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Multiobjective time series matching for audio classification

and retrieval
Philippe Esling, Carlos Agon

Abstract—Seeking sound samples in a massive database can be a

tedious and time consuming task. Even when metadata are available,

query results may remain far from the timbre expected by users.

This problem stems from the nature of query specification, which

does not account for the underlying complexity of audio data. The

Query By Example (QBE) paradigm tries to tackle this shortcoming

by finding audio clips similar to a given sound example. However,

it requires users to have a well-formed soundfile of what they seek,

which is not always a valid assumption. Furthermore, most audio-

retrieval systems rely on a single measure of similarity, which is

unlikely to convey the perceptual similarity of audio signals. We

address in this paper an innovative way of querying generic audio

databases by simultaneously optimizing the temporal evolution of

multiple spectral properties. We show how this problem can be cast

into a new approach merging multiobjective optimization and time

series matching, called MultiObjective Time Series (MOTS) matching.

We formally state this problem and report an efficient implementation.

This approach introduces a multidimensional assessment of similarity

in audio matching. This allows to cope with the multidimensional

nature of timbre perception and also to obtain a set of efficient
propositions rather than a single best solution. To demonstrate the

performances of our approach, we show its efficiency in audio

classification tasks. By introducing a selection criterion based on

the hypervolume dominated by a class, we show that our approach

outstands the state-of-art methods in audio classification even with a

few number of features. We demonstrate its robustness to several

classes of audio distortions. Finally, we introduce two innovative

applications of our method for sound querying.

I. INTRODUCTION

The past decade has witnessed a growing interest in content-

based retrieval for multimedia databases [81]. Large amount of

work has been devoted to performing similarity queries over

musical songs databases [15]. An intuitive way of finding songs

has been shown to be Query By Humming (QBH) [85], which

is now a popular content-based musical retrieval method. This

paradigm allows finding a song in a large collection simply by

humming its melody. Tracing back to the seminal work of Ghias

et al. [27], QBH systems typically rely on symbolic representations

of melodies, rather than audio databases. Sound sample databases

induce a greater challenge, as they are more massive and grow

faster than musical databases. Furthermore, sound samples do not

benefit from the same high-level symbolic information that can

be extracted from melodies. Therefore, such sets may require an

overwhelming amount of time to find a particular sample. The

Query By Example (QBE) paradigm tries to tackle this problem

by finding audio clips similar to a given sound example based

on their spectral properties. The first QBE system was proposed

by Wold et. al [79] where sounds were represented by a vector

of spectral features, which and compared with the Euclidean

distance. This approach has subsequently been extended using
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larger sets of features [76] or other spectral transforms like the

Discrete Cosine Transform (DCT) [70] and wavelet transform

[43]. Several learning schemes have also been investigated like

Nearest Feature Line (NFL) [44], Support Vector Machine (SVM)

[31] or Gaussian Mixture Model (GMM) [35]. Other studies

have focused on the temporal modeling of sounds, either by

using templates of temporal energy [8] or Hidden Markov Model

(HMM) [82]. Another stream of audio querying is Semantic

Audio Retrieval [69] which tries to discover the relationship

between semantic and acoustic spaces. This enables queries on

semantic concepts rather than acoustic features. This approach

was implemented with a mixture of experts [68] and extended

with polysemy handling [10].

Generic audio retrieval is facing several problems that can be

outlined from previous works in this field. First of all, metadata in-

formation is clearly insufficient to provide complex interactions. It

seems difficult to maintain consistent and expressive metadata on

large datasets. Semantic retrieval provides a way to avoid manual

annotation but still requires an extensively annotated starting set.

Furthermore, it is limited to descriptive facts and sounds clearly

related to a production source. Most of the timbre ’qualities’

cannot be captured using semantic concepts without subjective

interpretation of data [21], [57]. This imposes severe limitations

on the range of possible queries, restricted to a predetermined set

of semantic classes. In order to avoid this drawback, the use of

onomatopoeias have been proposed to provide a retrieval scheme

for abstract sounds [72]. However, the choice of labels is still

subjective and can result in conflicts on a semantic level with

acoustically different sounds mapped to the same onomatopoeia.

Some QBE systems use clustering before retrieval given that

search time could be reduced by comparing the query only

to a relevant cluster [34], [83]. However, building hierarchical

classes implies that the database is created according to a specific

dataset. Therefore, once the database is built, it loses flexibility

and users have to adapt to this original hierarchy. Regarding

timbre, several authors pointed out that it is a multidimensional

phenomenon [53], [78], and psychoacoustic studies often use

multidimensional spaces to classify sounds [29], [64]. Authors

in the Music Information Retrieval (MIR) community have also

pointed out the multifaceted nature of audio perception [21]

and that a single measure is unlikely to convey the perceptual

similarity of audio signals [75]. Sound retrieval systems should be

flexible enough so that depending on listeners and target timbres,

variable influence could be put on different sound properties

during similarity evaluations [51], but yet no system seems to

address these limitations.

In this paper, we propose a new paradigm to tackle previously

cited problems. Our system relates to [57] where sounds with

or without a known cause are described by looking specifically

at the temporal evolution of their acoustical properties. Sound

clips are considered as short-duration units of musical creativity

[14]. In order to provide flexibility in the database, we avoid

the clustering paradigm by deliberately not interpreting data.

Therefore, no assumptions are made on spectrum types and sounds
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can be of any nature. In order to provide more comprehensive and

universal query conditions, we do not use semantic annotation

and focus on the temporal evolution of timbre properties. Based

on previous observations, we believe that the multidimensional

nature of timbre perception should be taken into account in audio

matching processes. Therefore, our system optimizes various spec-

tral dimensions jointly, without mixing them into a single distance

measure. We propose a new approach inspired by multiobjective

optimization and time series matching, namely MultiObjective

Time Series (MOTS) matching, which has never been addressed

to our best knowledge. This framework allows to provide a

multidimensional assessment of similarity in audio matching. By

introducing a new classification criterion based on hypervolume

domination, we show that our assumptions on required properties

for audio-retrieval systems allow to outperform the state-of-art

methods in classification tasks. We also show the robustness of

our approach to different classes of audio distortions.

Finally, we consider a core problem of audio retrieval that lies

in the query specification itself. As put forward by Donwie [21],

audio queries are themselves complex and multifaceted musical

information. Several authors pointed out that most users have only

a vague idea of what they seek at the onset [42], [80]. Hence,

they might search for aspects of the audio query but not exactly

the same content. We show how MOTS query results handle

this aspect by being presented to users in an informative way.

Finally, when an example is unknown or difficult to generate, the

query should help the user determine what he is seeking by being

specified in a way as close as possible to the underlying nature

of audio properties [59]. We present two potential applications

of the MOTS approach for innovative audio querying in order

to cope with the multidimensionality of timbre perception. First,

the MultiObjective Spectral Evolution Query (MOSEQ) provides

a flexible query specification by directly allowing users to draw

schematic temporal shapes required for spectral features. There-

fore, it bypasses the need for a specific example. Based on this

paradigm, we introduce the Query by Vocal Imitation (QVI), which

allows users to perform vocal imitations of desired properties. In

both cases, the system displays the samples on a multidimensional

space depending on how well they match the different dimensions.

The rest of this paper is organized as follows. We begin

by reviewing existing approaches for content-based audio re-

trieval (Section II-A), time series analysis (Section II-B) and

multiobjective optimization (Section II-C). We formally state

the generic MOTS problem, its uniqueness towards existing re-

searches (Section III) and describe efficient algorithms to handle

it (Section III-C). We analyze the computational efficiency of

these algorithms on massive datasets (Section III-D). As we also

evaluate multidimensional similarity for classification tasks, we

introduce two novel class selection criteria (Section IV-A). We

analyze the accuracy of this classification approach, its robust-

ness to audio distortions and compare it to state-of-art results

(Section IV-C). We present queries representations and introduce

novel applications for sound querying (Section V).

