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MULTIOBJECTIVE SYMMETRIC DUALITY WITH INVEXITY

T.R. GULATI, I. HUSAIN AND A. AHMED

Usual duality results are proved for Wolfe and Mond-Weir type multiobjective sym-
metric dual problems without nonnegativity constraints under invexity/generalised
invexity assumptions. Moreover, assuming the kernel function to be skew symmet-
ric, the multiobjective problems are exhibited to be self duals.

1. INTRODUCTION

Symmetric duality in mathematical programming in which the dual of the dual
is the primal was first introduced by Dorn [5]. Subsequently, Dantzig, Eisenberg and
Cottle [4], Chandra and Husain [2], Mond and Weir [10] and others cited in these
references developed significantly the notion of symmetric duality. The Wolfe dual
models, presented in [4], involve a scalar kernel function K(x,y), x € Rn, y £ Rm,
which is required to be convex in x for fixed y and concave in y for fixed x while in [10]
for Mond-Weir dual models, K(x,y) is assumed to be pseudoconvex/pseudoconcave.
Mond and Cottle [8] showed that under the skew symmetry of K(x, y), the pair of
symmetric dual problems of [4] becomes self dual. Mond and Weir [10] also deduced a
similar result for their models.

Hanson [7] introduced the concept of invexity. Since then many duality results
which previously required convexity/generalised convexity assumptions have been ex-
tended by using invexity/generalized invexity. Recently Smart and Mond [11] applied
invexity to symmetric dual problems of [9] omitting nonnegativity constraints but with
an additional assumption on the invexity.

In this paper, we apply invexity/generalised invexity to Wolfe and Mond-Weir type
symmetric dual multiobjective problems without nonnegativity constraints, occurring
in the symmetric dual models formulated by Weir and Mond [12], but invexity and
generalised invexity bear an additional restriction in the spirit of [11]. Self duality for
our problems is also incorporated.
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2. PREREQUISITES

Let K(x, y) : Rn x Rm —• Rp denote a twice differentiable function and VyK(x, y)

the m x p matrix of first order partial derivatives. For the scalar function XTK with
X E Rp, VX(ATA") and Vy(A

T.K") denote gradient (column) vectors with respect to
x and y respectively; and Vyy(ATA') and Vyx(X

TK) denote respectively the m x m

and n x m matrices of second order partial derivatives.

The following ordering relations in R" are recalled for our use. If x, u € Rn, then

x ^ u <=> xi ^ u\ i € {1, 2, . . . , n},

x > u •£> x* ^ u*, i € {1, 2, . . . , n), and x ^ u,

x > u <=> x ' > u\ i e { 1 , 2 , ... , n } .

Consider the usual constrained multiobjective optimisation problem.

(VP): Minimise / (x) = (f^x), f2(x), ..., / P ( X ) )
Subject to

x e X = {xeRn \g(x) ^0}.
where / : Rn -^ R? and g : Rn -» Rm.

DEFINITION 1: (Geoffrion [6].) A point xo € X is said to be an efficient solution

of (VP) if there exists no other feasible point x € X such that f(x) < f(x0).

A point xo is said to be a properly efficient solution of (VP) if it is efficient and if

there exists a scalar M > 0 such that for each i € {1, 2, . . . , p} and x £ X satisfying

P{x) < fl(x0), we have,

f(xo)-f(x)
/'(s)-/'W '

for some j such that f*(x) > / J (x 0 ) .

An efficient point that is not properly efficient is said to be improperly efficient.
Thus xo is improperly efficient means that for every scalar M > 0 (no matter how
large) there is a point x € X and an i such that /*(x) < /'(xo) and

for all j satisfying fi (x) > P (XQ) .

DEFINITION 2: (Borwein [1].) A point x0 € X is said to be weak efficient for
(VP), if there exists no other point x € X with f(x) < f(x0).

It readily follows that if x0 e X is efficient, then it is also weak efficient.

DEFINITION 3: A function <j> : Rn —> R is said to be invex with respect to 7/ if
there exists a vector function r) : Rn x Rn —• R" such that for each x and u in Rn,
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The function <j) is said to be pseudo-invex with respect to 77 if there exists a vector
function rj(x, u) € Rn such that for each x and u in Rn,

r)T(x,u)Vx<f>(u) > 0 ^ (f>(x) > <f>{u).

3. WOLFE TYPE SYMMETRIC DUALITY

In this section, we present Wolfe type symmetric dual problems and establish weak
and strong duality theorems.

Consider the following pair of symmetric dual problems:

PRIMAL PROBLEM.

(WP): Minimise K(x, y) - [yTVy (X
TK) (x, y)]e

Subject to

(1) Vy{XTK)(x,y)^0,

(2) A > 0, XTe = 1.

