
Research Article
Multiobjective Prioritized Workflow Scheduling in Cloud
Computing Using Cuckoo Search Algorithm

Babuli Sahu,1 Sangram Keshari Swain,1 Sudheer Mangalampalli ,2 and Satyasis Mishra 3

1Department of CSE, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
2School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India
3Adama Science and Technology University, Adama, Ethiopia

Correspondence should be addressed to Satyasis Mishra; satyasismishra@gmail.com

Received 6 February 2023; Revised 17 June 2023; Accepted 21 June 2023; Published 7 July 2023

Academic Editor: Raimondo Penta

Copyright © 2023 Babuli Sahu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Effective workflow scheduling in cloud computing is still a challenging problem as incoming workflows to cloud console having
variable task processing capacities and dependencies as they will arise from various heterogeneous resources. Ineffective scheduling
of workflows to virtual resources in cloud environment leads to violations in service level agreements and high energy consump-
tion, which impacts the quality of service of cloud provider. Many existing authors developed workflow scheduling algorithms
addressing operational costs and makespan, but still, there is a provision to improve the scheduling process in cloud paradigm as it
is an nondeterministic polynomial-hard problem. Therefore, in this research, a task-prioritized multiobjective workflow scheduling
algorithm was developed by using cuckoo search algorithm to precisely map incoming workflows onto corresponding virtual
resources. Extensive simulations were carried out on workflowsim using randomly generated workflows from simulator. For
evaluating the efficacy of our proposed approach, we compared our proposed scheduling algorithm with existing approaches,
i.e., Max–Min, first come first serve, minimum completion time, Min–Min, resource allocation security with efficient task
scheduling in cloud computing-hybrid machine learning, and Round Robin. Our proposed approach is outperformed by mini-
mizing energy consumption by 15% and reducing service level agreement violations by 22%.

1. Introduction

Cloud computing is an emerging area that has changed the
requirements of computing systems from local servers to
cloud-based systems by using a huge number of heteroge-
neous distributed resources. A client required high-speed
internet access to avail of all the facilities. Cloud systems are
classified into (a) public clouds, (b) private clouds, (c) hybrid
clouds, and (d) community clouds as per the users’ require-
ments. A private cloud is deployed to provide or keep highly
secure data, whereas a public cloud is open for the public to
get the service on a pay-as-you-go basis. A hybrid cloud sys-
tem is partially private and partially public, which means
secured information will be stored in private and the rest in
public. A community cloud system is meant for a group of
people working in the same community.

Depending on the services available in the cloud [1], they
are classified as (a) Platform as a Service (PaaS), (b) Software

as a Service (SaaS), and (c) Infrastructure as a Service (IaaS).
IaaS provides clients with different resources like storage,
networks, and processing capacities. PaaS gives different plat-
forms, like Windows, UNIX, Linux, etc., and SaaS provides
enterprise software to clients. As there are many tasks to be
performed in a cloud system, and they are mostly dependent
on each other, either functionally or based on the shared
resources they will use, called workflow, it is a challenge for
the service providers. The workflow schedule is an nondeter-
ministic polynomial (NP)-hard optimization problem. A well-
developed workflow algorithm is essential, as numerous tasks
can be performed without compromising SLA violations and
decreasing energy consumption. Budget, energy, security,
deadline constraints, and fault tolerance are the essential
parameters for workflow scheduling. In the execution
of a task in a cloud environment, it is primarily two-phase.
The phases are provisioning different resources and mapping
the resources to the task. Resource provisioning is mostly

Hindawi
Applied Bionics and Biomechanics
Volume 2023, Article ID 4350615, 13 pages
https://doi.org/10.1155/2023/4350615

https://orcid.org/0000-0002-1485-8783
https://orcid.org/0000-0003-3515-4467
mailto:satyasismishra@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4350615


performed using dynamic scheduling and static scheduling. In
static scheduling, the required configurations are well known, so
they are challenging to implement as per the requirements.
However, in dynamic scheduling, the scalability of resources
is used to face uncertain challenges. The scalability of the
resource configuration is a challenge for researchers. Various
algorithms are developed to manage the scalability, looking
into the significant parameters. The parameters of the research
are classified into three categories: single-objective, bi-objective,
and multiobjective based on the user’s needs [2].

A distributed consolidation is more scalable than a cen-
tralized cloud system, but the message passing among the
physical machines (PM) may lead to network and bandwidth
issues in the cloud system. A centralized dynamic consolida-
tion is more energy efficient in a cloud system. Dynamic
consolidation is categorized into two types: (a) nonproduc-
tive, in which the algorithm considers the total sum of cur-
rent resource utilization but does not predict future resource
utilization. On the other hand, (b) predictive dynamic con-
solidation predicts future workloads based on predictive
techniques. Workflow-based virtual machine (VM) place-
ment is an essential task in cloud computing because it opti-
mizes workloads and reduces costs and SLA violations. As
per the research papers published by the researchers, the
problems in VM placement can be classified as “fresh place-
ment,” “initial placement,” or “static placement.” In this type
of placement, there will be continuous requests for deploying
VMs on the empty hosts, along with removal requests for the
VMs. In this type of situation, replying to the request system
in a short amount of time is highly important. In the second
case, consolidated placement or dynamic consolidation,
some of the tasks based on workloads will be finished, and
some new workloads will be requested. This is an ongoing
process. So optimization is needed to solve the energy con-
sumption and SLA violation issues [3]. In the scheduling
process, the system will map the execution of interdependent
tasks across the distributed systems. The scheduler will allo-
cate appropriate and necessary resources to the workflow-
based system so that the system will minimize the execution
time. As specific solutions to the problem and solutions to it
could be more practical due to the overhead of scheduling
generation, which is very high. There are no known algorithms
to generate the most optimal solutions within polynomial-time
scheduling, so distributed resources are considered NP-hard
problems [4]. Different types of meta-heuristic algorithms are
used in cloud systems, such as genetic algorithm (GA), particle
swarm optimization (PSO), and artificial bee colony algorithms
are used to solve the scheduling of the workflow tasks in the
cloud environments [5]. Most researchers have focused on
parameters like makespan, reliability, computational cost, and
processing costs. They have yet to, however, concentrate on
other matrices such as memory utilization, electricity cost,
and network utilization [6]. Many of the existing authors pro-
posed various scheduling algorithms and addressed various
parameters, but workflow scheduling in cloud computing is
an NP-hard problem, and still, there is a chance to improve
the scheduling process by fine-tuning parameters that impact
the scheduling process. Therefore, in this manuscript, we used

crow search algorithm to tackle the scheduling process by con-
sidering the priorities of tasks and their dependencies to accu-
rately map these workflows onto appropriate virtual resources.

The main contributions and limitations of this manu-
script are mentioned below:

(1) A multiobjective workflow scheduling model devel-
oped by using crow search algorithm.

(2) Task priorities are calculated based on the length of
task and the processing capacity of VM.

(3) Extensive simulations are conducted on workflowsim
by generating random workloads.

