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Abstract - Differential Evolution is a simple, fast, and robust

evolutionary algorithm that has proven effective in determining
the global optimum for several difficult single-objective optimi-
zation problems. In this paper, the Differential Evolution algo-
rithm is extended to multiobjective optimization problems by

using a Pareto-based approach. The algorithm performs well
wheh applied to several test optimization problems from the lit-
erature.

I. INTRODUCTION

Remarkable progress has been made in recent years in the

development of evolutionary algorithms for multiobjective

optimization problems (MOPs). MOPs are characterized by

the presence of multiple conflicting objectives that must be

optimized simultaneously and allow multiple optimal solu-
tions. These multiple solutions are all optimal in the sense that
there are no other solutions in the entire solution domain or

search space that are superior to them when all objectives are
considered simultaneously [1]. These non-inferior or non-

dominated solutions are referred to as Pareto-optimal solu-

tions, and collectively represent the Pareto set or front. Multi-

objective evolutionary algorithms (MOEAs) are population-

based methods that have been deveoped in recent years to

guide the search process toward the global Pareto-optimal

region while maintaining adequate population diversity to

capture as many solutions in the Pareto front as possible.

MOEAs can be classified broadly according to their

approach as either non-Pareto or Pareto-based [2]. Non-Pareto

methods are based on an aggregating approach where the mul-

tiple objective functions are combined into a single function

and single-objective evolutionary algorithms are then

applied [2]• Methods based on various aggregating

approaches, such as weighted sum, goal attainment, goal pro-

gramming, and others, have been developed and applied suc-

cessfully to several optimization problems. These methods

require multipIe single-objective optimization runs with dif-

ferent weights for the various objectives in order to find multi-

ple Pareto-optimal solutions. Pareto-based approaches, on the

other hand, offer the advantage of generating multiple Pareto

solutions simultaneously. These methods are based on a sug-

gestion by Goldberg [3] of using nondominated ranking and

selection to evolve a population of solutions toward the Pareto

front. Several Pareto-based methods have been developed in

recent years (see, for example, [4]-[8]) and used in a variety of

applications.

This paper considers the evolutionary strategy (ES) known

as Differential Evolution (DE) (see Refs. [9]-[11]) that has

been applied successfully to a wide range of single-optimiza-

tion problems [12]. This ES is extended to multiobjective

problems using a Pareto-based approach in this paper. Most

MOEAs in the literature are based on genetic algorithms.
These include _'_-Dd_s nondominated sorting

genetic algorithm (NSGA) of Srinivas and Deb [4], the FFES

algorithm of Fonseca and Fleming [13], the NPGA algorithm

of Horn et al. [6], the NSGA-II algorithm ofDeb et al. [8], and

the SPEA algorithm of Zitler and Thiele [7], among others.

There has been limited use of other evolutionary approaches

such as evolutionary strategies for multiobjective optimiza-

tion. The Pareto-archived evolutionary strategy (PALES) is

among the few noteworthy ES-based approaches [5]. A need
exists for more research in ES-based MOEAs such as the

effort reported here. Although the lines between genetic algo-

rithms and evolutionary strategies have bIurred in recent years

with the development of real-coded GAs and as a result of a

healthy cross-pollination of ideas, basic differences between

the two approaches still remain. Perhaps the main ideological

difference lies in the relative importance given to the two main

evolutionary operators, recombination (crossover) and muta-

tion, with GA-based approaches relying heavily on the former

and ES-based approaches on the latter [15].

The Pareto Differential Evolution method described in this

paper modifies the selection procedure in the basic DE algo-

rithm by incorporating the fast nondominated sorting and
ranking selection scheme of Deb et aI. [8]. In effect, it com-

bines the robust and effective DE strategy with key elements

of the successful NSGA-II algorithm. The result is a simple

and powerful evolutionary strategy that is self-adaptive and
elitist, and can maintain diversity in the Pareto set. Results are

presented for several difficult test problems from the literature

to demonstrate the efficacy and capabilities of the method.

It should be mentioned that Abbass et al. [14] have also

recently reported preliminary results from a Pareto-frontier

Differential Evolution method. The basic idea in the present

work and in [14] is similar in that both extend the basic DE

algorithm to multi-objective problems by incorporating a non-

dominated sorting and ranking selection procedure. However,

the manner in which this idea is implemented here differs
from [14] and represents an alternate approach to multiobjec-

tire optimization using DE.

