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Abstract—With an ever-increasing level of globalization in almost
every aspect of the economy, long-haul trans-regional, -national,
or -continental links have become an essential part of modern
infrastructures. Such critical links, if broken, can have grave
social and economic consequences. In this paper, we study the
generic problem of path optimization for a critical infrastructure
link between two locations on the surface of the Earth that crosses
an earthquake-prone area. The problem has two (conflicting)
objective functions, one for minimizing the construction cost of
the link and the other for minimizing the number of potential
repairs along the link in the wake of earthquakes. The model
uses ground motion intensity measures for estimating the link
repair rate, and triangulated manifolds for representing the
surface of the Earth. We approach the multi-objective variational
problem by first converting it into a single objective variational
problem using the weighted sum method. Then, we show that the
problem can be further transformed into an Eikonal equation and
solved by a computationally efficient algorithm based on the fast
marching method. Extensive simulations are performed on real-
world three-dimensional geographical data, from which we obtain
Pareto optimal solutions that provide insight and guidance to
design tradeoffs between cost effectiveness and seismic resilience.

Index Terms—Critical infrastructure links, path optimization,
multi-objective optimization, cost effectiveness, seismic re-
silience.
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I. INTRODUCTION

Critical infrastructures such as electricity, oil, gas, telecommu-

nications, transportation and water are essential to the func-

tioning of modern economies and societies. As the world is in-

creasingly interconnected, long-haul trans-regional, -national,

or -continental links are playing a crucial role in transporting

critical resources and information from one location to another.

For example, it is known that submarine telecommunications

cables carry over 95% of the global voice and data traffic

(Carter et al., 2009). Russian gas that is delivered through

the trans-European pipeline accounts for over a quarter of the

total European consumption (Cobanli, 2014). Such critical in-

frastructure links are vulnerable to disasters (Neumayer et al.,

2011) and, if broken, can have severe social and economic

consequences.

Among various natural disasters, earthquakes often cause the

most catastrophic effects. For example, in 1987, the Ecuador

earthquake resulted in the damage of nearly 70 km of the

Trans-Ecuadorian oil pipeline. Loss of the pipeline deprived

Ecuador of 60% of its export revenue, and it took five months

to reconstruct the pipeline (Schuster, 1991). In 2006, the

Hengchun/Taiwan earthquake damaged eight submarine cables

with a total of 18 cuts. As a result, Internet services in Asia

were severely disrupted for several weeks, affecting many

Asian countries (Qiu, 2011). It was estimated that, for a well-

developed economy that is largely reliant on the Internet, one

week of Internet blackout can cause losses of over 1% of

annual GDP (mi2g, 2005; Dübendorfer, 2005). These events
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signify the impacts of earthquake hazards and the importance

of enhancing the seismic resilience of critical infrastructure

links (Cao et al., 2013; Cao, 2015; Cao et al., 2016).

In this paper, we study the generic problem of path optimiza-

tion for a critical infrastructure link between two locations

on the surface of the Earth that crosses an earthquake-prone

area. The focus is on the set of infrastructure links, such as

undersea cables and long-haul oil/gas/water pipelines, where

surface distance is a reasonable measure of the length of a

link. For such a practically important problem, we are not

aware of any theoretically sound approach proposed in the

literature that takes into consideration both cost effectiveness

and seismic resilience. To address this gap, we formulate the

problem as a multiobjective variational problem where we aim

to find the set of Pareto optimal paths for the infrastructure

link with two objective functions.

• The first objective is to minimize the cost associated with

the construction of the infrastructure link. Connecting

the two locations by a geodesic, i.e., the route with the

shortest surface distance, may minimize the construction

cost but can increase the risk of damage or break in the

event of an earthquake.

• The second objective is to minimize the number of poten-

tial failures (hence repairs) along the infrastructure link

in the wake of earthquakes, which may serve as an index

of the cost associated with the loss and reconstruction of

the link in the event of failures.

In general, the larger the number of failures, the larger is

the mean time to restore the link (LaPerrière, 2007). Thus,

the second objective in our context is related to the notion

of seismic resilience (Bruneau et al., 2003), which implies

the ability of the link to return to normal condition after an

earthquake shock that disrupts its operation.

Our model is built on the state of the art in geographic

information systems (GIS) for terrain approximation (Chang,

2013) and the latest developments in earthquake engineering

for seismic hazard assessment (Villaverde, 2009). Specifically,

the model considers triangulated manifolds for representing

the surface of the Earth and ground motion intensity mea-

sures for estimating the link repair rate in the event of an

earthquake. Based on this model, we approach the multi-

objective variational problem by first converting it into a

single objective variational problem using the weighted sum

method (Miettinen, 1999). Then, we show that the problem can

be further transformed into an Eikonal equation and solved

by a computationally efficient algorithm based on the well-

established fast marching method (Kimmel and Sethian, 1998;

Sethian, 1999a). This enables us to obtain Pareto optimal

solutions that provide flexibility in path optimization for

a critical infrastructure link, taking into consideration the

fundamental tradeoff between cost effectiveness and seismic

resilience.

The rest of the paper is organized as follows. In Section II,

we discuss the related work. In Section III, we present and

motivate the problem of laying a link between two nodes,

and the multi-objective optimization approach we use in this

paper. In Section IV, we describe the model. In Section V,

we provide details of the problem formulation and solution.

Simulation results are presented in Section VI. Finally, we

draw conclusions in Section VII.

