Tetsuzo Tanino Tamaki Tanaka Masahiro Inuiguchi

Multi-Objective Programming and Goal Programming

Theory and Applications

With 77 Figures and 48 Tables

TECHNISCHE
INFORMATIONSBIBLIOTHEK
UNIVERSITÄTSBIBLIOTHEK
HANNOVER

Contents

\mathbf{P}	ART I: Invited Papers	1
	ultiple Objective Combinatorial Optimization – A Tutorial . atthias Ehrgott, Xavier Gandibleux	3
1	Importance in Practice	3
2	Definitions	4
3	Characteristics of MOCO Problems	4
4	Exact Solution Methods	5
5	Heuristic Solution Methods	8
6	Directions of Research and Resources	12
Re	ferences	13
	nalysis of Trends in Distance Metric Optimisation Modelling	
	Operational Research and Soft Computing	19
D.	F. Jones, M. Tamiz	
1	Introduction	19
2	Distance Metric Optimisation and Meta Heuristic Methods	20
3	Distance Metric Optimisation and the Analytical Hierarchy Process	21
4	Distance Metric Optimisation and Data Mining	22
5	Some Further Observations on Goal Programming Modelling Practice	22
6	Conclusions	23
Ke	ferences	23
	OP/GP Approaches to Data Mining	27
	rotaka Nakayama	
1	Introduction	27
2	Multisurface Method (MSM)	28
3	Goal Programming Approaches to Pattern Classification	29
4	Revision of MSM by MOP/GP	30
5	Support Vector Machine	31
6	Concluding Remarks	34
Ke	ferences	34
	omputational Investigations Evidencing Multiple Objectives	
in	Portfolio Optimization	35
Ra	lph E. Steuer, Yue Qi	
1	Introduction	35
2	Different Perspectives	38
3	Computational Investigations	40
4	Concluding Remarks	42
Re	ferences	43

	ehavioral Aspects of Decision Analysis with Application to	
Pι	ablic Sectors	45
Hi	royuki Tamura	
1	Introduction	45
2	Behavioral Models to Resolve Expected Utility Paradoxes	45
3	Behavioral Models to Resolve Restrictions of Additive/Utility In-	
	dependence in Consensus Formation Process	49
4	Concluding Remarks	54
Re	ferences	54
	ptimization Models for Planning Future Energy Systems in	
	rban Areas	57
Ki	ichiro Tsuji	
1	Introduction	57
2	Optimization Problems in Integrated Energy Service System	58
3	Energy System Optimization for Specific Area	59
4	Optimization of DHC System[5]	61
5	Optimization of Electric Power Distribution Network[6]	62
6	Concluding Remarks	63
Re	ferences	64
M	ultiple Objective Decision Making in Past, Present, and Fu-	
tu	re	65
$G\iota$	vo-Hshiung Tzeng	
1	Introduction	65
2	Fuzzy Multiple Objectives Linear Programming	67
3	Fuzzy Goal Programming	67
4	Fuzzy Goal and Fuzzy Constraint Programming	68
5	Two Phase Approach for Solving FMOLP Problem	69
6	Goal Programming with Achievement Functions	70
7	Multiple Objective Programming with DEA	71
8	De Novo Programming Method in MODM	73
9	Summary	74
	ferences	75
\mathbf{D}_{2}	ynamic Multiple Goals Optimization in Behavior Mechanism	77
	L. Yu, C. Y. ChiangLin	
1	Introduction	78
2	Goal Setting and State Evaluation	79
3	Charge Structures and Attention Allocation	81
4	Least Resistance Principle	82
5	Information Input	82
6	Conclusion	83
	ferences	83
P	ART II: General Papers – Theory	85

