models are not suitable for the optimiza-
tion problem even with a high-dimension design space. Then,
the proposed optimal 3rd-order RS models are constructed us-
ing the AELHD with a medium-size design (240 experiments).
Table IV shows that the optimal 3rd-order RS models have
the best approximation for the experimental data indicating by
higher R2s compared to the 2nd-order models constructed using
different DoE. Specifically, the accuracy of the approximation
for torque ripple response by the optimal 3rd-order model is
much higher than that of the best 2nd-order model. Therefore,
the relationship between the responses and the design variables
can be more accurately represented by the optimal 3rd-order RS
models.

To evaluate the approximation accuracy of the RS models
within the whole design space, the following RMSE is defined:

RMSE =

√√√√ 1
n

n∑

i=1

(yi − fi)2 (21)

where n is the number of test points, which are randomly gener-
ated within the design space and were not used for constructing
the RS models. Table IV also compares the RMSEs of different
RS models. Lower values of the RMSE indicate less prediction
errors of the RS models. From the comparison, the RMSE values
of all the responses produced by the proposed 3rd-order models
are all the lowest ones among different RS models. These results
verified the improved fitness of the proposed 3rd-order models
over the traditional 2nd-order models.

B. Accuracy and Computational Efficiency of the Proposed
Method

After evaluating the accuracy of the proposed RS models us-
ing the statistical criteria R2 and RMSE, the accuracy and com-
putational efficiency of the proposed method are further com-
pared with the traditional design optimization methods. Based
on the 3rd-order RS models, the Pareto front is generated effi-
ciently by solving (19)-(20) using the PSO. The PSO is designed
to have a population size of 35 and the maximum iteration of
1000. The value of Nw is chosen to be 20. The Pareto opti-
mal solutions with high efficiency, low torque ripple, and high
torque per active mass are represented by the Pareto front shown
in Fig. 5.

To evaluate the accuracy of the Pareto front obtained by the
proposed method, two other Pareto fronts are generated for
comparison. One is generated as a benchmark by using the PSO
coupled with an FEA solver; the other is generated by using the
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Fig. 5. Pareto front of the multiobjective optimization obtained from the
proposed 3rd-order RS model-based method.

Fig. 6. Comparison of the Pareto fronts obtained by a PSO and FEA coupled
method, a PSO and 2nd-order RS model coupled method, and the proposed PSO
and 3rd-order RS model coupled method.

PSO coupled with the 2nd-order RS model obtained from the
AELHD with 720 experiments. Fig. 6 compares the three Pareto
fronts. The results show that the Pareto front obtained by the op-
timal 3rd-order RS model matches the benchmark Pareto front
better than that obtained by the 2nd-order RS model. Moreover,
the number of FEA iterations performed throughout the opti-
mization process of the proposed method is only 240, which is
much lower than 4 131 FEA iterations involved in the bench-
mark case combining the PSO and FEA. During the optimization
process, the FEA iterations are the most time-consuming part.
The proposed method greatly reduces the number of FEA it-
erations, and therefore, greatly reduces the computational cost
and time. Specifically, in this case study, the optimization per-
formed by the proposed method takes only several hours, which
are much less than a few days taken by the PSO and FEA-
coupled optimization on a same personal desktop computer with
Intel core i7-3770 and 6 GB memory. The results show that the
proposed optimization framework is capable of obtaining more
accurate Pareto optimal solutions than the traditional 2nd-order
RS model-based method and can obtain the Pareto optimal so-
lutions more efficiently than the traditional FEA solver-based
method without sacrificing the accuracy.

TABLE V
COMPARISON OF THE OPTIMAL DESIGNS

Term Initial design D1 D2 D3

Dr o (mm) 80.00 79.97 80.00 80.00
Dw (mm) 1.151 1.151 1.290 1.369
Lg (mm) 0.30 0.30 0.30 0.30

Ls t k (mm) 90.00 86.20 86.94 90.00
Nt 80 90 90 90

β r p (deg) 15.00 16.38 15.70 15.21
β s p (deg) 16.00 15.30 14.71 14.29
kf i l l (%) 50.96 45.92 52.89 59.81

Tr (%) RS N/A 16.70 18.36 20.92
FEA 25.12 18.30 20.13 24.38

η (%) RS N/A 89.40 90.31 90.95
FEA 89.50 88.70 89.37 90.00

Tm (Nm/kg) RS N/A 1.371 1.350 1.332
FEA 1.251 1.370 1.348 1.331

Fig. 7. Flux and field distributions of the three optimal designs in the nominal
condition (upper: D1, medium: D2, and lower: D3).

C. Performance of the Optimal SRMs

To further evaluate the effectiveness of the Pareto optimal
solutions obtained by the proposed method, four candidate de-
signs, i.e., the initial design based on the sensitivity analyses
and three optimal designs D1 , D2 , and D3 selected from the
Pareto front obtained by the proposed 3rd-order model shown
in Fig. 5, are compared in Table V. For the initial design, the
machine responses Tr , η, and Tm are calculated by the FEA
solver. While for the three optimal designs obtained from the
proposed method, the machine responses are calculated by the
proposed RS models and the FEA solver, respectively. Table V
shows that the initial design has the worst performance among
the four cases. For example, Tr and Tm of D1 are improved by
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Fig. 8. Comparison of torque performance of the three optimal SRMs and the
SRM obtained from the initial design.

27.15% and 9.51%, respectively, while η is 0.89% lower than
those of the initial design. In addition, the machine responses
calculated by the proposed RS models match well with those
calculated by the FEA solver. As in Table V, D1 has the lowest
torque ripple, the highest torque per active mass, and the lowest
efficiency as indicated by the Pareto front shown in Fig. 5. D3
has the highest efficiency, the highest torque ripple, and the low-
est torque per active mass. A tradeoff among these three design
objectives exists and an optimal design can be selected based
on the designer’s preference.

Fig. 7 shows the flux and field distributions of the three op-
timal designs, where Bmax is the maximum flux density in the
pole tips and Bavg is the average flux density in the poles. It
shows that the designed SRMs operate near the knee points at
the nominal conditions. The torque waveforms of the four de-
signs in the nominal condition are compared in Fig. 8, and the
average torque of the initial design is lower than the optimal
designs. These results verified that the optimal designs can be
obtained by the proposed method effectively.

V. CONCLUSION

This paper proposed a comprehensive framework of multi-
objective design optimization for SRMs with a large number of
design variables based on a combination of DoE and PSO. A
DSD and variance-based sensitivity analysis method was pro-
posed to identify significant design variables to construct the
RS models for the subsequent optimization. In the meantime,
the design space of the original design optimization problem
was reduced. A PSO-based method was proposed to obtain the
optimal 3rd-order RS models based on an appropriate fitness
evaluation to accurately represent the relationships between the
design variables and the machine responses. A method com-
bining the PSO and the optimal 3rd-order RS models was then
proposed to solve the multiobjective design optimization prob-
lem with the reduced-dimension design space to generate the
Pareto front efficiently. Simulation studies were conducted for a
sample design of a 6/10 SRM using the proposed optimal design
framework as well as the traditional 2nd-order RS model-based
and FEA solver-based methods. The results showed that the

proposed method has higher accuracy than the traditional 2nd-
order RS model-based optimal design methods and can be used
for problems with a larger number of design variables. More-
over, compared to the traditional optimal design methods using
an FEA solver, the proposed method has a much lower compu-
tational cost without sacrificing the accuracy of the design.
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