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Abstract

Practitioners often encounter challenging real-world problems that involve a simultane-
ous optimization of multiple objectives in a complex search space. To address these prob-
lems, we propose a practical multiobjective Bayesian optimization algorithm. It is an ex-
tension of the widely used Tree-structured Parzen Estimator (TPE) algorithm, called Mul-
tiobjective Tree-structured Parzen Estimator (MOTPE). We demonstrate that MOTPE
approximates the Pareto fronts of a variety of benchmark problems and a convolutional
neural network design problem better than existing methods through the numerical results.
We also investigate how the configuration of MOTPE affects the behavior and the perfor-
mance of the method and the effectiveness of asynchronous parallelization of the method
based on the empirical results.

1. Introduction

Many real-world problems get involved in optimizing multiple objectives simultaneously in
a complex search space. These objectives are often conflicting with one another, computa-
tionally and/or financially expensive to evaluate, and blackbox, i.e., their analytical forms
are not available. One of such problems is the design of mechanical products such as a diesel
engine combustion chamber (Jeong, Minemura, & Obayashi, 2006) and a tractor’s air intake
ventilation system (Chugh, Sindhya, Miettinen, Jin, Kratky, & Makkonen, 2017). These
mechanical design problems usually require expensive computation (e.g., fluid dynamics
simulations) and financially expensive prototyping processes. Another example is an auto-
mated machine learning problem to find a preferable model in terms of multiple criteria such
as high prediction accuracy and low computational cost. This problem is known as Hyper-
parameter Optimization (HPO) (Igel, 2005; Shah & Ghahramani, 2016; Hernández-Lobato,
Hernández-Lobato, Shah, & Adams, 2016; Horn & Bischl, 2016; Belakaria, Deshwal, &
Doppa, 2019) or Neural Architecture Search (NAS) (Lu, Whalen, Boddeti, Dhebar, Deb,
Goodman, & Banzhaf, 2019). In this problem, the objectives require time-consuming train-
ing of the machine learning model to evaluate. The search space can be complex because
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some typical hyperparameters, e.g., the number of layers and the type of activation func-
tion, are non-continuous. Moreover, if we use cloud computing resources, the cloud usage
fee will be also charged, i.e., this problem can be financially expensive.

Objective functions of real-world problems, such as those mentioned above, are expensive
to evaluate. Therefore, such a real-world application needs an optimization algorithm that
works with a limited evaluation budget and/or can be effectively parallelized. One of the
most successful approaches to tackle expensive optimization problems is utilizing a surrogate
that approximates an objective landscape or a promising region in a search space for efficient
search. Such surrogate-based algorithms for single- and multi-objective optimization have
been widely studied in the machine learning and the evolutionary computation community
as Bayesian optimization (Archetti & Candelieri, 2019) and surrogate-assisted evolutionary
algorithm (Chugh, Sindhya, Hakanen, & Miettinen, 2019). Currently, the Gaussian process
(GP, also called Kriging) (Rasmussen & Williams, 2006) is the de facto standard model
in surrogate-based algorithms. Most surrogate-based optimization algorithms successful
in real-world problems adopt GP as a surrogate model, e.g., PESMO (Hernández-Lobato
et al., 2016) and K-RVEA (Chugh et al., 2017; Chugh, Jin, Miettinen, Hakanen, & Sind-
hya, 2018). GP predicts expected values and uncertainties of objectives that are essential
for balancing between exploration and exploitation during optimization. However, there
are well-known drawbacks of standard GP: it is not so suitable for non-continuous search
space; it suffers from high computational complexity to data size. These are problematic
because real-world problems often have complex search space, and low scalability severely
constrains our evaluation budget even when parallel evaluation is allowed. To address them,
we generally have two approaches: introducing advanced techniques into GP to improve its
performance; employing a surrogate other than GP. As for the first approach, a number of
handling and approximation techniques have been proposed (Qian, Wu, & Wu, 2008; Liu,
Ong, Shen, & Cai, 2020; Zhang, Apley, & Chen, 2020; Cuesta-Ramirez, Riche, Roustant,
Perrin, Durantin, & Gliere, 2021; Pelamatti, Brevault, Balesdent, Talbi, & Guerin, 2021).
These techniques generally help practitioners apply GP-based optimization algorithms to
a variety of real-world problems. However, each technique often has its drawbacks, e.g.,
approximation causes prediction performance degradation. As for the second approach,
non-GP-based optimization algorithms have been proposed (Bergstra, Bardenet, Bengio, &
Kégl, 2011; Hutter, Hoos, & Leyton-Brown, 2011). One of the most notable algorithms is
Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011; Bergstra, Yamins, & Cox,
2013), which is known for the standard solver of Hyperopt (Bergstra, Komer, Eliasmith,
Yamins, & Cox, 2015) and Optuna (Akiba, Sano, Yanase, Ohta, & Koyama, 2019) – open-
source software for HPO that are widely used in the machine learning community. TPE is
suitable for computationally expensive problems because of its efficient search with a sur-
rogate model and parallelizability. Its surrogate based on the Parzen estimators (Parzen,
1962) can naturally handle complex search space, scale to tens of variables, and scale to
at least one thousand observations. These properties make TPE better than GP-based
optimization algorithms in certain types of problems. Bergstra et al. (2011) reported that
TPE outperformed a GP-based Bayesian optimization algorithm in single-objective HPO
including non-continuous variables. However, unfortunately, TPE is not designed for multi-
objective optimization, so its application is limited to single-objective problems. After all,
a more powerful algorithm is desired by practitioners.
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Motivated by the above discussion, in this study, we develop an optimization algorithm
that can handle multiple objectives and complex search space with scalability and paral-
lelizability working with a limited budget by extending TPE. We address the following two
nontrivial issues to extend TPE: (1) designing a proper strategy to split observations in-
cluding many incomparable ones and (2) deriving an effective acquisition function to handle
multiple objectives. This paper covers the extension of TPE to multiobjective optimiza-
tion in detail and demonstrates the performance of the proposed method through several
numerical results including a real-world problem.

1.1 Contributions

The contributions of this study are summarized below.

• We propose a practical multiobjective Bayesian optimization algorithm called Multi-
objective Tree-structured Parzen Estimator (MOTPE), which is an extension of TPE.

• We compare the proposed MOTPE and other surrogate-based multiobjective opti-
mization algorithms on benchmark problems. The empirical results demonstrate that,
in most cases, MOTPE approximates the Pareto front better than the other algorithms
with a limited evaluation budget.