H. DIFFERENTIAL EVOLUTION

Differential Evolution is an ES-based approach developed

for single-objective optimization in continuous search spaces.



It is conceptuallysimpleandpossessesgoodconvergence
propertiesthat havebeendemonstratedin a varietyof
applications[12].Details of the algorithm can be found else-

where [9]-[11]; only its main features are summarized here.

The approach uses a population,_ of N D-dimensional, real-

valued parameter vectors, P_k, i = 1, N; k = 1, K, in
J

generation Q, where K is the number of decision variables.

The population is usually initialized in a random fashion and

the population size N is maintained constant throughout the

optimization process. Differential evolution is thus similar to a

(p., _.) ES [15] with g and _ equal to NP [16]. The method

however differs from standard ES approaches in several

respects as described below.

As with all ES-based approaches, mutation is the key ingre-

dient of differential evolution. The basic idea is to generate

new parameter vectors for the subsequent generation by using

weighted differences between two (or more) parameter vec-

tors selected randomly from the current population to provide

appropriately scaled perturbations that modify another param-

eter vector (or, comparison vector) selected from the same

population. This idea has been implemented in various forms.

In the classical implementation, new parameter vectors for the

next generation Q + 1 are generated according to the follow-

ing mutation scheme:

V Q+I Q Q Qi,k = P k+F'(Pr_,k-Pr2, k) i = 1, N, k = 1, K

where the integers r I and r2 are chosen randomly in the
range I, N. The random integers are pairwise different and dif-

fer from the running index i. The mutation parameter

F_ [0,2] is a real, constant, user-supplied parameter that

controls the amplification of the differential variation. Other
variants that either use the difference between more than three

parameter vectors or keep track of the best parameter vector at

each generation and use it in the mutation scheme have also

been developed [9] and used with varying success in specific
applications. Thus, differential evolution differs from other

ESs most notably in that the mutation operator is derived from

the current population and not by probability density func-

tions that are defined separately [16].

DE is similar to other recombinative ES approaches in that
it also uses discrete recombination. While various recombina-

tion strategies exist [15] the strategy adopted in differential
evolution is as follows. The vector:

uQ+ I Q+ I rlQ+ l Q+ I T
i,k = (Ui, l '_i, 2 '• ........... Ui, K )

is formed with:
Q+I Q+I

Ui, j = fi, j if rand(j)<CR or j = rnbr(i)

or,

= Pi, j otherwise

for all j = 1, K. In the above, rand(j) _ [O,I] is thej th

evaluation of a uniform random number generator,

CR E [0,1] is the crossover parameter, and the value rnbr(i)
is a randomly chosen index in { 1,2,. ....... K} that ensures that

Q+1 Q+I
Ui, k gets at least one parameter from Vi, k . Note also
that the mutation and recombination operations described

above can lead to new vectors that may fail outside the bound-

aries of the variables• Various repair rules can be used to

ensure thatthese inadmissible vectors do not enter the popula-

tion. A simple strategy, which is the one adopted here, is to
delete these inadmissible vectors and form new ones until the

population is filled•

The selection scheme used in DE is deterministic but differs

from methods usually employed in standard ES approaches.
Selection is based on local competition only, with the child

Q+I O
Ui, k competing against one population member Pi, k (the
comparison vector) and the survivor entering the new popula-
• , Q+I

tlon. In other words, tf U: ,, yields a better objective func-
• Q ",_'Q + 1 . Q+I .

txon value than ,nPik then Pi k is set to U i k . Otherwise,

the old value P_,k' is retainecl. This greedy selection criterion
results in fast convergence; the adaptive nature of the mutation

operator, in general, helps safeguard against premature con-

vergence and allows the process to extricate itself from any

local optima.

lI. PARETO-BASED DIFFERENTIAL EVOLUTION

The DE strategy can be extended to multiobjective optimi-
zation by adopting either a non-Pareto or Pareto-based

approach. The non-Pareto approach is quite straightforward

and requires no modifications to the basic algorithm. A single

objective function needs to be formed from the multiple
objectives and any of several aggregating approaches can be

used. A Pareto-based approach such as the one adopted here,

on the other hand, requires modifications to the basic algo-
rithm that will allow a population of Pareto-optimal solutions

to be determined simultaneously in a single simulation run.