(4) Evaluated our proposed approach with baseline
approaches to identify the efficacy of our proposed
approach with respect to the metrics concerned, i.e.,
SLA violation and energy consumption.

(5) The main limitation of our proposed research is our
proposed scheduler is not able to predict upcoming
workloads which may come to cloud console. There-
fore, in future, we need to employ a machine-learning
model in scheduler to improve the scheduling process.

Our paper is divided into several sections, including
related work in Section 2, various performance metrics used
in Section 3, the proposed algorithm in Section 4, experimen-
tal setup in Section 5, research outcome and discussion in
Section 6, and conclusion and future work in Section 7.

2. Related Works

In the paper, the researchers focused on two consolidation-
based energy-efficient techniques. They named the algo-
rithms maximum capacity best fit decreasing and minimum
power best fit decreasing. They improve on the existing algo-
rithm by incorporating the enhanced-conscious task consol-
idation method and the maximum utilization (MaxUtil)
technique to reduce energy consumption and SLA violations.
The results of their experiments show that the proposed
algorithm is better in terms of energy-saving, SLA violation,
and VM migrations. The algorithm selects the best server
based on the energy consumption and capacity of the CPU
available on the server.

They used the upper threshold value by keeping free
resources for future usage, managing the ever-changing
demands, and reducing SLA violations [7]. The researchers
proposed an online workflow scheduling algorithm to man-
age the multicloud environments’ scientific workflow. The
proposed algorithm is based on adaptive resource allocation
and consolidation, named OWS-A2C. The scientific work-
flow gets executed in the local perspective and then, accord-
ing to the requirements of multiple softwares, the instances
are allocated according to the process. They compare the
proposed algorithm results with those of GAINM, PHGS,
and PHA2CI and show that their proposed algorithm’s aver-
age utilization of the resource is less than the others and
consumes less energy [8]. The researchers focused on two
major parameters: low cost and makespan for workflow
scheduling. They proposed an immune particle swarm

2 Applied Bionics and Biomechanics



optimization algorithm named immune mutation particle
swarm optimization to improve the speed and quality of
the optimization. The proposed method is based on encoded
mode, affinity calculation, antibody concentration, incentive
function, antibody cloning, crossing, and mutation. As per
the experimental result shown by the researchers and the
outcome of the proposed algorithm, it is clear that the algo-
rithm is better in terms of makespan and cost of computing.
They compared their algorithm with PSO and Iass cloud
infrastructure for deadline constraint tasks for cloud provider
to show that the proposed algorithm is more efficient in terms
of saving cost and decreasing the makespan [9]. The research-
ers proposed a budget-constrained workflow-based scheduling
algorithm named task-driven scheduling algorithm (TDSA) to
optimize the makespan time in the workflow scheduling. They
used two novel mechanisms: (a) a dynamic sub-budget alloca-
tion mechanism for the task and (b) task scheduling based on
task duplication in the scheduling mechanism. They used the
sub-budget allocationmethod to recover the unused budget for
scheduling. In the supplication-based task scheduling mecha-
nism, they explode idle slots in the resources to duplicate the
tasks selectively. The experiment results show that it optimizes
themakespan up to 17.5% and resource utilization up to 31.6%.
The researchers compared their algorithm with greedy
resource provisioning and modified heterogeneous earliest fin-
ish time (GRP-HEFT), fair budget constrained workflow
scheduling approach for heterogeneous clouds, task-dependent
scheduling algorithm for N databases, and earliest finish time
multiple efficient resource and found that the proposed algo-
rithm saves more budgets and reduces the makespan [10].

The algorithm proposed by the researchers is based on
reducing energy consumption in the cloud using critical task
remapping (RMREC), which is mainly considered execution
time or cost under a budget constraint. They decomposed the
algorithm into two different phases: (a) reduction of energy
consumption and (b) critical task remapping. To achieve the
task, a preliminary mapping between the tasks and VMs is
based on the lowest energy consumption. In the second
phase of the process, the critical tasks are remapped to
the VMs with lower share costs and energy consumption.
The researcher compares their proposed algorithm with
minimizing energy consumption algorithm with budget
constraint and minimizing energy consumption with budget
load balancing. The result shows that the proposed algorithm
outperforms cost and energyminimization [11]. The research-
ers focused on efficient scheduling based on task classification
and threshold. They have divided the algorithms into phases in
which the first phase is to process the workflow tasks to avoid
the bottlenecks of dependencies and long execution times. In
the second, they used PSO to select the best schedule. The
researchers compared their proposed algorithm with the
GA, PSO, energy efficient load balancing algorithm with
workflow scheduling, and firefly and improved particle
swarm optimization and found that the algorithm proposed
by the researchers is much better in energy saving, make-
span, and load balancing. Further research on VM migra-
tion and adaptive threshold requirements needs to be
analyzed further to get more energy consumption [12]. In

the article, the researchers used a clustering approach to
minimize SLA violations. They focused on SLA violation
prediction and workload prediction violation using Naive
Bayer’s classification approach. They compare the proposed
algorithm results with those of active VMs without predic-
tion and with the autoregressive-integrated moving average
approach for VM performance. From the experimental
results, it is clear that the SLA violation in the proposed
algorithm is less than the other methods, and it performed
better than the other state-of-the-art techniques [13]. The
researcher proposes novel resource provisioning for differ-
ent tasks and workflow scheduling in the paper. They
named the proposed algorithms as novel resource provi-
sioning and workflow scheduling, GRP-HEFT. They tried
to minimize the amount of time in the cloud under a certain
budget. They compare the algorithm with other state-of-
the-art workflows like multiobjective ant colony scheduling,
PSO, and GA. When they compared the makespan to the
time complexity, they discovered that the proposed algorithm
outperforms others by more than 13%. The algorithm’s time
complexity is O (mN), and in the worst case, it is O (mN2).
Another advantage of the proposed algorithm is that it is
deterministic, meaning that every run with the same input
derives the same makespan. Further research work is
required to leverage Spot instances [14]. The researchers
focused on a budget-constrained workflow-based scheduling
algorithm to decrease the makespan. As the billing model in
most cloud computing systems is based on hours, and it is a
day-to-day challenge for workflow scheduling, it results in a
higher makespan and also infeasible solutions. The proposed
algorithm is based on an hourly-based billing cycle. Besides
that, as data constraints apply to workflow tasks in the cloud,
there is a possibility of idle slots in the cloud resources. A few
works could be utilized for these idle slots so that duplicate
tasks are predecessors to reduce completion time. This will
minimize the workflow’s makespan while ensuring budget
constraints. The proposed TDSA model is based on two
important factors: the dynamic sub-budgeting algorithm
and the first one is mostly responsible for recovering the
unused budget and redistributing it, and the second one is
based on a task duplication scheduling mechanism to make
use of the idle system slots on the resources to duplicate the
task selectively. The result of the algorithm shows that the
TDSA algorithm decreases the makespan by 17.4% and
resource utilization by 31.6% [15]. As workflow management
and scheduling in cloud computing are very urgent, the
researcher focused on smart cloud management to increase
performance. They compared the proposed algorithm with
GA algorithms. They proposed the modified ant colony
optimization (MOACO) and cheetah chase algorithm (CCA)
algorithms to increase CPU resource utilization and minimize
response time. The researcher used a dynamic resource predic-
tion model to increase the performance [16]. The researchers
developed novel algorithms to minimize the makespan using
two mechanisms: dynamic sub-budget allocation in which the
unused budgeting is scheduled, and task duplication-based
scheduling, in which the idle slots are exploited to duplicate
the task. The proposed TDSA algorithm is compared with