• We compare MOTPE and NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002)
on medium-dimensional benchmark problems under a medium budget setting. The
empirical results give us insight into when we should use MOTPE rather than NSGA-
II.

• We solve a multiobjective convolutional neural network (CNN) design problem, which
is an important real-world problem, using MOTPE and existing algorithms. Our
results show that MOTPE handles the complex search space better than the other
algorithms.

• We discuss how the configuration of MOTPE affects both its behavior and perfor-
mance through experiments. We also provide an empirical recommendation of the
configuration based on the numerical results.

• We demonstrate the effectiveness of parallelization in MOTPE. Our results show that
asynchronous parallelization drastically speeds up the method.

The preliminary version of this paper appeared in Proceedings of the 2020 Genetic
and Evolutionary Computation Conference (GECCO). The major updates from the last
version (Ozaki, Tanigaki, Watanabe, & Onishi, 2020) are the following.

• We stabilize MOTPE by introducing a new weighting strategy that assigns weights
to observations proportional to hypervolume contributions.

• We introduce the parallelization of MOTPE that is vital for solving real-world prob-
lems in practice.

• We update the numerical results section entirely. Especially, we demonstrate that
MOTPE has the practicality sufficiently to solve a multiobjective CNN design prob-
lem.
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2. Background

This section first provides definitions and notations that we use. Then, the problem ad-
dressed in this paper is described. After that, the TPE algorithm for single-objective
optimization is explained.

2.1 Mathematical Preliminaries

The following definitions and notations are used in this paper.

Definition 1 (Dominance relation). A vector y ∈ Rm dominates a vector y′ ∈ Rm iff ∀i :
yi ≤ y′i and ∃i : yi < y′i, denoted y ≺ y′. A vector y ∈ Rm weakly dominates a vector
y′ ∈ Rm iff ∀i : yi ≤ y′i, denoted y � y′. (Here we assume that smaller yi is more preferable,
cf. Section 2.2.)

Definition 2 (Incomparable relation). Two vectors y ∈ Rm and y′ ∈ Rm are incomparable
iff neither y � y′ nor y′ � y, denoted y ‖ y′.

Definition 3 (Nondomination rank). For a finite set of vectors Y ⊂ Rm, the nondomination
rank (Deb et al., 2002) of a vector y ∈ Y denoted rank(y) ∈ N is defined as follows:

• rank(y) = 1 iff @y′ ∈ Y : y′ ≺ y.

• rank(y) = maxy′∈Y ′ rank(y′) + 1 where Y ′ = {y′ ∈ Y | y′ ≺ y}.

A vector y ∈ Y is nondominated iff rank(y) = 1. We denote by Yrank(k) the set {y ∈ Y |
rank(y) = k}.

Definition 4 (Dominance relation between set and vector). For a finite set of vectors
Y ⊂ Rm and a vector y ∈ Rm, define Y ≺ y (resp. Y � y) iff ∃y′ ∈ Yrank(1) : y′ ≺ y (resp.
y′ � y). For a finite set of vectors Y ⊂ Rm and a vector y ∈ Rm, also define y ≺ Y (resp.
y � Y ) iff ∃y′ ∈ Yrank(1) : y ≺ y′ (resp. y � y′).

Definition 5 (Incomparable relation between set and vector). For a finite set of vectors
Y ⊂ Rm and a vector y ∈ Rm, define Y ‖ y (also denoted y ‖ Y ) iff ∀y′ ∈ Yrank(1) : y ‖ y′.

Definition 6 (Pareto optimality). For a function f : X → Rm, a vector x ∈ X is Pareto
optimal iff @x′ ∈ X : f(x′) ≺ f(x). An entire set of Pareto optimal vectors {x ∈ X | @x′ ∈
X : f(x′) ≺ f(x)} is called the Pareto set. The set of corresponding images to the Pareto
set {f(x) ∈ Rm | x ∈ X is Pareto optimal} is called the Pareto front.

Definition 7 (Hypervolume indicator). Let λ(S) denote the Lebesgue measure of a mea-
surable set S. The hypervolume indicator IH of a finite set of vectors Y ⊂ Rm with a
reference point r ∈ Rm is defined as:

IH(Y ; r) := λ({y ∈ Rm | Y � y � r}). (1)

Hereafter, we omit r and simply use IH(Y ) when our discussion does not depend on a
specific choice of r.

Definition 8 (Hypervolume contribution). For a finite set of vectors Y ⊂ Rm and a vector
y ∈ Y , the hypervolume contribution of y for Y is defined as IH(Y )− IH(Y \ {y}).
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Root
x1 ∈ X1 : Learning rate
(Type: Real variable)

x2 ∈ X2 : Number of blocks
(Type: Integer variable)

x3 ∈ X3 : Number of filters 1
(Type: Integer/conditional variable)

x4 ∈ X4 : Number of filters 2
(Type: Integer/conditional variable)

≥ 1

≥ 2

Figure 1: A tree-structured search space of HPO of a neural network with four parameters:
Learning rate, Number of blocks, Number of filters 1, and Number of filters 2. x3

is active only when x2 ≥ 1. x4 is active only when x2 ≥ 2.

2.2 Problem Statement

The problem addressed in this paper is formulated as:

minimize f(x) := (f1(x), . . . , fm(x))

x ∈ X
(2)

where X is a tree-structured search space composed of the search space Xi of each variable
(also called parameter) xi (i = 1, . . . , n), and fj : X → R (j = 1, . . . ,m) is an objective
function. The objectives are assumed to be conflicting with one another, expensive to
evaluate, and blackbox. Without loss of generality, the minimization of all objectives is
considered. The search space can be a mixture of real, integer, and categorical variables.
This search space is tree-structured in the sense that some child variables are only active
when their parent variables take particular values (Bergstra et al., 2011). In this paper, we
call such child variables conditional. Non-conditional variables are always treated as active.
Figure 1 shows a tree-structured search space example of HPO of a neural network with
four parameters. The most important property of tree-structured search space is that only
active parameters are required to evaluate the objectives, e.g., in the example search space,
we can evaluate the objectives without x4 when x2 = 1. Note that standard hyper-rectangle
search space is a special case of tree-structured search space. The goal of this problem is to
efficiently approximate the Pareto front with a given evaluation budget.