II. RELATED WORK

Much work has been done on understanding the damage of

infrastructure links by past earthquakes. The work of Liu

(2009) summarized main factors that impact submarine cables

based on their performance in three past earthquakes, including

the 2006 Hengchun earthquake, the 2004 Sumatra earthquake

and the 1929 Grand Banks earthquake. The work of Chen

et al. (2002) investigated the damage patterns of natural gas

and water pipelines in the 1999 Chi-Chi earthquake, and

conducted statistical analysis to understand the correlation be-

tween repair rates and seismic parameters. The work of Carter

et al. (2014) investigated the effect of damaging submarine

flows on submarine cables in the 2006 Pingtung earthquake,

and presented insights regarding the causes, frequency, and

behavior of submarine flows. The work of Kobayashi (2014)

reported the experience of infrastructure damage caused by

the 2011 Tohoku earthquake. Hwang et al. (2004) investigated

damage to natural gas pipelines due to ground shaking effects,

and performed regression analyses of pipe repair rates to

derive seismic vulnerability functions based on pipe repair

data and recorded strong motion data in the 1999 Chi-Chi

earthquake.

Through modeling and analyzing the vulnerability, researchers

have also worked on evaluation of potential damage to current

infrastructure links by earthquakes. Lanzano et al. (2013)

analyzed the interaction of earthquakes with natural gas

pipelines in terms of the likelihood of the loss of containment

with respect to peak ground velocity. Esposito et al. (2015)

analyzed the vulnerability of gas networks via fragility curves

and evaluated their seismic performance via computer-aided

simulation. Wang and O’Rourke (2008); Wang and Au (2009)

proposed methods to identify critical links of water supply

with a relatively large damage probability under an earthquake.

Adachi and Ellingwood (2009) provided an evaluation of the

serviceability of the municipal water distribution system in

Shelby County, Tennessee considering spatial correlation in

seismic intensity and demand. A case study for a town in

suburb of Algiers has been presented in Zohra et al. (2012) for

a proposed method based on the identification of parameters

to assess the seismic vulnerability of water pipeline network.

Cavalieri et al. (2014) presented a comparison of five seismic

performance assessment models for power networks.

The work mentioned above focused on modeling, analysis or

evaluation of potential damages and vulnerability for a given

infrastructure link system, but not on path optimization for

a critical infrastructure link which is the problem considered

in this paper. Although the former can provide insights and

support for the latter, however, they are much more distinct in

methodologies.
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A closely related problem in civil and infrastructure engineer-

ing is pipeline route selection. State-of-the-art approaches are

in general computer-assisted heuristics utilizing GIS technol-

ogy (Macharia, 2014; Balogun et al., 2012; Yildirim et al.,

2007; Dey and Ogunlana, 1999). Specifically, they are based

on weighting factors considered to be affecting the route

and then applying raster-based path analysis to find the least

accumulative cost path using the Dijkstra’s shortest path

algorithm (Chang, 2013). However, the effects of earthquakes

were considered by these publications. A similar approach

was used by Zhao et al. (2016) for cable route selection

considering cost minimization and earthquake survivability.

A major limitation of the raster-based path analysis is that a

path is restricted to use either a lateral link or a diagonal link

when moving from one cell to its adjacent cells. Our approach

in this paper suits a broader class of critical infrastructure

links including undersea cables and uses a theoretically sound

methodology with guaranteed optimality. In Cao et al. (2013);

Cao (2015); Cao et al. (2016), not raster-based resilient path

design for cables are proposed but it is assumed that the

topology lies on a two-dimensional plane. We address the

problem of provisioning links based on a more accurate model

that represents the surface of the Earth as a two-dimensional

manifold in three-dimensional space.

III. THE MULTI-OBJECTIVE OPTIMIZATION APPROACH

As discussed in the Introduction, the optimization of the path

of a link between two nodes in an earthquake prone region

is based on multiple objectives. In particular, we consider the

following two objective functions. The first is the laying cost

(applicable to e.g. a telecommunication cable), or construction

cost (for e.g. an oil pipeline). For brevity, thereafter, we will

use the term laying cost to refer to both laying and construction

cost. The second objective function is an index associated with

the estimation of future number of repairs (or failures) of

the link in a given time period (e.g. 100 years). While the

first objective is about cost incurred during laying, the second

objective is about cost incurred in the (potentially, long term)

future.

A. Why multi-objective optimization?

There are various factors associated with estimation of the

first objective, namely, the laying cost. The length of the link

is clearly a factor here, but it is not the only factor as the

laying cost can vary from one location to another based on

ground/soil condition, requirement for security arrangements,

licensing and various other factors. The reason that we need

to address the problem as a multi-objective optimization is the

second objective function.

While the dollar value of the first objective is relatively clear,

it is not so simple to assign a dollar value to potential link

failures, mainly because different stakeholders have signifi-

cantly different views of the cost of link failures. While for

a telecom cable owner, cable breaks incur cost associated

with the repair needed minus any insurance payment received,

for an insurance company the cost consequence may be

higher, and for the society, government or public the cost of

cable failures can be much higher, as one week of Internet

shutdown has been estimated at 1.2% of annual GDP (mi2g,

2005; Dübendorfer, 2005), which means billions of dollars. In

addition, failure of infrastructure links can lead to loss of lives

in various cases of natural disasters. Given the multiplicity of

stakeholders with different exchange rates between link failure

risks and dollar values, it is appropriate to use a methodology

based on multi-objective optimization that leads to a set of

Pareto optimal solutions. Such optimal solutions provide for a

given budget for laying cost, the planned path that minimizes

the risk (as measured by predicted number of repairs), and for

each given predicted number of repairs, the planned path that

minimizes the laying cost.

B. The second objective

While the choice of the first objective is relatively straight-

forward the choice of the second objective of the predicted

number of repairs requires some discussion. Larger predicted

number of repairs (failures) indicates both potential costs

of repairs, as well as link downtime that may have signifi-

cant societal cost. As an illustration, after the 2006 Taiwan

Earthquake, eight submarine cable systems were found to

be damaged with a total of 18 cable cuts (Qiu, 2011). The

repair for each cable cut was expected to require around seven

days (LaPerrière, 2007). Although some repair can be done in

parallel, it still took over a month to achieve full restoration

of connectivity following the Taiwan earthquake.

