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Abstract—Constrained autonomous vehicle overtaking trajectories

are usually difficult to be generated due to certain practical requirements

and complex environmental limitations. This problem becomes more

challenging when multiple contradicting objectives are required to be

optimized and the on-road objects to be overtaken are irregularly-

placed. In this paper, a novel swarm intelligence-based algorithm is

proposed for producing the multi-objective optimal overtaking trajectory

of autonomous ground vehicles. The proposed method solves a multi-

objective optimal control model in order to optimize the maneuver time

duration, the trajectory smoothness, and the vehicle visibility, while

taking into account different types of mission-dependent constraints.

However, one problem that could have an impact on the optimization

process is the selection of algorithm control parameters. To desensitize

the negative influence, a novel fuzzy adaptive strategy is proposed and

embedded in the algorithm framework. This allows the optimization

process can dynamically balance the local exploitation and global explo-

ration, thereby exploring the trade-off between objectives more effective.

The performance of using the designed fuzzy adaptive multi-objective

method is analyzed and validated by executing a number of simulation

studies. The results confirm the effectiveness of applying the proposed

algorithm to produce multi-objective optimal overtaking trajectories for

the autonomous ground vehicles. Moreover, the comparison to other state-

of-the-art multi-objective optimization schemes shows that the designed

strategy tends to be more capable in terms of producing a set of wide-

spread and high-quality pareto-optimal solutions.

Index Terms—Autonomous vehicle, overtaking trajectories, multi-

objective, irregularly-placed, swarm intelligence, fuzzy adaptive strategy,

pareto-optimal.

I. INTRODUCTION

A
UTONOMOUS vehicle (AV) motion planning has received

great attention over the last decade due to its increasing impor-

tance in the design of advanced autonomous control systems. Early

studies on this subject were primarily focused on the development

and implementation of geometric motion planners [1]–[3]. It has been

shown in a large amount of work that it is possible and effective to

use these planners to produce a feasible path that can achieve a pre-

specified target and fulfill the mission [4], [5]. However, one critical

drawback of applying the geometric methods is that the consideration

of mission constraints is often problematic and the constraint handling

way might vary from problem to problem.

To effectively deal with this problem and offer an alternative,

in recent years, there has been a growing interest in solving the

motion planning problems via the optimization-based technique [6],

[7]. One important advantage of using this technique is that it has
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the capability to model different mission-dependent requirements

into constraints, which can then be entailed in the optimization

formulation. Contributions made to design or apply optimization-

based motion planners are available in the literature [8]–[11]. For

instance, in [8], a space maneuver vehicle regional observation

trajectory was designed by applying a desensitized motion optimizer.

In [10] the authors applied an interior-point method to evaluate the

time-optimal trajectory of an automatic parking problem. Besides,

a tractor-trailer motion planning problem was considered in [11],

wherein a dynamic programming approach was utilized to optimize

the vehicle maneuver profile in a cluttered environment. However,

the aforementioned investigations only optimized one single mission

objective. In many engineering practices, it is usually demanded by

the engineers to include more than one performance index during the

optimization phase [12], [13]. Hence, new multi-objective motion

planners for autonomous vehicles are highly desired. This will not

only benefit the development of autonomous vehicle but also the

development of control algorithm in complex ecosystem of smart

city.

The problem investigated in this research is a multi-objective

optimal overtaking maneuver planning of the autonomous ground

vehicle. This type of problem is usually regarded as an extension of

classical optimal control problems in the sense that multiple contra-

dicting objectives are taken into account [14]. Overtaking maneuvers

are one of the most conventional behaviors in automatic driving.

To perform such a maneuver, various physical and environmental

limitations are required to be aware. This problem becomes even

challenging when the on-road objects to be overtaken are irregularly-

placed. As a result, the difficulty of formulating the optimization

model might be increased. Furthermore, due to the complexity of the

optimization model, traditional optimization techniques might suffer

from convergence problems, thus resulting in premature convergence

or infeasible solution detection.

Nature-inspired optimization (NIO) methods are a wide range

of various algorithms which are often used to address complex

engineering optimization problems that cannot be effectively solved

by traditional optimization techniques [15]–[17]. There are a large

amount of recently published multi-objective NIO methods which are

available in the literature [18]–[20]. In [18], a gradient-based hybrid

genetic algorithm was proposed and applied to address an aeroassisted

space vehicle trajectory planning problem. In addition, the authors in

[19] developed a discrete artificial bee colony algorithm in order to

address a multi-objective flexible job-shop scheduling task under the

consideration of maintenance activities. In their follow-up research

[20], a distributed flow shop scheduling problem was considered and

addressed by applying an improved artificial bee colony algorithm.

Among the NIO, particle swarm optimization (PSO) and multi-

objective PSO (MOPSO) approaches have been widely researched

and applied in the autonomous vehicle motion planning field [21]–

[24]. For example, an unmanned aerial vehicle coordination task was

established and studied in [22], wherein a modified simulated binary

crossover-based PSO algorithm was proposed to maximize the vehicle

controllability. Similarly, in [23], a parallel approach incorporating
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genetic algorithm and PSO was designed so as to produce the shortest

path for the autonomous unmanned vehicle in a 3D environment. In

addition, an adaptive gradient-based PSO method was formulated in

[24]. This algorithm was then applied to generate the time-optimal

parking maneuver command for the autonomous ground vehicle. In

PSO and MOPSO, each particle among the swarm will be attracted

toward its own best position and the global best position. This

searching mechanism is likely to result in a higher probability for

the algorithm to locate the global optimal solution. Moreover, based

on the result presented in [25], the MOPSO has the capability to

produce the full pareto solution of all the benchmark problems. Due

to these advantages, we give more attention to the implementation of

PSO/MOPSO-based techniques.

It should be noted that according to some investigations [25],

[26], one potential problem of applying PSO-based techniques is

that the evolutionary process tends to be relatively sensitive with

respect to the algorithm control parameters. To address this concern,

this paper proposes an enhanced MOPSO approach for generating

the multi-objective optimal overtaking trajectory of the autonomous

ground vehicle. One unique feature of the proposed method is that

a novel fuzzy adaptive law is applied to adjust the algorithm control

parameters such that the local exploitation and global exploration of

the optimization process can be dynamically balanced.

To the best of the authors’ knowledge, the present study is a first

attempt to develop an enhanced MOPSO for addressing the highly

constrained, nonlinear, and high-dimensional autonomous vehicle

overtaking maneuver planning problem. Also, this paper contains the

following three main contributions:

1) A new multi-objective autonomous vehicle overtaking maneuver

optimization model is established.

2) A novel fuzzy adaptive law to adjust the control parameters of

the MOPSO algorithm is designed.

3) Extensive case studies and comparative analysis are provided to

demonstrate the effectiveness and superiority of the proposed

method.

The rest of this paper is organized as follows. The multi-

objective optimization formulation used to represent the autonomous

vehicle overtaking maneuver planning problem is constructed in

Section II. In Section III, a detailed illustration of the proposed fuzzy

adaptive MOPSO algorithm is presented. Section IV displays the

obtained results including the pareto-optimal solutions and the best

compromised solution. The concluding remark is given in Section V.

II. MULTI-OBJECTIVE OPTIMIZATION FORMULATION OF THE

PROBLEM

In this section, the mission scenario studied in this work is

outlined. Generally speaking, the core aim of the considered problem

is to determine a feasible trajectory, for a given autonomous vehicle,

to overtake irregularly-placed on-road objects while optimizing mul-

tiple pre-defined mission objectives. During the maneuver planning

process, several physical limitations are required to be taken into

account. These limitations will be modeled into constraints and

adopted to find the optimal movement. Hence, one important step is

to formulate the optimization problem used throughout this research.

Motivated by previous work reported in the literature [10], [11],

[24], a novel multi-objective overtaking maneuver planning model

is established in this paper. This will be detailed in the following

subsections.

A. Vehicle Equations of Motion

A graphical illustration of the overtaking scenario can be found

in Fig.1, from where it is obvious that the entire overtaking maneuver

Fig. 1: Graphical illustration of the overtaking scenario.

can be divided into five phases: initial follow roadway, first lane

change, overtaking, second lane change, and final follow roadway.