2.3 Tree-Structured Parzen Estimator

We introduce TPE (Bergstra et al., 2011) for single-objective minimization in Algorithm 1
because TPE is the principal basis of MOTPE.

Let X be a tree-structured search space and f : X → R be an objective function.
We consider the problem finding x? ∈ argminx∈X f(x). Assume a set of observations
D = {(x(1), y(1)), . . . , (x(k), y(k))}. TPE models p(xi | y) for each parameter xi (∈ Xi)
using the two probability density functions as follows:

p(xi | y) =

{
l(xi) if y < y∗

g(xi) if y∗ ≤ y
(3)
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Algorithm 1 Tree-structured Parzen Estimator

Require:
D = {(x(1), y(1)), . . . , (x(k), y(k))} : observations
nt ∈ N : number of iterations
nc ∈ N : number of candidates
γ ∈ (0, 1) : quantile

1: for t← 1, . . . , nt do
2: Dl ← {(x, y) ∈ D | y is included in the best-bγ|D|c objective values in D}
3: Dg ← D \Dl

4: repeat
5: i← i ∈ [1, n] such that xi is active and x∗i has not been sampled
6: construct l(xi) with {xi | (x, y) ∈ Dl} and g(xi) with {xi | (x, y) ∈ Dg}
7: Ci ← {x(j)

i ∼ l(xi) | j = 1, . . . , nc} . sample nc candidates for x∗i
8: x∗i ← argmaxxi∈Ci

l(xi)/g(xi) . approximate argmaxxi∈Xi
l(xi)/g(xi)

9: until all active parameters have been sampled
10: D ← D ∪ {(x∗, f(x∗))} . x∗ is the vector composed of all sampled x∗i
11: end for
12: return x with the minimum y value in D

where l(xi) is constructed using the subset of the observed xi values {x(j)
i ∈ Xi | y(j) (=

f(x(j))) < y∗, j = 1, . . . , k}, and g(xi) is constructed using the set of the remaining
observed xi values. The value y∗ is selected to be a quantile γ ∈ (0, 1) of the observed y
values satisfying p(y < y∗) = γ. In lines 2–3 of Algorithm 1, the observations are split into
Dl and Dg to construct the models. This can be easily achieved by sorting the observations
based on the y values. In line 6, observations such that xi is inactive are ignored. Briefly,
l(xi) models the density of good xi values whereas g(xi) models the density of poor xi
values. In TPE, these densities are estimated as described in Section 2.3.1.

2.3.1 Density Estimation

Given a set of observed xi values Dx = {xi | (x, y) ∈ Dl (or Dg)}, TPE estimates the
density of the observations in a different way based on the type of xi, i.e., real, integer, or
categorical, and the scale of the parameter that we set, i.e., uniform or log-uniform for the
real/integer parameter.

For a real/integer parameter xi with a uniform scale, the following Parzen estimator is
used to estimate the density:

p(xi) =

∑
x′i∈Dx

wx′i
k(xi, x

′
i) + wpk(xi, xp)∑

x′i∈Dx
wx′i

+ wp
(4)

where wx′i
is a weight for the observation x′i, xp is a fixed prior, wp is a prior weight, and

k : Xi ×Xi → R is a kernel function such that
∫
x k(x, ·)dx = 1. As a kernel function, TPE

uses the truncated Gaussian kernel. In other words, the density estimator is constructed by
placing densities in the form of truncated Gaussian distributions Ntrunc(µ, σ, a, b) at each
value of x′i (i.e., µ = x′i). a and b are the lower bound and the upper bound of the defined
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domain, thus a = inf Xi and b = supXi. The bandwidth selection is performed point-wisely
as follows:

σ = min(max(x′i − xL, xR − x′i, ε), b− a) (5)

where xL = max({x | x ∈ Dx ∪ {a}, x < x′i}), xR = min({x | x ∈ Dx ∪ {b}, x > x′i}), and
ε = (b−a)/min(100, 1+|Dx∪{xp}|) is a constant that prevents extremely small bandwidth.
The fixed prior is set to xp = (a+ b)/2, σ = b− a, and wp = 1. When the parameter scale
is set to log-uniform, the parameter is treated as uniform in the log domain.

For a categorical parameter xi, a simple weighted histogram is used to estimate the
density. In this case, the probability of each choice c in Xi is chosen proportionally to∑

x′i∈Dx
wx′i

1c(x
′
i) + wp where

1c(x) =

{
1 if x = c

0 otherwise
(6)

and wp = 1 is a prior weight.
For all cases, the weight wx′i

is equally set to 1 (Bergstra et al., 2011) or allocated by
a recency weighting strategy (Bergstra et al., 2013). MOTPE employs another weighting
strategy as described in Section 3.

For more information, we recommend that readers refer to the original papers (Bergstra
et al., 2011, 2013) and the implementations of TPE (Bergstra et al., 2015; Akiba et al.,
2019) and MOTPE that we provide.1

2.3.2 Expected Improvement

To obtain a candidate to evaluate, TPE employs the following Expected Improvement (EI)
for y∗ and the parameter xi as the acquisition function (Bergstra et al., 2011):

EIy∗(xi) :=

∫ ∞
−∞

max(y∗ − y, 0)p(y | xi)dy

=

∫ y∗

−∞
(y∗ − y)p(y | xi)dy

∝
(
γ + (1− γ)

g(xi)

l(xi)

)−1

.

(7)

In each iteration, for each active parameter, the best candidate x∗i with the greatest EI
value is selected to evaluate (lines 2–9 of Algorithm 1). At first, parameters that connect
to the root of the search space are active and sampled, e.g., x1 and x2 in Figure 1. After
sampling those parameters, some conditional parameters can be active and sampled, e.g.,
when x∗2 = 2, then x3 and x4 in Figure 1 become active. In brief, TPE samples the
parameters from the root to the leaves of the search space. Usually, the maximizer of EI
for each parameter x∗i is approximated by selecting the best one among several candidates
sampled from l(xi) (lines 7–8). In line 7, when the parameter type of xi is integer, a sampled
candidate is rounded to the nearest integer value. Note that no specific model for p(y) is
required since l(xi)/g(xi) does not depend on p(y).

1. https://doi.org/10.5281/zenodo.6258358.
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3. Multiobjective Tree-Structured Parzen Estimator

In this section, we introduce the MOTPE algorithm to solve the problem (2). This algorithm
is an extension of the TPE algorithm for multiobjective optimization.