An Example-Based Learning Approach to Multi-Objective Pro-	
gramming	87
Masami Amano, Hiroyuki Okano	
1 Introduction	
2 Our Learning Approach	88
3 Numerical Experiments	90
4 Concluding Remarks	92
References	92
Support Vector Machines using Multi Objective Programming Takeshi Asada, Hirotaka Nakayama	93
1 Principle of SVM	
2 Multi Objective Programming formulation	94
3 Application to Stock Investment problem	
4 Conclusion	97
References	
On the Decomposition of DEA Inefficiency	99
1 Introduction	99
2 Scale and Congestion Components	100
3 Conclusion	
References	
An Approach for Determining DEA Efficiency Bounds	105
Yao Chen, Hiroshi Morita, Joe Zhu	
1 Introduction	105
2 Determination of the Lower Bounds	
References	
An Extended Approach of Multicriteria Optimization for MOD	M
Problems	
Hua-Kai Chiou, Gwo-Hshiung Tzeng	
1 Introduction	111
2 The Multicriteria Metric for Compromise Ranking Methods	112
3 The Extended Compromise Ranking Approach	
4 Illustrative Example	
5 Conclusion	
References	
The Method of Elastic Constraints for Multiobjective Com-	
binatorial Optimization and its Application in Airline Crew	
Scheduling	. 117
Matthias Ehrgott, David M. Ryan	·
1 Multiobjective Combinatorial Optimization	117
2 The Method of Elastic Constraints	

3	Bicriteria Airline Crew Scheduling: Cost and Robustness	119
4	Numerical Results	121
5	Conclusion	121
Re	eferences	122
Sc	ome Evaluations Based on DEA with Interval Data	123
Tc	omoe Entani, Hideo Tanaka	
1	Introduction	123
2	Relative Efficiency Value	
3	Approximations of Relative Efficiency Value with Interval Data	
4	Numerical Example	
5	Conclusion	
Re	eferences	
P	ossibility and Necessity Measures in Dominance-based Rough	
	et Approach	129
	llvatore Greco, Masahiro Inuiguchi, Roman Słowiński	120
1	Introduction	120
2	Possibility and Necessity Measures	130
3	Approximations by Means of Fuzzy Dominance Relations	
4	Conclusion	
Re	eferences	
C!	mplex Coding Genetic Algorithm for the Global Optimiza-	
	on of Nonlinear Functions	195
	bdel-Rahman Hedar, Masao Fukushima	199
	Introduction	195
1	Description of SCGA	
2	Experimental Results	
3	Conclusion	
-	eferences	
r.e	eterences	140
	n Minimax and Maximin Values in Multicriteria Games	141
M	asakazu Higuchi, Tamaki Tanaka	
1	Introduction	
2	Multicriteria Two-person Zero-sum Game	
3	Coincidence Condition	
Re	eferences	146
В	acktrack Beam Search for Multiobjective Scheduling Prob-	
le	m	147
N	aoya Honda	
1	Introduction	
2	Problem Formulation	
3	Search Method	
4	Numerical Experiments	151

5	Conclusion	152
Re	eferences	152
C	ones to Aid Decision Making in Multicriteria Programming	153
	rian J. Hunt, Margaret M. Wiecek	
1	Introduction	153
2	Problem Formulation	154
3	Pointed and Non-Pointed Cones in Multicriteria Programming	154
4	Decision Making with Polyhedral Cones	156
5	Example	157
6	Conclusion	158
Re	eferences	158
E	fficiency in Solution Generation Based on Extreme Ray Gen-	
er	ration Method for Multiple Objective Linear Programming	159
M	asaaki Ida	
1	Introduction	159
2	Cone Representation and Efficiency Test	160
3	Efficient Solution Generation Algorithm	161
4	Numerical Example	
5	Conclusion	164
Re	eferences	164
	obust Efficient Basis of Interval Multiple Criteria and Mul-	
_	ple Constraint Level Linear Programming	165
	asaaki Ida	
1	Introduction	
2	Multiple Criteria and Multiple Constraint Level Linear Programming	
3	Interval Coefficient Problem	
4	Main Results	
5	Conclusion	
Re	eferences	169
	n Interactive Satisficing Method through the Variance Mini-	
	ization Model for Fuzzy Random Multiobjective Linear Pro-	
_	ramming Problems	171
	ideki Katagiri, Masatoshi Sakawa, Shuuji Ohsaki	1 17 1
1	Introduction	
2	Formulation	1/2
3	Interactive Decision Making Using the Variance Minimization Model Based on a Possibility Measure	174
4	Conclusion	
_	eferences	
w	5161 G110G0	TIO