To describe the movement of the autonomous vehicle, its equations

of motion are given by the following system of differential equations

[24]:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dpx

dt
= v(t) cos(θ(t))

dpy

dt
= v(t) sin(θ(t))

dv
dt

= a(t)
da
dt

= η(t)
dθ
dt

= v(t) tan(φ(t))/l
dφ

dt
= ω(t)

(1)

where 𝑡 ∈ [0, 𝑡f ]. [𝑝x, 𝑝y, 𝑣, 𝑎, 𝜃, 𝜑] is the state vector of the vehicle,

denoting the central position of the rear wheel, velocity, acceleration,

oriental angle and steering angle, respectively. 𝑢 = [𝜂, 𝜔] stands

for the control input, consisting of the jerk variable and the angular

velocity of the front wheel.

B. Multiple Objectives

In this paper, to optimally plan the overtaking maneuver, three

mission objectives are taken into consideration. The first objective

𝐽1 to be minimized is the overtaking time duration such that the

vehicle can fulfill the task in the shortest possible time. The other

important goal 𝐽2 is to plan a motion for the autonomous vehicle

such that the visibility ahead of the on-road object can be optimized.

Fig.2 provides an illustration regarding the visible and blind areas

of the vehicle when an object is irregularly-placed on the road.

Some definitions of the vehicle/obstacle-related parameters appeared

in Fig.2 are tabulated in Table I.

TABLE I: Notations for parameters

l: Length between the read and front wheels

m: Rear overhang

n: Front overhang

CL: Width of the road

2b: Width of the vehicle

ψob: Observation angle

xo
A, yoA Position of Ao

As can be seen from Fig.2, maximizing the field-of-view is

equivalent to maximizing the observation angle 𝜓ob(𝑡) during the

maneuver. Furthermore, a path smoothness indicator 𝐽3 is proposed

and minimized. The aim for minimizing this indicator is to improve

the comfort of the passengers and driver. Hence, three objective

functions applied for experiments are:

J1 = min
∫︀ tf
0 dt

J2 = min
∫︀ tf
0 −ψob(t)dt

J3 = min
∫︀ tf
0 ω/(l cos2(θ))dt

(2)
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Fig. 2: Illustration of the vehicle and obstacle.

C. Mission Constraints

1) State/Control Variable Path Constraints: To take safety re-

quirements and physical limitations of the vehicle into account, a

number of state/control variable path constraints should be satisfied,

which is given by:

px(t) ∈ [pmin
x , pmax

x ] py(t) ∈ [pmin
y , pmax

y ]
v(t) ∈ [vmin, vmax] a(t) ∈ [amin, amax]
θ(t) ∈ [θmin, θmax] φ(t) ∈ [φmin, φmax]

η(t) ∈ [dmin
a , dmax

a ] k̇(t) ∈ [dmin
k , dmax

k ]

(3)

where 𝑘 = tan(𝜃)/𝑙 and �̇� = 𝜔/(𝑙 cos2(𝜃)) are, respectively,

the instantaneous curvature and its derivative value. To limit and

smoother the acceleration profile, path constraints on the acceleration

variable 𝑎 and jerk variable 𝜂 are imposed. It is worth noting that

in [27], Mohseni provided the definition of comfort for autonomous

vehicle. Non-comfort was described by high acceleration and jerk

values. Hence, we keep using these two criteria to guarantee the

comfort to passengers. Moreover, as shown in (3), a path constraint

on �̇� is also imposed in this paper. The aim is to remove non-smooth

parts on the overtaking maneuver profile, thereby improving comfort

to passengers further.

2) Road Boundary Constraints: According to Fig.2, the vehicle

is considered as a rectangular in the 2-D plane and the four corner

points (ABCD) can be calculated via:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ax(t) = px(t) + cos(θ(t))(l + n)− b sin(θ(t))
Ay(t) = py(t) + sin(θ(t))(l + n) + b cos(θ(t))
Bx(t) = px(t) + cos(θ(t))(l + n) + b sin(θ(t))
By(t) = py(t) + sin(θ(t))(l + n)− b cos(θ(t))
Cx(t) = px(t)−m cos(θ(t)) + b sin(θ(t))
Cy(t) = py(t)−m sin(θ(t))− b cos(θ(t))
Dx(t) = px(t)−m cos(θ(t))− b sin(θ(t))
Dy(t) = py(t)−m sin(θ(t))) + b cos(θ(t))

(4)

During the overtaking maneuver, the autonomous vehicle should

not move outside the edge of the road. This is achieved by formulating

the following road boundary constraint:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ≤ Ay(t) ≤ CL

0 ≤ By(t) ≤ CL

0 ≤ Cy(t) ≤ CL

0 ≤ Dy(t) ≤ CL

(5)

3) Collision-free Constraints: In order to achieve the overtaking

maneuver without colliding with other on-road objects, collision-free

constraints should be imposed. This paper applies a corner point-

based obstacle avoidance modelling method as illustrated in Fig.3(b)

[24]. That is, the corner points of the obstacle (𝐴o, 𝐵o, 𝐶o, 𝐷o) are

located outside 𝐴𝐵𝐶𝐷 (e.g., the rectangular area of AV) during the

maneuver. To achieve this, the following inequality is used:

SAAoB + SBAoC + SCAoD + SAAoD > SABCD

SABoB + SBBoC + SCBoD + SABoD > SABCD

SACoB + SBCoC + SCCoD + SACoD > SABCD

SADoB + SBDoC + SCDoD + SADoD > SABCD

(6)

where 𝑆(·) stands for the area operation.

Remark 1. It is worth noting that in [14], a multi-objective space

shuttle reentry mission was considered and a distance-based obstacle

avoidance modelling method was applied to deal with the collision

avoidance constraint. The general idea of this strategy is to restrict

the distance between the center of the vehicle and the obstacle. This

method can also be applied in this paper. Specifically, as indicated

in Fig.3(a), if the the distance between point 𝑂 and 𝑂o is greater

than 𝑟v + 𝑟o (e.g., 𝐷𝑖𝑠 ≥ 𝑟v + 𝑟o), then the vehicle will not collide

with the obstacle. The geometric center of the vehicle (𝑂x, 𝑂y) can

be calculated by 𝑂x = (𝑝x + (((𝑛 −𝑚 + 𝑙) cos 𝜃)/2)), and 𝑂y =
(𝑝y + (((𝑛 − 𝑚 + 𝑙) sin 𝜃)/2)). Compared with the corner point-

based strategy, the distance-based method results in less number of

constraints. However, as shown in Fig.3, the conservatism of this

method might be higher than that of the corner point-based method.

Fig. 3: Collision-free constraint handling methods.

4) Terminal Constraints: The vehicle triggers

the maneuver phase at an initial driving condition

𝑥0=[𝑝x(0), 𝑝y(0), 𝑣(0), 𝑎(0), 𝜃(0), 𝜑(0)]. Once the overtaking

phase is completed, it is desired for the vehicle to terminate the

entire maneuver at a point where the normal driving condition

can be satisfied. Thus, the state terminal boundary constraints are

assigned as:

[py(tf ), v(tf ), a(tf ), θ(tf )] = [py(0), v(0), a(0), θ(0)] (7)

D. Overall Optimization Formulation

Based on the construction of equations of motion, multiple

objectives and various mission constraints, the multi-objective over-

taking maneuver optimization formulation is given by:

minimize J = [J1, J2, J3]
subject to ∀t ∈ [0, tf ]

dpx
dt

= v(t) cos(θ(t))
dpy
dt

= v(t) sin(θ(t))
dv
dt

= a(t)
da
dt

= η(t)
dθ
dt

= v(t) tan(φ(t))/l
dφ
dt

= ω(t)
0 ≤ Ay(t) ≤ CL, 0 ≤ By(t) ≤ CL

0 ≤ Cy(t) ≤ CL, 0 ≤ Dy(t) ≤ CL

SAAoB + SBAoC + SCAoD + SAAoD > SABCD

SABoB + SBBoC + SCBoD + SABoD > SABCD

SACoB + SBCoC + SCCoD + SACoD > SABCD

SADoB + SBDoC + SCDoD + SADoD > SABCD

[py(tf ), v(tf ), a(tf ), θ(tf )] =
[py(0), v(0), a(0), θ(0)]

px(t) ∈ [pmin
x , pmax

x ], py(t) ∈ [pmin
y , pmax

y ]

v(t) ∈ [vmin, vmax], a(t) ∈ [amin, amax]
θ(t) ∈ [θmin, θmax], φ(t) ∈ [φmin, φmax]