Assume a set of observations D = {(x(1),y(1)), . . . , (x(k),y(k))}. MOTPE models
p(xi | y) for each parameter xi (∈ Xi) using the two probability density functions as
follows:

p(xi | y) =

{
l(xi) if (y ≺ Y ∗) ∨ (y ‖ Y ∗)
g(xi) if Y ∗ � y

(8)

where Y ∗ is a set of objective vectors such that p((y ≺ Y ∗)∨ (y ‖ Y ∗)) = γ. The γ ∈ (0, 1)
is a quantile parameter, l(xi) is a density constructed using the subset of the observed

xi values Dlx = {x(j)
i ∈ Xi | (y(j) (= f(x(j))) ≺ Y ∗) ∨ (y(j) ‖ Y ∗), j = 1, . . . , k},

and g(xi) is a density constructed using the set of the remaining observed xi values Dgx .
Figure 2 illustrates the relationship between y and Y ∗ in a two-dimensional case. MOTPE
constructs the model like TPE (cf. Section 2.3.1). A simple but significant difference
between the models of MOTPE and TPE is the weighting strategy. MOTPE assigns a
weight proportional to the hypervolume contribution for each observation for l(xi) and a

uniform weight for each observation for g(xi). That is, the weight for x
(j)
i ∈ Dlx is set to be

proportional to IH(Dly)− IH(Dly \ {y(j)}) where Dly = {y(j) | x(j)
i ∈ Dlx} and the weight

for x
(j)
i ∈ Dgx is set to 1.

3.1 Greedy Algorithm to Split Observations

MOTPE utilizes a greedy algorithm to split observations including many incomparable ones.
The MOTPE algorithm theoretically depends on Y ∗ such that p((y ≺ Y ∗)∨(y ‖ Y ∗)) = γ to
split the observations into subsets for l(xi) and g(xi). However, in practice, the observations
are directly split for a specific γ in a greedy manner, as described in Algorithm 2. In
Algorithm 2, Drank(j) denotes the set of observations with the objective vectors having
the nondomination rank j. This algorithm comprises the following two steps. The first
step (lines 3–6) greedily appends better nondomination ranked observations to the largest

f1

f2

Y ∗ � yy ‖ Y ∗

y ≺ Y ∗

Figure 2: The relationship between y and Y ∗. Black points belong to Y ∗.
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Algorithm 2 Split Observations

Require:
D = {(x(1),y(1)), . . . , (x(k),y(k))} : observations
γ ∈ (0, 1) : quantile

1: Dl ← {}
2: j ← 1
3: while |Dl|+ |Drank(j)| ≤ bγ|D|c do
4: Dl ← Dl ∪Drank(j)

5: j ← j + 1
6: end while
7: Dl ← Dl ∪ greedy hss(Drank(j), bγ|D|c − |Dl|) . call Algorithm 3
8: Dg ← D \Dl

9: return (Dl, Dg)

Algorithm 3 Greedy Hypervolume Subset Selection

Require:
Di : input set
ns ∈ N : subset size

1: Ds ← {}
2: for all (x,y) ∈ Di do
3: cy ← IH({y})
4: end for
5: for j ← 1, . . . , ns do
6: (x′,y′)← argmax(x,y)∈Di

cy
7: Di ← Di \ {(x′,y′)}
8: for all (x,y) ∈ Di do
9: cy ← IH(Ds ∪ {(max(y1, y

′
1), . . . ,max(ym, y

′
m))})− IH(Ds)

10: end for
11: Ds ← Ds ∪ {(x′,y′)}
12: end for
13: return Ds

extent possible to Dl. This only requires the nondominated sorting (Deb et al., 2002).
The second step (line 7) appends the set obtained as a result of the hypervolume subset
selection problem (HSSP) (Bader & Zitzler, 2011) to Dl. HSSP finds a subset of a specific
size of a set of vectors to maximize the hypervolume indicator with a given reference point.
Because HSSP is a submodular maximization, it can obtain a near-optimal solution having
the hypervolume that is lower bounded by 1−1/e (e is Napier’s constant) times the optimal
value via the greedy method (Nemhauser, Wolsey, & Fisher, 1978; Guerreiro, Fonseca, &
Paquete, 2016). Here we describe a general greedy algorithm (Bradstreet, While, & Barone,
2007; Guerreiro et al., 2016) for HSSP in Algorithm 3. This algorithm requires a set Di

and size ns and returns the result of HSSP for these inputs. In our experiments, the vector
(1.1 maxy∈Dy y1, . . . , 1.1maxy∈Dyym) where Dy = {y | (x,y) ∈ Drank(j)}, is used as the
reference point for the hypervolume indicator (cf. Definition 7) in Algorithm 3.
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3.2 Expected Hypervolume Improvement

Because EI cannot be applied to multiobjective optimization, we use instead the Expected
Hypervolume Improvement (EHVI) acquisition function (Emmerich, Giannakoglou, & Nau-
joks, 2006; Emmerich, Deutz, & Klinkenberg, 2011) that measures the expectation of hy-
pervolume improvement. The hypervolume improvement is important because the hyper-
volume indicator has the following crucial properties (Zitzler, Thiele, Laumanns, Fonseca,
& Da Fonseca, 2003; Fleischer, 2003). Let Y and Y ′ be subsets of Rm. The hypervolume in-
dicator never contradicts Pareto optimality: IH(Y ) > IH(Y ′) ⇒ ¬((∀y ∈ Y ∃y′ ∈ Y ′ : y′ �
y)∧(Y 6= Y ′)). The hypervolume indicator can always detect if one set is better than another
in terms of Pareto optimality: (∀y′ ∈ Y ′∃y ∈ Y : y � y′) ∧ (Y 6= Y ′) ⇒ IH(Y ) > IH(Y ′).
The Pareto front achieves the maximum hypervolume. By utilizing EHVI, MOTPE tries
to greedily maximize the hypervolume.