Accordingly, we adopt the view that a reasonable index to

represent the level of damage caused by an earthquake is the

total number of repairs (or failures) of the link. To estimate

the number of repairs, we rely on data of ground motion in the

past during a certain period of time, or simulations based on

given geological knowledge. We are, in fact, using past data

to predict events in the future. Nevertheless, this is considered

reasonable, as the geology does not change significantly over

time.

Since the relevant period of time the ground motion data has

been measured (or simulated) applies to all points in the map

equally, and since the data is based on the past, we henceforth

use the abbreviated term of total number of repairs without

mentioning the period of time and the fact that it is “potential”.

This is our second objective to be optimized.

To calculate total number of repairs for a link, we will use

the term repair rate (Wang and O’Rourke, 2008; Fragiadakis

and Christodoulou, 2014; Jeon and O’Rourke, 2005; Espos-

ito, 2011; Cimellaro et al., 2014) to indicate the predicted

number of repairs per unit length of the link over a fixed

time period into the future. An alternative term, less used

in the earthquake literature is failure rate. In addition, for

a specific link, the repair rate varies for different points on

the link and depends on various factors as well, such as the

geology, link material and ground/soil conditions. In another
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context considering earthquakes effects, the repair rate has

been widely used to assess reliability of water supply networks

(Wang and O’Rourke, 2008; Fragiadakis and Christodoulou,

2014; Jeon and O’Rourke, 2005), and to analyze the risk to

gas distribution networks (Esposito, 2011; Cimellaro et al.,

2014).

To estimate the repair rate which we use for estimating

the total number of repairs of a link, we rely on data of

ground motion in the past during a certain period of time,

or simulations based on given geological knowledge. As in

Section IV, we also take advantage of the extensive work of the

United States Geological Survey (USGS) analysts that develop

models for the potential effects of future earthquakes.

IV. MODELING

In this section, we describe the models we introduce for

the landforms, laying cost, and the potential required re-

pairs.

A. Landform model

We approximate the region of the Earth’s surface (including

the sea bed) under consideration as a closed, connected

(Greenspan, 2000), two-dimensional manifold M in three-

dimensional Euclidean space R
3, uniquely represented by

a continuous, single-valued function z = ξ(x, y), where z
is the elevation and x and y are the Cartesian coordinates

(Florinsky, 2012). In particular, caves, grottos, tunnels etc. are

ignored.

As information about the landforms is always available in

a quantized form (discrete grid), we use a triangulated

piecewise-linear two-dimensional manifold to approximate the

Earth’s landforms. Such triangulated manifold models are

widely used to represent topography and terrain in GIS and

other related fields, as they makes it easier than other avail-

able models (e.g. the regular grid model) to consider rough

surfaces and to accommodate irregularly spaced elevation

data (Peucker et al., 1978; Lee, 1991). We further assume

that the triangulated manifold model is complete; that is, it

is a connected triangulated manifold surface M in R
3 that

consists of faces, edges and vertices and satisfies the following

conditions (Martı́nez et al., 2005).

• There are no isolated vertices.

• Each edge belongs to exactly one triangle or is shared

by just two triangles. Any two triangles intersect in a

common vertex or edge, or not at all.

• Any two points on the surface, are connected by a path

(possible through the middle of a triangle) on the surface

connecting the two points.

These conditions do not pose significant modeling limitations

because areas that do not satisfy these conditions, such as cliff

faces, will be avoided by the link in any case. The particular

details of how to address such areas in the model will be

discussed below.

B. Laying cost model

As mentioned above, the laying cost is affected by various

factors and varies from one location to another. For (x, y, z) ∈
M, we define a function h(x, y, z) to represent the link cost

at point (x, y, z), where z = ξ(x, y). This function gives the

path planner the flexibility to consider different laying cost

for different locations. For example, there are many areas that

links (submarine telecommunications cables) must avoid, or

require high costs (Yung, 2011). They include:

• areas that are of high ecological value (e.g. coral com-

munities)

• areas where special and costly licenses are required

• areas with wind or underwater turbines

• marine vessel fairways

• incompatible seabed (e.g. rocky areas)

• marine borrow area (e.g. gazetted dredging and sediment

disposal area and sand deposit area)

• anchorage areas and fishery areas.

Setting appropriately high values to the function

h(x, y, z), z = ξ(x, y) will enable avoidance of such

areas, or at least imposition of a high cost. In areas where the

cost of the link is only its length, we set h(x, y, z) equal to a

constant value, e.g., h(x, y, z) = 1, where z = ξ(x, y).

Let node A and node B be two fixed points with coordinates

XA and XB in M, that have to be connected by a link, defined

as a (Lipschitz continuous (Eriksson et al., 2013)) curve γ in

M that connects the points A and B. Let H(γ) be the laying

cost of the link γ. We assume:

• The laying cost H(γ) of the link γ is quantified in terms

of the cost per unit length at every point on the link, and

is location dependent.

• For any particular point on the link, S, the laying cost

per (arbitrarily) small length ds, dH(γ), is calculated as

the product of the laying cost h(XS) and length ds, i.e.,

h(XS)ds. Here we use capital letters (e.g. S, X , XS ,A,

and B) to denote points, but we use small letters (e.g.,

x, y, z) to denote the actual coordinates.

Then the laying cost of the link γ is the integral of the laying

cost at each point along the path of the link. That is,

H(γ) =

∫

γ

h(X)ds, (1)

where h(X) ∈ R
1
+ is the laying cost at location X .

C. Link repair model

Now we discuss the correlation of ground movements resulting

from earthquakes with the repair rate.