η(t) ∈ [dmin
a , dmax

a ], k̇(t) ∈ [dmin
k , dmax

k ]

(8)
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III. FUZZY ADAPTIVE MULTI-OBJECTIVE PARTICLE SWARM

OPTIMIZATION ALGORITHM

In this section, an optimization-based maneuver planning ap-

proach is presented to solve the problem defined by (8). This

approach, named fuzzy adaptive multi-objective particle swarm op-

timization (FAMOPSO), can be treated as an enhanced version of

the PSO-based motion planner reported in [24]. One unique feature

of the proposed approach is that a novel fuzzy adaptive strategy is

designed in order to achieve a trade-off between local exploitation

and global exploration. Before to introduce the FAMOPSO method in

detail, some background information of the constrained MOPSO will

be recalled for completeness reasons in the following two subsections.

A. Basic MOPSO Structure

PSO is one of the nature-inspired optimization methods, which

was shown in [24] to be effective for solving complex autonomous

vehicle maneuver planning problems. Among the swarm, each par-

ticle is treated as a candidate solution. The particle consists of a

position vector 𝑢 and a velocity vector 𝑣, which can be written as:
{︂

qj(s) = [qj,1(s), qj,2(s)..., qj,D(s)]
vj(s) = [vj,1(s), vj,2(s)..., vj,D(s)]

(9)

in which 𝑠 = 1, 2, ..., 𝑆max represents the number of generation,

whereas 𝐷 is the dimensionally index of the solution space. 𝑗 =
1, 2, ..., 𝑁j stands for the index of the particle. Here, 𝑁j is the size

of the swarm.

During the evolution, 𝑔(𝑠) = [𝑔1(𝑠), ..., 𝑔D(𝑠)] and 𝑝j(𝑠) =
[𝑝j,1(𝑠), 𝑝j,2(𝑠), ..., 𝑝j,D(𝑠)] represent, respectively, the best position

in the 𝑠th generation and the best position of the 𝑗th particle.

Applying the information of 𝑔(𝑠) and 𝑝j(𝑠), the velocity vector of

the 𝑗th particle is updated via:

vj,d(s+ 1) = ωvj,d(s) + r1c1(pj,d(s)− qj,d(s))
r2c2(gd(s)− qj,d(s))

(10)

In (10), 𝜔 denotes the inertia weight, whereas 𝑟1, 𝑟2 are two ran-

dom positive constants. 𝑑 ∈ {1, 2, ..., 𝐷}; [𝑐1, 𝑐2] is the acceleration

parameter. Specifically, 𝑐1 corresponds to the cognitive component,

while 𝑐2 corresponds to the social component. Based on (10), the

updated position vector of the 𝑗th particle is then defined by:

qj,d(s+ 1) = qj,d(s) + vj,d(s+ 1) (11)

It should be noted that in a multi-objective optimization task,

we are interested in finding a set of solutions in the sense of

pareto-optimal (non-dominant solutions) [14]. As a result, one main

difference between the single-objective PSO and MOPSO is that

the best position 𝑝j(𝑠) is re-recorded based on the domination

relationship ≺, which could be written as:

pj(s) =

{︂

qj(s) if qj(s) ≺ pj(s− 1)
pj(s− 1) if qj(s) ⊀ pj(s− 1)

(12)

In (12), 𝑞j(𝑠) ≺ 𝑝j(𝑠 − 1) means 𝑞j(𝑠) is dominated

by 𝑝j(𝑠 − 1) and it should be replaced. Defining 𝐴(𝑠) =
[𝑎1(𝑠), 𝑎2(𝑠), ..., 𝑎NA

(𝑠)] as the external archive, to update the

archive 𝐴(𝑠), the previous archive 𝐴(𝑠− 1) and 𝑝j(𝑠) are required.

That is, for any 𝑗, 𝐴(𝑠) = 𝐴(𝑠− 1)∪ 𝑝j(𝑠) if 𝑞j(𝑠− 1) ≺≻ 𝑝j(𝑠).
Otherwise, the elements that are dominated by 𝑝j(𝑠) are firstly

removed from 𝐴(𝑠−1). Then, 𝐴(𝑠−1) is augmented by 𝑝j(𝑠). This

evolutionary procedure will continue until the termination condition

is triggered (e.g., the maximum allowable iteration number is reached

𝑠 = 𝑆max).

B. Constraint Handling

As many engineering optimization tasks may require to con-

sider different mission constraints, one critical step for the MOPSO

algorithm is to deal with the particle infeasibility. For the overtaking

maneuver optimization problem, we apply a V-based constraint han-

dling method suggested in [14]. The motivation for the use of V-based

constraint handling strategy relies on its ability in prioritizing feasible

solutions among the current swarm. To implement this method, the

total amount of infeasibility for each particle 𝑉 (𝑞j) needs to be

calculated. For example, if we define 𝜇i(𝑞j) as the magnitude of

the particle’s infeasibility for the 𝑖th constraint, then 𝑉 (𝑞j) can be

obtained via 𝑉 (𝑞j) =
∑︀Nc

i 𝜇i(𝑞j). Here, 𝑁c denotes the number

of constraints defined in (8). The way to calculate 𝜇i(𝑞j) for the

constraint 𝐶i(·) ≤ 𝐶*

i can be written as:

µi(qj) =

⎧

⎪

⎨

⎪

⎩

0, Ci(qj) ≤ C*

i ;
Ci(qj)−C*

i

max(Ci(qj))−C*

i

, C*

i ≤ Ci(qj) ≤ max(Ci(qj));

1, Ci(qj) ≥ max(Ci(qj)).

Subsequently, the traditional domination relationship ≺ is mod-

ified by adding the rule that a particle with smaller value of 𝑉 (·) can

always dominate the particle with higher value of 𝑉 (·).

C. Fuzzy Adaptive Law Design

In traditional MOPSO, the algorithm control parameters

[𝜔, 𝑐1, 𝑐2] are usually assigned as constant values. However, it was

analyzed in [25], [26] that a poor selection of these parameters may

result in negative impacts on the evolutionary process. More precisely,

a larger 𝜔, together with a larger 𝑐1 and a smaller 𝑐2, may result in

an emphasis on the global exploration ability of the MOPSO. On the

contrary, a smaller 𝜔, a smaller 𝑐1 and a larger 𝑐2 may result in an

emphasis on the local exploitation. Therefore, in compromised point,

it is desired to dynamically balance the local exploitation and global

exploration during the evolution process. This eventually requires a

proper treatment of the control parameters, which is fulfilled via the

fuzzy adaptive law developed in this paper.

Inspired by our previous study [28], a performance metric-

based fuzzy adaptive parameter tuning law is proposed by using

the hypervolume (HV) and spacing (SP) information. It is worth

remarking that the HV value is a commonly-used performance

metric in multi-objective optimization. This indicator reflects both the

distribution and convergence of the archive. Its value can be computed

by:

HV (s+ 1) = Leb(
⋃︁

a∈A

[f1(a), R1]× · · · × [fM (a), RM ]) (13)

in which 𝐿𝑒𝑏(·) stands for the Lebesgue measure, whereas 𝑅 =
[𝑅1, ..., 𝑅M ] represents the reference point dominated by all the

particles. According to (13), 𝐻𝑉 can be understood as the union of

all the rectangular areas covered by the obtained pareto front. A high

𝐻𝑉 value indicates that the current solution set is well-distributed.