EHVI for Y ∗ and the parameter xi is calculated as follows:

EHVIY ∗(xi) :=

∫
(IH(Y ∗ ∪ {y})− IH(Y ∗))p(y | xi)dy

=

∫
R

(IH(Y ∗ ∪ {y})− IH(Y ∗))p(y | xi)dy

=

∫
R

(IH(Y ∗ ∪ {y})− IH(Y ∗))
p(xi | y)p(y)

p(xi)
dy

(9)

where R = {y | (y ≺ Y ∗) ∨ (y ‖ Y ∗)}. By definition in Equation (8), we obtain p(xi |
y) = l(xi) as long as y ∈ R, otherwise p(xi | y) = g(xi). Based on the definition, γ =
p(y ∈ R), and p(xi) =

∫
p(xi | y)p(y)dy = γl(xi) + (1 − γ)g(xi); therefore, the numerator

of EHVIY ∗(xi) is ∫
R

(IH(Y ∗ ∪ {y})− IH(Y ∗))p(xi | y)p(y)dy

= l(xi)

∫
R

(IH(Y ∗ ∪ {y})− IH(Y ∗))p(y)dy︸ ︷︷ ︸
= CY ∗ (constant w.r.t. xi)

= CY ∗ l(xi),

(10)

and finally, we obtain the following result:

EHVIY ∗(xi) =
CY ∗ l(xi)

p(xi)

=
CY ∗ l(xi)

γl(xi) + (1− γ)g(xi)

=
CY ∗

γ + (1− γ)g(xi)
l(xi)

∝
(
γ + (1− γ)

g(xi)

l(xi)

)−1

.

(11)

The result means that we can maximize EHVI by simply maximizing the ratio l(xi)/g(xi)
without calculation of the actual EHVI value. We find that no specific model for p(y) is
required since l(xi)/g(xi) does not depend on p(y).
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Algorithm 4 Multiobjective Tree-structured Parzen Estimator

Require:
D = {(x(1),y(1)), . . . , (x(k),y(k))} : observations
nt ∈ N : number of iterations
nc ∈ N : number of candidates
γ ∈ (0, 1) : quantile

1: for t← 1, . . . , nt do
2: (Dl, Dg)← split observations(D, γ) . call Algorithm 2
3: repeat
4: i← i ∈ [1, n] such that xi is active and x∗i has not been sampled
5: construct l(xi) with xi values in Dl and g(xi) with xi values in Dg

6: Ci ← {x(j)
i ∼ l(xi) | j = 1, . . . , nc} . sample nc candidates for x∗i

7: x∗i ← argmaxxi∈Ci
l(xi)/g(xi) . approximate argmaxxi∈Xi

l(xi)/g(xi)
8: until all active parameters have been sampled
9: D ← D ∪ {(x∗,f(x∗))} . x∗ is the vector composed of all sampled x∗i

10: end for
11: return the set of nondominated solutions in D

The pseudocode of MOTPE is provided in Algorithm 4. In each iteration, for each
parameter, the best candidate x∗i = argmaxxi∈Xi

EHVIY ∗(xi) will be selected to evaluate.2

As same as TPE, this maximizer of EHVI is approximated by a limited number of samples
(see lines 6–7). In line 6, when the parameter type of xi is integer, a sampled candidate is
rounded to the nearest integer value.

3.3 Parallelization

When objectives are computationally expensive, parallelization of evaluating those objec-
tives is a matter of great significance in practice. An asynchronous parallelization method,
proposed by Bergstra et al. (2011) for the original TPE, can also be applied to MOTPE
without any modification. Of course, it is also able to parallelize the initialization step of
MOTPE asynchronously. Algorithm 5 describes the asynchronous parallel MOTPE includ-
ing initialization. This approach simply ignores unfinished evaluations and draws from l(xi)
to provide different candidates relying on the stochasticity of draws. In line 8 of Algorithm 5,
a process (or thread) to run Algorithm 6 is created. In line 2 of Algorithm 6, an arbitrary
sampling method such as uniform random sampling or Latin hypercube sampling (McKay,
Beckman, & Conover, 1979) can be used as initial sampling method.

The asynchronous parallelization is speedy and more efficient without wait time for
synchronization (Kandasamy, Krishnamurthy, Schneider, & Póczos, 2018) although syn-
chronous parallelization is widely adopted in evolutionary computing methods and batch
Bayesian optimization methods. Figure 3 illustrates the difference between synchronous
and asynchronous parallelization. Additionally, in synchronous parallelization of Bayesian
optimization, a set of observations to construct a surrogate is always the same among work-

2. In MOTPE, the solution obtained by maximizing EHVI is equivalent to that obtained by maximizing the
probability of hypervolume improvement (PHVI). Details of this derivation can be found in Appendix A.
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Algorithm 5 Asynchronous Parallel MOTPE

Require:
nt ∈ N : number of evaluations (including initialization, i.e., nt ≥ ni)
ni ∈ N : number of initial observations
nc ∈ N : number of candidates
np ∈ N : number of maximum workers
γ ∈ (0, 1) : quantile

1: D ← {} . observations (shared variable)
2: nw ← 0 . number of workers running (shared variable)
3: for t← 1, . . . , nt do
4: if nw = np then
5: wait until nw < np

6: end if
7: nw ← nw + 1
8: launch worker(t, D, nw, ni, nc, γ) . run Algorithm 6 as a new process (or thread)
9: end for

10: wait until nw = 0
11: return the set of nondominated solutions in D

Algorithm 6 Worker for Asynchronous Parallel MOTPE

Require:
t ∈ N : evaluation id
D : observations defined in Algorithm 5 (shared variable)
nw ∈ N : number of workers running defined in Algorithm 5 (shared variable)
ni ∈ N : number of initial observations
nc ∈ N : number of candidates
γ ∈ (0, 1) : quantile

1: if t ≤ ni then
2: x∗ ← initial sampling method() . call an arbitrary sampling method
3: else
4: (Dl, Dg)← split observations(D, γ) . call Algorithm 2
5: repeat
6: i← i ∈ [1, n] such that xi is active and x∗i has not been sampled
7: construct l(xi) with xi values in Dl and g(xi) with xi values in Dg

8: Ci ← {x(j)
i ∼ l(xi) | j = 1, . . . , nc} . sample nc candidates for x∗i

9: x∗i ← argmaxxi∈Ci
l(xi)/g(xi) . approximate argmaxxi∈Xi

l(xi)/g(xi)
10: until all active parameters have been sampled
11: end if
12: D ← D ∪ {(x∗,f(x∗))} . x∗ is the vector composed of all sampled x∗i
13: nw ← nw − 1
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1 wait 4 7

2 wait 5 wait 8

3 6 wait 9

Time →lifetime of worker(t = 6)

(a) Synchronous parallelization.

1 5 9 11

2 4 7 10

3 6 8 12

Time →
(b) Asynchronous parallelization.