	n Saddle Points of Multiobjective Functions	177
K	enji Kimura, El Mostafa Kalmoun, Tamaki Tanaka	
1	Introduction	177
2	Preliminary and Terminology	
3	Existense Results of Cone Saddle Points	178
Re	eferences	181
Δ	n Application of Fuzzy Multiobjective Programming to Fuzzy	
	HP	183
	roaki Kuwano	100
1	Introduction	183
2	Preliminaries	
3	Subjective Evaluation	
4	A Numerical Example	
4 5	Conclusions	
_	eferences	
re	nerences	109
O	n Affine Vector Variational Inequality	191
G°	ue Myung Lee, Kwang Baik Lee	
1	Introduction and Preliminaries	191
2	Main Result	192
Re	eferences	194
G	raphical Illustration of Pareto Optimal Solutions	197
	aisa Miettinen	10.
1	Introduction	107
2	Graphical Illustration	
3	Discussion	
4	Conclusions	
•	eferences	
10	ererences	202
	n Efficiency Evaluation Model for Company System Orga-	
	zation	203
$T\epsilon$	akashi Namatame, Hiroaki Tanimoto, Toshikazu Yamaguchi	
1	Introduction	
2	Characteristics of the Company System Organization	203
3	Evaluation Model	204
4	Example	207
5	Conclusion	208
R	eferences	208
cı.	to shall am Caladian As (Tons I are 17 the December 1991)	
	cackelberg Solutions to Two-Level Linear Programming Probms with Random Variable Coefficients	209
		209
	hiro Nishizaki, Masatoshi Sakawa, Kosuke Kato, Hideki Katagiri	200

2	Two-level Linear Programming Problems with Random Variable	
	Coefficients	
3	A Numerical Example	213
Re	eferences	. 214
O:	n Inherited Properties for Vector-Valued Multifunctions	215
	ogo Nishizawa, Tamaki Tanaka, Pando Gr. Georgiev	
1	Introduction	. 215
2	Inherited Properties of Convexity	
3	Inherited Properties of Semicontinuity	
4	Conclusions	
Re	eferences	
м	Culticriteria Expansion of a Competence Set Using Genetic	
	Igorithm	221
	rafim Opricovic, Gwo-Hshiung Tzeng	
1	Introduction	
2	Multicriteria Expansion of a Competence Set	
3	Multicriteria Genetic Algorithm	. 222
4	Illustrative Example	. 224
5	Conclusion	
Re	eferences	. 226
	omparing DEA and MCDM Method	. 227
$S\epsilon$	erafim Opricovic, Gwo-Hshiung Tzeng	
1	Introduction	
2	Comparison of DEA and VIKOR	
3	Numerical Experiment	
4	Conclusions	
Re	eferences	. 232
	near Coordination Method for Multi-Objective Problems	. 233
	usaba Phruksaphanrat, Ario Ohsato	
1	Introduction	
2	Lexicographic Models	. 234
3	Efficient Linear Coordination Method Based on Convex Cone Con-	
	cept	
4	Numerical Example	
5	Conclusions	
R	eferences	. 238
	xperimental Analysis for Rational Decision Making by As-	
	ration Level AHP	. 239
K	ouichi Taji, Junsuke Suzuki, Satoru Takahashi, Hiroyuki Tamura	
1	Introduction	
2	Irrational Ranking	. 240