Applied Bionics and Biomechanics 3



different baseline algorithms and decreases themakespan by up
to 17.4%. The researchers have not focused on uncertainty in
the workflow [10]. The researchers tried to minimize the
makespan of workflow-based scheduling by reducing execu-
tion costs under deadline and budget constraints. The pro-
posed algorithm is based on a GA. They used the top-down
levelingmethod to assign priority to the task. They developed a
two-dimensional coding method. The method is used to pro-
duce different offspring to increase the population’s diversity
in the cloud. They reduced the workflow scheduling costs [17].
Talouki et al. [18] proposed a task scheduling approach
that addresses makespan, scheduling length ratio (SLR), and
speedup. This approach uses heterogeneous resources and pri-
oritized taskmechanisms in upward and downward optimistic
cost tables. Entire experimentation was carried out on work-
flows. It compared baseline algorithms, and the proposed
approach dominated over existing algorithms. A hybridized
approach, i.e., genetic and simulated annealing algorithms
used to address makespan for effective workflow scheduling
in the cloud environment [19]. All extensive simulations are
conducted on workflowsim and proposed approach com-
pared to existing approaches and improved parameters with
this approach. A metaheuristic approach was developed to
tackle heterogeneous resources in scheduling in the cloud
paradigm aimed at minimization of makespan [20]. The
entire scheduling pattern is based on task priorities and the
insertion of tasks into appropriate slots based on task dupli-
cation. It evaluated over real-time workflows and identified
that HH-LiSch outperforms existing algorithms for the speci-
fied parameter. The workflow scheduling approach is used to

tackle scheduling in the cloud paradigm [21]. Discrete PSO is
used as a methodology in this paradigm by generating an initial
swarm smartly. It is evaluated over existing approaches and
improvised parameters, i.e., SLR and efficiency. An effective
task scheduling algorithmmodeled using a hybridized approach,
i.e., GA, simulated annealing algorithms [22]. This hybridized
approach provides a balance between exploration and exploita-
tion. It evaluated over state of the art algorithms and addressed
parameters, i.e., SLR and speedup. A bi-objective task scheduling
algorithm was developed using simulated annealing [23]. This
approach improves scheduling patterns over HEFT and com-
pared over realtime workflows and improvised parameters SLR,
monetary cost, makespan, and efficiency. A bi-objective task
scheduling approach was developed to address makespan and
reliability [24]. This approach was developed and modeled
using a discrete cuckoo search which balances between local
and global search. It compared against existing approaches and
addressed mentioned parameters.

In Table 1, the resource allocation security with efficient
task scheduling in cloud computing-hybrid machine learning
(RATS-HM) methodology is used,parameters addressed are
resource utilization, energy consumption, and response time
[27]. we analyzed various task and workflow scheduling algo-
rithms that consider single and multiobjective approaches,
but as scheduling in cloud computing is still a challenge as
it is an NP-hard problem. Moreover, that prioritized work-
flow scheduling by minimizing energy consumption, SLA
violation is not formulated by existing authors. Therefore,
to bridge this gap and to tackle these parameters while sched-
uling workflows effectively onto virtual resources, we

TABLE 1: Analysis of existing works done by previous researchers.

Authors Methodology used Parameters addressed

Mustafa et al. [7] ECTC Energy consumption, migrations, SLA violations
Chen et al. [8] OWC-A2C Resource utilization, execution costs
Wang et al. [9] IMPSO Makespan, cost
Yao et al. [10] TDSA Makespan, resource utilization
Zhang et al. [11] RMREC Energy consumption
Malik et al. [12] PSO based scheduler Makespan, energy consumption, load balancing
Anitha and Vidyaraj [13] Clustering approach Prediction of SLA violation, workload
Faragardi et al. [14] GRP-HEFT Makespan
Aktan and Bulut [15] DESA Task completion time, load balancing
Hu et al. [16] MOACO, CCA CPU utilization, response time
Yao et al. [10] TDSA Makespan
Cui and Xiaoqing [17] Two-dimensional coding Execution costs
Sohani and Jain [25] PMHEFT Makespan, efficiency, power consumption
Mustafa et al. [26] SLAAEERM Energy efficiency, SLA compliance.
Talouki et al. [18] TDA Makespan, speedup
Talouki et al. [19] Hybrid GA Makespan
Shirvani and Talouki [20] HH-LiSch SLR, makespan, speedup
Shirvani [21] HDPSO SLR, speedup, efficiency
Tanha et al. [22] TSAA SLR, speedup, makespan
Shirvani and Talouki [23] Bi-objective scheduling Monetary cost, speedup, makespan
Alaie et al. [24] HDCSA SLR, speedup, efficiency

GRP-HEFT, greedy resource provisioning and modified heterogeneous earliest finish time; TDSA, task driven Scheduling algorithm; SLR, scheduling length
ratio; IMPSO, immune mutation particle swarm optimization; CCA, cheetah chase algorithm; MOACO; modified ant colony optimization.

4 Applied Bionics and Biomechanics



formulated our proposed multiobjective workflow scheduling
model by using cuckoo search optimization.

3. Mathematical Modelling

This section of our paper is based on the targeted outcomes
of our research work. This section will elaborate on the major
issues and challenges based on which we developed the pro-
posed algorithm. To find out energy consumption and SLA
violations, we consider the following parameters.

(a) Makespan

This section of our paper is based on the targeted out-
comes of our research work. This section will elaborate
on the major issues and challenges based on which we
developed the proposed algorithm. We consider the follow-
ing parameters to find out energy consumption and SLA
violations.

Maxi ¼
i ¼ n

Fini − Sti

i ¼ 1

8><
>:

; ð1Þ

where Fini = finish time of task in and Sti = start time of
task i.

(b) Energy consumption

This parameter is used to calculate the total energy con-
sumption of the servers available in a data center. It can be
calculated using Equation (1).

Energy consumption: There are two types of energy con-
sumption in cloud computing. Fixed energy consumption
(Ef) and dynamic energy consumption (Ed). Fixed energy
consumption due to the server being idle and dynamic
energy consumption is related to energy consumed while
any task is performed and other infrastructures are used in
the cloud [26].