II. STATE OF THE ARTS

A. Content-based audio retrieval

Content-based audio retrieval has become a popular research

field, notably through the appearance of QBH introduced by Ghias

et al. [27]. Most of researches devoted to this subject are based

on symbolic song databases and, therefore, use the notion of pitch

contour [74], which is the sequence of relative differences in pitch

between successive notes. Recently there has been studies that

match songs directly from audio using the melody slope [49],

[84], which is the continuous equivalent of the pitch contour. The

matching process must be flexible enough to allow errors in the

query and several approaches have been proposed such as HMMs

[37], dynamic programming [55] or time series matching [86].

The QBE paradigm has been proposed in order to retrieve

generic audio signals. QBE is based on the idea that users could

find samples similar to a given example based on its spectral

properties. The first QBE system was proposed by Wold et. al

[79] where sounds were represented by a vector of mean, variance

and autocorrelation values of spectral features. These vectors

were then compared with the Euclidean distance as similarity

metric. This approach known as Bag-Of-Features (BOF) has been

extended using larger sets of features [76] or adding relevance

feedback [59] in which the user selects its preferred results for

refinement. Subramanya et al. [70] used frequency coefficients

from spectral decompositions and showed the superiority of

DCT. They later used the multiresolution property of the wavelet

transform [71] and showed its robustness to noise. However, the

selection of coefficients yields extremely large vectors, which

may be unsustainable for massive datasets. This approach was

extended in [43] by using multiple statistical values over wavelet

coefficients. This allows hierarchical indexing, as proposed in

[45] with a pyramidal algorithm which provides acceleration over

previous approaches. Several indexing and learning schemes have

also been investigated. Li [44] proposed the Nearest Feature Line

(NFL) based on the idea that, in feature space, lines between

similar audio clips represent continuous deformations between

class properties. Therefore, comparisons with queries are made

with these feature lines. However, computing NFLs between every

sound samples seems to induce a large computing and storage

overhead. Other machine learning techniques like Boosting [32]

or GMM [35] were studied, but they seem to be outperformed by

the SVM-based approach.

Regarding temporal models, Cai et. al [8] proposed to use

templates of temporal patterns for energy, harmonicity and pitch

contour. Although they showed to improve the accuracy, this

approach seems hardly scalable because of the relative simplicity

of the patterns used. More comprehensive temporal modelization

with HMMs [82] has been proposed, where comparison of HMM

likelihoods with the query allows to obtain a ranked list of

results. Casey [11] proposed to use the MPEG-7 feature set

with an Independant Subspace Analysis (ISA) to obtain the most

salient features of a sound. He further introduced a minimum

entropy method [12] to train the HMM classifier which appears

to outperform classical training. However, the ISA usually yields

large computational overheads. The superiority of HMM cross-

likelihood ratio has been shown over GMM [75] and feature

histograms [33] for class-based QBE. However, these studies

exhibited that all approaches are highly sensitive to noise and

low-quality sounds.

Another stream of generic audio querying is Semantic Audio

Retrieval [69], which tries to discover the relationship between

semantic and acoustic spaces in order to perform queries on

semantic concepts rather than acoustic features. The idea is to

model the semantic space as a multinomial model and use a

probabilistic model to associate the related acoustic properties.

This approach was implemented with a mixture of probability

experts in [68]. Cano et. al [10] proposed to expand this approach

with a taxonomy to avoid tag confusion and polysemy. They

further used a NN classifier [9] with sounds linked to concepts.

Barrington et. al [5] proposed a mapping in which each dimension

indicates the relative importance of its semantic concept. Casey
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[13] proposed to use the Passive-Aggressive Model for Image

Retrival (PAMIR) to establish the mapping between spaces. This

method performs equivalently as GMM and SVM but seems to

be faster. Semantic retrieval allows to circumvent the problem

of manual annotation but still requires a starting set of annotated

sounds. This poses severe limitations for generic sounds properties

which cannot be described objectively like synthesis sounds.

B. Time series analysis

A time series is a collection of values obtained from sequential

measurements over time. It can be defined as an ordered sequence

of n real-valued variables

T = (t1, . . . , tn) , ti ∈ R (1)

A time series is often related to an underlying process observed

at uniformly spaced time instants at a given sampling rate. Time

series analysis originates from the desire to mimic our natural

ability to visualize the shape of data. Indeed, instead of being

trapped by small fluctuations we are able to abstract a notion

of shape and spot similarities between patterns on various time

scales almost instantly. Major time series tasks include query

by content [24], anomaly detection [77], motif discovery [47]

and classification [3]. This research field must handle the high

dimensionality induced by working on time series data. Therefore,

databases usually contain simplified representations T̄s of the

series Ts. which are models of reduced dimensionality such that

T̄s retains the essential characteristics of Ts. Another difficulty

lies in defining a similarity measure D (T, U) between time

series. This distance should allow recognition of perceptually

similar shapes even though they are not mathematically identical.

Finally, algorithms must scale to evergrowing massive datasets by

using indexing techniques, which should provide minimal space

consumption and computational complexity.

Query by content is the most active area of research in time

series analysis. It is based on retrieving a set of solutions that are

most similar to an input query.

Definition 1. Query by content. Given a query time series Q =
(q1, ..., qn) and a similarity measure D (Q, T ), find the ordered

list L = {T1, . . . , Tm} of time series in DB, such that ∀Tk, Tj ∈
L, k > j ⇔ D (Q, Tk) ≥ D (Q, Tj).

Two types of queries are usually available. It is possible to

specify a threshold ǫ and retrieve all series in the database whose

similarity D (Q, T ) with the query is less than ǫ (ǫ-range query).

Obviously, the choice of this threshold is tedious and highly data-

dependent. Alternatively, users can retrieve a set of solutions by

constraining the number of series it should contain, ie. querying

the K most similar series in the database (K−Nearest Neighbors).

Time series analysis was at first devoted to this task, tracing

back to the seminal work of Agrawal et al. [1] where the

representation was based on coefficients obtained from a Discrete

Fourier Transform (DFT). These coefficients were then indexed

with an R*-tree [6]. False hits were then removed by using

the Euclidean distance on complete time series. This paper laid

the foundations of a reference framework which has later been

extended by using properties of the DFT [61] or similar decom-

positions like Discrete Wavelet Transform (DWT) [16]. Several

numerical transformations like Piecewise Linear Approximation

(PLA) [66] and Piecewise Approximate Aggregation (PAA) [38]

or symbolic representations like shape alphabets [2] and bit level

approximations [62] have been proposed. For distance measures,

numerous authors pointed out pitfalls when using Lp norms [20],

[39]. Therefore, several proposals have been made to provide a

similarity consistent with human intuition. Shape-based distances

allow non-uniform comparison along the timeline like Dynamic

Time Warping (DTW) [40] or Optimal Subsequence Bijection

(OSB) [41]. Edit-based distances like the Longest Common Sub-

Sequence (LCSS) [18] handle outliers by allowing gaps in the

series. As a complete review of time series research is beyond the

scope of this paper, we refer interested readers to [23].

In our study, we use the Symbolic Aggregate approXimation

(SAX) [46] representation. The motivation behind this choice is

two-fold. First, regarding accuracy and efficiency, SAX has been

shown to consistently outperform other representations [20]. Sec-

ond, this representation provides an efficient way to store temporal

information and allows using the iSAX [67] indexing technique

which has been devised to handle queries over million-sized

databases. Finally, for computing similarity, we use the LB_Keogh

[40] distance which enables efficient DTW computation. Allowing

such non-linear distortions of the time axis is particularly relevant

in audio applications and the effectiveness of these has been shown

in the field of QBH [86].