Since the link is laid on the surface of the Earth, the repair

rate g(X) is defined on the surface introduced previously,

and therefore as a function of the coordinates x and y:

g(X) = g(x, y, z), z = ξ(x, y). Typically, after an earthquake

event, the area affected can be subdivided into many cells,
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and in each cell, repair rate of a link in the cell is determined

by dividing the number of repairs by the length of the link

in the cell. Repair rate is to a reasonable first approximation

a function of link material, ground/soil conditions, diameter,

and ground movement, as quantified by Peak Ground Velocity

(PGV) and Permanent Ground Deformation (PGD) (Alliance,

2001).

Some publicly available information on the repair rate and

its correlation with ground movement can be found in the

context of water and gas pipelines (Wang and O’Rourke, 2008;

Fragiadakis and Christodoulou, 2014; Jeon and O’Rourke,

2005). Many ground motion parameters have been used for

relating repair rate with seismic intensity (Pineda-Porras and

Najafi, 2010). In this paper, PGV is adopted to derive the repair

rate since a significant correlation has been found between

the two (O’Rourke et al., 1998; Toprak, 1998; Toprak and

Taskin, 2007) and PGV is widely used for deriving repair

rate in the literature (Alliance, 2001; Jeon and O’Rourke,

2005; Pineda-Porras and Najafi, 2010). For example, American

Lifelines Alliance (Alliance, 2001) proposes the following

linear equation:

g(X) =
0.00187

0.3048
· k · (

v(X)

2.54
) (2)

where g(X) is the repair rate at location X , and is normalized

to the number of repairs per km; v(X) (cm/s) is the PGV at

location X; k is a coefficient based on the pipe material, joint

type, soil type and conditions and diameter size, determined

experimentally. The recommended model parameters can be

found in (Alliance, 2001). An example of PGV map of United

States, derived based on Peak Ground Acceleration (PGA)

(http://www.usgs.gov/) data provided by USGS, is shown in

Fig. 1. For specific details on how we convert data from PGA

to PGV see Section VI below. In Fig. 1, different colors

represent different levels of PGV. We can read the value of

PGV (in cm/s) for a site from the color bar on the right of

Fig. 1. The gradual change of the color of the color bar, which

is from blue to red, corresponds to increases of the PGV from

the minimum value to the maximum value.

Fig. 1. The shaded surface map of PGV of United States (cm/s). Data is
provided by USGS.

Note that the application of our method is not limited to

PGV and other information on ground motion can be used to

estimate the repair rate. It is apparent that the more accurate

the estimation of repair rate is, the more reliable are the path

planning results.

Let G(γ) be the total number of repairs of the link γ. The

assumptions we made previously for the laying cost of the

link H(γ), apply also for the total number of repairs; namely,

we assume,

• The total number of repairs G(γ) of the link γ is

quantified in terms of the repair rate at every point on

the link, and is location dependent.

• For any particular point on the link, S, the number

of repairs per (arbitrarily) small length ds, dG(γ), is

calculated as the product of the repair rate g(XS) and

length ds, i.e., g(XS)ds.

Then the total number of repairs of the link γ is the integral

of the repair rate at each point along the path of the link. That

is,

G(γ) =

∫

γ

g(X)ds, (3)

where g(X) ∈ R
1
+ is the repair rate at location X .

We also note that the larger the total number of repairs, the

smaller the link survival probability defined as one minus the

probability of the event of at least one repair (Røstum, 2000;

Fragiadakis and Christodoulou, 2014).

V. PROBLEM FORMULATION AND SOLUTION

Based on the models of landforms, laying cost, and the

potential required repairs, our multi-objective optimization

problem of minimizing the laying cost and the total number

of repairs is as follows,

min
γ

Φ(γ) =
(

H(γ), G(γ)
)

,(Problem 1)

s.t. γ(A) = XA, γ(B) = XB .

To calculate the laying cost and the total number of repairs

of the link γ, we parametrize the curve γ as functions of arc

length, s; that is, every point X ∈ γ can be represented by arc

length s as X = X(s). Such a parametrization is also known

as the natural definition of a curve (Burago et al., 2001). Then

the laying cost and total number of repairs of the link γ are

rewritten as,

H(γ) =

∫ l(γ)

0

h(X(s))ds, G(γ) =

∫ l(γ)

0

g(X(s))ds, (4)

where h(X(s)), g(X(s)) ∈ R
1
+ are the laying cost and the

repair rate at location X(s), respectively, and l(γ) is the length

of the link γ.

This problem can be formulated as a multi-objective varia-

tional optimization problem for which calculus of variations

approaches are applicable. In the following, we describe the

http://www.usgs.gov/


6

methodology we use for path planning that solves Problem

1.

Since Problem 1 has multiple objectives, in general it is

impossible to simultaneously optimize both the laying cost

and the total number of repairs. Therefore, Pareto optimal

solutions are sought. A standard method to solve Problem 1

is to formulate it as a single-objective function optimization

problem through the weighted sum method, i.e.,

min
γ

Φ(γ) =

∫ l(γ)

0

f(X(s))ds,(Problem 2)

s.t. X(0) = XA, X(l(γ)) = XB ,

where f(X(s)) = c · h(X(s)) + g(X(s)) and c ∈ R
1
+. By

the theory of multi-objective variational optimization (Bector

and Husain, 1992), if γ∗ is an optimal solution for Problem

2, then it is Pareto optimal for the laying cost H and the total

number of repairs G. With different weights c in Problem 2,

distinct Pareto optimal solutions are produced.

In consequence of the formulation of Problem 2 as a single

objective variational problem, the solution paths that minimize

the integral are the minimum cost paths. We emphasize here

that Problem 2 is a continuous problem. The fast marching

method (FMM), a consistent and computational efficient nu-

merical algorithm proposed by Sethian (Sethian, 1999b, 1996;

Kimmel and Sethian, 1998; Sethian, 1999a), for solving the

Eikonal equation, is adopted here to solve Problem 2 in a

continuous space. On the one hand, FMM can be proved to

converge to the continuous physical (viscosity) solution as

the grid step size tends to zero. On the other hand, FMM

has optimal computational complexity, which is O(N logN),
where N is the total number of discretized grid points of M

(Sethian, 1999b).