3	Cause and Several Revisions	241
4	Experimental Analysis	242
5	Conclusion	244
Re	ferences	244
CI	hoquet Integral Type DEA	245
	ichiro Takahagi	
1	Introduction	245
2	Fuzzy Measure Choquet Integral Model	
3	CCR Model (Notations)	
4	Choquet Integral Type DEA (Maximum Model)	
5	Choquet Integral Type DEA(Average Model)	
6	Numerical Examples	
7	Conclusions	
Re	ferences	
_		
	teractive Procedures in Hierarchical Dynamic Goal Pro-	051
_	amming	251
	Trzaskalik	051
1	Discrete Multi-Objective Dynamic Programming Problem	
2	Goal Programming Approach	
3	Hierarchical Goal Programming Approach	
4 D	ferences	
ne	serences	200
Sc	olution Concepts for Coalitional Games in Constructing Net-	
	orks	257
M	asayo Tsurumi, Tetsuzo Tanino, Masahiro Inuiguchi	
1	Introduction	
2	Games in Constructing Networks	
3	Conventional Solution Concepts	
4	A New Concept of Demand Operations	
5	Conclusion	
Re	eferences	262
м	ulti-Objective Facility Location Problems in Competitive	
	nvironments	263
	ıkeshi Uno, Hiroaki Ishii, Seiji Saito, Shigehiro Osumi	
1	Introduction	263
$\overline{2}$	Medianoid Problem with Single Objective	264
3	Medianoid Problem with Multi-Objective	
4	Algorithm for Competitive Facility Location Problems	
5	Numerical Experiments	
6	Conclusions	
Re	eferences	

	olving Portfolio Problems Based on Meta-Controled Boltz-	
	ann Machine	269
	nzo Watada, Teruyuki Watanabe	
1	Introduction	
2	Portfolio Selection Problem	
3	Energy Functions for Meta-controlled Boltzmann Machine	
4	Numerical Example	
5	Concluding Remarks	
Re	eferences	273
Tì	radeoff Directions and Dominance Sets	275
$P\epsilon$	etra Weidner	
1	Introduction	. 275
2	Tradeoff Concepts	276
3	A Scalarization Using Widened Dominance Sets	278
4	Calculation of Tradeoffs	. 279
Re	eferences	. 280
	Soft Margin Algorithm Controlling Tolerance Directly in Yoon, Hirotaka Nakayama, Yeboon Yun	
1	Introduction	. 281
2	Error Bound for Soft Margin Algorithms	. 281
3	The Proposed Method	. 2 83
4	Conclusion	. 285
Re	eferences	. 286
A	n Analysis of Expected Utility Based on Fuzzy Interval Data	a 289
Sh	nin-ichi Yoshikawa, Tetsuji Okuda	
1	Introduction	. 289
2	Fuzzy Interval Data and Membership Functions	. 290
3	Expected Utility Using Fuzzy Interval Data	. 290
4	The Value of Fuzzy Information	. 291
5	The Amount of Fuzzy Information μ_i	
6	Numerical Example	
7	Conclusions	
G	n Analyzing the Stability of Discrete Descriptor Systems via eneralized Lyapunov Equations	
1	Introduction	. 295
2	Preliminaries	
3	Asymptotic Stability	. 298
D.	of one on one	200

	olving DEA via Excel	301
	e Zhu	004
1	Introduction	
2	DEA Spreadsheets	
3	Conclusions	
Re	eferences	306
P.	ART III: General Papers – Applications	307
	lanning and Scheduling Staff Duties by Goal Programming.	309
	dney CK Chu, Christina SY Yuen	000
1	Introduction	
2	Goal Programming Models	
3	A Concluding Remark	
Κe	eferences	315
	n Interactive Approach to Fuzzy-based Robust Design	317
H_{i}	ideo Fujimoto, Yu Tao, Satoko Yamakawa	
1	Introduction	
2	Proposed Approach	
3	Pressure Vessel Design Problem	
4	Conclusions	323
Re	eferences	324
A	Hybrid Genetic Algorithm for solving a capacity Constrained	
T	ruckload Transportation with crashed customer	325
Sa	angheon Han, Yoshio Tabata	
1	Introduction	325
2	The Vehicle Routing Problem; The Case of Crashed Customers	326
3	A hybrid methodology for Vehicle Routing Problem	32 8
4	Numerical Example and Discussions	330
5	Conclusions and Recommendations	330
R	eferences	331
A	Multi-Objective Programming Approach for Evaluating Agri-	
E	nvironmental Policy	333
K	iyotada Hayashi	
1	Introduction	333
2	Mathematical Programming Approach to Agri-Environmental Problems	334
3	Possibility of Integrated Evaluation	
4	Concluding Remarks	
-	eferences	