Etotal ¼ Ef ixed þ Edynamic: ð2Þ

Dynamic energy consumption is mainly based on cool-
ing system (Ecol), communication resource (Ecom), storage
resources (Est), and computational energy (Ecpu)

Edynamic ¼ Ecol þ Ecom þ Est þ Ecpu; ð3Þ

Etotal ¼ Ef ixed þ Ecol þ Ecom þ Est þ Ecpu: ð4Þ

Energy consumption can be further divided based on idle
time and active time. So if t is the idle time of the system, we
may calculate CPU power consumption as follows:

Ecpu ¼ t × Pmax þ 1 − tð Þ × CPUuti: ð5Þ

Ecomm ¼ t × Commmax þ 1 − tð Þ × Commuti: ð6Þ

Est ¼ t × Stmax þ 1 − tð Þ × Stuti: ð7Þ

Putting all in one we get total energy consumption in the
data center

Etotal ¼ ∑
n

k¼0
Ef ixed þ t × Memmax þ CPUmax þ Commmax þ Stmaxf g þ 1 − tð Þ Memmax þ CPUmax þ Commmax þ Stmaxf g:

ð8Þ

Objective function is to minimize the power consumption so

min∑
n

k¼0
Ef ixed þ t × Memmax þ CPUmax þ Commmax þ Stmaxf g þ 1 − tð Þ Memmax þ CPUmax þ Commmax þ Stmaxf g:

ð9Þ

Power consumption will be at a minimum when the idle
time is 0. Idle energy consumption can be minimized by
using dynamic voltage and frequency scaling of the particu-
lar core processor.

(c) SLA violation

The objective of this parameter is to find out the percent-
age of SLA violations by comparing the expected execution
time with the actual execution time. An SLA violation is the

ratio of the total demand to the allocated resources, main
memory, storage, and bandwidth. SLA violation in all tasks
taking into account the CPU we will receive.

SLA ¼ ∑
n

k¼0

ACPU − ECPU
Amem

: ð10Þ

In this research, to expedite task scheduling process, ini-
tially, we calculate the priorities of tasks using the length of

Applied Bionics and Biomechanics 5



task and processing capacity of VMs. It is calculated using
Equation (11).

Tprio ¼ Tsize
k

VMpro
n

: ð11Þ

4. Proposed Algorithm

Cloud providers have a major role in cloud computing as
they need to manage maximum objectives with minimum
resources. On the other hand, cloud users focus on the per-
formance of the resources within a minimum time span [25].
A workflow application in cloud computing consists of a set
of tasks with the dependency of some tasks on other tasks,
like a parent–child task, where the child task cannot be exe-
cuted until the parent task gets executed. These dependencies
make the execution of tasks more difficult. Our proposed
algorithm is based on task prioritization based on SLA vio-
lation and the expected time required to complete the work.
This is possible only if we get the VMs that are more efficient
at the time the tasks are entered into the process. Again, it is
necessary to know the possible SLA violation in terms of
percentage, so the algorithm will find out the exact VMwhere
the task should be executed. This will reduce SLA violations as
well as makespan and overall energy consumption.

In our proposed algorithm, we have assumed there are n
number of VMs as VM1;f VM2;…;VMng, k numbers of tasks
as T1;f T2;…;Tkg, with i number of PMs as P1;f P2;:::;Pig and
number of j datacentres represented as D1;f D2;…;Djg. The
tasks are dependent on other tasks and on the resources on
which they will be used. The tasks are grouped into different
levels depending on the dependency. Within the group, the
tasks are prioritized in order to minimize SLA violations. The
tasks with maximum length and processing capacity are
assigned with higher priorities within the group/level. The
independent task will be executed first based on the priori-
ties. To handle the SLA violation and reduce energy con-
sumption and the makespan, it is necessary to identify the
VM where the execution will take less time and without any
SLA violations. To identify the best VM, we used a cuckoo

search algorithm. The cuckoo search algorithm will give the
best VMs after the number of random walks like a cuckoo.

4.1. Problem Formulation. We precisely defined workflow
scheduling problem by considering a workflow, i.e., directed
acyclic graph (DAG) as g ¼ v;ð eÞ, i.e., v indicates a set of
tasks, and they are represented as T1;f T2;…;Tkg and shown
in Table 2. In the DAG, e indicates dependency, which is
called interdependency in workflows. These workflows are
running on vn virtual resources, and they are indicated as
VM1;f VM2;…:;VMng and in turn these virtual resources

reside in physical resources indicated as P1;f P2;:::;Pig and
in turn physical resources are sitting in datacentres, and
they are indicated as D1;f D2;…;Djg. From the above state-
ment, problem can be defined in a way that Tk interdepen-
dent tasks to be scheduled on to VMn virtual resources to
address the percentage of SLA violation, makespan, and
energy consumption.

When the tasks enter the system, the global system
checks the priority and dependency of the task. According
to the task priority and workflow dependency, the system
will rearrange the tasks and generate the new DAG [18],
and it is shown in Figure 1. When a new task is added to
the system, the global broker regenerates the DAG based on
the available tasks and task dependencies. This process will
continue till there are no more tasks to perform.

We used the cuckoo search algorithm to find the most
efficient VMs based on the available resources for the VMs.
This will help to push the task into the VM, where it can per-
form its tasks without any SLA violation. This also saves energy
and decreases the execution time. We used a nature-inspired

TABLE 2: Example of task inputs.

Task Priority CPU time (ms) RAM time (ms) Storage time (ms) Bandwidth (kbps)

T1 6 23 2 5 12
T2 1 10 6 6 3
T3 1 9 7 10 5
T4 5 5 8 22 9
T5 3 3 12 12 2
T6 2 23 19 23 6
T7 4 21 12 45 4
T8 4 11 4 5 8
T9 1 11 55 12 3
T10 2 12 12 12 10

T7

T1

T4T8

T5

T10

T6

T9

T2

Start

T3

FIGURE 1: A sample DAG with 10 tasks and five depth levels.

6 Applied Bionics and Biomechanics



multiheuristic cuckoo search algorithm. Xin-She and SuashDeb
developed the algorithm based on the brooding parasitism of
some cuckoo species and the laying strategy. This algorithmwill
give us the most optimum VM, which is required in our work-
flow scheduling. The algorithm is based on cuckoo breeding
behavior and levy flights. The proposed architecture is shown
in Figure 2, and the flow of execution of the algorithm is shown
in Figure 3.

A random walk called “levy flights” is used for the step
lengths, and it is distributed according to a probability
distribution.

4.2. Calculation of Time Complexity of Proposed Approach.
Initially, in Algorithms 1–3 all the k tasks are received from
various heterogeneous cloud users, and for all tasks priorities
are calculated, and time complexity to calculate all tasks priorities
is denoted as O(k). After the evaluation of priorities, all these
tasks are to be fed to scheduler. Therefore, time complexity to fed
tasks to scheduler isO(m), and after the collection of priorities, it
is the responsibility of scheduler to generate schedules onto n
VMs by considering those priorities, and its time complexity isO
(n). Therefore, overall time complexity is to be represented
as O kþmþ nð Þ.