A. Derivation of the Eikonal equation

The first step in applying FMM is to transform the variational

Problem 2 to a partial differential equation called the Eikonal

equation. For any point S ∈ M, a cost function φ(S) that

represents the minimal cumulative cost to travel from one end

point B of the link to point S is defined as,

φ(S) = min
β

∫ l(β)

0

f(X(s))ds, (5)

where β ∈ Lip([0,+∞);M) is a Lipschitz continuous path

parameterized by its length, ‖β′(s)‖ = ‖dβ(s)
ds

‖ = 1,

X(0) = XB , and X(l(β)) = XS . By Equation (5) and

the definition of f , and applying the fundamental theorem of

the Calculus of Variations, Kimmel and Sethian (2001) have

shown that φ(S) is the viscosity solution of the following

Eikonal equation,

‖∇φ(S)‖ = f(S) = c · h(S) + g(S), φ(B) = 0, (6)

where ∇ is the gradient operator and ‖ · ‖ is the 2-norm.

For any point S, φ(S) is called the level set function; that is,

{S ∈ M : φ(S) = a} is a curve composed of all the points

that can be reached from point B with minimal cost equal

to a. The optimal path(s) is (are) along the gradient of φ(S);
i.e., orthogonal to the level curves. More precisely, we can

construct the optimal path(s) by tracking backwards from S to

B, solving the following ordinary differential equation

dX(s)

ds
= −∇φ, given X(0) = XS (7)

until point S, is reached, where X ∈ M. The optimal path(s)

from A to B for Problem 2 is (are) then obtained by letting

S = A.

B. The update scheme

The partial differential Eikonal equation cannot be solved

analytically for an arbitrary non-negative cost function f . In

fact, its solution does not necessarily need to be differentiable.

Therefore, we adopt a numerical method to solve the Eikonal

equation.

In Section IV, we have approximated landforms by a complete

two dimensional triangulated manifolds, deriving a discretized

grid model of the region M. Accordingly, an update scheme

to calculate the value of φ at each grid point is required. In

Kimmel and Sethian (1998), to compute a geodesic path on

triangulated manifolds, Sethian proposes a monotone update

procedure on a triangulated mesh to approximate the gradient

in (6), from which the viscosity solution is obtained. The

resulting path converges to the exact shortest path as the

triangulation is refined. Here, we apply it to equation (6) of

Problem 2.

For acute triangles of the triangulated landform manifolds, the

update procedure is as follows. We aim first to update the

value of φ̄ of a center vertex, such as vertex V shown in

Fig. 2, which is the intersection point of several triangles. For

each of these triangles, for example the triangle △V V1V2 in

Fig. 2, we calculate the solutions of the following quadratic

equation.

a′φ2 + b′φ+ c′ = 0, (8)

where

a′ = (a2 + b2 − 2ab cos θ),

b′ = 2b(φ̄(V2)− φ̄(V1))(a cos θ − b),

c′ = b2((φ̄(V2)− φ̄(V1))
2 − f(V )2a2 sin2 θ).

We use this triangle to update the value of φ̄ for vertex V as

follows. If φ > φ̄(V2)− φ̄(V1) and

a cos θ <
b(φ− (φ̄(V2)− φ̄(V1)))

t
<

a

cos θ
,

then

φ̄(V ) = min{φ̄(V ), φ+ φ̄(V1)}. (9)

Otherwise,

φ̄(V ) = min{φ̄(V ), bf(V ) + φ̄(V1), af(V ) + φ̄(V2)}. (10)

Since each triangle containing the vertex V can produce a

possible update value φ̄ for that vertex, in order to meet the
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upwind criterion (Sethian, 1999b), the smallest new value φ̄
for V is chosen.

V

2
V

1
V

a

b

θ

3
V

4
V

5
V

6
V

n
V⋯

Fig. 2. Illustration of acute triangulation around center vertex on landform
manifolds.

For the update procedure described above, an acute triangu-

lation is required, because the values of both vertex V1 and

vertex V2 are needed to update the value of V simultaneously.

Although there is a guarantee for the existence of acute

triangulations for a general polyhedral surface (Saraf, 2009),

no polynomial algorithm for constructing such triangulations

has been found. For a given specific initially triangulated

landform manifold with non-acute triangles, we may split

every obtuse triangle into acute ones. If not, an “unfolding”

step is necessary for the remaining obtuse angles (Kimmel and

Sethian, 1998). A refinement for the splitting of obtuse angles

is provided in Xin and Wang (2007). Details can be found in

Kimmel and Sethian (1998); Sethian (1999a); Xin and Wang

(2007).

C. Algorithm for path planning

Given the update scheme described above, and the initial

value φ(B) = 0, the next step is to calculate the value of

φ at each point S on the triangulated grid of M. From the

non-negativity of f and the upwind difference structure, it is

useful to imagine φ as a wave function, and note that the

wave propagates “one way”; that is, from B outwards, and

the value of φ at any point depends only on adjacent vertices

having smaller values. Based on these observations, Sethian

(1996) proposed to update the values of the grid points in a

way similar to the Dijkstra shortest path algorithm, and named

it the Fast Marching Method. The algorithm is described as

follows:

1) Initialization. All boundary points (e.g., B) are tagged

as Frozen. Their nearest neighbors (one grid point away)

are then tagged as Near and the value of these nearest

neighbors are updated by solving (8) using Frozen

points. The remaining grid points are tagged as Far;

2) The point with minimum value φ among all points with

the tag Near is retagged to Frozen. If there are no such

points, the algorithm is complete. If there is exactly one

such point, return to Step 3. If there are more than one

such point, pick one arbitrarily and return to Step 3;

3) Find the nearest neighbors that are either Far or Near

of the Frozen point found in Step 2, and update their

values by solving equation (8) using the Frozen points

and change their tag to Near if they are Far;

4) Go back to Step 2.