C. Multiobjective optimization

Multiobjective approaches were designed to handle problems

where several objectives are required to be optimized simulta-

neously. Given a search space (also called decision space) S
and a set of functions F = {f1, ..., fN} to minimize over S,

a multiobjective problem is defined by
(

min F (x) = {f1 (x) , ..., fN (x)}
s.t. x ∈ S

(2)

Given this problem, the space defined as

C = {(f1 (x) , ..., fN (x)) | x ∈ S} (3)

is called the criteria space. Usually, the ideal solution x∗, which

is the global minimum for all criteria, does not exist. Therefore,

multiobjective problems cannot be solved with a single “perfect”

solution, but rather with a set of efficient solutions. In order to

obtain this collection of tradeoffs among objectives, a relaxed no-

tion of optimality needs to be adopted. This concept of dominance

was introduced by Edgeworth [22] and later generalized by Pareto

[54] and is called the Pareto optimum. A Pareto solution is optimal

in each direction of optimization as it is not dominated in every

objective. Hence, it is impossible to find another solution that

improves the complete set of criteria of a Pareto solution.

Definition 2. Let x and y be two points of a search space S. We

say that a solution y is Pareto dominated by a solution x (noted

x � y) iff it is dominated in every dimension

∀n ∈ {1, ..., N} , fn (x) ≤ fn (y) (4)

We say that x strictly dominates y (noted x ≺ y) iff ∃n0 ∈
{1, ..., N} such that fn0

(x) < fn0
(y).

The dominance relation ≺ induces only a partial order on

the criteria space, as shown in Figure 1. For any element x,

the criteria space is divided into three regions depending on the

dominance relation between x and the corresponding subspaces.

We call these subspaces S≺, S≻ and S?. S≺ contains the elements

that dominates x (∀y ∈ S≺, y ≺ x). S≻ is the subspace whose

elements are dominated by x (∀y ∈ S≻, x ≺ y). Finally, the

elements of S? simply cannot be compared to x as they are not

dominated nor dominate x (∀y ∈ S?, x � y ∧ y � x). The

distribution of non-dominated elements of a decision space is
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Figure 1. Pareto dominance relations in a bi-criteria space. Any point
x of the criteria space divides it into three sub-spaces depending on the
dominance relation. S≺ contains the elements that dominates x (∀y ∈

S≺, y ≺ x). Elements of S≻ are dominated by x (∀y ∈ S≻, x ≺ y).
Finally, the elements of S? simply cannot be compared to x as they are
not dominated nor dominate x (∀y ∈ S?, x � y ∧ y � x).

called the Pareto front. Solving a multiobjective problem can,

therefore, be summarized as the discovery of the Pareto front.

Figure 2 depicts a bi-objective search space, where this front

emerges from non-dominated solutions. From a strict point of

view, none of the Pareto solutions can be preferred to others.

III. MULTIOBJECTIVE TIME SERIES (MOTS) MATCHING

Now equipped with the core notions of multiobjective optimiza-

tion and time series matching, we introduce the generic MOTS

matching problem. We demonstrate the novelty and complexity

of this problem and its relevance to find more flexible sets of

solutions by allowing every direction of optimization.

A. Multiobjective time series matching

Given the previous definitions, a MOTS matching problem is

defined as finding the efficient elements of a database that jointly

minimize a set of time series distances

(

min Dk
Q (S) k ∈ {1, ..., K}

s.t. S ∈ DB
(5)

with Q the query represented by a set of K time series

and S an element of the database DB which contains time

series corresponding to the same objectives as the query. Finally,

Dk
Q (S) is the similarity between the kth feature represented

by time series Qk and Sk, i.e. Dk
Q (S) = D (Qk,Sk). We

can already see here that part of the computational complexity

of this problem arises from objective functions Dk
Q (S), which

represent time series distances. As explained in Section II-B, the

concept of time series similarity is remarkably subtle and implies

a high computational complexity. Furthermore, because of the

multiobjective nature of this problem, it is impossible to obtain

straightforward efficiency from “classical” time series indexing

methods. Indeed, these techniques gain most of their pruning

power by avoiding computation of irrelevant parts of the search

space. It is noteworthy to understand the fundamental differences

between multivariate time series problems (extensively studied

in literature) and our multiobjective problem. First, multivariate

search is a mono-objective problem spanning several dimensions.

Therefore, it is equivalent to a multiobjective search with a specific

set of weights for all objectives. Hence, this class of problems

explores a single direction of optimization. This usually allows to

circumvent the problem of pruning power raised by the notion of

Pareto dominance, which is the second aspect of computational

complexity for our problem. Moreover, multivariate problems

usually imply that the series are somehow statistically linked.

!"#$%&'()*"+,-.*',)

!"/,0')1*(2"+,-.*',)

Figure 2. The MOTS matching problem in a bi-objective space. The query
Q is at the origin of the space and is represented by a set of time series
that have to be matched jointly. We see the results of the system that finds
the Pareto solutions. Solution A is the best match for objective O1, as we
can see the first time series is closely similar to that of the query. Solution
B is respectively the best match for objective O2. The element C would
be the best monobjective solution. We can see that it is not closely similar
to any objective, which motivates the use of multiobjective optimization.

Oppositely, multiobjective problems allow the optimization of

objectives that can be completely decorrelated. Finding the most

similar element S∗ to a query corresponds to jointly minimizing

the distances between two sets of time series.

S∗ = argmin
S

n“

Dk
Q (S)

”

, k = 1, ..., K
o

(6)

As the ideal point S∗ which simultaneously optimizes all criteria

does not exist, solving this problem turns out to find the set of

tradeoff solutions that offer different compromises among objec-

tives. A solution S is optimal if there is no other solution in the

search space that achieves better values than S on every criterion

Dk
Q (S). This implies that if we want to know which elements

belong to the Pareto front, we should evaluate the distances for all

the database and every objective, leading to a brute force analysis.

Figure 2 illustrates these concepts. The query is a set of time series

input to the system. The first objective is the energy envelope

of sounds, and the second is their spectral centroid. The query

is at the origin of the criteria space as distances with itself are

null in every objective. There is no element in the database that

perfectly matches those two properties. Solution A is the best

match for objective O1. As we can see, its first time series is

closely similar to that of the query. Solution B is respectively

the best match for objective O2. Finally, element C is the best

solution for the associated mono-objective problem with equal

weights. We can see that it is not closely similar to any objective,

which exhibits the relevance of our approach. Indeed, it allows

joint queries on several dimensions without favoring any of them

during the search. Furthermore, the multiobjective approach is an

appropriate paradigm when the relative weights of each objective

are unknown, which is particularly relevant for audio perception

[50] as regions of the Pareto front might be preferred to others,

according to personal preferences.



5

!"#$%&'()'*'(+,-, !+./0(-$)-*10&.'%-0*,

!23)4'%'/',#

5#'* 4#6-'%-0* 7#."0&'(),8'"#

9,#&)-*":%

!0:*;<(#

Figure 3. When a soundfile is input to the system, the analysis module
computes a set of descriptors whose mean, deviation and temporal shape
are stored separately inside an SQL database. Symbolic information can
also be stored in the database by automatic extraction or direct user input.

B. Audio database description

As we perform queries over large collections of sound samples,

we have to maintain a structured database. Figure 3 depicts

how sounds are analyzed and managed. We process sounds with

IRCAMDescriptor [56] in order to extract all relevant information.