In addition, to further quantify the degree of the distribution, an SP

metric is defined. Its value can be computed by:

SP (s+ 1) =

⎯

⎸

⎸

⎷

1

NA − 1

NA
∑︁

j=1

(lj(s+ 1)− l̄(s+ 1))2 (14)

where �̄�(·) stands for the average minimum Manhaton distance (MD)

of all particles. The minimum MD of the 𝑗th particle is denoted as

𝑙j(·). From the definition of 𝑆𝑃 , a high value of 𝑆𝑃 might reflect

an uneven distribution of the obtained solution and vice versa.

Using the 𝐻𝑉 and 𝑆𝑃 metrics, the fuzzy adaptive rules are

then proposed, which can be summarised in Table II. The inputs to

fuzzy rules are the HV and SP values, while the outputs are the

control parameters of MOPSO (e.g., 𝜔, 𝑐1 and 𝑐2, respectively). The

proposed fuzzy rules will be applied in every generation so as to

adaptively balance the exploration and exploitation.
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TABLE II: Fuzzy Adaptive Rules

No. rule
Input Output

HV SP ω c1 c2
1 Increase Increase Decrease Decrease Increase

2 Increase Decrease No change No change No change

3 Decrease Increase Increase Increase Decrease

4 Decrease Decrease Increase Increase Decrease

Fig.4 illustrates the membership functions (MFs) of the HV and

SP. For simplicity reasons, these two performance indicators apply the

same shape of MFs. The input to the MF is the percent change of 𝐻𝑉
and 𝑆𝑃 indicators, ∆HV and ∆SP , calculated every two consecutive

generations. For example, ∆HV = HV (s+1)−HV (s)
HV (s)

and ∆SP =
SP (s+1)−SP (s)

SP (s)
, respectively. Following that, they are fuzzified to

the “increase” and “decrease” membership values.

Membership function

-100 -10 10 100

0.5

1

HV
 , 

SP
 (%)

HV
 , 

SP

Fig. 4: Membership functions.

On the other hand, three status are defined for the fuzzy outputs

(e.g., 𝜔, 𝑐1 and 𝑐2 values). That is, the “increase”, “no change” and

“decrease”. In order to quantify the trend of these control parameters

in the experiments, the following equations can be used:

ω(s+1) =











ω(s), if HV(s+1)>HV(s), SP(s+1)<SP(s);
ω(s)∆1(s), if HV(s+1)>HV(s), SP(s+1)>SP(s);
ω(s)(∆2(s) + 1), if HV(s+1)<HV(s), SP(s+1)>SP(s);

ω(s)( 1
2
∆3(s) + 1), if HV(s+1)<HV(s), SP(s+1)<SP(s).

(15)

c1(s+1) =











c1(s), if HV(s+1)>HV(s), SP(s+1)<SP(s);
c1(s)∆1(s), if HV(s+1)>HV(s), SP(s+1)>SP(s);
c1(s)(∆2(s) + 1), if HV(s+1)<HV(s), SP(s+1)>SP(s);

c1(s)(
1
2
∆3(s) + 1), if HV(s+1)<HV(s), SP(s+1)<SP(s).

(16)

c2(s+1) =











c2(s), if HV(s+1)>HV(s), SP(s+1)<SP(s);
c2(s)(∆1(s) + 1), if HV(s+1)>HV(s), SP(s+1)>SP(s);
c2(s)(∆2(s)), if HV(s+1)<HV(s), SP(s+1)>SP(s);

c2(s)(
1
2
∆3(s)), if HV(s+1)<HV(s), SP(s+1)<SP(s).

(17)

where 𝜔(𝑠+ 1), 𝑐1(𝑠+ 1) and 𝑐2(𝑠+ 1) stand for, respectively, the

updated inertia weight and acceleration parameters. ∆i(𝑠), 𝑖 = 1, 2, 3
is designed as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∆1(s) = max{ HV (s)

HV (s+1)
, SP (s)

SP (s+1)
}

∆2(s) = max{HV (s+1)

HV (s)
, SP (s)

SP (s+1)
}

∆3(s) = min{HV (s+1)

HV (s)
, SP (s+1)

SP (s)
}

(18)

A difference can be found between the method used in [28]

and the one proposed in this paper. For example, in [28], once the

status of the control parameter is determined, constant increment is

used to adjust the control parameters. However, in the proposed fuzzy

adaptive law, the adjustment step is achieved via a fuzzy rule-based

system. In this way, the emphasis on the exploration and exploitation

can be smoothly adapted during the evolution process.

Remark 2. In the proposed fuzzy adaptive rules, the worst case

scenario corresponds to the fuzzy rule 3. In this case, the obtained

solutions is losing extensiveness and diversity (e.g., the pareto front is

shrinking and not well-distributed). Therefore, the fuzzy adaptive law

will adjust the algorithm control parameters in order to emphasize the

global exploration. By contrast, if the 𝐻𝑉 value is increasing and the

𝑆𝑃 indicator is decreasing (e.g., fuzzy rule 2), it can be expected that

the current particle swarm is uniformly distributed and converging.

As a result, it is better to keep the algorithm control parameters

unchanged.

IV. IMPLEMENTATION CONSIDERATION

A. Encoding and Decoding of a Particle

In the particle encoding process, every particle is encoded as

a vector representing a potential control sequence. Specifically, the

control variable 𝑢 = [𝜂, 𝜔] will firstly be discretized at 𝑁kth temporal

nodes, thereby constructing the particle in (2×𝑁k +1)-dimensional

space. Here, each dimension is represented by a real number and the

front 2×𝑁K dimensions stand for the control sequence, whereas the

last one dimension is the final time instant 𝑡f . More precisely, the

encoding style for each particle can be written as:

particle(j) = [η1, ..., ηNk
, ω1, ..., ωNk

, tf ]
particle matrix = [particle(1); ...; particle(Nj)]

(19)

where 𝑁j denotes the total number of particles.

According to the encoded particle, the position of the particle

can be decoded to two parts: the vector of the control sequence and

the mission time duration. Based on these pieces of information, the

overtaking trajectory can then be obtained. The decoding process can

be summarised as follows:

1) Implement the last dimension of the position of the particle 𝑡f
to generate 𝑁kth time instant on the time domain [0, 𝑡f ] (e.g.,

[𝑡1, 𝑡2, ..., 𝑡Nk
], where 𝑡Nk

= 𝑡f ).

2) Decode the front 2×𝑁k dimensions to the control sequence of

the autonomous vehicle.

3) Construct the autonomous vehicle state trajectory: according to

the temporal nodes [𝑡1, 𝑡2, ..., 𝑡Nk
] and the initial state informa-

tion 𝑥0, the equations of motion of the vehicle are integrated

via numerical integration methods.

4) Output the set of autonomous vehicle state trajectory.

B. Overall Algorithm Framework

To provide a clear structure of the evolutionary process of the

proposed FAMOPSO, key steps are summarised and presented in

Algorithm 1.

C. Convergent Property of the FAMOPSO

Following the construction of the algorithm framework, an

important concern that deserves further discussion is the convergent

property associated with the proposed method. Hence, we present an

attempt to address this concern in this subsection.

Based on (10) and (11), it is observed that the evolutionary

process of the proposed algorithm can be treated as a linear recurrence

relation. That is, by taking the updated velocity equation into the

updated position equation and using 𝑞j,d(𝑠)− 𝑞j,d(𝑠− 1) = 𝑣j,d(𝑠),
we have

⎡

⎣

𝑞j,d(𝑠+ 1)
𝑞j,d(𝑠)

1

⎤

⎦ =𝑀(𝑠) ·

⎡

⎣

𝑞j,d(𝑠)
𝑞j,d(𝑠− 1)

1

⎤

⎦ (20)
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Algorithm 1 Main steps of the FAMOPSO

Input: Constant parameters [r1, r2, Nj , Smax], and the initial control

parameters [ω(0), c1(0), c2(0)];
Step 1: Initialize the velocity and position vector [v, u];
/*Start Evolutionary Optimization*/

Step 2: Calculate the constraint violation and objective

values for each particle;

Step 3: Execute the V-based nondominant sorting [14];

Step 4: Archive the nondominated solutions in A(s);
Step 5: Search g(s) from A(s);
Step 6: Calculate the HV and SP metrics;

Step 7: Execute the fuzzy adaptive law via (15)-(18)

to update [ω, c1, c2];
Step 8: Update [v, u] via (10) and (11);

Step 9: Check if s > Smax is triggered

if not, update s = s+ 1 and then go back to Step 2;

/*End Evolutionary Optimization*/

Output: The recorded archive (e.g., the Pareto set);

in which

𝑀 =

⎡

⎣

1− 𝛽 + 𝜔(𝑠) −𝜔(𝑠) 𝛽1𝑝j,d(𝑠) + 𝛽2𝑔d(𝑠)
1 0 0
0 0 1

⎤

⎦ (21)

In (20), 𝑠 = {0, 1, 2, ...}. 𝛽1 and 𝛽2 are the abbreviations of 𝑐1𝑟1
and 𝑐2𝑟2, respectively. 𝛽 = 𝛽1 + 𝛽2=𝑐1𝑟1 + 𝑐2𝑟2. To guarantee the

linear recurrence relation (20) is convergent, the following lemma

[29] should be applied.