Based on the above procedure, the status of points can only

change from Far to Near or from Near to Frozen. The tags of

points cannot be changed in an opposite direction, i.e., from

Near to Far or from Frozen to Near. In Step 3, each updated

point is assigned a new value that is less than its previous

value. If the point is Far, it is tagged Near. In Step 2, the tag

of one and only one point is changed in each loop. Therefore,

the FMM is a one-pass algorithm; it does not have to “go back

and correct an accepted value (of a Frozen point)”. Since we

can locate the grid point with minimum value φ among all

points with tag Close (in Step 2) using a heap algorithm with

time complexity O(N), it is easily seen that FMM can be

implemented with time complexity O(N logN) if N is the

total number of points in the grid (Sethian, 1999a).

Based on the landforms model, the laying cost model and

the potential required repairs model given in Section IV and

the FMM introduced above, we provide an algorithm, called

Algorithm 1, for path planning on a topographic surface. As

we said at the beginning of this section, by setting different

values of c in Problem 2, we can obtain different Pareto

optimal solutions of the laying cost and the total number of

repairs. However, because of numerical errors when running

Algorithm 1, some of the results may be dominated by others.

Such results are ignored and only the non-dominated results

are presented to obtain the approximate Pareto front which

is also called non-dominated front. Examples of such non-

dominated optimal solutions will be provided in the next

section.

We summarize the approach we used to solve the problem of

how to lay a critical infrastructure link to connect two points

across an earthquake prone area in Fig. 3.

VI. APPLICATIONS

In this section, we illustrate the applications of Algorithm 1

to scenarios based on 2D and 3D landforms. We start with a

simple case of 2D topography, where the PGV data is obtained

by simulations by the Probabilistic Seismic Hazard Analysis

(PSHA) method (Baker, 2008). Then, we apply the algorithm

to two scenarios of 3D landforms based on earthquake hazard

assessment data from USGS. Without loss of generality, we

set the laying cost at each point in the region of interest to

be uniform, i.e., ∀S ∈ M, h(S) = 1. The length and the total

number of repairs of different links are estimated. We take

advantage of the low complexity of FMM, and generate many

runs for different c values to obtain the set of non-dominated

optimal solutions.
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Algorithm 1 – Algorithm for path planning on surface M.

Input: Region D (modelled as M), spatially distributed PGV

data on M, mesh size ∆x,∆y , start point A, end point B,

c, step size τ ;

Output: Path γ with minimum cost;

1: Discretize M rectangularly with ∆x in x and ∆y in y,

and denote the set of points on the grid by Γ;

2: Based on the PGV data on M, calculate the repair rate

g(i, j) for each grid point (i, j) ∈ Γ;

3: For each grid point (i, j) ∈ Γ, let f(i, j) = c · h(i, j) +
g(i, j);

4: Create edges, faces and obtain a complete triangulation of

surface M based on Γ;

5: Denote the approximate value of φ by φ̄ satisfying

φ̄(i, j) ≃ φ(i∆x + xB , j∆y + yB). Let φ̄(0, 0) = 0 and

set the starting point B to Near. Define the neighbors of

a grid element (i, j) to be the set Γ(i,j).

6: while Near list is not empty do

7: Find a point (i, j) with the minimum value φ̄ in Near

list, and set it to be Frozen.

8: For each point (i′, j′) ∈ Γ(i,j), if (i′, j′) is not Frozen,

for each face σ ∈ Σ, Σ = {σ, (i′, j′) ∈ σ}, calculate

φ̄(i′, j′) and update its value with the minimum one

using (9) or (10).

9: If (i′, j′) is Far, update its value by φ̄(i′, j′) and add it

in the Near list; otherwise update its value by minimum

of φ̄(i′, j′) and its current value.

10: end while

11: For each point (i, j) ∈ Γ, compute the gradient G0(i, j) =
∇φ̄(i, j) using centered differences and normalize to

obtain G(i, j) = G0(i, j)/||G0(i, j)||. Let γ0 = XA.

12: while ||γk −XB ||
2 > ε do

13: Compute γk+1 = γk − τG(γk) using a numerical

method (e.g. euler), where γk ∈ R
2 is an approximation

of γ(t) at time t = kτ .

14: end while

15: return γ.

A. Application of the algorithm to a 2D landform

We generate PGV data based on PSHA for a simple example

in which the path of the link is planned on a planar (2D)

region. A single line source (e.g. a fault line where earth-

quake epicenter may occur) of earthquakes of length 20 km

located in a 2D landform region [0, 100 km] × [0, 100 km]
is shown in Fig. 4(a). The coordinates of the two end points

(xA, yA) and (xB , yB) of the line source are (50 km, 40 km)
and (50 km, 60 km), respectively. Following the bounded

Gutenberg-Richter model (Baker, 2008), this source produces

earthquakes of magnitude between mmin = 5 and mmax = 6.5
with the probability density function (PDF)

fM (m) =
b · 2.3026 · 10−b(m−mmin)

1− 10−b(mmax−mmin)
, m ∈ [mmin,mmax].