The mean and standard deviation of each descriptor are stored

in the database. We then normalize the temporal shapes in order to

obtain zero-mean and unit-variance time series. We then use the

SAX representation [46] to store an efficient modeling of these

shapes. Therefore, each element in the database contains several

time series which represent different characteristics of a sound.

The temporal shapes are resampled to a uniform length. This could

be considered as a concern for audio querying as long sounds can

be compared to extremely short sounds. However, this approach

shows the advantage to focus solely on the temporal shape and the

system allows using duration in conjunction with other objectives

to be optimized. The duration can alternately be defined as a

filtering constraint which will reduce the search space to sounds

of matching length. Other symbolic information can also be added

to the database. However, we consider in the final search problem

that no metadata is available whatsoever. The MOTS approach

allows joint queries on several temporal properties without favor-

ing any of them. Equipped with an adequate similarity measure

along each dimension, we are able to predict various degrees of

similarity between the database elements.

C. Algorithms

Because of the ever-growing size of storage capacities, linear

scan of an entire database has become unacceptable. Hence, it

would be highly desirable to obtain a search method with sublinear

time complexity. We introduce two algorithms that can handle the

MOTS matching problem. However, because of the novelty of this

approach, no competing method exists to evaluate the efficiency of

our algorithms. Therefore, the multiobjective brute force algorithm

will be our testing baseline. This approach requires to compute

every distance in each objective, and then extract the Pareto front

from the full distance matrix.

1) Multiobjective early abandon: The complexity of the MOTS

problem lies in the repeated computations of time series distances.

A natural idea would be to find a way to restrict the amount

of distance computations. Instead of computing every distance,

we would like to drop calculations as soon as we are confident

that the corresponding element is dominated. This technique is

known as early abandon. However, we have to make fundamental

modifications in order to account for the multiobjective nature of

our problem. Indeed, early abandon is based on comparing the

current similarity against the best distance known so far. However,

in a multidimensional context, we cannot simply compare the

current distances to a single reference. A turnaround could be to

maintain a temporary Pareto front to compare successive elements.

However, this approach requires numerous verifications of Pareto

dominance, which is an expensive operation. Therefore, it would

be preferable to obtain an approximate distance for every element

beforehand. That way, we could compute only the true distances

of potentially efficient solutions. This approximation should be

lower-bounding, ie. it should underestimate the true distance.

Dk
approx (Si) ≤ Dk

true (Si) ∀k ∈ [1, . . . Nobj ] (7)

With this property, we know that if a set of approximate

distances is dominated, then the corresponding set of true dis-

tances is dominated. Therefore, we need simplified representations

of the time series that can provide this approximate distance

computation. If these representations are coarse enough, they can

account for several time series at the same time. In order to obtain

such properties, we can use the SAX representation [48] that

perform a temporal and amplitude quantification of the series. In

this model, the series are divided into a set of equal-sized temporal

steps. Then, the average of the time points contained in each step

i is computed and matched to a reduced alphabet.

T̄i = α

0

@

w

n

n
w

i
X

j= n
w

(i−1)+1

Tj

1

A (8)

with n the length of the original series, w the number of result-

ing temporal steps (w ≪ n) and α (x) a function that matches

x ∈ R to a discrete alphabet (amplitude quantification). Based on

this representation, the iSAX index [67] provides an efficient tree

index for time series. Each level provides a finer representation of

the series by increasing the size of the alphabet. Figure 4 illustrates

this construction. The series is divided into 8 equal-sized temporal

steps. At the first level, the series is quantified by using an alphabet

of two elements {0, 1}. Then, at the subsequent levels, the series

are refined by using a larger alphabet {00, 01, 10, 11}. Obviously,

each node in the tree accounts for a whole set of time series.

Hence, if we take the first-level of this representation, we obtain

a set of prototypical bins of reduced cardinality.

Then, the lower-bounding distance between a query Q and a

bin representation B̄x can be obtained by first transforming the

query into the same representation Q̄ and then computing

Dapprox

`

Q̄, B̄x

´

=

r

n

w

v

u

u

t

w
X

i=1

(D (qi, bi))
2

(9)

Hence, we can obtain the lower bounding positions of every

element in the database, as illustrated in Figure 5. It would seem

attractive to use these approximate distances to perform a direct

assessment of Pareto efficiency. However, these distances are

just lower-bound approximations. Therefore, the true dominance
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Figure 5. The approximate lower bounding distances in the criteria space
and a set of relationships that can or can not be computed

relations are still uncertain. This is exhibited in Figure 5. It turns

out that the distances of a potentially dominating element can be

much higher. However, when its true distances are computed, we

are sure of its dominance over other elements.

The final implementation is presented in Algorithm 1. We start

by transforming the query into the quantified representation. Then,

we compute the first level distances for all bins. We store these

distances for corresponding elements in the matrix aDist. Then,

we create an empty Pareto front P and iterate over the elements

of the database. When evaluating an element, as soon as it is

dominated by the current front, we abandon computations. If

all the distances have been computed, then the current element

is potentially efficient. Therefore, we add this element to the

current Pareto front and update it accordingly (as the new item

might dominate existing solutions in the front). At the end of the

algorithm, P contains the final Pareto front.

2) Hyperplane search: The main drawback of the previous

algorithm is that it still requires frequent Pareto optimality assess-

ments. Hence, it would be wiser to find a less expensive theoretical

limit to drop computations of the distance measures. Therefore,

our main idea is to construct an approximate Pareto hyperplane P
to act as our theoretical limit. We can obtain this hyperplane by

using 1-NN queries from efficient time series indexing for each

objective. These queries will give us boundary elements of the

final Pareto front. This is straightforward from the fact that these

elements cannot be dominated as they have the smallest distance

in one of the objectives.

∀Si, ∃k | ∀Sj ,Dk
Q (Si) < Dk

Q (Sj) ⇒ Si ∈ P (10)

Algorithm 1 MOTS matching algorithm with early abandon

multiobjectiveEarlyAbandon(Q, db, idx)

// Quantify the query

Q̄k∈[1...Nobj ] =
n

w
n

P

n
w

i

j= n
w

(i−1)+1 Qk
j , i ∈ [1 . . . w]

o

// Compute query-to-bins distances

for b ∈
ˆ

1 . . . Nk
bins

˜

aDistk

i∈Bk
b

= Dapprox

`

Q̄k, B̄k
b

´

end

P = ∅
// Perform multiobjective abandon

for i ∈ [1 . . . size (db)]
for k ∈ [1 . . . Nobj ]

if isDominated (aDisti,P)
abandon;

else

aDistk
i = Dk

Q (Si)
end

add(Si, P);
P = extractParetoFront(P);

end

Hence, we can prune elements whose approximate distances are

dominated by this hyperplane. This can be computed straight-

forwardly if we obtain the hyperplane normal. We show how to

compute this normal efficiently by avoiding an expensive least-

squares minimization.

Proposition 3. Given a nonzero vector n in Rm and a point

p ∈ Rm, the hyperplane perpendicular to n through p is the set

of all x ∈ Rm such that (x − p) · n = 0.

Therefore, if we want to find the normal of hyperplane H, we

must find the vector np ∈ Rm satisfying Pnp = 0m where P is

a k×m matrix and 0m is a m× 1 zero vector. P = [p1, . . . , pk]
is the set of Pareto points defining the hyperplane H (in our case

pi will be the 1-NN result for the ith objective). In order to obtain

this vector, we must solve

np = argmin
v

“

v
TPTPv

”

(11)

Alone, this equation yields the trivial solution np = 0m which

we obviously want to avoid. To avoid this case, we can add the

constraint ‖np‖ = 1, which can be rewritten as 1 − nT
p np = 0.