Lemma 1. Given a sequence {𝑞j,d(1), 𝑞j,d(2), ...} produced by (20),

if the spectral radius of 𝑀 can satisfy 𝜚(𝑀) = max
i

(|𝜆i|) < 1, then

the sequence {𝑞j,d(1), 𝑞j,d(2), ...} is convergent. Here, 𝜆i represents

the 𝑖th eigenvalue of 𝑀 .

Lemma 1 is a necessary and sufficient condition for a convergent

sequence. The study of the convergent property with respect to the

proposed method will mainly rely on this lemma. Priory to discuss

the main theorem, some assumptions are firstly presented.

Assumption 1. There exists a solution set 𝑝* for 𝑝j(𝑠) =
[𝑝j,1(𝑠), ..., 𝑝j,D(𝑠)] and 𝑝* is in the sense of pareto-optimal.

Assumption 2. There exist 𝛽1 = 𝑐1𝑟1 > 0 and 𝛽2 = 𝑐2𝑟2 > 0 such

that the parameter 𝛽 = 𝛽1 + 𝛽2 can satisfy the inequality 0 < 𝛽 <
2(1 + 𝜔(𝑠)).

The above two assumptions, together with Lemma 1, are utilized

to construct and prove the following main theorem.

Theorem 1. Define the particle position and velocity equations in

the form of (10) and (11). If Assumption 1 and Assumption 2 can be

satisfied, then the particle position will converge to 𝑝*.

Proof. The entire proof contains two parts. In the first part, we show

that the particle position is a convergent sequence. In the second part,

we illustrate that the position will converge to 𝑝*.

According to the recurrence relation (20) and the coefficient

matrix 𝑀 given by (21), we can write the characteristic polynomial

of (20) as:

(1− 𝜆)(𝜆2 − 𝜆(1− 𝛽 + 𝜔(𝑠)) + 𝜔(𝑠)) = 0 (22)

Therefore, the three eigenvalues of 𝑀 are:
⎧

⎨

⎩

λ1 = 1

λ2 = (1− β + ω(s) +
√︀

(1− β + ω(s))2 − 4ω(s))/2

λ3 = (1− β + ω(s)−
√︀

(1− β + ω(s))2 − 4ω(s))/2

(23)

As a result, we can rewrite the particle position as:

𝑞j,d(𝑠) = 𝜆1𝑘1 + 𝜆s
2𝑘2 + 𝜆s

3𝑘3 (24)

where 𝑘1, 𝑘2, 𝑘3 are constants. From Lemma 1, it can be concluded

that the evolution of particle potion will be convergent if and only if

max{|𝜆2|, |𝜆3|} < 1. More precisely,

1

2
|1− 𝛽 + 𝜔(𝑠)±

√︀

(1− 𝛽 + 𝜔(𝑠))2 − 4𝜔(𝑠)| < 1 (25)

Now two cases should be considered: 1). (1−𝛽+𝜔(𝑠)2−4𝜔(𝑠)) < 0
or 2). (1−𝛽+𝜔(𝑠)2−4𝜔(𝑠)) ≥ 0. In the first case, if the condition

inequality holds true, we have
{︂

ω(s) > 0

(ω(s) + 1)− 2
√︀

ω(s) < β < (ω(s) + 1) + 2
√︀

ω(s)
(26)

Besides, from (23), 𝜆2 and 𝜆3 are two complex values. Thus

|λ2|2 = |λ3|2

= 1
4
‖1− β + ω(s)±

√︀

(1− β + ω(s))2 − 4ω(s)‖2

= ω(s)
(27)

Consequently, the spectral radius condition reduces to 𝜔(𝑠) < 1.

Combining 𝜔(𝑠) < 1 and (26), we obtain the convergence condition

for case 1):
{︂

0 < ω(s) < 1

(ω(s) + 1)− 2
√︀

ω(s) < β < (ω(s) + 1) + 2
√︀

ω(s)
(28)

In terms of case 2), the inequality (1−𝛽+𝜔(𝑠))2 − 4𝜔(𝑠) ≥ 0 will

result in
{︂

ω(s) ≥ 1

β ≤ 1− 2
√︀

ω(s) + ω(s) or β ≥ 1 + 2
√︀

ω(s) + ω(s)
(29)

The condition max{|𝜆2|, |𝜆3|} < 1 is equivalent to

−1 <
(𝜔(𝑠) + 1− 𝛽)±

√︀

(𝜔(𝑠) + 1− 𝛽)2 − 4𝜔(𝑠)

2
< 1 (30)

Since 𝜆2 and 𝜆3 are two real numbers, the equation (30) can be

rewritten as
{︂

β − ω(s)− 3 < −
√︀

(ω(s) + 1− β)2 − 4ω(s)
√︀

(ω(s) + 1− β)2 − 4ω(s) < 1− ω(s) + β
(31)

From inequality (31), we can obtain
⎧

⎨

⎩

−3 < ω(s) + β < 1
2ω(s)− β + 2 > 0
β > 0

(32)

Combining all the conditions for both case 1) and case 2), the overall

convergence condition of the proposed method can be expressed as:
{︂

0 ≤ ω(s) < 1
0 < β < 2 + 2ω(s)

(33)

According to the definitions of ∆i(𝑠) given by (18), one has
⎧

⎨

⎩

0 < ∆1(s) ≤ 1
0 < ∆2(s) ≤ 1
0 < ∆3(s) ≤ 1

(34)

Therefore, according to Assumption 2 and (34), there exist 𝜔(𝑠) and

𝛽 such that the convergence condition (33) can be satisfied.

Based on the characteristic polynomial, one can obtain the

convergence value of 𝑞j,d(𝑠) as

lim
s→+∞

𝑞j,d(𝑠) = 𝑘1 (35)

To calculate 𝑘1, we set 𝑠 = 0, 1, 2 in (24):
⎧

⎨

⎩

qj,d(0) = k1 + k2 + k3
qj,d(1) = k1 + k2λ2 + k3λ3

qj,d(2) = k1 + k2λ2
2 + k3λ2

3

(36)
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That is,
⎡

⎣

qj,d(0)
qj,d(1)
qj,d(2)

⎤

⎦ =

⎡

⎣

1 1 1
1 λ2 λ3

1 λ2
2 λ2

3

⎤

⎦

⎡

⎣

k1
k2
k3

⎤

⎦ (37)

Solving the linear system (37), the value of 𝑘1 can be obtained as:

𝑘1 =
𝛽1𝑝j,d(𝑠) + 𝛽2𝑔d(𝑠)

𝛽1 + 𝛽2
(38)

Based on the nondominant sorting process, we have
{︂

pj,d(s) ≻ pj,d(s− 1) or pj,d(s) ≺≻ pj,d(s− 1)
gd(s) ≻ pj,d(s) or gd(s) ≺≻ pj,d(s)

(39)

Since the global best solution 𝑔d(𝑠) is selected from 𝑝j(𝑠), there

exists lims→+∞ 𝑔d(𝑠) = 𝑝*. Consequently, by defining 𝑞j(𝑠) =
[𝑞j,1(𝑠), ..., 𝑞j,D(𝑠)], one has

lim
s→+∞

𝑞j(𝑠) = lim
s→+∞

𝛽1𝑝
* + 𝛽2𝑝

*

𝛽1 + 𝛽2
= 𝑝* (40)

which completes the proof.