DUAL PROBLEM.

(WD): Maximise K(u, v) - [uTVx (\
TK) (u, v)]e

Subject to

(3) Vx(X
TK)(u,v)^0,

(4) A > 0, XTe = 1.

These are the symmetric dual problems formulated by Weir and Mond [12], with
the omission of constraints x ^ 0 from (WP) and v ^ 0 from (WD). In the following
analysis, we shall use Z and W for the set of feasible solutions of (WP) and (WD)
respectively. If the variable A in the above problems (WP) and (WD) is fixed to be
Ao, we shall denote these problems by (WP) AO and (WD) \o. Similar notations will be
followd for Mond-Weir type symmetric dual problems discussed in Section 4.

THEOREM 1. (Weak Duality.) Let K(.,y) be invex in x with respect to rj and
—K(x,.) be invex in y with respect to £, with r](x,u) + u ^ 0 and £(v,y) + y ^ 0,
whenever (x,y,X) € Z and (u,v,X) € W. Then

P R O O F : By invexity of K(.,y) and —K(x,.), we have

(5) XTK(x, v) - XTK(u, v) > r,T(x, u)Vx (XTK) (u,«),
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and

(6) -\TK(x,v) + XTK(x,y) > -^T(v,y)Vy(X
TK)(x,y).

Adding the above inequalities, we obtain

(7) \TK(x, y) - XTK(u, v) > x]T(z, u)Vx (X
TK) (u, v) - £T(v, y)Vy {XTK) (x, y).

From (3) and r)(x, U) + u ^ 0, we have

implying

(8) riT(x,u)Vx(X
TK)(u,v) > -uTVx(X

TK)(u,v).

Also, from (1) and £(t>, y) + y ^ 0, we have

(9) -?(v, y)Vy (X
TK) (x, y) > yTVy (XTK) (x, y).

From (7), (8), and (9), we obtain

XTK(x, y) - XTK(u, v) > -uTVx {XTK) (u, v) + yTVy (XTK) (x, y),

which gives

XTK(x, y) - yTVy (XTK) (x, y) > XTK(u, v) - uTVx (XTK)(u, v).

Since XTe = 1, the above inequality can be written as

XTK(x,y) - (XTe)yTVy(X
TK)(x,y) > XTK(u,v) - (XTe)uTVx(X

TK)(u,v),

that is,

AT [K(x, y) - (yTVy (XTK) (x, y)) e] > XT [K(U, V) - (uTV, (AT^) (u,«)) e]. Q

REMARK 1. If the invexity assumptions of Theorem 1 are replaced by convexity and
concavity, the conditions j](x, u) + u ^ 0 and £(v, y) + y ^ 0 become x ^ 0 and
v ^ 0. These conditions may be augmented to problems (WP) and (WD) respectively
to obtain the pair of Wolfe type symmetric dual problems, considered by Mond and
Weir [12].

The following theorem also serves to correct the proof of Theorem 2 in Weir and
Mond [12] as while applying Fritz John conditions to (WP), the contraint XTe = 1 has
not been considered.
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THEOREM 2 . (Strong Duality.) Let the hypotheses of Theorem 1 be satisfied.

Assume that

(Al): (XQ, 2/0) Ao) is a weak efficient solution of (WP),

(A2): the Hessian matrix Vyy (A^if) (XQ, yo) is positive or negative definite, and

(A3): the set { V y K ^ x o , y0), VyK
2(x0, y0), ..., VyK

p(x0, j / 0 )} is linearly in-

dependent.

Then (xo, yo) is a properly efficient solution of (WD)\o.

PROOF: Since (xo,yo,\o) is a weak efficient solution of (WP), by the Fritz John
optimality conditions [3], there exist a € Rp, f3 e Rm, j € Rp and r) G R such that

(10) Vx(a
TK) + Vy i(A^)(/?- {aTe)y0) - 0,

(11) (VyK)(a - (aTe)A0) + Vyy{\T
aK) (j3 - (aTe)y0) = 0,

(12) (j3 - {aTe)y0)
TVyK

i -ji+r, = 0,ie{l,2,...,p}

(13) 7TA0 = 0,

(14) / ? T V y ( A ^ ) = 0 ,

(15) (a,/3,~/)>0,

(16) (a, P, 7 , » ? ) ^ 0 ,

with all derivatives evaluated at (xo,2/o)- Since Ao > 0 and 7 ^ 0 , equation (13)

yields 7 = 0. By multiplying (12) by fa* — ( a T e ) A o ) , » £ {1, 2, . . . , p } , summing the

resulting expression for all i and using A^e = 1, we obtain

1 - (aTe)y0)
T

t = l

t = l t = l

That is,

(17) ( /?- (aTe)yo)TVyK(xo, yo)(a - (aTe)A0) = 0.