Therefore, in order to find the best value for np, we can use the

Lagrange multipliers and solve

δ

δnp

“

n
T
p PTPnp + λ

“

1 − n
T
p np

””

= 0 (12)
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After applying the derivation, we obtain the characteristic

equation
`

PTP − λE
´

np = 0. Therefore, we know that np is

an eigenvector of
`

PTP
´

and λ is an eigenvalue. However, we

can not control the orientation of the normal (as any hyperplane

possess two oppositely oriented normal vectors). Furthermore, this

also requires to compute some eigenvectors with potentially large

dimensionality which can be expensive. In order to alleviate both

problems at the same time, we have to modify the original con-

straint slightly. For that purpose, we introduce a direction vector

d that will ensure the orientation of the normal vector. Therefore,

we constrain the normal vector np to have the same orientation

as d. We can write this constraint as
`

1 − dT np

´2
= 0. Hence,

we must now solve

np = argmin
v

„

v
TPTPv +

“

1 − d
T
v

”2
«

(13)

By using the same reasoning than previously, we can find the

extreme value by solving

δ

δnp

„

n
T
p PTPnp +

“

1 − d
T
np

”2
«

= 0 (14)

Therefore, by taking the same matrix derivatives and simplify-

ing, we obtain the normal by computing

np =
“

[P,d] [P,d]T
”−1

d (15)

where [P,d] is the matrix obtained by concatenating matrix P .

In our implementation, we use d = max
j

(pj
i ), pi ∈ P to ensure

the orientation of the resulting normal.

Proposition 4. Let P be the hyperplane of all x ∈ Rk with

(x − p) · n = 0 such that n 6= 0. Then the distance of any point

ax ∈ Rk from the hyperplane P is given by

dist (ax,P) =
(ax − pi) · n

‖n‖ (16)

with ‖n‖ the norm of the normal n and pi ∈ P is one of the

Pareto points.

The final implementation is presented in Algorithm 2 and illus-

trated geometrically in Figure 6. The implementation presented

here can be used with any representation, distance and indexing

techniques available. We simply assume that a time series index

is constructed for each objective in order to perform efficient 1-

NN queries and, therefore, avoid linear scan. We also consider

that the index provides a lower bounding distance measure on

indexing nodes. Given a query Q, a database db and a set of

index TS-Indexes for each objective (constructed prior to the

search), we start by transforming the query and computing the

first-level distances as previously. This set aDist is then used to

perform the 1-NN exact queries on each objective. These queries

give us the initial Pareto front P that form the approximate Pareto

hyperplane. The 1-NN queries also compute a small portion of

exact distances for each objective that we recover in list aDist.

That way, after 1-NN queries we already have an approximate

lower bounding position for each element. We then obtain the

normal of the hyperplane defined by the list of Pareto points.

Then, we evaluate each element of the database and stop distance

computation as soon as they are dominated by the hyperplane.

If we compute the complete distances in every objective for an

element, we add it to the list of potential Pareto points. Finally,

we filter this list by extracting the final Pareto front P .

Algorithm 2 MOTS matching algorithm by approximate hyper-

plane search.

multiobjectiveHyperplaneSearch(Q, db)

// Quantify the query

Q̄k∈[1...Nobj ] =
n

w
n

P

n
w

i

j= n
w

(i−1)+1 Qk
j , i ∈ [1 . . . w]

o

// Compute query-to-bin distances

for k ∈ [1 . . . Nobj ]
for b ∈

ˆ

1 . . . Nk
bins

˜

aDistk

i∈Bk
b

= Dapprox

`

Q̄k, B̄k
b

´

end

end

// Perform efficient 1-NN queries

[P aDist] = 1NN-Queries(Q, aDist,
TS-Indexes)

// Reference direction vector

d = max
j

(pj
i ), pi ∈ P

// Compute hyperplane normal

np =
“

[P,d] [P,d]T
”−1

d

// Transform into unit-norm vector

np = np/
√

n
T
p np

for i ∈ [1 . . . size (db)]
for k ∈ [1 . . . Nobj ]
if (aDisti − p1) · np < 0

abandon

else

aDistk
i = Dk

Q (Si)
end

add(Si, P)
end

checkParetoFront(P)

D. Efficiency on massive databases

We evaluate the efficiency of our algorithms against the mul-

tiobjective brute force algorithm on synthetic and real datasets.

The artificial dataset is composed of random walk time series

generated with a constant size of 512 time points. An independent

set is synthesized for each hypothetical objective. The real dataset

is a combination of Studio On Line [4], Real World Computing

[28] and Vienna Symphonic Library instrumental databases. These

datasets include single notes of different playing modes from 23

orchestral instruments, which amounts to a total of 213.814 sound

files. These files are WAVE and AIFF format, quantified to 16-

bit at a sampling rate of 44.1 kHz. Subsets of the collections are

randomly selected for increasing database sizes. Objectives are

also randomly selected from the set of audio descriptors. This

selection procedure is ten-folded. For each set of parameters,

one hundred queries are processed in order to avoid statistical

anomalies. Queries are random walk series with a constant size of

512 points. Computations were performed on a Macbook 2.4GHz

Dual Core under Mac OSX 10.6.6 with 2Go of DDR3 RAM.

We present the results of querying wall time for synthetic

datasets in Figure 7. The left figure shows the median (dotted

line), average and variance (solid line) in querying time for

increasing database sizes. As we can see, the early abandon

algorithm provides up to two times of speedup over the brute

force approach, with a low variance in querying time. However,

this factor of speedup is linear to the cardinality of the dataset. The

hyperplane algorithm is strongly superior, as it provides up to ten

times of speedup over the brute force approach. The differences

between the early abandon and hyperplane approaches can be

explained by the higher number of Pareto front evaluations in
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Figure 6. Geometric interpretation of the multiobjective hyperplane search algorithm

the first one. However, the variance of the hyperplane search

also increase with the cardinality, which imply that the querying

time might vary more importantly. Analysis of results reveals

that both algorithms performs better on real sound collections.

This could be explained by the distribution of time series in real

datasets, which is unlikely to be uniform as it is for random walk

datasets. The most enthralling finding concerns the efficiency on

an increasing number of objectives, presented in Figure 7 (right).

As we can see, the early abandon still provides a linear factor of

speedup. However, the hyperplane algorithm exhibits a sublinear

behavior with a significantly lower median. This behavior could be

explained by the higher probability that a large portion of the space

is ruled out by the approximate hyperplane in higher dimensions.

To analyze this hypothesis, we compare the pruning power

induced by each algorithm. The space pruning ratio is computed

by comparing the proportion of distances that are not evaluated

to the quantity of points in the dataset. The main advantage of

this measure is that it is hardware independent and is also inde-

pendent of the distance measure used. Figure 8 (left) exhibits the

space pruning ratio provided by the algorithms for an increasing

database cardinality. As we can see, the hyperplane limit provides

a strongly superior pruning ratio. The variances seem to remain

almost constant for both algorithms, with a higher variance for the

hyperplane algorithm. However, an equivalent variance for higher

cardinality will imply a higher variance in the number of elements

pruned. In both case, the techniques seem to indicate an upper

bound in pruning power as the number of time series increases.

Figure 8 (right) exhibits the space pruning ratio provided for a

growing number of objectives. As we can see, the hyperplane

algorithm quickly converge to a constant pruning ratio (which can

explain its sublinear time complexity), whereas the early abandon

algorithm exhibits a continuous drop in pruning power.

IV. CLASSIFICATION TASKS

A. Classification selection criterion

The MOTS approach allows to find the set of efficient solutions

given an audio query and multiple optimization features. In the

multiobjective framework, there is no way to order the Pareto

front. Therefore, possibilities cannot be ranked among each other.