D. Computational Complexity

The computational complexity of the proposed FAMOPSO algo-

rithm is analyzed in this subsection. In FAMOPSO, the computational

complexity is mainly affected by the computation of constraints

and objectives, the non-dominated sorting of the particle among the

swarm and archive, and the fuzzy adaptive process. Assuming that

the number of objective to be optimized is 𝑀 , and the size of swarm

and archive have the same size 𝑁j . The computation of objectives

and the constraint violation value will require 𝒪(𝑀𝑁j) and 𝒪(𝑁j)
computations, respectively. Then the non-dominated sorting process

will be applied to rank the particles, which requires 𝒪(𝑀𝑁2
j )

computations [25]. In terms of the fuzzy adaptive process, the main

computational burden is in the computation of the performance

indicator. Specifically, to apply the fuzzy adaptive law, the 𝐻𝑉 and

𝑆𝑃 values should be evaluated at every generation. According to

[30], the computation of 𝐻𝑉 indicator requires 𝒪(𝑁j log(𝑁j) +

𝑁
M/2
j log(𝑁j)) operations. Compared with the calculation of 𝐻𝑉 ,

the computation of 𝑆𝑃 can be negligible. Consequently, the worst-

case computational complexity of one generation of the proposed

FAMOPSO is 𝒪(𝑀𝑁2
j ).

V. RESULTS AND DISCUSSIONS

In this section, testing on simulations of different overtaking sce-

narios is executed to illustrate the implementation of the FAMOPSO

algorithm as well as to analyze the trade-off between minimizing

time duration, path smoothness, and maximizing visibility.

A. Parameter Assignment

Some vehicle/mission-related parameters [24], together with

the control variables of the proposed FAMOPSO algorithm, are

firstly specified. These parameters/variables will be used to calculate

the multi-objective optimal overtaking maneuver results and their

values/ranges are tabulated in Table III.

Next, the positional data for different on-road obstacles 𝑂p, 𝑝 =
1, 2 is given below:

O1











Ax = 25.01, Ay = 3.01
Bx = 28.66, By = 4.64
Cx = 27.94, Cy = 6.25
Dx = 24.29, Dy = 4.63

O2











Ax = 7.32, Ay = 1.81
Bx = 10.92, By = 0.06
Cx = 11.69, Cy = 1.65
Dx = 8.10, Dy = 3.40

In addition, the vehicle starts the maneuver phase

from a normal driving condition which is defined by

[𝑝x(0), 𝑝y(0), 𝑣(0), 𝑎(0), 𝜃(0), 𝜑(0)]=[0.7𝑚, 4.5𝑚, 5𝑚/𝑠, 0𝑚/𝑠
2,

TABLE III: Specification of different parameters/variables

Parameters Values Variables Ranges

n 0.8 px [0, 50]
l 2.5 py [0, 6]
CL 6.0 v [−10, 10]
b 0.8855 a [−0.75, 0.75]
m 0.7 θ [−90∘, 90∘]
ω(0) (1 + r1)/2 φ [−33∘, 33∘]
c1(0) 1.49445 r1 [0, 1]
c2(0) 1.49445 r2 [0, 1]
Nk 60 c1 [1, 2]
Nj 100 c2 [1, 2]
Smax 200 t [0, 20]

0∘, 0∘]. Once the overtaking is completed, the terminal condition

specified by (7) should be satisfied. Two additional control path

constraints in terms of the jerk variable 𝜂 as well as the curvature

derivative �̇� are given by 𝜂 ∈ [−2, 2] and �̇� ∈ [−0.6, 0.6],
respectively. After specifying all the variables and constraints,

the multi-objective overtaking problem is solved via the proposed

FAMOPSO algorithm.

B. Multi-Objective Optimal Overtaking Results

In this subsection, the multi-objective optimal overtaking ma-

neuver results obtained by applying the proposed FAMOPSO method

are displayed and the trade-off between different mission objectives

is analyzed. The obtained pareto front is presented in Fig.5 and pro-

jected onto two planes: minimizing time duration versus maximizing

the visibility, and minimizing time duration versus minimizing path

smoothness. It is worth noting that all the solutions among the final

solution set have zero constraint violation values. This guarantees the

effectiveness of the obtained solution, which is also a prerequisite

for the validity of a multi-objective autonomous vehicle maneuver

planning approach.
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Fig. 5: Final pareto set results.

From Fig.5, it is obvious that minimizing the mission time

and maximizing the visibility are two contradicting objectives. This

is because if the mission planner wants to prioritize mission time

minimization, a more aggressive overtaking maneuver might be found

from the solution. That is, the vehicle tends to overtake the on-road

object using a relatively-narrow corridor. By contrast, if it is desired

to fulfill the mission with visibility maximization, the autonomous

car may have to move significantly into the opposite lane in order

to avoid collision with the on-road obstacle as well as cleanly see

in front of a car ahead. However, this will inevitably increase the

time duration. Interestingly, a highly-correlated relationship can be

observed between minimizing the mission time duration and mini-

mizing the path smoothness. This can be explained that according to

(2), the smoothness indicator value is largely depended on the upper

limit of integration (𝑡f ). Besides, since minimizing time duration may

result in a narrow driving corridor, the path smoothness indicator may

also be decreased.

Based on the generated pareto front, two extreme solutions,

along with one compromised solution, can be detected (as indicated
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in Fig.5). The objective and the constraint violation values of these

three solutions are tabulated in Table IV.

TABLE IV: Extreme and compromised solutions

Different Objectives Constraint violation

solutions J1 J2 J3 V
Extreme point 1 p2 7.2908 4.1505 1.1437 0

Extreme point 2 p1 6.6639 2.5008 1.0426 0

Compromised point p*i 6.7774 3.6666 1.0601 0
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Fig. 6: The overtaking maneuver profile: Extreme point 1.
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Fig. 7: Optimized state/control trajectories: Extreme point 1.
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Fig. 8: The overtaking maneuver profile: Extreme point 2.
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Fig. 9: Optimized state/control trajectories: Extreme point 2.

From Table IV, extreme point 1 can be treated as the solution

with the best overtaking visibility but the worst overtaking time and

path smoothness. The corresponding overtaking maneuver profile is

depicted in Fig.6, while the optimized state/control trajectories are
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Fig. 10: Overtaking maneuver profile: Compromised point.
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Fig. 11: Optimized state/control trajectories: Compromised point.

plotted in Fig.7. On the other hand, extreme point 2 represents

the solution where the overtaking time and path smoothness can

be maximally optimized at the expense of overtaking visibility.

The optimal overtaking maneuver result for this extreme solution is

presented in Fig.8, whereas the corresponding optimal state/control

profiles are compressed in Fig.9.

It should be noted that the best compromised solution is obtained

by searching the candidate among the final pareto set. Specifically,

we are interested in finding a pareto-optimal solution that the total

goal attainment values of the three mission objectives can be max-

imized. The goal attainment value for each mission objective can

be calculated by measuring the magnitude of achieving its extreme

value. Take the objective 𝐽1 as an instance, the goal attainment value

𝜇J1 ∈ [0, 1] is calculated via 𝜇J1 = 1 −
J1(pi)−J*

1
Jmax
1 −J*

1
, where 𝑝i ∈ 𝑃

is the candidate solution on the obtained front 𝑃 . Here, the extreme

value of 𝐽1 can be set to 𝐽*

1 = 6.6639 and 𝐽max
1 = 7.2908. The

goal attainment values with respect to 𝐽2 and 𝐽3 can be computed

analogically. After calculating the goal attainment value for each

point among the pareto-optimal set, the best compromised solution

listed in Table IV is obtained by performing

𝑝*i = arg max
pi∈P

3
∑︁

i=1

𝜇Ji

In this way, the solution with the maximum total goal achieve-

ment value can be selected. The compromised overtaking maneuver

profile, together with the compromised state/control trajectories, can

be found in Fig.10 and Fig.11, respectively. All these results provided

earlier confirm that it is able to use the proposed method to produce

an overtaking maneuver in the pareto-optimal sense while prioritizing

safety and respecting the boundaries of the road.