Figure 3: Synchronous parallelization vs. Asynchronous parallelization. The number of
maximum workers np = 3. Each number corresponds to the evaluation id t in Al-
gorithm 6 and indicates the launch of worker(t). Each black interval indicates the
lifetime of worker(t). Red intervals indicate wait time. In synchronous paralleliza-
tion, it is needed to wait for finishing all workers currently running to launch a new
worker, e.g., worker(t = 4, 5) cannot be launched before worker(t = 3) finished
running even if worker(t = 1, 2) finished running. In asynchronous parallelization,
a new worker can be launched whenever the number of workers currently running
becomes less than np so that no wait time occurs.

ers per batch. Because of this, batch Bayesian optimization methods require a nontrivial
candidate selection approach to make the diversity of candidates (Azimi, Fern, & Fern,
2010; González, Dai, Hennig, & Lawrence, 2016). On the other hand, in asynchronous par-
allelization of Bayesian optimization, a set of observations to construct a surrogate is rarely
the same among workers so that any special effort to make the diversity of candidates is
not needed. For these reasons, asynchronous parallelization is generally more suitable for
expensive optimization as long as each observation can be obtained one by one. We evaluate
the effectiveness of parallelization in Section 5.2.2.

4. Related Work

In the machine learning community, algorithms for expensive multiobjective optimization
have been studied as multiobjective Bayesian optimization. PESMO (Hernández-Lobato
et al., 2016) and MESMO (Belakaria et al., 2019) utilize an information-theoretic ac-
quisition function. PESMO, which is a multiobjective extension of Predictive Entropy
Search (Hernández-Lobato, Hoffman, & Ghahramani, 2014), iteratively evaluates a can-
didate that maximizes the information gained about the Pareto set. Similarly, MESMO,
which is a multiobjective extension of Max-value Entropy Search (Wang & Jegelka, 2017)),
iteratively evaluates a candidate that maximizes the information gained about the Pareto
front. Both of these methods were applied to HPO and effectively found models with high
accuracy and low prediction time compared to baseline methods such as ParEGO (Knowles,
2006) and SMS-EGO (Ponweiser, Wagner, Biermann, & Vincze, 2008). Especially, PESMO
is available in Spearmint (Snoek, Larochelle, & Adams, 2012), which is a famous open-source
software for HPO. Active learning approaches for multiobjective optimization are also pro-
posed (Zuluaga, Sergent, Krause, & Püschel, 2013; Campigotto, Passerini, & Battiti, 2013;
Zuluaga, Krause, & Püschel, 2016). One of the active learning approaches is ALP (Campig-
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otto et al., 2013). ALP generates the analytical Pareto front representation by learning a
model from an approximated Pareto set. There are also several recent studies about mul-
tiobjective Bayesian optimization (Picheny, 2015; Shah & Ghahramani, 2016; Feliot, Bect,
& Vazquez, 2017; Abdolshah, Shilton, Rana, Gupta, & Venkatesh, 2019; Parsa, Mitchell,
Schuman, Patton, Potok, & Roy, 2020). We remark that all of the above studies use GP
or its extension as a surrogate. Besides popular GP, there is a limited number of Bayesian
optimization algorithms with a non-GP surrogate. Recently, Nardi, Souza, Koeplinger, and
Olukotun (2019) proposed HyperMapper 2.0 for the automatic static tuning of hardware
accelerators. HyperMapper 2.0 employs random forests so that it can handle continuous,
discrete, and categorical variables. However, the algorithm has not been tested on problems
with a tree-structured search space.

In the evolutionary computation community, many surrogate-assisted multiobjective
evolutionary algorithms have been proposed (Chugh et al., 2019). Knowles (2006) proposed
ParEGO, which is an extension of the single-objective efficient global optimization (EGO)
algorithm (Jones, Schonlau, & Welch, 1998). ParEGO reduces a multiobjective optimization
problem into a single-objective optimization problem via an augmented Tchebycheff aggre-
gation. It utilizes the design and analysis of computer experiments (DACE) model (Sacks,
Welch, Mitchell, & Wynn, 1989) based on GP to approximate the objective landscape and
evaluates the candidate solution with the maximum EI value. Ponweiser et al. (2008) pro-
posed SMS-EGO, which is another extension of the EGO algorithm. SMS-EGO also utilizes
the DACE model; however, it differs from ParEGO in that the candidate is determined based
on the hypervolume contribution in each iteration. Emmerich et al. (2006, 2011) proposed
an approach to calculate EI in hypervolume (i.e., EHVI), which is a natural extension of
single-objective EI acquisition function for multiobjective optimization. Besides EHVI, var-
ious acquisition functions have been proposed for multiobjective optimization, e.g., EIPBI,
EIPBII, MPoI, HypI, DomRank, MSD, and EIM (Namura, Shimoyama, & Obayashi, 2017;
Rahat, Everson, & Fieldsend, 2017; Zhan, Cheng, & Liu, 2017). Zhang, Liu, Tsang, and
Virginas (2009) proposed MOEA/D-EGO combining MOEA/D (Zhang & Li, 2007) with
GP. Chugh et al. (2018), Chugh, Sun, Wang, and Jin (2020) proposed K-RVEA combining
RVEA (Cheng, Jin, Olhofer, & Sendhoff, 2016) with GP. K-RVEA has been successful in
the air intake ventilation system design (Chugh et al., 2017). In surrogate-assisted evolu-
tionary algorithms, non-GP surrogates are also sometimes employed (Chugh et al., 2019).
Recent examples of non-GP-based algorithms are CSEA (Pan, He, Tian, Wang, Zhang, &
Jin, 2018) and HeE-MOEA (Guo, Jin, Ding, & Chai, 2018). CSEA employs a feedforward
neural network classifier to predict the dominance relationship between candidate solutions
and reference solutions. HeE-MOEA employs an ensemble of radial basis function networks
and least square support vector machines. These studies pointed out the scalability issue
of GP and they proposed more scalable surrogates to the number of training samples and
the dimension of the search space. However, these studies do not address solving problems
with non-continuous and/or conditional variables.

Finally, we refer to an early interesting work MOPED (Costa & Minisci, 2003), which
is a multiobjective evolutionary algorithm based on the Parzen estimator. MOTPE and
MOPED similarly use a Parzen estimator-based model. However, there are important
differences between MOTPE and MOPED. First, MOTPE exploits the information of both
good and poor observations through the EHVI acquisition function to efficiently sample
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promising solutions with a limited evaluation budget whereas MOPED only exploits the
information of good observations. This leads to MOTPE having better sample efficiency
than MOPED. Second, MOTPE is designed to solve problems with a tree-structured search
space including non-continuous variables whereas MOPED is for continuous optimization.
Therefore, MOTPE can be applied to a wider range of problems than MOPED. We consider
that these differences are enough reasons to use MOTPE rather than MOPED for problems
that we address.