On multiplying (11) by ((3 — (aTe)y0) and using (17), we have

(18) (/? - ( a r e ) 2 / 0 ) T V w ( A ^ ) (/3 - {aTe)y0) = 0,
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which, in view of assumption (A2), leads to the relation

(19) H - (aTe)y0 = 0.

Therefore from (12) it follows that t] — 0.

If a — 0, then (19) yields (3 = 0. Consequently (a, (3,7,7/) — 0, contradicting the
Fritz John condition (16). Hence, a > 0 and

(20) aTe > 0.

From equations (11) and (19),

VyK(xo,yo)(a- (c*Te)A0) = 0 ,

which by assumption (A3) gives

(21) a=(aTe)\0.

Now using relations (10), (19), (20) and (21), we get

(22) Va(Ag"A-)(xo,yo) = (Vx(a
TK)(xo,yo))/(a

Te) = 0.

Hence (xo,t/o) is feasible for (WD)^o- Also from (22)

and from (14), (19) and (20),

Therefore

(23) xl Vx (%K) (x0, y0) = y%Vy (\%K) (x0, y0) = 0,

that is, the two objectives are equal.

Now we show proper efficiency of (xo,j/o) for (WD)AO by exhibiting a contradi-
tion. If (xo,yo) is not efficient, then there exists (UOJ^O) feasible for (WD)XOJ that is,
(uo,vo,Xo) € W such that

K{uo,vo)-
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In view of (23), it follows that

K{uo,vo) - (uZvx(\%K)(uo,vo))e > K{xo,yo) - (yZ

Hence

( ^ l ) ) \ % [ 0 , y0) -
which contadicts Theorem 1. If (xo,yo) were an improperly efficient solution of

( W D ) A O , then for some feasible (UO,VQ) and some i,

and

for any M > 0, and all j satisfying

This means that

can be made arbitrary large whereas

>

or

is finite for all j / i. Since Ao = (Aj, AQ, . . . , A^) > 0, we get

'(uo, wo) - (ttfV* {XlK)(uo, vo)) } - {^(XQ, y0) - (xjvx (X^K) (x0, y0)) }]

(using (23) and A^e = 1 ) . This again contradicts Theorem 1. D

A converse duality theorem may be merely stated as its proof would run analogously

to that of Theorem 2.
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THEOREM 3 . (Converse Duality.) Let the hypotheses of Theorem 1 be satisfied.
Assume that

(Bl): (uo, vo, Ao) is a weak efficient solution of (WD),

(B2): the Hessian matrix Vxx (XQK) (U0, V0) is positive or negative definite, and

(B3): the set j V x ^ ^ u o , v0), VxK
2(u0, v0),... , VxK

p(u0, v o ) | is linearly in-

dependent.

Then (uo, vo) is a properly efficient solution of (WP) \o •

4. MOND-WEIR TYPE SYMMETRIC DUALITY

In this section, we consider the following pair of Mond-Weir type symmetric dual
problems:

PRIMAL PROBLEM.

(MP): Minimise K{x,y)
Subject to

(24) V,(A^)(i,»K0,

(25) yTVy(\
TK)(x,y)>0,

(26) A > 0

DUAL PROBLEM.

(MD): Maximise K(u, v)
Subject to

(27) Vx(\
TK)(u,v)>0,

(28) uTVx(X
TK){u,v) s$0,

(29) A > 0.

When x ̂  0 is adjoined to (MP) and v ̂  0 to (MD), the above problems represent

the pair of symmetric dual problems considered by Weir and Mond [12].

In the following analysis, we shall use H and G for the set of feasible solutions of

the problems (MP) and (MD) respectively.

THEOREM 4 . (Weak Duality.) Let (x, y,X) € H and (u, v, A) £ G. Let \TK(., y)
be pseudo-invex with respect to i) for fixed y, and —\TK(x,.) be pseudo-invex with
respect to £ for fixed x, with rj(x, u) + u ̂  0 and £(i>, y) + y ̂  0. Then

\TK(x,y) > \TK(u)V).
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P R O O F : Prom (27) and 77(2;, u) + u ^ 0, we have

r,T(x,u)(vx(X
TK)(u,v)) 2 -uTVx(\

TK)(u,v) > 0,

(using (28)) which, in view of the pseudo-invexity of XTK(.,y), gives

(30) XTK(x,v)> XTK(u,v).

Prom (24) and £(v,y) + y ^ 0, it follows that

?(v,y)Vy(\
TK)(x,y) < -yTVy(X

TK)(x,y) ^ 0,

(using (25)). This, because of the pseudo-invexity of -XTK(x,.) implies

(31) XTK(x,v)^XTK(x,y).