It is worth noting that in the simulation, limited computation

efforts (as specified in Table Table III) are used for the proposed

algorithm. Besides, the implementation of bio-inspired optimization

algorithms will inevitably introduce randomness in the optimization

process. Due to these reasons, oscillations may be detected from

the trajectory results shown in Fig.7, Fig.9 and Fig.11. Based on

our experiments, this undesired phenomenon can be alleviated if

higher computation efforts are used. For example, by increasing the

computing power, a more aggressive extreme point 2 can be obtained
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with a relatively-obvious bang-bang control structure.

C. Comparison Against Other Optimization Methods

In the previous subsection, we have shown that it is effective

to apply the proposed FAMOPSO algorithm for planning the multi-

objective optimal overtaking maneuver of the autonomous ground

vehicle. A best compromised solution is found based on the produced

pareto-optimal set. In this subsection, we perform the comparative

study for different overtaking scenarios so as to illustrate the advan-

tage and superiority of applying the designed method.

Two overtaking mission scenarios are firstly constructed for the

purpose of comparison:

∙ Case 1: Overtaking object 1 while optimizing [𝐽1, 𝐽2, 𝐽3].
∙ Case 2: Overtaking object 1 and object 2 while optimizing

[𝐽1, 𝐽2, 𝐽3].

Firstly, comparative studies were performed between the pro-

posed FAMOPSO and other state-of-the-art evolutionary multi-

objective optimization (EMO) methods. For example, a modified

NSGA-II (MNSGA-II) algorithm proposed in [31], an enhanced

MOEA/D-DE method investigated in [32], and an improved multi-

objective artificial bee colony (I-MOABC) developed in [20]. Dif-

ferent from the traditional NSGA-II algorithm, a well-distributed set

of reference point and a new diversity factor were adopted in the

MNSGA-II method in order to avoid the premature convergence.

Besides, in the MOEA/D-DE algorithm, a uniform weight-vector

distribution strategy was applied to further guide the optimization

process [32]. Regarding the computational complexity of the different

EMOs, the worst-case computational complexity for the MNSGA-II

algorithm is 𝒪((𝑀 + 1)𝑁2
j ) [31], whereas the I-MOABC method

requires 𝒪(𝑀𝑁2
j ) computations for one generation [33]. As for

the MOEA/D-DE, the original multi-objective problem is decom-

posed into a number of single-objective problems (SOPs). Then

the algorithm aims to optimize these SOPs simultaneously [32].

One advantage of using MOEA/D-DE is that the computational

complexity is smaller than other methods tested in the paper.

By applying different algorithms, the pareto front solutions for

Case 1 and Case 2 are displayed in Fig.12 and Fig.13, respectively.

From the pareto results, it is obvious that the proposed FAMOPSO

can generally perform better than other methods tested in this paper

for the two mission cases. This can be reflected by the fact that

the final pareto set computed using the FAMOPSO can dominate

the solution calculated using other EMOs studied in this paper. In

addition, the distribution of the pareto front produced by FAMOPSO

tends to be more uniform than the results calculated by using other

techniques. This can be attributed to the implementation of the

designed fuzzy adaptive law which balances the local exploitation

and global exploration of the optimization process, thus making the

pareto set more optimal.
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Fig. 12: Pareto front solutions for Case 1.

To offer a quantitative analysis, the HV performance metric is

applied as an indicator to evaluate the quality of the pareto solution

calculated via different multi-objective optimization methods (e.g.,

the population diversity as well as the distribution uniformity). The
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Fig. 13: Pareto front solutions for Case 2.

HV results for the two overtaking mission cases obtained via different

BIO-based methods are tabulated in Table V and Table VI, where

the reference point information used to calculate the HV metric

is assigned as 𝑅 = [8, 2, 1.5]. Note that a different selection of

the reference point might result in a difference with respect to the

calculated HV value.

TABLE V: HV results (Case 1)

HV

Case 1 Best Average Worst

Proposed 0.5474 0.5461 0.5446

MNSGA-II [31] 0.4443 0.4431 0.4424

MOEA/D-DE [32] 0.3873 0.3861 0.3855

I-MOABC [20] 0.4937 0.4927 0.4919

TABLE VI: HV results (Case 2)

HV

Case 1 Best Average Worst

Proposed 1.1677 1.1653 1.1636

MNSGA-II [31] 1.1072 1.1053 1.1035

MOEA/D-DE [32] 1.0681 1.0666 1.0652

I-MOABC [20] 1.1443 1.1404 1.1374

As discussed in Section III.C, a high 𝐻𝑉 value reflects the

obtained solution set is well-converged and well-distributed. Based

on the data presented in Table V and Table VI, it can be observed that

the FAMOPSO algorithm is able to produce the highest HV results.

The value of the HV indicator truly reflects the pareto front results

obtained using different methods shown in Fig.12 and Fig.13. That is,

the pareto front obtained via other methods can generally be covered

by the front calculated via the proposed method. These results further

confirm that the proposed strategy can be applied as a more effective

alternative to produce multi-objective optimal overtaking maneuver

for the car-like autonomous vehicle.

Furthermore, we also give attention to the performance between

the proposed FAMOPSO and other MOPSO-based methods. A PSO-

based autonomous vehicle motion planner was developed in [24].

This method was shown to be effective for planning the movement of

the autonomous vehicle and is extended to a multi-objective version

for the purpose of comparison (denoted as MOPSO). It should be

noted that the main difference between the proposed FAMOPSO

and the MOPSO lies in the use of the fuzzy adaptive component.

In addition, it is necessary to show the superiority of the proposed

method in comparison with some existing FAMOPSO methods.

For instance, a best fitness-based FAMOPSO method proposed in

[34] (denoted as bf-FAMOPSO). Mission case 1 was re-performed

by applying the three MOPSO-based methods and the HV results

are presented in Table VII, from where it can be seen that the

proposed method can achieve the highest HV result. Moreover, the

bf-FAMOPSO can outperform the basic MOPSO.

The result presented in Table VII confirms that it is advantageous

to apply the fuzzy adaptive component to adjust the evolution process

of the MOPSO method. Besides, the proposed fuzzy adaptive law can
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TABLE VII: Performance of different MOPSO-based methods

HV

Case 1 Proposed MOPSO [24] bf-FAMOPSO [34]

Best 0.5474 0.3316 0.4729

Average 0.5461 0.3307 0.4718

Worst 0.5446 0.3301 0.4708

perform better than the fuzzy adaptive law proposed in [34] in terms

of achieving faster convergence and better-distributed pareto front for

the automatic overtaking problem.

D. Study on System Parameters of the Algorithm

It should be noted that one important process that could have

significant influence on the optimal result is the selection of system

parameters of the algorithm. For example, the number of temporal

nodes 𝑁k, the number of particles among the swarm, and the number

of generations 𝑆max.

In Table II, we fix the values for [𝑁k, 𝑁j , 𝑆
max] to

[60, 100, 1000]. This parameter setting is determined by performing

the design of experiment (DOE) method. A similar implementation

of the DOE method in terms of determining the algorithm parameters

can also be found in [20]. To apply the DOE, each parameter is spec-

ified by four levels (e.g., as indicated in Table VIII), thereby resulting

in an orthogonal array shown in Table IX. The proposed algorithm

is independently run 20 times for each parameter combination. The

obtained response HV values of different parameter combinations

are summarised in Table IX, whereas the level trends of these three

parameters are depicted in Fig.14.