To our knowledge, any non-GP-based algorithm has not been in a dominant position as
a suitable optimizer for expensive multiobjective problems in a complex search space like
TPE in single-objective optimization.

5. Numerical Results

In this section, we describe a set of experiments and discuss the results. The results show
that MOTPE outperforms other methods and has a sufficient ability for practical use. We
also investigate the behavior of MOTPE with different γ settings and parallelization.

5.1 Comparisons with Other Methods

First, we test MOTPE on a number of well-designed benchmark problems with a limited
evaluation budget to analyze the fundamental performance of MOTPE. MOTPE is com-
pared with Bayesian optimization methods: ParEGO (Knowles, 2006), SMS-EGO (Pon-
weiser et al., 2008), and PESMO (Hernández-Lobato et al., 2016). Then, we compare
MOTPE and NSGA-II (Deb et al., 2002) on the same benchmark problems with medium
dimension and medium budget settings to demonstrate the scalability of MOTPE. Finally,
we compare MOTPE, ParEGO, SMS-EGO, PESMO, and HyperMapper 2.0 (Nardi et al.,
2019) on a multiobjective CNN design problem, which is an important real-world applica-
tion. We implemented MOTPE3 by modifying the TPE implementation of Optuna (version
2.0.0) (Akiba et al., 2019) whereas we used Spearmint4 (Snoek et al., 2012) for ParEGO,
SMS-EGO and PESMO, and HyperMapper 2.0 (version 2.2.3) for Bayesian optimization
with a random forests-based surrogate because Optuna does not provide these algorithms.

5.1.1 WFG Benchmark: Low Dimension & Limited Budget Setting

The WFG benchmark suite (Huband, Barone, While, & Hingston, 2005; Huband, Hingston,
Barone, & While, 2006) that consists of nine problems was used to analyze the fundamental
performance of MOTPE. The WFG benchmark problems define four parameters as the
number of objectives m, the number of variables n, the number of position-related parame-
ters k, and the number of distance-related parameters l. Regarding the working parameters
k and l, k must be a multiple of m− 1, and k+ l must be equal to n (Huband et al., 2006).
Additionally, l must be a multiple of 2 for WFG2 and WFG3. We prepared the following
three settings for the nine benchmark problems.

3. The code is available at https://doi.org/10.5281/zenodo.6258358. The singularity container image
which we used to run our code and the experimental data of Section 5 are available upon request.

4. Spearmint’s PESM branch: https://github.com/HIPS/Spearmint/tree/PESM. We used the latest ver-
sion updated on July 26, 2016.
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Parameter Value

likelihood NOISELESS
grid size 1, 000
moo grid size to solve problem 1, 000
moo use grid only to solve problem true
pesm use grid only to solve problem true
pesm pareto set size 50
pesm not constrain predictions false

Table 1: Spearmint settings.

(1) Toy: (m = 2, n = 3, k = 1, l = 2)

(2) Practical: (m = 2, n = 9, k = 1, l = 8)

(3) Many-objective: (m = 4, n = 9, k = 3, l = 6).

All WFG problems have a search space of each variable xi in the range [0, 2i]. The evaluation
budget was set to 250 for all compared algorithms, including initial evaluations. This
setting simulates expensive objectives that cannot be evaluated many times in practice.
The number of initial observations ni was set to 11n−1 (i.e., 32 for n = 3 and 98 for n = 9),
and the initial solutions were sampled using the Latin hypercube sampling (McKay et al.,
1979). This initialization procedure has been commonly used in existing studies (Knowles,
2006; Ponweiser et al., 2008; Chugh et al., 2018). We set γ = 0.10, nc = 24, and the
scales for all parameters to uniform for MOTPE. The setting nc = 24 follows the default
setting of TPE in HyperOpt (Bergstra et al., 2011) and Optuna (Akiba et al., 2019).
The settings for Spearmint are shown in Table 1. These settings are mostly based on the
online article by the author of PESMO.5 We have changed the likelihood parameter to
NOISELESS since the WFG benchmarks are noiseless. For each method and setting, 21
optimization runs were performed to get a mean hypervolume and a standard error. As
a metric of performance, the hypervolume indicator with the reference point (3, 5) (resp.
(3, 5, 7, 9)) for m = 2 (resp. m = 4) was used. We used this reference point because
maxx∈X fj(x) = 2j + 1 (j = 1, . . . ,m) holds for all WFG problems (Huband et al., 2006),
i.e., it is inherently equipped with the theoretically worst value for each objective.

Figures 4–7 show the obtained results. Note that the results of initialization that are
the same for all methods are omitted in Figures 4, 5, and 7. As can be seen in these
figures, MOTPE achieves results comparable to or better than those of the other methods
on the WFG problems except for WFG1 and WFG5. These results indicate that MOTPE is
relatively robust to separability, modality, and Pareto front geometry of problems (Huband
et al., 2006). Comparing the results of Figure 4 and Figure 5, we find that the performance
of MOTPE did not so deteriorate while that of the other methods deteriorated. This
indicates that modeling based on the parameter-wise Parzen estimators is more robust to the
dimensionality than GP that directly approximates a high-dimensional objective landscape.

5. Neural networks with optimal accuracy and speed in their predictions: https://towardsdatascience.
com/neural-networks-with-optimal-accuracy-and-speed-in-their-predictions-d2cdc3b21b50.
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Figure 4: Mean hypervolume ± standard error: (m = 2, n = 3, k = 1, l = 2).

Comparing the results of Figure 5 and Figure 7, the trends are similar. This shows that
MOTPE scales to at least four objectives without serious degradation. Each optimization
run, i.e., a set of 250 evaluations for a single task, took several minutes for MOTPE,
several hours for ParEGO and PESMO, and 1–2 days for SMS-EGO. Potential reasons for
this considerable difference are the following. First, Parzen estimators are computationally
inexpensive compared with GP. Second, MOTPE maximizes the acquisition function in a
more simplified way, which accordingly leads to a run time reduction. Contrarily, PESMO
requires a more complex approximation procedure (Hernández-Lobato et al., 2016) and
SMS-EGO requires expensive hypervolume calculation (Ponweiser et al., 2008).