5. Experimental Setup

The performance of our algorithm is evaluated using a work-
flow framework. It supports simulations and modeling of
large-scale cloud environments with cloudlets as jobs. The
jobs are predefined in the montage.xml file with their

86 83 92 100 67 VMs to match the task

Workflow task

21

24

61

82

97

Task execution

Virtual machines

Priority queue

Cloud server

37

Modified cuckoo search algorithm

FIGURE 2: Proposed system architecture.

Begin

Create task dependency DAG

Pop the task based on depth

Arrange the task based on SLA in a priority queue

Arrange the VMs based on their efficiency

Assign the task to the VM where the SLA violation is zero or minimum

Perform the task in the assigned VM

Is there is any
more task in
DAG list ?

End

No

Yes

Find out the efficiency of the VMs

FIGURE 3: Flow of execution of workflow tasks.

Applied Bionics and Biomechanics 7



dependencies. There are two categories of files, with 25 work-
loads and 100 workloads. Based on the study of the existing
algorithms, we defined a set of values as the target SLA
violation. This set is fixed for all the algorithms we used to
get the violations in our testing. The result of makespan, SLA
violation, and the energy consumption is effective because
the values are fixed to all algorithms and compared for all

algorithms. We extend the existing work by using prioritized
task scheduling. The tasks are entered into the system based
on their dependencies, and they are placed in the DAG at
different levels. The tasks are entered into the process only
based on their level, i.e., the most independent jobs are
entered into the system first. Then the systems will be
arranged based on the order of minimum time of completion

Input: Ms with their speed, bandwidth, RAM capacity

Output: Arrange the VMs based on the efficiency

Step 1: Input the VMs

Step 2: Generate the initial population

Step 3: continue till t<max generation or satisfy the stop criteria

Step 4: Get the Cuckoo randomly by using the levy fights

Step 5: Evaluate the Cuckoo fitness

Step 6: Choose a nest randomly

Step 7: if Fi> Fj then

Step 8: Replace Fj by the new solution

Step 9: end if

Step 10: Remove the worst nests and build the new nests

Step 11: go to step 2

Step 12: use genetic algorithm based cross over and mutation technique to find out the solution

Step 13: Return the order of the VMs

ALGORITHM 2: (Modified cuckoo search algorithm).

Input: All task at given time

Output: Prioritized DAG

Step-1: Initialize Task T= {T1, T2, T3, …, Ti}

Step-2: For each task Ti in T at a given time

Step-3: Find the Task with highest priorities using Equation (11) and require minimum Resource Time

Step-4: Push the Task in the Queue

Step-5: Identify the task with Priorities and minimum dependency

Step-6: Push the Task in the Queue

Step-7: Is there is any more task continue to step 2

Step-8: Return the final DAG

ALGORITHM 1: (Prioritization of Task).

Input: All task in the DAG

Output: Makespan, SLA Violation and Total Energy Consumption

Step-1: Initialize the task

Step-2: Wait for any task

Step-3: If any new tasks fix it at the appropriate position in the DAG and generate the new DAG based on Algorithm 1

Step-4: Find out the VM with minimum or zero SLA violation

Step-5: Calculate the VM efficiency using modified cuckoo search algorithm

Step-6: Execute the task

Step-7: If any new task goes to step 3

Step-8: Find out makespan, SLA violation and Energy Consumption

ALGORITHM 3: (Task Scheduling and Execution).

8 Applied Bionics and Biomechanics



to minimize the SLA violation. Then, in the second phase,
the tasks will be assigned to the VM, which will complete the
job quickly. As a result, the best-fit VMwill be assigned to the
cloud task. As a result, there will be minimal wastage of
resources, and the resources will be used for other processes.

We have used a different number of VMs and different
numbers of tasks to test the validity of our proposed algo-
rithm. We performed six levels of testing with 5, 10, and
15VMs, as well as 25 and 100 cloudlets with work depen-
dency. The result of our algorithm (PSAMHWFSA) was
tested against the most popular and common algorithms
like Max–Min, first-come, first-served (FCFS), minimum
completion time (MCT), Min–Min, RATS-HM, and Round
Robin.We compare the results for power consumption, make-
span, and SLA violations. Our observations clearly show that it
decreases SLA violations and makespan. At the same time, it
reduces the power consumption of the system.

Each time a job is entered into the system, it will be
placed in the DAG. When the job comes to the system
from different clients, first, they will be sorted based on the
task dependency. Then the system pulls the tasks and checks
the SLA of each task. Once the process is over, it will find the
most efficient VMs to complete the job. This process will
continue for all the tasks.

Entire simulation was conducted on workflowsim, and
we generated DAG workflow from the simulator randomly
by considering all the abovementioned in this section and
detailed configuration settings for our simulation repre-
sented in Table 3.

6. Simulations and Results

We have used workflow simulator software to test our algo-
rithm (PSAMHWFSA) against the existing algorithms. We
develop our algorithm based on a scheduling algorithm
based on a GA like a cuckoo search algorithm and an execu-
tion plan. We used a data center with a different set of hosts
for our experiments, with setups like 10 hosts and 20 VMs in
each. The jobs are entered into the system randomly. Our
proposed algorithm will check the job dependency and find
the jobs based on the priority. The top-most priority job will
be executed first. Similarly, our algorithm will find the best
VMs based on the available resources to minimize power

consumption. This paper compares our algorithm based on
makespan, SLA violation, and energy consumption. The
mutually exclusive tasks are placed on one level so that
they can be executed in parallel. Our algorithm will accept
all the tasks one level at a time. As our prime objective is to
minimize SLA violations and energy consumption, our pro-
posed algorithm checks each level’s SLA, makespan, and
energy consumption and executes the tasks based on it.
Our proposed algorithm checked the VM with an efficiency
suite to the task where the violation is zero or close to zero.
This will minimize the SLA violation and keep the most
efficient resources free for other tasks.

6.1. Calculation of Energy Consumption Using Different Scenarios.
The system calculates the power consumption of the system for
processing the task based on CPU time, RAM used, and band-
width used in the system. Once the process is over, the systemwill
display the overall power consumption of the system. We calcu-
late the energy consumption of the VMs based on static and
dynamic power consumption. We test it with a different set of
VMs and tasks. The experimental results show that our algorithm
outperforms well-known and common algorithms.

Initially, for the calculation of energy consumption, we
considered 5VMs and 25 tasks and workload generated ran-
domly from workflowsim. Generated energy consumptions
for the abovementioned VMs and tasks for FCFS, MCT,
Min–Min, RR, RATS-HM, and PSAMHWFSA are 1,756.2,
3,243, 1,876.5, 1,987.8, 1,875.35, and 435.76, respectively.
From Figure 4, it is evident that the proposed approach out-
performs existing algorithms in view of energy consumption
for the above scenario.

For the calculation of energy consumption, we considered
10VMs and 25 tasks and workload generated randomly from
workflowsim. Generated energy consumptions for the above-
mentioned VMs and tasks for FCFS, MCT, Min–Min, RR,
RATS-HM, and PSAMHWFSA are 2,976.3, 1,123.5, 1,089.7,
5,323, 2,133.4, and 335.87, respectively. From Figure 5, it is
evident that the proposed approach outperforms existing algo-
rithms in view of energy consumption for the above scenario.