However, to assess the quality of the proposed approach, we

evaluate it in classification tasks. Therefore, we need a criterion

to make the final classification decision, ie. to select which class

is the best match to a given input. We introduce in this section

two new class selection criteria.

1) Pareto cardinality: Given the Pareto set, we can first simply

look at its cardinality. Therefore, our first selection criterion is

obtained by counting the number of occurrences of each class in

the Pareto front. The selected class is the most represented in the

front. This is a basic criterion and we can expect it to be less

efficient in higher dimensions. We term this method MOTS.

2) Hypervolume domination: We introduce a novel criterion

based on hypervolume domination. This measure has been used

in multiobjective optimization with Genetic Algorithms (GA) [87]

as a performance indicator, i.e. only to differentiate the quality

of different algorithm. However, it has never been used as a

classification criterion to our best knowledge. The idea behind this

measure is that every point in a multidimensional space, defines a

hypervolume which indicates the portion of space dominated by

this point. For a n-dimensional space, n ∈ N, the hypervolume

of a box in Rn generated by two points a = (a1, . . . , an) and

b = (b1, . . . , bn) is defined as

H (B) =

n
Y

i=1

(bi − ai) (17)

The hypervolume dominated by a Pareto front P given a

reference point rp =
`

r1
p, . . . , rn

p

´

is given by the union of the

hypervolumes dominated by each point in the front

H(P) = H

0

@

[

(p1,...,pk)∈P

[p1, rp] × . . . × [pk, rp]

1

A (18)

These notions are shown in Figure 9 (up). Point p1 defines a

box B1 (darker gray) with the reference point rp. Each point of

this set also implies a corresponding domination box. Therefore,

the hypervolume dominated by the Pareto front is the union of

hypervolumes dominated by each point in the front.

The interest of working with the hypervolume is that it pro-

vides a total order among sets of points that are normally only

partially comparable through the Pareto dominance. Hence, the

hypervolume indicator has several interesting properties regarding

the total ordering it provides. First, it is a refinement of the Pareto

dominance relation. Hence, maximizing this indicator results in

Pareto-efficient solutions only [88]. It has also be shown to be

the only unary indicator to detect the weak dominance relation

between any two sets of solutions [87]. As for classification

decisions, we need a unary measure this further motivates the

interest of using the hypervolume indicator, as it is the only Pareto-

compliant indicator. This means that the hypervolume is the only

measure to provide a ranking of sets which does not contradict

the Pareto dominance relations. Other interesting results shows

that the hypervolume indicator guarantees strict monotonicity

and provides the best possible approximation ratio for linear

and concave fronts [26]. Figure 9 shows the benefits of such

a measure when comparing two distributions. Even if the first
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Figure 7. Query wall time (in seconds) for increasing database size (left) and increasing number of objectives (right) on synthetic and real datasets.
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class has more elements belong to the final Pareto front, its

dominated hypervolume H1 is smaller than the hypervolume H2

of the second class. Therefore, the hypervolume indicates both

the fitness of a distribution and its spread over the optimization

space. Furthermore, compared to a NN or NC rule, it summarizes

the behavior of the whole class with respect to the input rather

than the position of the input relative to the elements of the class.

This means that the hypervolume provides a measure of the three

criterion for the quality of multiobjective sets : (i) closeness of

solutions to the origin, (ii) good distribution and spread along

the front and (iii) number of non-dominated points [7]. In our

implementation, we use the hypervolume computation algorithm

proposed by [25]. We compute the hypervolume dominated by

the Pareto front of each class. Hence, the selected class is the one

which induces the largest dominated hypervolume. We term this

approach HyperVolume-MOTS (HV-MOTS).

B. Classification results

In order to assess the performance of our approach, we evaluate

it in classification tasks using two datasets. First, the reference

MuscleFish dataset [79] allows to compare our approach to

state-of-art methods. Second, we collected a more recent and

comprehensive dataset to test how our approach scales up to wider

sets of data. It should be noted that all the sounds from the datasets

used in this paper are isolated single-source clips. Both datasets

are available on a supporting web page dedicated to this paper 1

so that the results of our experiments are fully reproducible.

1) MuscleFish: This dataset, assembled by Wold et. al [79],

has been used extensively [32], [31], [44], [63], [65] in order

to compare performances of different systems. It is composed of

409 sound files which are divided into 16 classes. Files are single-

channel Sun/Next (.au) µ-law encoded audio files quantized to 8-

bit with a sampling rate of 8 kHz. Loudness levels and file lengths

vary over samples with the average file size being 50 KBytes.

1http://repmus.ircam.fr/esling/ieee-mots.html

2) Freesound: In order to evaluate how our approach scales

up to more comprehensive datasets, we collected 2193 sounds

representing 54 classes from the Freesound project 2, which makes

this set five times larger than the MuscleFish dataset. Files are

single and double channels, WAVE and AIFF format, quantized

to a minimum resolution of 16-bit with a minimum sampling rate

of 44.1 kHz. Loudness levels and file lengths vary with the average

file size being 310 KBytes.

3) Evaluation methodology: The goal of the classification task

is to input a sound file into the system which tries to find

which class it belongs to. As our method does not require any

training, we use the Leave-One-Out evaluation methodology. That

is, each file is first withdrawn from the dataset and then input

for classification with the remaining set acting as a database. In

order to measure performances, we use the classification accuracy

defined as Acl = Ntrue/N with Ntrue the number of clips

correctly classified and N the total number of clips in the dataset.

In order to compare different methods, we performed large-

scale experiments by testing combinatorial possibilities among

available descriptors. Therefore, we start by testing classification

accuracy for every single descriptor in IRCAMDescriptor. Then,

we evaluate the classification with every combination of two

descriptors, and so forth. Given that this testing methodology

implies an exponentially growing number of tests, we keep only

the top performing half of the descriptors after each step, based on

their classification accuracies. We repeat this procedure and halve

the set of available descriptors (in which to choose the objectives

for classification) until the number of remaining descriptors is less

than the number of objectives. As an exhaustive analysis of each

descriptor is beyond the scope of this article, complete results of

classification tasks are available on the supporting web page.

We are comparing the HV-MOTS classifier against the 1-NN

and 5-NN mono-objective selections. This comparison is based on

the same set of time series and mean features for all classification

criterion. Even if these methods might seem easy to overpower,

2http://www.freesound.org
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several published studies confirm that 1-NN selection is still by far

the top performing classification scheme for time series data [30],

[36], [60]. Some authors point out “while there have been attempts

to classify time series with decision trees, neural networks, support

vector machines etc., the best published results (by a large margin)

come from simple 1-NN methods” [20]. Even the SVM classifier

has been shown to be at most statistically equivalent to 1-NN

but usually performs worse [30]. This explains why we focus our

comparison on the 1-NN classifier.

C. Results analysis

We present in Figure 10 the classification accuracies on the

MuscleFish dataset for a growing number of objectives. For a

given number of objectives, the top figure provides the mean

accuracy over every combination and the figure below is the best

score obtained by a single combination. As we can see, the HV-

MOTS classifier consistently outperforms the other approaches in

classification accuracy. This result is confirmed by the accuracies

obtained on the Freesound dataset, presented in Figure 11. Even

with five times more classes and sounds, HV-MOTS exhibits an

equivalent classification accuracy and outperforms other methods.