The Pareto-based Differential Evolution algorithm devel-

oped here differs from the basic algorithm primarily in the
selection procedure used to pick subsequent generations of the

population. We have opted to uge the nondominated sorting

and ranking selection procedure developed by Deb et al. [8].

This procedure has been shown to be very effective in guiding
the search toward the global Pareto front for several difficult

optimization problems. It is implemented here in the follow-

ing manner. Once new candidate parameter vectors are
obtained using the DE mutation and recombination operators,

the new population is combined with the existing parent popu-

lation and a nondominated sorting and ranking of the com-

bined population is performed. Note that the size of the

combined population is 2N. As noted in [8], this allows a glo-

bal non-domination check among both the parent and off-

spring solutions although it requires additional computational

effort in sorting the combined rather than only the offspring

population as is done in other approaches. At the end of the

nondominated sort alI members of the combined population

(both parent and new candidate parameter vectors) have been

assigned a nondominated rank.



TheNSGAalgorithmincorporatesbothanelite-preserva-
tionandanexplicitdiversity-preservingstrategythatarevery
effective.Anexplicitdiversity-preservationornichingstrat-
egyisusedtoassignadiversityranktoallthemembersthat
arein thesamenondominatedfrontandthushavethesame
nondominatedrank.Thesolutionswithineachnondominated
frontthatresideintheleastcrowdedregionin thatfrontare
assignedahigherrank.A crowdingdistancemetricisusedto
estimatethedensityofsolutionssurroundingaparticularsolu-
tionin thepopulationandisobtainedfromtheaveragedis-
tanceof the two solutions on either side of the solution along

each of the objectives. One of the reasons this particular nich-

ing strategy was chosen here is because it does not require any

external parameters. Details can be found elsewhere [8].

Once the nondominated rank and diversity rank of all the

combined population members was determined as above, dif-

ferent approaches to picking the members of the next genera-

tion were attempted. The first approach follows the lines of

the basic DE algorithm where each child vector is compared

with one of the parent population members (the comparjsop
- _2+_

vector), PQ that was used to generate it. The child Ui, ki,k'
replaces the parent PQ if it has a higher nondominated rank,i,k
or, if it has the same nondominated rank and a higher diversity

rank. The process is then repeated for subsequent generations.
This is in a sense the crowded tournament selection operator

in the NSGA-II procedure. When applied to several test prob-

lems this method worked well in terms of maintaining diver-

sity among the solutions; however, the method was inefficient

in that convergence was slow. This is to be expected, since the

elitism in this approach is minimal and good nondominated

solutions may be deleted in the selection process while poorer

solutions survive. Some efficiency improvements were noted

by increasing the elitism by restricting mating only to mem-

bers of the highest nondominated set. The approach that

worked best was to folIow the NSGA-II procedure closely and

pick the best N members out of the combined 2N population

by filling the population from the best nondominated rank

down. The diversity rank is used to pick the best members of

the last nondominated rank that can be partially accommo-

dated in the population of size N. This approach is more elitist

and it is not surprising that it was found to be more efficient.

An added advantage is that when the combined population
includes several nondominated ranks, the diversity ranking

needs to be computed only for the members of one nondomi-

nated rank, i.e., the last rank that can be partially accommo-

dated [8]. This advantage usually only holds in the early phase

of the simulation; in the latter phases, most population mem-

bers belong to one or two nondominated sets.

The Pareto Differential Evolution method described above

in effect combines the robust and effective DE mutation and

crossover operators with the fast nondominated ranking

scheme and diversity preservation strategy of the highly suc-

cessful NSGA-II algorithm. The result is a simple and power-

ful evolutionary strategy that is self-adaptive, elitist and can

maintain diversity in the Pareto set. The results obtained here

in the following section demonstrate the capabilities of the
method.

It is worth mentioning that elitism in the NSGA-II algo-

rithm is emphasized in two ways. In addition to the crowding

distance niching strategy, a crowded tournament selection

operator is also used to ensure diversity on the current non-

dominated front. It was noted that this dual emphasis on elitist

solutions could cause non-elitist solutions to be deleted rap-

idly resulting in poor convergence [17] and a method was sug-
gested to control the extent of elitism by ensuring that
individuals from several nondominated fronts are maintained

in the population. In the present method elitism is introduced

in only one way, since we do not use the tournament selection

operator. Preliminary tests indicate that the elitism present in

the method adequately provides diversity without causing

convergence problems. Modifications to the present method to
include tournament selection or controlled elitism can of

course be done easily.