TABLE VIII: Parameter combinations

Parameter Level

1 2 3 4

Nk 20 40 60 80

Nj 20 50 100 150

Smax 200 500 1000 1500

TABLE IX: Results of different parameter combinations

Experiment Level Result

Nk Nj Smax HV
No.1 1 1 1 0.2638

No.2 1 2 2 0.2841

No.3 1 3 3 0.3433

No.4 1 4 4 0.3502

No.5 2 1 2 0.3772

No.6 2 2 1 0.3843

No.7 2 3 4 0.4141

No.8 2 4 3 0.4389

No.9 3 1 3 0.5106

No.10 3 2 4 0.5469

No.11 3 3 1 0.5317

No.12 3 4 2 0.5255

No.13 4 1 4 0.4658

No.14 4 2 3 0.4886

No.15 4 3 2 0.5029

No.16 4 4 1 0.4244

From Fig.14, we can observe that the proposed method

tends to have a better performance if the parameter specification

[𝑁k, 𝑁j , 𝑆
max] = [60, 100, 1000] can be applied (e.g., 𝑁k of level

3, 𝑁j of level 3, and 𝑆max of level 3). In addition, it is also obvious

that compared with 𝑁j and 𝑆max, the selection of 𝑁k tends to be

more critical. This further confirms the necessity of applying the DOE

method to determine the system parameter of the proposed algorithm.

E. Impact of the Constraint Modelling Strategy

In this subsection, the impact of the collision-free constraint

modelling strategy on the pareto results and algorithm convergence
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Fig. 14: Parameter level trends.

ability is studied. More precisely, the corner-point-based and the

distance-based collision-free constraint modelling methods discussed

in Section II.C are embedded in the FAMOPSO, MNSGA-II, I-

MOABC and MOEA/D-DE algorithms. Subsequently, the two over-

taking scenarios were further executed.

Based on the experiment, it is found that for the optimal

overtaking scenarios considered in this research, algorithms using

the distance-based collision-free constraint modelling method cannot

produce effective maneuver profiles for the autonomous vehicle.

Following a large number of optimization iterations, all the EMOs

still failed to satisfy the distance-based collision-free constraints (e.g.,

the constraint violation values for individuals are not zero). An

important reason is that the use of distance-based obstacle avoidance

strategy might introduce large conservatism, thereby restricting the

convergence ability of the optimization algorithm.

By contrast, the feasible set regulated by the corner-point-based

modelling strategy tends to be larger than the one defined by the

distance-based method. As a result, algorithms using the corner-

point-based collision-free constraint modelling strategy are likely

to be less conservative. This indicates that the pareto solution can

be better explored, as the feasible region becomes larger. Hence, it

can be concluded that it is more advantageous to apply the corner-

point-based constraint modelling strategy for addressing the optimal

overtaking scenario researched in this paper.

F. Impact of the Vehicle-Related Parameter

In previous subsections, the proposed method is shown optimal

in optimally solving the multi-objective overtaking trajectory plan-

ning problem. This subsection studies how the parameter variations

of autonomous ground vehicles affect the final results. It should

be noted that in practice, the physical constraints of the vehicle

state variable (3) might not be perfectly modeled. Therefore, an

uncertain assessment is performed with respect to the magnitude of

the vehicle’s physical constraints.

Take overtaking case 1 as an instance, it is assumed that there

are some variations with respect to the tolerance region of the vehicle

state variables (e.g., 5% or 10% tightness). The resulting pareto-

optimal result is shown in Fig.15.

From the result presented in Fig.15, it can be seen that the

obtained pareto-optimal result slightly moves away from the nominal

solutions. However, the difference is not significant. Hence, it can be

concluded that the proposed method is generally robust against the

parameter variations of autonomous ground vehicles.
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Fig. 15: Pareto results with parameter variations.

G. Online Performance of the Proposed Motion Planner

In this subsection, the possibility of extending the proposed

multi-objective motion planner to real-time applications is investi-

gated. From the off-line design and analysis, we know that optimizing

𝐽1 and 𝐽2 are two contradicting objectives, while optimizing 𝐽1
and 𝐽3 are two highly-correlated objectives. Therefore, three test

scenarios are built for analyzing the performance of the online

replanning process:

∙ Scenario 1: We aim to achieve the overtaking with optimal J1 and

J3.

∙ Scenario 2: We aim to achieve the overtaking with optimal J2.

∙ Scenario 3: We aim to achieve the overtaking with a compromised

J1, J2 and J3.

To achieve the real-time capability, an on-site initialization

strategy is firstly applied. That is, the optimal solutions obtained via

the offline experiments are recorded in a dataset. These solutions will

then be applied to form the initial swarm so as to “warmly trigger”

the evolutionary process of the proposed algorithm. Following that,

we can reduce the computing power of the proposed method to a

relatively-small scale (e.g., [𝑁j , 𝑆
max] = [20, 15]) and use it as

a near-optimal solution generator in the online process. Significant

reduction with respect to the computation time can be achieved

if an optimal control solver can start its solution-finding process

ar a near-optimal solution (e.g., solutions shown in Fig.5). This

conclusion was validated in the previous work [8]. Hence, we embed

the on-site initialization strategy and the proposed method in the

optimal control solver developed in [7], thereby creating an online

replanning scheme to react to potential errors/mismatches that usually

exist in a real-world environment. This scheme can be treated as a

receding horizon replanning procedure. That is, at each time instant,

the constructed scheme produces the control command for the next

control horizon. Subsequently, the autonomous vehicle executes the

overtaking maneuver using these control commands until the end of

this control horizon. This recursive process will continue until the

terminal condition of the mission is triggered.

The online maneuver profiles of the vehicle for the three test

scenarios are displayed in Fig.16. According to the results, it is

obvious that the real-time maneuver solution slightly diverges from

the offline pre-planned solution. However, the online replanning

process is still able to maintain the trend of the pre-planned optimal

results and produce feasible maneuver profile for the autonomous

vehicle.

In addition, detailed results about the receding horizon replan-

ning process are depicted in Fig.17, where the red pillars represent the

length of control horizon, whereas the blue pillars indicate the average

online computation duration for different test scenarios. From Fig.17,

it can be observed that the replanning procedure can be accomplished

before the control horizon terminates. This result, together with the

obtained maneuver profiles, can increase the trust on the online use

of the propose strategy. However, it is undeniable that the processing

time required for the re-optimization process is hard to predict when

more complicated traffic environment is considered. In this case,

0 5 10 15 20 25 30 35 40

Position x [m]

0

2

4

6

8

P
o
s
it
io

n
 y

 [
m

]

Scenario 1

Offline solution

Online maneuver

0 5 10 15 20 25 30 35 40

Position x [m]

0

2

4

6

8

P
o
s
it
io

n
 y

 [
m

]

Scenario 2

Offline solution

Online maneuver

0 5 10 15 20 25 30 35 40

Position x [m]

0

2

4

6

8

P
o
s
it
io

n
 y

 [
m

]

Scenario 3

Offline solution

Online maneuver

Fig. 16: Online maneuver profiles for the three test scenarios.
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the control performance tends to be sacrificed if the re-optimization

problem is insufficiently solved. Actually, if parallel computing can

be utilized to optimize the control command, the online processing

ability and control performance might be further improved.

VI. CONCLUDING REMARK

In this paper, the problem of overtaking irregularly-placed on-

road objects for the autonomous ground vehicle was considered.

An FAMOPSO algorithm was designed and utilized to produce

the multi-objective optimal overtaking maneuver for the vehicle

with the consideration of different physical constraints. In order to

effectively balance the local exploitation and global exploration of

the optimization process, a fuzzy adaptive law was constructed to

dynamically adjust control parameters of the algorithm. A number of

simulation studies were executed to validate the effectiveness of the

optimal overtaking results as well as the enhanced performance of

the designed FAMOPSO approach. Based on the obtained results, we

have gained a better understanding of the trade-off between mission
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objectives. The best compromised solution, where the total goal

attainment value of the three mission objectives can be maximized

while prioritizing safety and respecting the boundaries of the road,

has been found via the proposed method. Moreover, according to

the comparative study, the designed FAMOPSO algorithm can be

superior in quality and distribution of the pareto solution to other

typical multi-objective optimization techniques investigated in this

study.

The work presented in this paper can be extended in multiple

directions. One potential direction is to extend the current problem

formulation to more complex automatic overtaking scenarios. For

example, we can model the obstacle to be overtaken as a dynamic

object, and this will certainly bring more challenges to the constraint

handling process. Moreover, another potential direction could be

applying the proposed FAMOPSO algorithm to address more real-

world engineering optimization problems, such as the multi-objective

vehicle routing problem [15], [21], the multi-agent path planning

problem [35], etc.
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