We assume b = 1. We also assume that the spatial distribution

of the epicenter of earthquakes is uniform along the line

source. Using the geometry of the source, the cumulative

Approximate Pareto frontier Approximate Pareto optimal paths

Multi-objective variational optimization

Apply the weighted sum method

Derive Eikonal equation

Solve Eikonal equation by Fast Marching Method 

Construct path by tracking backwards

(steepest decent)

Output

Calculate repair rate
Ground motion intensity

(e.g. PGV) 

Derive repair rate

Approximate landforms   
Discretized geography data

Generate triangulated

manifolds

Assign laying cost 

for each point

Fig. 3. Framework of our approach.

distribution function (CDF) of the epicenter distance r from a

site (x, y) to the source is

FR(R ≤ r) =











y1, y < yA, dA ≤ r ≤ dB

y2, yA ≤ y ≤ yB , |x− xA| ≤ r ≤ dmax

y3, y > yB , dB ≤ r ≤ dA,

where y1 = rA−(yA−y)
yB−yA

, y2 = min(yB ,y+rB)−max(yA,y−rA)
yB−yA

,

y3 = rB−(y−yB)
yB−yA

, dA =
√

(x− xA)2 + (y − yA)2, dB =
√

(x− xB)2 + (y − yB)2, rA =
√

r2 − (x− xA)2, rB =
√

r2 − (x− xB)2 and dmax = max(dA, dB). The PDF fR(r)
for r is obtained by taking the derivative of the above

CDF.

Given potential earthquake magnitudes and locations, ground

motion measures, such as PGV, have been observed to be

well-represented by a log-normal distribution, i.e., ln v ∼
N (µ(m, r), σ), where µ(m, r) and σ are the mean and

standard deviation of v given by the attenuation relationship

(Baker, 2008). In this case, we use the following predictive

model for the mean of logarithmic PGV (in units of cm/s)

(Cornell et al., 1979)

µ(m, r) = 2.11 + 1.07m− 1.55 ln(r + 25),

and let σ = 0.64. By Law of Total Probability, the PDF of

PGV for a site (x, y) is

p(vx,y) =

∫

M

∫

R

p(vx,y|m, r)fM (m)fR(r)dmdr,

and then the mean PGV is v̄x,y =
∫ +∞

0
vx,yp(vx,y)dv. Since

there is no analytical expression for v̄x,y , we numerically

compute the PDF of the PGV. In this computation, we quantize

the PGV, magnitude and distance into equal bins with sizes

0.1 cm/s, 0.1 and 0.1 km, respectively.

The shaded surface map of the mean PGV derived based

on above procedure is shown in Fig. 4(a). Then the PGV is
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converted to repair rate by the following equation from Jeon

and O’Rourke (2005).

ln g(x, y) = 1.30 · ln vx,y − 7.21. (11)

The resulted repair rate is presented in Fig. 4(b).

(a)

(b)

Fig. 4. (a) Illustration of an example line source with length 20 km and the
shaded surface map of mean Peak Ground Velocity. (b) The shaded surface
map of repair rate.

We plan a path of the link from the site (10 km, 50 km) to

the site (90 km, 50 km). In order to see how the laying cost

of the link affects the results of the path planning, we set the

weight of the length to different values, and then calculate the

length and the total number of repairs of the resulting optimal

links obtained by the method given in Section V. The results

are shown in Table I and the corresponding paths are shown

as in Fig. 5(a). From Table I and Fig. 5(a), we can observe the

trade-off between the total number of repairs and the length

of the link. Reducing the total number of repairs requires a

longer link.

In order to derive the set of non-dominated optimal solutions

for the two objectives: link length and total number of repairs,

we vary the weight of the length (c) in the range from 10−4

to 10−1, and then calculate the optimal paths increasing c by

ǫ in each path planning optimization. One can refer to Das

and Dennis (1997) on how to produce a uniform distribution

of points from all parts of the Pareto set. Fig. 5(b) shows the

results. This non-dominated optimal solutions provide us with

the results of the optimization problems of minimizing link

laying cost (assuming link length reflects costs) subject to a

constraint on the total number of repairs (or equivalently, on

the level of survivalbility) and minimizing the total number of

repairs (or maximizing survivalbility) subject to a constraint

on the link laying cost (again, assuming link length reflects

costs).

(a)
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Fig. 5. (a) Optimal paths when c = 10−4, 5× 10−4, 10−3, 2.5× 10−3,
5 × 10−3, 7.5 × 10−3, 10−2, 2.5 × 10−2. (b) Non-dominated optimal
solutions for the two objectives: (1) link Length, and (2) total number of
repairs. The red squares are the non-dominated optimal values of the paths in
(a).

B. Application of the algorithm to 3D landforms based on

USGS seismic hazard map

In the next example, we use the earthquake hazard assessment

data (PGA) from USGS (http://www.usgs.gov/) that is widely

applied in seismic provisions of building codes, insurance rate

structure, risk assessment, and other public policy.

http://www.usgs.gov/
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TABLE I
DIFFERENT OPTIMAL PATHS TAKING INTO ACCOUNT THE LAYING COST AND THE TOTAL NUMBERS OF REPAIRS IN THE CASE OF THE EXAMPLE LINE

SOURCE.

c (×10−3) 0.1 0.5 1 2.5 5 7.5 10 25

Length (km) 154.03 147.63 134.68 113.05 99.80 93.70 90.15 80.00

Total number of repairs 0.630 0.632 0.641 0.675 0.720 0.756 0.787 0.981

It contains space-delimited, rectangularly gridded data

in 0.05 degree increments in longitude and latitude.

We plan paths of links in two different regions D1
(

(40.23◦,−124.30◦) ∼ (32.60◦,−114.30◦)
)

and D2
(

(40.54◦,−95.00◦) ∼ (32.75◦,−85.50◦)
)

, as shown in Fig.

6.

The land of region D1, including almost the whole California

state and a large part of Nevada, locates on the west coast of

US closed to the Pacific Ocean. There are several fault lines

throughout D1, of which the famed San Andreas fault line is a

major one. The northeastern land of region D1 is a large range

of desert and the wide and generally flat land of southeastern

D1 is punctuated by some irregular mountain peaks such as the

Mt Whitney at 14,494 ft. The famous Central Valley, which is

closed to the San Andreas fault line, locates in the center of

D1.