In contrast to the present method, the Pareto-frontier Differ-
ential Evolution method of Abbass et al. [14] uses a different

approach to creating the offspring population from the parent.

Only nondominated solutions are allowed to participate in

reproduction. A nondomination check is first performed on

the parent population. The nondominated solutions are

retained and all the other solutions are removed from the pop-
ulation. If the number of nondominated solutions exceed a

threshold number (e.g., half the total population) a distance

metric relation is used to remove parents that are in close

proximity to each other. The basic differential evolution pro-

cedure is used to generate the offspring from three parents

chosen at random. The offspring enters the population only if

it dominates the first selected (or comparison) parent; other-

wise new parents are selected. This continues until the popula-

tion is filled. The entire process is then repeated for

subsequent generations. Preliminary results show the method

to be effective. Detailed comparisons between this and the

present approach need to be performed before their relative
performance can be evaluated.

IV. RESULTS

The algorithm is tested on the test suite of problems

(MOPI-7) described in Veldhuizen [18]. These test problems

have been aggregated from the published literature and
include various relevant features, such as, concave and convex

Pareto-optimal fronts, continuous and discontinuous fronts,

symmetric and unsymmetrical fronts, scalable decision vari-

ables, and multiple (more than two) objective functions. Many

of these features may cause difficulties to an MOEA.

While a detailed evaluation of the algorithm is currently

under investigation some preliminary results are presented

here showing the ability of the algorithm to converge to the

optimal Pareto solutions and maintain adequate diversity in

the final population. Qualitative results from typical simula-
tion runs on each of the test problems are shown. In order to



obtainmorequantitativemeasuresof algorithmperformance
bothintermsof theproximitytothetrueParetofrontthatis
achievedaswellasin termsof thediversityof theoptimal
solutionswehaveusedsomeof themethodsdescribedin [1].
Thegenerationaldistancemetricandthediversitymetricmea-
suresarecomputedforsomeofthetestproblems.

Forall thetestproblemsapopulationof size100isused
andeachsimulationwascarriedoutto250generations.Based
onvarioustrialsimulations,themutationfactorwaschosenas
0.3andthecrossoverfactoras0.1.Noeffortwasmadeto
optimizethesevaluesforthevariousproblems.It is interest-
ingto notethat,ingeneral,lowervaluesof themutationand
crossoverparameterwerefoundpreferable.Thisisincontrast
tothemuchhighervaluesoftheseparametersthatarerecom-
mendedintheliteraturewhenusingtheDEalgorithmforsin-
gle-objectiveoptimization.Similarfindingswerereported
by[14].

MOPIisbasedonSchaffer'sobjectivefunction(see[18]or
[1] andthereferencesthereinfordetails).Thisisarelatively
easyproblembecausethereisonlyonedecisionvariable,and
theParetofrontisconvex.Here,following[18]andothers,we
increasetheproblemdifficultybyusingverylargedecision
variablebounds(-105to 105).Figure1 shows qualitative

results using the current algorithm. In this and subsequent fig-

ures, the axes fl, f2, f3 denote the objective functions and
the circular symbols represent the results obtained using the

present method. The Pareto front is well predicted and a large
number of optimal solutions are obtained that are spread out
over the entire front. MOP2 is the two-variable formulation of

Fonseca and Fleming (see [18]). This objective function is

scalable in the decision variables. The Pareto front is a single

concave curve and Fig. 2 shows that the present method effec-

tively finds diverse solutions along this front. Unlike all the

other test problems, MOP3 is a maximization problem. It is

the two-objective function problem of Poloni (see [18]) with
two non convex Pareto fronts that are disconnected in both the

objective and decision variable spaces. Figure 3 shows that the

present method is able to predict the two disconnected Pareto

fronts that lie on the boundaries of the search space. MOP4 is

Kursawe's two-objective function problem where the true

Pareto front is made up of three disconnected curves. This is a

particularly difficult problem and its solution mapping into

dominated objective space is quite convoluted. The present

method performs reasonably well as shown in Fig. 4. The

method can capture the distinct optimal solution at (-20,0) that

corresponds to zero values for all the decision variables only

sporadically, but otherwise performs well elsewhere along the
Pareto front.