TABLE 3: Configuration settings for simulation.

Name of entity Quantity

Tasks 25–100
Length of dependent tasks 600,000
VMs 5–15
Memory of physical host 16GB
Storage capacity of physical host 8 TB
Bandwidth of physical host 1,200Mbps
Memory of VMs 2GB
Hypervisor Xen
Operating system MAC
No. of datacentres 15

1,756.2

3,243

1,876.5 1,987.8 1,875.35

435.76

0
500

1,000
1,500
2,000
2,500
3,000
3,500

En
er

gy
 co

ns
um

pt
io

n 
(W

at
ts)

Algorithms

FC
FS

M
CT

M
in

–M
in RR

RA
TS

-H
M

PS
A

M
H

W
FS

A

Energy consumption for 5 VMs and 25 tasks

FIGURE 4: Calculation of energy consumption for 5VMs and 25 tasks.

Applied Bionics and Biomechanics 9



For the calculation of energy consumption, we consid-
ered 10VMs and 100 tasks and workload generated ran-
domly from workflowsim. Generated energy consumptions
for the abovementioned VMs and tasks for FCFS, MCT,
Min–Min, RR, RATS-HM, and PSAMHWFSA are 6,864,
8,000, 6,874.3, 7,012, 4,786.2, and 2,032.8, respectively.
From Figure 6, it is evident that the proposed approach out-
performs existing algorithms in view of energy consumption
for the above scenario.

For the calculation of energy consumption, we considered
15VMs and 100 tasks and workload generated randomly
from workflowsim. Generated energy consumptions for the
abovementioned VMs and tasks for FCFS, MCT, Min–Min,
RR, RATS-HM, and PSAMHWFSA are 5,654, 7,654, 5,632,
6,543, 4,675, and 1,987, respectively. From Figure 7, it is evi-
dent that the proposed approach outperforms existing algo-
rithms in view of energy consumption for the above scenario.

6.2. Calculation of Makespan Using Different Scenarios. It is
used to calculate the maximum time taken to complete the
entire task entered into the system. It determines the

maximum time of all the VMs used in the process. We cal-
culate the tasks’ makespan based on each task’s entry time
and exit time against each VM. Then find out the time which
is the maximum among the VMs. This will give the maxi-
mum time taken to complete the tasks. We test it with a
different set of VMs and tasks. Our experimental results
and the outcomes show that our proposed algorithm outper-
forms the well-known and common algorithms.

Initially, for the calculation of makespan, we considered
5VMs and 25 tasks and workload generated randomly
from workflowsim. Generated makespan for abovemen-
tioned VMs and tasks for FCFS, MCT, Min–Min, RR,
Max–Min, RATS-HM, and PSAMHWFSA are 285.14,
356.72, 287.88, 267.32, 186.22, 183.88, and 27.32, respec-
tively. From Figure 8, it is evident that the proposed
approach outperforms existing algorithms in view of make-
span for the above scenario.

For the calculation of makespan, we considered 10VMs
and 25 tasks and workload generated randomly from work-
flowsim. Generated makespans for the abovementioned VMs
and tasks for FCFS, MCT, Min–Min, RR, Max–Min, RATS-
HM, and PSAMHWFSA are 276.87, 387.23, 298.12, 245.36,

FC
FS

M
CT

M
in

–M
in RR

RA
TS

-H
M

PS
A

M
H

W
FS

A

2,976.3

1,123.5 1,089.7

5,323

2,123.4

335.87
0

1,000

2,000

3,000

4,000

5,000

6,000

En
er

gy
 co

ns
um

pt
io

n 
(W

at
ts)

Algorithms

Energy consumption for 10 VMs and 25 tasks

FIGURE 5: Calculation of energy consumption for 10 VMs and
25 tasks.

FC
FS

M
CT

M
in

–M
in RR

RA
TS

-H
M

PS
A

M
H

W
FS

A

6,864
8,000

6,874.3 7,012

4,786.2

2,032.8

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

En
er

gy
 co

ns
um

pt
io

n 
(W

at
ts)

Algorithms

Energy consumption for 10 VMs and 100 tasks 

FIGURE 6: Calculation of energy consumption for 10 VMs and
100 tasks.

5,654

7,654

5,632
6,543

4,675

1,987

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

En
er

gy
 co

ns
um

pt
io

n 
(W

at
ts)

Algorithms

Energy consumption for 15 VMs and 100 tasks 

FC
FS

M
CT

M
in

–M
in RR

RA
TS

-H
M

PS
A

M
H

W
FS

A

FIGURE 7: Calculation of energy consumption for 15VMs and 100
tasks.

285.14

356.72

287.88

186.22 183.88

27.32
0

50
100
150

250
200

300
350
400

M
ak

es
pa

n 
(m

s)

Algorithms

Makespan for 5 VMs and 25 tasks 

FC
FS

M
CT

M
in

–M
in

267.32

Ro
un

d 
Ro

bi
n

M
ax

–M
in

RA
TS

-H
M

PS
A

M
H

W
FS

A

FIGURE 8: Calculation of makespan for 5VMs and 25 tasks.

10 Applied Bionics and Biomechanics



174.34, 163.99, and 29.36, respectively. From Figure 9, it is
evident that the proposed approach outperforms existing
algorithms in view of makespan for the above scenario.

For the calculation of makespan, we considered 10VMs
and 100 tasks and workload generated randomly from work-
flowsim. Generated makespans for the abovementioned VMs
and tasks for FCFS, MCT, Min–Min, RR, Max–Min, RATS-
HM, and PSAMHWFSA are 296.34, 321.42, 267.76, 283.24,
185.36, 172.46, and 31.57, respectively. From Figure 10, it is
evident that the proposed approach outperforms existing
algorithms in view of makespan for the above scenario.

For the calculation of makespan, we considered 15VMs
and 100 tasks and workload generated randomly from work-
flowsim. Generated makespans for the abovementioned VMs
and tasks for FCFS, MCT, Min–Min, RR, Max–Min, RATS-
HM, and PSAMHWFSA are 297.35, 456.33, 302.35, 257.13,
185.65, 175.38, and 32.46, respectively. From Figure 11, it is
evident that the proposed approach outperforms existing
algorithms in view of makespan for the above scenario.

6.3. Calculation of SLA Violation Using Different Scenarios. This
policy verifies the SLA violation of each task based on a

predefined SLA. Before any task is performed, the SLA violation
will be checked, and the VM will be used to perform the task
where the violation is zero or minimum. Each time a task is
entered into the process, it will find its corresponding SLA as per
the agreement. Then it checks the idle VMs where the task can
be performed without violations or minimum violations. We
used the cuckoo search algorithm to find themost efficient VMs.

Then the system finds the one where there is a minimum
or zero violation. As per the output, it is clear that our pro-
posed algorithm outperforms the well-known and common
algorithms.