Region D2 is in the US central and consists of several

states such as Missouri, Illinois, Indiana, Kentucky, Tennessee,

Alabama, Mississippi and Arkansas. The most of part of region

D2 is plain, especially in the central, a basin landform locates

on the common border of Missouri, Arkansas, Mississippi

and Tennessee. Although no such long fault line like the San

Andreas fault line passes through region D2, there is still a

high possibility of a big earthquake to occur in the basin

land.

(a) (b)

Fig. 6. Geography: (a) Region D1, (b) Region D2. Source: Google Earth.

To calculate the repair rate of the link, we first obtain the PGA

(2% probability of exceedance in 50 years, Vs30 = 760 m/s)

for each gridded geographical point and then convert it to PGV

by the following equation from Wald (1999),

log10(v) = 1.0548 · log10(PGA)− 1.1556. (12)

The shaded surface map of PGV of the two regions are shown

in Fig. 7. Then the PGV is converted to repair rate by (11).

(a)

(b)

Fig. 7. The shaded surface maps of the PGV (cm/s): (a) Region D1, (b)
Region D2. Data is provided by USGS.

To calculate geodesic distance, we downloaded the elevation

data for the corresponding areas from the National Oceanic

and Atmospheric Administration (http://maps.ngdc.noaa.gov).

It contains space-delimited, rectangularly gridded data with

the same resolution as the repair rate data in latitude and

longitude. The resolution of elevation is 30 m ∼ 90 m.

Coordinate transformation is applied for both the repair rate

data set and the geographic data to convert them from latitude

and longitude coordinates to Universal Transverse Mercator

coordinates. Using the landforms model described in Section

IV, 60, 800 faces are created for region D1 and 58, 900 faces

are created for region D2, and the triangulated manifold

approximation of the landforms are shown in Fig. 8 and Fig.

10.

In region D1, we aim to plan the path of a link from Los An-

gles (34.05◦,−118.25◦) to Davis (38.53◦, −121.74◦). From

Fig. 6(a) and Fig. 7(a), we can see that the link connecting

http://maps.ngdc.noaa.gov
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the two cities should pass through the San Andreas fault line

unavoidably and that it extends more than 1000 km through

California. By letting g(S) = 0 and h(S) = 0 in Problem

2, we can calculate the length of the shortest path without

considering repairs and the length of the path with minimum

total number of repairs, which are 598.03 km and 637.47 km,

respectively. Fig. 8 shows the optimal paths when the weights

of the length of the link are equal to 0.0252, 0.2188, 0.3802
and 10. From Fig. 8, we can see that to reduce the total number

of repairs through minimizing the number of points on the link

that may be affected by an earthquake, the angle between the

optimal link and the San Andreas fault line increases gradually

around Los Angles. It then moves away from the San Andreas

fault line until it approximates the one with the minimum total

number of repairs. As in the previous example, we set the

Fig. 8. (a) Illustration of triangulation in the UTM coordinate system, repair
rate and paths when c = 0.0252 (black), 0.2188 (green), 0.3802 (cyan) and
c = 10 (magenta). The color represents repair rate.

weight of the length to be from 10−3 to 10, and then calculate

the set of non-dominated optimal solutions. Fig. 9 shows the

results.
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Fig. 9. Non-dominated optimal solutions for the two objectives: (1) link
Length, and (2) total number of repairs. The red squares are the non-dominated
optimal values of the paths in Fig. 8.

In the next and final example, we aim to plan the path of a

link from Little Rock (34.66◦,−92.29◦) to Louisville (38.24◦,

−85.76◦) in region D2. In comparison with region D1, there is

no such long fault line as the San Andreas fault line in region

D2. A link connecting the two cities can avoid the hazard zone

if it is long enough. To calculate the non-dominated optimal

solutions, we set the weight of the length to be in the range

between 10−4 and 10 again. Fig. 11 presents the results. The

length of the shortest path without considering repairs and the

length of the path with minimum total number of repairs are

6.962 × 102 km and 1.628 × 103 km, respectively. Fig. 10

shows the optimal paths when the weights of the length of

the link are equal to 3.8905× 10−4, 6.6× 10−3, 6.8× 10−3,

0.1514 and 10. As in the first example, to reduce the total

number of repairs, the link will be very far away from the

fault line in which case the length of the link will increase

significantly. From Fig. 11, we can see that increasing the

length of the link from 700 km to 800 km can reduce the total

number of repairs significantly (around 100 repairs). However,

increasing the length of the link from 1000 km to 1600 km will

lead to very limited reduction in the number of repairs. This

provides valuable insight to design tradeoffs between laying

cost-effectiveness and survivability.

Fig. 10. (a) Illustration of triangulation in the UTM coordinate system, repair
rate and paths when c = 3.8905× 10−4 (black), 6.6× 10−3 (green), 6.8×
10−3 (cyan), 0.1514 (magenta) and c = 10 (yellow). The color represents
repair rate.

VII. CONCLUSION

We have considered the problem of how to lay a critical

infrastructure link to connect two points across an earthquake

prone area. We have formulated the problem as a multi-

objective variational optimization that considers link laying

cost and total number of repairs as the two objectives. The

Earth surface has been modeled as a triangulated manifold,

and we have introduced ground motion intensity measures

of earthquake events to calculate the total number of re-

pairs. Using the weighted sum method, the multi-objective

variational optimization problem has been transformed into a

single objective variational problem, which can be described in

terms of Eikonal equation and solved by the computationally
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Fig. 11. Non-dominated optimal solutions for the two objectives: (1) link
Length, and (2) total number of repairs. The red squares are the non-dominated
optimal values of the paths in Fig. 10.

light FMM. Through many numerical FMM simulations, we

have obtained the non-dominated optimal solutions for the

two objectives, which enable us to solve two single objective

optimization problems of minimizing the laying cost subject

to a constraint on the total number of repairs, and minimizing

the total number of repairs subject to a constraint on the laying

cost. Although our approach focus one link, it provides a step-

tool for optimizing more complex critical infrastructure link

topologies.
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