More interestingly, it seems that HV-MOTS strongly outper-

forms other approaches in mean classification accuracy. This

implies that given any set of features, the multiobjective approach

will obtain better results. To support this claim, we provide in

Figure 12 the results of statistical significance tests between

methods and across datasets, to rule out the effect of a particular

data distribution. We use Tukey-Kramer Honestly Significant

Difference (HSD) test [17] over the results of Friedman’s ANOVA

to see if one method is statistically significantly different from

the rest. We also present the statistical mean accuracy computed

with a one-way ANOVA. Finally, we present the critical dif-

ference graphs [19] which allows to exhibit the true statistical

superiority and eventual groups of statistical equivalence between

various methods. This graph summarizes the column ranking

of all methods over every features combinations. We can see

in this figure that the mean column ranks and statistical mean

difference in accuracy of HV-MOTS are strongly superior. The

column rank corresponds here to the ranking of methods based

on their accuracy results. This means that, after two objectives,

the HV-MOTS method is almost always in first position for any

descriptor combination if ranked against other methods based

on their accuracy score. Furthermore, the mean differences in

accuracy increase with the number of objectives. It seems that

the multiobjective classification is able to maintain the discrimi-

native power of the best feature involved, whereas mono-objective

selection will be confined by the worst features. This may go

against the hypothesis that the feature set is more important

than a particular learning scheme [52]. Furthermore, it seems

here that the behavior of the whole class with respect to the

input may be more influential than the position of the input

relative to the elements of the class. Therefore, even with lower

dimensionality involved, the multiobjective paradigm is able to

achieve a satisfactory classification accuracy. We can see that

the MOTS paradigm (based on Pareto cardinality) is superior in

mean classification accuracy to mono-objective selections for low

dimensionality but starts to regress after four dimensions. This

may come from the fact that an increasing number of dimensions

creates more inclusive Pareto fronts which deludes the cardinality

indicator. For other methods, performances stabilize and even

regress slightly after five dimensions are involved.

We present in Table I the confusion matrix of the best classifica-

tion accuracy (95.4%) obtained by HV-MOTS on the MuscleFish

dataset. The corresponding descriptor combination is composed

of MFCC, MFCCDeltaStdDev, PerceptualSlope, ChromaDeltaSt-

dDev, RelativeSpecificLoudnessDeltaStdDev and PerceptualDe-

crease. It is interesting to note that most of the features used

are related to the temporal behavior of the sound spectrum. Even

the average descriptors are deviations of derivative, which, in fact,

summarize the quantity of temporal variations for these descrip-

tors. Furthermore, this combination contains descriptors for each

structural aspects of sounds, namely energy (Loudness), harmony

(Chroma), spectral shape (MFCC) and perceptual descriptors. It

should be noted that the same accuracy was obtained by 18 similar

combinations (which further confirms our intuition that HV-MOTS

is able to retain the discriminative power of the best features

involved). If we look at the distribution of the confusion matrix,

we can outline different types of errors made by the system.

First, the class similarity errors that can be expected when similar

classes are part of datasets with widely diverse class types. For

instance, elements of male speech are confused for female speech

and the same apply to violinbowed confused with cellobowed.

Second, the morphological similarity errors can be observed when

the spectral behavior of two classes is alike. For instance, some

violinpizz are confused with percussions because of the impulsive

nature of such sounds. The same applies to machines confused
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Figure 10. Classification results on the MuscleFish dataset for a growing number of objectives with (up) mean and (down) best classification accuracy.
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Figure 11. Classification results on the Freesound dataset for a growing number of objectives.

with water because of the long-term repetitive patterns that emerge

from both. Finally, in both types can be found some reciprocal

errors where the error applies symmetrically to two classes.

The HV-MOTS method was designed based on the hypotheses

that temporal shapes would improve static information and at the

same time multiobjective selection would provide a perceptually

more relevant and, therefore, more accurate classification. In

order to analyze these hypotheses, we confront different views

on experimental results. Figure 13 provides a comparison of the

classification accuracy of using only temporal features, only static

(mean and deviation) features or mixed sets of information. As

we can see, the use of temporal features performs better than

static features. More interestingly, it appears that best results

are obtained by mixed sets of information, which indicates that

normalized temporal shapes and static information are comple-

mentary sets of information. Finally, for any type of descriptors

used, multiobjective selections perform consistently better than

mono-objective approaches.

D. Comparison to state of the art

We compare our results to the state-of-art methods proposed

with the same evaluation framework, namely a classification task

on the MuscleFish dataset with a Leave-One-Out methodology.

This allows to report published classification accuracies as a

baseline for comparison. In their original study, Wold et al. [79]

proposed to compute the mean, variance and autocorrelation of

loudness, pitch, brightness and bandwidth, which together with

duration amounts to a total of 13 features. By using a 1-NN rule,

comparing the query to all feature vectors in the database with the

Euclidean distance, they reported 80.9% classification accuracy.

Guo et al. [32] later tested the applicability of a machine learning

technique called Boosting based on a vector of 8 perceptual

cepstral features which provided 78.3% accuracy. Guo and Li [31]

proposed to use SVM on the same feature set and obtained 89%

accuracy. Li [44] introduced the NFL method which was shown

to provide 90.22% accuracy. Reyes-Gomes and Ellis [63] studied

the use of GMM-EM and HMM with low entropy learning and

obtained 89.9% accuracy. Finally, Shao et al. [65] used Neural

Networks trained by GA with Back Propagation (BP-GA) over

a set of 17 features and reported 92% classification accuracy.

However, their results are based on separate Train and Test

sets procedure which does not allow straightforward comparison.

The HV-MOTS method allows to obtain 95.35% classification

accuracy, which outperforms previously reported accuracies for

this dataset. Table II synthesizes the comparison between our

method and previous approaches.

E. Robustness analysis

In real-life conditions, we can expect audio collections to

include sounds from different sources recorded under various

conditions. Some QBE systems have been tested for robustness

but usually only with regards to transcoding, using either lower

sampling rates [33] or lossy data compressions [9] to simulate

mobile audio databases. We test our approach by applying a

wider range of distortion classes to simulate various low-quality

conditions in recording

• Additive white noise resulting in [30, 20, 10]dB SNR.

• Pitch down and upconversion by 10 and 20% of pitch.
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Altotrombone 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Animals 0 8 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Bells 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0

Cellobowed 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0

Crowds 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

Laughter 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0

Machines 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 3

Oboe 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0

Percussion 0 0 0 0 0 0 0 1 97 0 0 0 0 0 1 0

Speech (female) 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0

Speech (male) 0 0 0 0 0 0 1 0 0 3 12 0 0 0 0 1

Telephone 0 0 0 0 0 0 0 0 1 0 0 16 0 0 0 0

Tublarbells 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0

Violinbowed 0 0 0 1 0 0 0 0 0 0 0 0 0 44 0 0

Violinpizz 0 0 0 0 0 0 0 0 2 0 0 0 0 0 38 0

Water 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 4

Table I
CONFUSION MATRIX FOR THE BEST CLASSIFICATION ACCURACY (95.4%) OBTAINED BY HV-MOTS ON THE MUSCLEFISH DATASET. THE

DESCRIPTOR COMBINATION USED IS COMPOSED OF MFCC, MFCCDELTASTDDEV, PERCEPTUALSLOPE, CHROMADELTASTDDEV,
RELATIVESPECIFICLOUDNESSDELTASTDDEV AND PERCEPTUALDECREASE.
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Figure 13. Comparison of the classification accuracy of using only temporal features, only static (mean and deviation) features or mixed sets of
information with either multiobjective or mono-objective selection.
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Accuracy N

Guo et al. [32] 78.3 % 8

Wold et al. [79] 80.9 % 13

Guo and Li [31] 89.0 % 8

Reyes-Gomes [63] 89.9 % -

Li [44] 90.2 % 8

HV-MOTS 95.4 % 6

Table II
COMPARISON OF OUR METHOD TO STATE-OF-ART METHODS ON THE

MUSCLEFISH DATASET. WE PROVIDE THE CLASSIFICATION

ACCURACY AND THE NUMBER OF FEATURES USED.