Initially, for the calculation of SLA violation, we consid-
ered 5VMs and 25 tasks and workload generated randomly
from workflowsim. Generated makespans for the abovemen-
tioned VMs and tasks for FCFS, MCT, Min–Min, RR,
Max–Min, RATS-HM, and PSAMHWFSA are 24, 31, 26,
32, 27, 18, and 5, respectively. From Figure 12, it is evident
that the proposed approach outperforms existing algorithms
in view of SLA violations for the above scenario.

For the calculation of SLA violation, we considered
10VMs and 25 tasks and workload generated randomly
from workflowsim. Generated makespans for the

276.87

387.23

298.12

174.34 163.99

29.36
0

50
100
150

250
200

300
350

450
400

M
ak

es
pa

n 
(m

s)

Algorithms

Makespan for 10 VMs and 25 tasks 

FC
FS

M
CT

M
in

–M
in

245.36

Ro
un

d 
Ro

bi
n

M
ax

–M
in

RA
TS

-H
M

PS
A

M
H

W
FS

A

FIGURE 9: Calculation of makespan for 10VMs and 25 tasks.

296.34
321.42

267.76

185.36 172.46

31.57
0

50
100
150

250
200

300
350

M
ak

es
pa

n 
(m

s)

Algorithms

Makespan for 10 VMs and 100 tasks 

FC
FS

M
CT

M
in

–M
in

283.24

Ro
un

d 
Ro

bi
n

M
ax

–M
in

RA
TS

-H
M

PS
A

M
H

W
FS

A

FIGURE 10: Calculation of makespan for 10VMs and 100 tasks.

297.35

456.33

302.35

185.65 175.38

32.46
0

50
100
150

250
200

300

400
450

350

500

M
ak

es
pa

n 
(m

s)

Algorithms

Makespan for 15 VMs and 100 tasks 

FC
FS

M
CT

M
in

–M
in

257.13

Ro
un

d 
Ro

bi
n

M
ax

–M
in

RA
TS

-H
M

PS
A

M
H

W
FS

A

FIGURE 11: Calculation of makespan for 15VMs and 100 tasks.

24

31
26 27

18

5

0
5

10
15

25
20

30
35

SL
A

 v
io

la
tio

n

Algorithms

SLA violation for 5 VMs and 25 tasks 

FC
FS

M
CT

M
in

–M
in

32

Ro
un

d 
Ro

bi
n

M
ax

–M
in

RA
TS

-H
M

PS
A

M
H

W
FS

A

FIGURE 12: Calculation of SLA violation for 5 VMs and 25 tasks.

Applied Bionics and Biomechanics 11



abovementioned VMs and tasks for FCFS, MCT, Min–Min,
RR, Max–Min, RATS-HM, and PSAMHWFSA are 26, 36,
22, 38, 23, 21, and 4, respectively. From Figure 13, it is evi-
dent that the proposed approach outperforms existing algo-
rithms in view of SLA violations for the above scenario.

For the calculation of SLA violation, we considered
10VMs and 100 tasks and workload generated randomly
from workflowsim. Generated makespans for the abovemen-
tioned VMs and tasks for FCFS, MCT, Min–Min, RR,
Max–Min, RATS-HM, and PSAMHWFSA are 31, 27, 24,
25, 21, 18, and 5, respectively. From Figure 14, it is evident
that the proposed approach outperforms existing algorithms
in view of SLA violations for the above scenario.

For the calculation of SLA violation, we considered
10VMs and 100 tasks and workload generated randomly
from workflowsim. Generated makespans for the abovemen-
tioned VMs and tasks for FCFS, MCT, Min–Min, RR,
Max–Min, RATS-HM, and PSAMHWFSA are 26, 29, 25,
31, 26, 19, and 3, respectively. From Figure 15, it is evident
that the proposed approach outperforms existing algorithms
in view of SLA violations for the above scenario.

7. Conclusion and Future Works

The algorithm we proposed is based on workflow issues in
cloud computing. We used three different algorithms to
determine the task priorities, VM performance mapping,
and finally, calculate the makespan, energy consumption,
and SLA violation. We used DAG representation to repre-
sent the different tasks based on the time required to com-
plete them. The time required is based on CPU, memory
usage, storage, and bandwidth required time. We simulate
the algorithms using the workflow simulator. We compare
our proposed algorithm with the popular workflow-based
algorithms. Our proposed approach is modeled by calculat-
ing the priorities of tasks, and then it fed to scheduler to
generate schedules on to precised VMs while minimizing
SLA violations and energy consumption. It was compared
over various scheduling algorithms, i.e., Max–Min, FCFS,
MCT, Min–Min, RATS-HM, and Round Robin, and the
proposed approach outperforms for the mentioned parame-
ters, i.e., SLA violation by 22% and energy consumption by
15%. Our proposed algorithm can be enhanced further to
minimize the migration time. Our proposed algorithm can
be enhanced further to minimize the migration time. This
research used a metaheuristic approach, but still, the sched-
uling problem in the cloud paradigm is a highly dynamic
situation, and with this approach, it is not able to predict
the type of upcoming workload onto the cloud console.
Therefore, In future work, we want to employ a machine
learning technique to schedule tasks effectively based on
workload arriving onto cloud console by predicting the
type of worklogs that comes onto the cloud paradigm.

Data Availability

The data can be provided by the corresponding author upon
request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

26

36

22 23 21

4

0
5

10
15

25
20

30

40
35

SL
A

 v
io

la
tio

ns

Algorithms

SLA violation for 10 VMs and 25 tasks 

FC
FS

M
CT

M
in

–M
in

38

Ro
un

d 
Ro

bi
n

M
ax

–M
in

RA
TS

-H
M

PS
A

M
H

W
FS

A

FIGURE 13: Calculation of SLA violation for 10VMs and 25 tasks.

31
27

24
21

18

5

0
5

10
15

25
20

30
35

SL
A

 v
io

la
tio

n

Algorithms

SLA violation for 10 VMs and 100 tasks 

FC
FS

M
CT

M
in

–M
in

25

Ro
un

d 
Ro

bi
n

M
ax

–M
in

RA
TS

-H
M

PS
A

M
H

W
FS

A

FIGURE 14: Calculation of SLA violation for 10VMs and 100 tasks.

26
29

25 26

19

3
0
5

10
15

25
20

30
35

SL
A

 v
io

la
tio

ns

Algorithms

SLA violation for 15 VMs and 100 tasks 

FC
FS

M
CT

M
in

–M
in

31

Ro
un

d 
Ro

bi
n

M
ax

–M
in

RA
TS

-H
M

PS
A

M
H

W
FS

A

FIGURE 15: Calculation of SLA violation for 15VMs and 100 tasks.

12 Applied Bionics and Biomechanics



References

[1] B. Gul, I. A. Khan, S. Mustafa, O. Khalid, S. S. Hussain, and
D. Dancey, “CPU and RAM energy-based SLA-aware
workload consolidation techniques for clouds,” IEEE Access,
vol. 8, pp. 62990–63003, 2020.