MOP5 is a tri-objective function problem, Viennet's third

problem (see [18]). The actual Pareto front is a single convo-
luted three-dimensional curve Figure 5 shows the predicted

Pareto front in three-dimensional objective space obtained by

the present method. Figure 6 shows a two-dimensional plot in

fl - f3 space of the same results shown in Fig. 5. Both fig-

ures show good agreement with the results in [18] and [I],

except for some details in the region around fl = 8. MOP6

is a problem constructed using the methodology of Deb [I],

where the Pareto front is made up of four disconnected curves.

The solution mapping of this problem into dominated objec-

tive space is not as convoluted as for MOP4, and the present

method converges to the true Pareto front quite easily, as

shown in Fig. 6.

MOP7 is another tri-objective function problem, Viennet's

second problem, that complements MOP5. Its Pareto front is a

disconnected surface. Figure 8 shows that the present method

performs reasonably well, although close comparison with the

results in [18] show that some optimal solutions are not cap-

tured in the present method. This issue is being investigated

further.
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Figure 1. Pareto-optimal solutions in the objective space for test problem
MOPI The solid line marks the location of the true Pareto front.
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Figure 2. Pareto-optimal solutions in the objective space for test problem

MOP2. The solid line marks the location of the true Pareto-optimal front.
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Figure 3. Pareto-optimal solutions in the three-dimensional objective space

for test problem MOP3. The dots represent solutions obtained on a 200 x 200

grid of uniformly distributed points in parameter space.
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Figure 6. Pareto-optimal solutions in two dimensions (1 and 3) of the

objective space for test problem MOP5.
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Figure 4. Pareto-optimal solutions in the objective space for test problem

MOP4. The dots represent solutions obtained on a 200 x 200 grid of

uniformly distributed points in parameter space.
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Figure 7. Pareto-optimal solutions in the three-dimensional objective space

for test problem MOP6. The dots represent solutions obtained on a 200 x 200

grid of uniformly distributed points in parameter space.
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for test problem MOP7.



The results presented above demonstrate the qualitative

performance of the present method on several difficult test

problems. In order to obtain more quantitative measures of

algorithm performance we have used some of the methods

described in [1]. Algorithm performance is measured here

both in terms of the proximity to the true Pareto front that is

achieved as well as in terms of the diversity of the optimal

solutions. The generational distance metric and the diversity

metric measures are computed for some of the test problems.

The means and variances of these measures are evaluated by

conducting 10 distinct runs of each simulation. The results are

tabulated in Table 1. In addition to the problems mentioned

above, tests were performed for some additional problems

ZDT1-5 described in [1]. The results, when compared to simi-

lar studies of other algorithms [1], show the present algorithm

is quite effective and performs well. More detailed compari-

sons with other algorithms are currently under investigation.

i_C°nvergence Convergence diversity
MOP

_Metric, Mean Metric, VaN- Metric,
ance Mean

MOPI O.OO212(a 0.0 0.413178

MOP2 0,0003051 0.O 0.4 I6495
ZD'I'I 0,U03239 0,004584 0.318083

iZDI2 O.002_43 0.U29134 0.398334

Dtverslty

Metric, Vail-

Variance
0.009750
0.001440
0.002924

r0.004203

Table 1. Mean and variances of the convergence and diversity

metrics for the present method on different MOPs.

SUMMARY AND CONCLUSIONS

The Differential Evolution method has been extended to

tackle multi-objective optimization problems using a Pareto-

based approach that incorporates a nondominated sorting and

ranking selection procedure based on Deb et al, [8]. The

approach described here in effect combines the robust and

effective DE strategy with key elements of the NSGA-II algo-

rithm. The result is a simple and powerful evolutionary strat-

egy that is self-adaptive, elitist and can maintain diversity in

the Pareto set. The mutation and crossover operator of the

basic DE algorithm that has proven effective in single-objec-

tive optimization appears to work well for multi-objective

problems also. However, preliminary studies conducted here

indicate that the preferred values of the mutation and cross-

over parameters are much lower than those typically recom-

mended in the DE literature for single-objective optimization.

No attempts were made to optimize these parameters. The

algorithm is applied to several difficult test problems from the

published literature to demonstrate its capabilities and it is

shown to perform very well. More detailed analyses of the

results and comparisons to other methods are warranted and

will be addressed in future work.
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