	prove the Shipping Performance of Build-to-ORder (BTO) roduct in Semiconductor Wafer Manufacturing
	ao-Chung Hsu, Chen-Yuan Peng, Chia-Hung Wu
1	Introduction
2	The Yield Forecast Model
3	Computational Simulation
4	An Empirical Case and the Application
5	Conclusion and Future Work
Re	ferences
In	ompetence Set Expansion for Obtaining Scheduling Plans in telligent Transportation Security Systems
	-Chung Hu, Yu-Jing Chiu, Chin-Mi Chen, Gwo-Hshiung Tzeng
1	Introduction
2	Competence Set Expansion
3	A Relationship-Based Method
4 5	Empirical Results
ა 6	Conclusions
~	ferences
ne	lerences 592
fic	EA for Evaluating the Current-period and Cross-period Ef- iency of Taiwan's Upgraded Technical Institutes
	-Chen Liu, Chuan Lee, Gwo-Hshiung Tzeng
1	Introduction
2	The Selection of School Objects and Variables for Performance Evaluation
3	Building the Performance Model
4	Emperical Study: Taiwan's 38 Upgraded Technical Institutes 357
5	Conclusions
Re	ferences
Τe	sing DEA of REM and EAM for Efficiency Assessment of echnology Institutes Upgraded from Junior Colleges: The ase in Taiwan
	-Chen Liu, Chuan Lee, Gwo-Hshiung Tzeng
1	Introduction
2	Selection of Variables and Samples for Efficiency Assessment
3	Measure of Assessment Model
4	Analysis and Conclusion for the Results of Case Study 365
5	Conclusions
Re	ferences

The Comprehensive Financial Risk Management in a Bank -
Stochastic Goal Programming Optimization 367
Jerzy Michnik
1 Introduction
2 Model Formulation
3 The Exemplary Model and Computational Tests
4 Conclusions
References
The Effectiveness of the Balanced Scorecard Framework for
E-Commerce
Jamshed J. Mistry, B. K. Pathak
1 Introduction
2 Background and Significance
3 Methodology
4 Results
References
A Study of Variance of Locational Price in a Deregulated Gen-
eration Market
Jin-Tang Peng, Chen-Fu Chien
1 Introduction
2 Proposed Market Mechanism
3 Scenario and Simulation Analysis
4 Discussion and Conclusion
References
Pseudo-Criterion Approaches to Evaluating Alternatives in
Mangrove Forests Management
Santha Chenayah Ramu, Eiji Takeda
1 Introduction
2 Ternary Comparison Method (TCM)
3 Pseudo-Criterion Approaches to Mangrove Forests Management 390
4 Concluding Remarks
References
Energy-Environment-Cost Tradeoffs in Planning Energy Sys-
tems for an Urban Area
Hideharu Suqihara, Kiichiro Tsuji
1 Introduction
2 Definitions of Energy System Alternatives
3 Formulation of Multi-objective Optimization Model
4 Tradeoff Analyses
5 Conclusion
Reference 400

\mathbf{D}	EA Approach to the Allocation of Various TV Commercials
	Dayparts
K	ntsuaki Tanaka, Eiji Takeda
1	Introduction
2	DEA Approach to the Allocation of Various TV Commercials to
	Dayparts
3	Concluding Remarks
Re	ferences
	nalyzing Alternative Strategies of Semiconductor Final Test-
	g 409
H	ıng-Ju Wang, Chen-Fu Chien, Chung-Jen Kuo
1	Introduction
2	Research Framework
3	An Empirical Study 411
4	Conclusion
Re	eferences
A	Discrete-Time European Options Model under Uncertainty
in	Financial Engineering
$Y\iota$	ıji Yoshida
1	Introduction
2	Fuzzy Stochastic Processes
3	European Options in Uncertain Environment
4	The Expected Price of European Options 419
Re	eferences
M	ultipurpose Decision-Making in House Plan by Using AHP . 421
Bi	ngjiang Zhang, Hui Liang, Tamaki Tanaka
1	Introduction
2	Housing Planing Model by AHP
3	Comprehensive Evaluation for the House of Room Arrangements 423
4	Algorithm
5	Conclusion and Remarks
Re	eferences