The relations (30) and (31) yield

XTK(x,y)>XTK(u,v). rj

THEOREM 5 . (Strong Duality.) Assume that the hypotheses of Theorem 4 are

satisfied. Let

(Cl): (xo, y0, Xo) be a weak efficient solution for (MP),

(C2): Vyy[X^K)(xo,yo) be positive or negative definite, and

(C3): the set < VyK
1(xo,yo), ... , VyK

p(xo,yo) [ be linearly independent.

Then (xo, yo) JS a properly efEcient solution of (MD)\o

PROOF: Since (xo, yo, XQ) is a weak efficient solution of (MP), by the Fritz John
optimality theorem of [3], there exist a 6 Rp, /? G Rm, n g R and 7 £ Rp such that

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(VyK)(a-r,

K)+Vyx(Xo
rK)([3-r1yo) = 0,

xo) + Vyy(XlK)(P - TOo) = 0,

(0 - VVofiVyK) - 7 = 0,
f3TVy{XlK)=0,

W6rVy(A^)=0,

7TA0 = 0,

(a,P,-y,ri) ^ 0,
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with all derivatives evaluated at (xo,yo)- In view of Ao > 0 and 7 ^ 0, it readily
follows from (37) that 7 = 0. Therefore from (34), we have

(40) (f3-Vy0)
T(S7yK) = 0.

Multiplying (33) by (/3 - r)yof,

iP ~ vyof(VyK)(a - n\Q) + (/? - TOo)
TV!/!/(A^)(/3 - TOO) = 0,

which, in conjunction with (40), implies

03 - VVofVyy (Aj/T) {p - wo) = 0.

Since ^yy(^oK) is positive or negative definite, we have

(41) /? - wo = 0.

Equation (33) together with (41) and the linear independence of < VyK
l(xo, yo), • • • ,

VyK
p{xo,yo)j, yields

(42) a = r,X0.

Suppose 7? = 0, then from (42), a = 0. Also, from (41) we have (3 = 0. Therefore
(a,/?,7,77) = 0, contradicting (39). Hence 77 > 0. Also, from (32), (41) and (42) along
with Tj > 0, we obtain

which implies xo
rVx(Ao

rif)(xo,2/o) = 0.

Hence (#o, 2/o) is feasible for (MD) ,\o, and the two objectives become equal there. Now,
similar to the proof of Theorem 2 it can be shown that (xo,yo) is a property efficient
solution for (MD) \0. D

As in the preceding section, here too, a converse duality theorem may be stated
without proof.

THEOREM 6 . (Converse Duality.) Assume that the hypotheses of Theorem 4 are

satisfied. Let

(Dl): (UQ,VO, Ao) be a weak efficient solution for (MD),
(D2): Vxx(X

TK)(uo,vo) be positive or negative definite, and

(D3): the set I VXK 1(uo, vQ), ... , VxK
p(uQ, VQ) \ be linearly independent.

Then (UQ, VQ) is a properly efficient solution of (MP)\Q .
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5. SELF DUALITY

A mathematical problem is said to be self dual if it is formally identical with its
dual, that is, if the dual is recast in the form of the primal, the new problem so obtained
is the same as the primal. In general (WP) and (WD) are not self dual without an added
restriction on K. The vector function K : Rn x Rn -> R is said to be skew symmetric
if for all x,yeRn,

K(y, x) = -K(x, y), that is, Kl(y, x) = -Kl(x, y), i € {1, 2, . . . , p}.

Now recasting the dual problem (WD) as a minimisation problem:

(WD0): Minimise -K(u, v) + [uTVx[\TK)(u, u)]e
Subject to

Vx(\
TK)(u,v)>Q,

A > 0, ATe = 1.

Since VxK(u,v) = -VyK(v,u), the problem (WD0) reduces to,

Minimise K(v,u) - \uTVy(X
TK)(v,u)^e

Subject to
T

A > 0, ATe = 1.

This shows that (WD0) is formally identical to (WP), that is, the objective and con-
straint functions are identical. Hence (WP) is self dual. Consequently, the feasibility of
(x, y, A) for (WP) implies the feasibility of (y, x, A) for (WD) and conversely.

We now state the following self duality theorems. Their proofs are similar to the
corresponding results in [12].

THEOREM 7 . (Self Duality.) Let K be skew symmetric. Then (WP) is self dual
If also (WP) and (WD) are dual problems and (xo, yo, Ao) is a joint properly efficient
solution, then so is (yo, xo, Ao) and the common optimal value of the objective functions
isO.

THEOREM 8. (Self Duality.) Let K be skew symmetric. Then (MP) is self dual.
If also (MP) and (MD) are dual problems and (x0, yo, Ao) is a joint properly efficient
solution, then so is (yo, xo, Ao) and

K(xo,yo) = K(yo,xo) = 0.
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