[2] E. I. Elsedimy and F. Algarni, “Toward enhancing the energy
efficiency and minimizing the SLA violations in cloud data
centers,” Applied Computational Intelligence and Soft Comput-
ing, vol. 2021, Article ID 8892734, 14 pages, 2021.

[3] N. D. Vahed, M. Ghobaei-Arani, and A. Souri, “Multiobjective
virtual machine placement mechanisms using nature-inspired
metaheuristic algorithms in cloud environments: a compre-
hensive review,” International Journal of Communication
Systems, vol. 32, no. 14, Article ID e4068, 2019.

[4] F. Fakhfakh, H. H. Kacem, and A. H. Kacem, “Workflow
scheduling in cloud computing: a survey,” in 2014 IEEE
18th International Enterprise Distributed Object Computing
ConferenceWorkshops and Demonstrations, pp. 372–378, IEEE,
Ulm, Germany, 2014.

[5] Y. Gao, S. Zhang, and J. Zhou, “A hybrid algorithm for multi-
objective scientific workflow scheduling in IaaS cloud,” IEEE
Access, vol. 7, pp. 125783–125795, 2019.

[6] Y. Wang, H. Liu, W. Zheng et al., “Multi-objective workflow
scheduling with Deep-Q-Network-based multi-agent rein-
forcement learning,” IEEE Access, vol. 7, pp. 39974–39982,
2019.

[7] S. Mustafa, K. Sattar, J. Shuja et al., “SLA-aware best fit
decreasing techniques for workload consolidation in clouds,”
IEEE Access, vol. 7, pp. 135256–135267, 2019.

[8] Z. Chen, K. Lin, B. Lin, X. Chen, X. Zheng, and C. Rong,
“Adaptive resource allocation and consolidation for scientific
workflow scheduling in multi-cloud environments,” IEEE
Access, vol. 8, pp. 190173–190183, 2020.

[9] P. Wang, Y. Lei, P. R. Agbedanu, and Z. Zhang, “Makespan-
driven workflow scheduling in clouds using immune-based
PSO algorithm,” IEEE Access, vol. 8, pp. 29281–29290, 2020.

[10] F. Yao, C. Pu, and Z. Zhang, “Task duplication-based scheduling
algorithm for budget-constrained workflows in cloud comput-
ing,” IEEE Access, vol. 9, pp. 37262–37272, 2021.

[11] L. Zhang, L. Wang, Z. Wen, M. Xiao, and J. Man, “Minimizing
energy consumption scheduling algorithm of workflows with
cost budget constraint on heterogeneous cloud computing
systems,” IEEE Access, vol. 8, pp. 205099–205110, 2020.

[12] N. Malik, M. Sardaraz, M. Tahir, B. Shah, G. Ali, and
F. Moreira, “Energy-efficient load balancing algorithm for
workflow scheduling in cloud data centers using queuing and
thresholds,” Applied Sciences, vol. 11, no. 13, Article ID 5849,
2021.

[13] R. Anitha and C. Vidyaraj, “Workload and SLA violation
prediction in cloud computing,” in 2019 Third International
Conference on Inventive Systems and Control (ICISC), pp. 582–
587, IEEE, Coimbatore, India, 2019.

[14] H. R. Faragardi,M. R. S. Sedghpour, S. Fazliahmadi, T. Fahringer,
and N. Rasouli, “GRP-HEFT: a budget-constrained resource
provisioning scheme for workflow scheduling in IaaS clouds,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31,
no. 6, pp. 1239–1254, 2020.

[15] M. N. Aktan and H. Bulut, “Metaheuristic task scheduling
algorithms for cloud computing environments,” Concurrency
and Computation: Practice and Experience, vol. 34, no. 9,
Article ID e6513, 2022.

[16] Y. Hu, H. Wang, and W. Ma, “Intelligent cloud workflow
management and scheduling method for big data

applications,” Journal of Cloud Computing, vol. 9, Article ID
39, 2020.

[17] Y. Cui and Z. Xiaoqing, “Workflow tasks scheduling optimization
based on genetic algorithm in clouds,” in IEEE 3rd International
Conference on Cloud Computing and Big Data Analysis
(ICCCBDA), pp. 6–10, IEEE, Chengdu, China, 2018.

[18] R. N. Talouki, M. H. Shirvani, and H. Motameni, “A heuristic-
based task scheduling algorithm for scientific workflows in
heterogeneous cloud computing platforms,” Journal of King
Saud University-Computer and Information Sciences, vol. 34,
no. 8, Part A, pp. 4902–4913, 2022.

[19] R. N. Talouki, M. H. Shirvani, and H. Motameni, “A hybrid
meta-heuristic scheduler algorithm for optimization of work-
flow scheduling in cloud heterogeneous computing environ-
ment,” Journal of Engineering, Design and Technology, vol. 20,
no. 6, pp. 1581–1605, 2022.

[20] M. H. Shirvani and R. N. Talouki, “A novel hybrid heuristic-
based list scheduling algorithm in heterogeneous cloud computing
environment for makespan optimization,” Parallel Computing,
vol. 108, Article ID 102828, 2021.

[21] M. H. Shirvani, “A hybrid meta-heuristic algorithm for scientific
workflow scheduling in heterogeneous distributed computing
systems,” Engineering Applications of Artificial Intelligence, vol. 90,
Article ID 103501, 2020.

[22] M. Tanha, M. H. Shirvani, and A. M. Rahmani, “A hybrid
meta-heuristic task scheduling algorithm based on genetic and
thermodynamic simulated annealing algorithms in cloud
computing environments,” Neural Computing and Applica-
tions, vol. 33, pp. 16951–16984, 2021.

[23] M. H. Shirvani and R. N. Talouki, “Bi-objective scheduling
algorithm for scientific workflows on cloud computing platform
with makespan and monetary cost minimization approach,”
Complex & Intelligent Systems, vol. 8, pp. 1085–1114, 2022.

[24] Y. A. Alaie, M. H. Shirvani, and A. M. Rahmani, “A hybrid bi-
objective scheduling algorithm for execution of scientific
workflows on cloud platforms with execution time and
reliability approach,” The Journal of Supercomputing, vol. 79,
pp. 1451–1503, 2023.

[25] M. Sohani and S. C. Jain, “A predictive priority-based dynamic
resource provisioning scheme with load balancing in heteroge-
neous cloud computing,” IEEE Access, vol. 9, pp. 62653–62664,
2021.

[26] S.Mustafa, K. Bilal, S. U. R.Malik, and S. A.Madani, “SLA-aware
energy efficient resource management for cloud environments,”
IEEE Access, vol. 6, pp. 15004–15020, 2018.

[27] P. K. Bal, S. K. Mohapatra, T. K. Das, K. Srinivasan, and
Y.-C. Hu, “A joint resource allocation, security with efficient
task scheduling in cloud computing using hybrid machine
learning techniques,” Sensors, vol. 22, no. 3, Article ID 1242,
2022.

Applied Bionics and Biomechanics 13