• Random signal cropping by 5, 10 and 15% of length.

• Telephone filtering ([300, 3400]Hz bandpass filter).

These distortions are applied one at a time to each sound clip.

Modified samples are then used as queries to the database (minus

the original nondistorted sample) which allows comparing clas-

sification accuracies after distortion. We use in these tests only

combinations of the best feature sets obtained in the classification

task with normal quality audio. Results of the robustness analysis

are synthesized in Table III. We can see here that HV-MOTS con-

sistently outperforms other approaches for cropping, pitch modi-

fication and telephone filtering and appears to be robust for these

distortions. However, it seems that multiobjective approaches are

more affected by noise than mono-objective selections.

V. FUTURE WORK AND APPLICATIONS

We discuss the usability of our proposal in a QBE context and

how its flexibility can potentially provide innovative paradigms for

audio querying. Figure 14 summarizes the algorithmic framework

for both applications. We start by showing in Section V-A how

query results are presented to users in a QBE context. Then,

we introduce two new interaction paradigms for audio retrieval.

We present in Section V-B the MultiObjective Spectral Evolution

Query (MOSEQ) where users can draw multiple temporal shapes

required for a sample. We present in Section V-C a QBH-like

system for audio clips called the Query by Vocal Imitation (QVI).

It allows users to imitate the evolution of spectral properties.

A. QBE results and representation

Figure 15 illustrates the results of two queries on the Mus-

cleFish dataset. The first (left) is performed using a restaurant

scene from the crowds class. The second (right) is performed

using a sample of female speech. We present the results of

both methods given the same set of features. Mono-objective

selection provides an ordered list of results. However, there is

no informed knowledge about how these choices were made

whatsoever. Even with multiple dimensions involved, the results

only offers an “optimization line” of fitness. Oppositely, the MOTS

framework allows to obtain the complete optimization space. This

representation informs the user on how solutions optimize various

objectives. It also allows users to explore this space by focusing

more on one objective than the other. If we look more closely at

the results of these queries, we can see that the sets provided by

the MOTS approach are more similar to the initial example query.

In the first case, it appears that relevant results are spread over the

criteria space which is revealed by the multiobjective optimization.

On the other hand, mono-objective selection seems to get stuck

on solutions performing averagely in both objectives. Hence, the

representation provided by MOTS matching entails cases where

users seek parts of the query but not exactly the same content.
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Figure 14. Algorithmic framework for two types of interaction. In
MOSEQ, a set of time-evolving properties is drawn. The MOTS algorithm
allows to find the set of efficient solutions. In QVI, the user can use his
voice to perform an imitation of the desired properties (obtained from
spectral analysis)

B. MultiObjective Spectral Evolution Query (MOSEQ)

The idea behind this interaction paradigm is that users create a

mental representation of the temporal evolution of several spectral

properties prior to the search. Therefore, the MOSEQ system

would allow the user to select a set of features that are relevant

to his query. Then, for each, he could simply draw their desired

time series. This set acts as the target for this system, therefore,

bypassing the need for a specific example. In a QBE context, the

target T is the sound example for which similar instances have

to be found. For the MOSEQ system, the target is represented

by a set of time series features
˘

F1 (T ) , ...,FK (T )
¯

drawn

by the user. Given this target and a sound sample S, the kth

similarity function is the real-valued function Dk
T (S) that returns

the distance between S and T along the kth feature, i.e. between

Fk(S) and Fk(T ). It should be noted that it is possible to define

a different similarity measure for each objective. By using the

MOTS approach, the system could present the multidimensional

space of audio clips. This allows to project time-evolving sound

ideas and cope with the multidimensionality of timbre perception.

C. Query by Vocal Imitation (QVI)

The most straightforward way to communicate an idea is to

use our voice. Most people have in some occasions imitated

everyday sounds by using their voice and tried to match the

temporal evolution of acoustic properties. Even with the inherent

limitations of human voices, such as the tessitura, we can control

remarkably specific sound qualities like the position of the formant

frequencies, the type of phonation or the singer’s formant [73].

We thus benefit from the high degree of expression of the singing

voice, principally described by loudness, fundamental frequency

and spectral envelope, which all vary dynamically with time.

Sung imitations may convey valuable information as Pressing [58]

indicates: “One important resource in designing such expressivity
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Normal Pitch conversion Cropping Noise (SNR) Telephone

-20% -10% +10% +20% 5% 10% 15% 10dB 20dB 30dB

1-NN 91.69 88.02 90.71 89.73 86.06 90.95 90.46 90.46 76.28 76.28 81.66 90.95

5-NN 89.24 85.09 87.29 87.04 83.37 88.51 88.51 88.26 74.82 74.82 78.97 88.26

MOTS 85.82 76.53 83.37 84.60 78.97 84.60 84.11 84.11 66.26 66.26 74.08 84.11

HV-MOTS 95.35 90.71 94.13 93.40 90.46 94.87 94.13 93.89 74.82 78.97 84.84 93.89

Table III
EFFECTS OF A SET OF DISTORTIONS ON CLASSIFICATION ACCURACY FOR DIFFERENT METHODS ON THE MUSCLEFISH DATASET.
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Figure 15. Comparison of different query results for multiobjective optimization and mono-objective selection in a QBE context. (Left) A sound
taken from a restaurant scene and belonging to the crowd class. (Right) A clip taken from the female speech class.

is to use one’s own voice to sing the expression in the part. Even

if the sound quality is beyond the powers of your (or perhaps

anyone’s) voice, its time shaping may be imitable”. Despite the

voice is limited in the range of timbres it can produce, much of

vocal expression can be captured, not in the absolute timbre but in

the relative temporal change of timbre. Therefore, a natural way

of querying sound samples would be to perform a vocal imitation

based on spectral shapes. The QVI problem could be reduced to a

MOSEQ problem. Furthermore, the lack of spectral and harmonic

control can be circumvented by manually drawing some of the

temporal shapes or mapping useful vocal descriptors to unrelated

spectral features.

VI. CONCLUSIONS

We have presented in this paper a novel approach for content-

based audio classification and retrieval. By analyzing sound sam-

ples with the full scope of spectral descriptors currently available,

we are able to obtain a database with a precise knowledge on

various audio properties. This database can allow queries based on

the temporal shape of spectral properties by using time series anal-

ysis techniques. However, our goal was to go beyond this scheme

and introduce innovative concepts of interaction. For perform-

ing queries on several time-evolving properties simultaneously,

we proposed to merge time series analysis and multiobjective

optimization in a common framework. We thus stated this new

problem as MultiObjective Time Series (MOTS) matching. We

evaluated this approach in a classification framework using two

datasets. We showed that our approach outperforms the state-of-

art methods on a reference dataset even with a limited number

of features involved. Mean classification accuracies seems to

indicate that the hypervolume multiobjective optimization retains

the discriminative power of the best feature involved, whereas

mono-objective selection is confined by the worst feature of the

set. We also showed the robustness of our approach to several

classes of distortions. We presented query results, which allow

the user to see how solutions optimize the different objectives. For

future work, we need to assess the usability of the QVI framework

as an intuitive way to interact with sound samples through com-

prehensive user studies. An extremely useful investigation would

also consist in analyzing which spectral descriptors can truly be

controlled in these types of queries. Regarding the performance of

the algorithm itself, we envisioned to test several representations

and indexing methods in order to determine which among them

provides the best efficiency. We believe that the generic approach

of MOTS matching could be applied to a whole range of concrete

problems including medical diagnosis, chemical engineering and

genetic analysis. In fact, this new approach could be beneficial to

several topics where multiobjective optimization has proven to be

useful. Enhancing such approaches with time series data would

provide more powerful and flexible analysis tools.
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