In summary, we conclude that the performance of MOTPE is promising. MOTPE
outperforms the GP-based methods when a search space is continuous and relatively low
dimensional, i.e., extremely tractable for GP. The strategy of MOTPE works well in many
problems except for the case that a target problem is extremely biased or highly deceptive.
And, the GP-based methods also cannot solve an extremely biased problem well and are
deceived by a highly deceptive problem. We provide a detailed discussion in the following.

WFG1 is one of the two problems that MOTPE achieved poor results, and in fact,
it is a difficult one as well for all the other three methods. This problem is separable and
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Figure 5: Mean hypervolume ± standard error: (m = 2, n = 9, k = 1, l = 8).

unimodal (Huband et al., 2006). Here, a separable problem means that its objectives can be
optimized by considering each parameter in turn, independently of one another. However,
this problem is also extremely biased, i.e., evenly distributed points in the search space
are not mapped to evenly distributed points in the objective space (Huband et al., 2006).
Indeed, we find that most observations are in the lower-right area of Figure 6a despite
the initialization with the Latin hypercube sampling. In such a situation, the strategy of
MOTPE becomes ineffective at estimating densities of good and poor observations. The
results of WFG1 lead to the following lessons. If there is not enough diversity in the objective
space at the end of initialization, MOTPE cannot be suitable for the problem. Figure 6a
also shows that PESMO and ParEGO are worse than MOTPE under the extremely biased
condition. Among the four methods, SMS-EGO is empirically the least susceptible to bias.

WFG2 has a disconnected true Pareto front that consists of 5 separate regions. It is
nonseparable and multimodal except its first objective, but not biased so that diversity
in the objective space can be easily obtained. Figure 6b shows that MOTPE converges
faster than the other methods while maintaining sufficient diversity. Therefore, unlike
bias, nonseparability and multimodality of the problem seem to be not so problematic for
MOTPE.
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Figure 6: 50%-attainment surface: (m = 2, n = 9, k = 1, l = 8). A 50%-attainment surface
denotes the boundary of the points that have been weakly dominated at least
50% of the runs (López-Ibánez et al., 2010). For each problem, the boundary of
the objective space Rm that has been weakly dominated by the Pareto Front cor-
responding to the Pareto set approximated by 100, 000 Pareto optimal solutions
is shown as a black line (Best AS).

WFG3 is an unbiased, nonseparable, and unimodal problem with a linear degenerated
true Pareto front. The results show that this problem is not so difficult for MOTPE. We
find that the convergence speed of the method is quite fast in Figure 6c.

WFG4 is an unbiased, separable, and multimodal problem with a concave true Pareto
front. The results show that concavity is not problematic for MOTPE. Similar to the case
of WFG3, the faster convergence of MOTPE is found in Figure 6d.

WFG5 is one of the two problems that MOTPE achieved poor results. This problem is
unbiased, separable, and unimodal but highly deceptive (Huband et al., 2006). In general,
it is difficult for MOTPE to find a true optimum for a highly deceptive objective for the
following reasons. First, since MOTPE samples a new candidate to evaluate from l(xi), a
candidate near a true optimum is rarely sampled unless there is at least one observation
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Figure 7: Mean hypervolume ± standard error: (m = 4, n = 9, k = 3, l = 6).

classified into good ones relatively near a true optimum. Second, even if there is such
observation, if there are many poor observations around a true optimum, a candidate near a
true optimum will have a small EHVI value and the candidate will not be selected. However,
this is not the reason why MOTPE was worse than the other methods on WFG5. In fact,
the other three methods also failed to find true optima. One of the actual reasons seems
to lie in the ability to find good solutions of WFG5 existing at the boundary of the search
space. To sample a real-valued parameter, MOTPE draws candidate values from a truncated
Gaussian mixture. This sampling procedure based on the original TPE implementation is
practical in most cases but difficult to sample candidates on boundaries. In Appendix B, we
demonstrate that modifying MOTPE to make it easier to sample boundary points actually
improves the results on WFG5 to some degree but also worsens the results on some other
problems.

WFG6 is an unbiased, nonseparable, and unimodal problem with a concave true Pareto
front. These characteristics do not deteriorate the performance of MOTPE so much. The
results show that MOTPE achieved the best hypervolume of all the methods.

WFG7 is a separable and unimodal problem with a concave true Pareto front. In this
problem, the fitness landscapes of the position-related parameters are dependent on other
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parameters including distance-related parameters (Huband et al., 2006). These dependen-
cies make it difficult to obtain a widely spread Pareto optimal solution set. Based on the
results, the performance of MOTPE did not deteriorate by these characteristics.

WFG8 is a nonseparable and unimodal problem with a concave true Pareto front. In this
problem, the fitness landscapes of the distance-related parameters are dependent on other
parameters including position-related parameters (Huband et al., 2006). As a consequence
of the dependencies, Pareto optimal solutions have different distance-related parameter
values. Our results show that these characteristics relatively deteriorate the performance
of MOTPE.

WFG9 is a nonseparable, multimodal, and deceptive problem with a concave true Pareto
front. In this problem, the position-related parameters and the distance-related parameters
are interdependent. For this problem, MOTPE achieved results similar to WFG5. On the
other hand, the other three methods achieved worse results than those of WFG5. As a
result, MOTPE achieved the best performance of all.

5.1.2 WFG Benchmark: Medium Dimension & Medium Budget Setting

In the previous experiment, we have confirmed the performance of MOTPE in low-
dimensional problems with a limited budget. Then, we briefly show the scalability of
MOTPE to the number of variables and evaluations. In the following experiment, NSGA-
II (Deb et al., 2002) was used as a baseline instead of the GP-based methods that we have
used so far because of the following reasons: (1) NSGA-II is scalable to the number of vari-
ables and evaluations whereas the GP-based methods are not so, i.e., the latter cannot finish
running within reasonable time for medium-dimensional problems with a medium evalua-
tion budget, (2) NSGA-II is one of the de facto standard baselines in the multi-objective
optimization community because of its popularity, (3) NSGA-II shares the important prop-
erty with MOTPE, that is, these algorithms utilize the dominance relationship, and (4)
when comparing the elapsed times of methods, it is preferable to implement all the meth-
ods to be compared in the same software framework. For the reason (4), the NSGA-II
implementation of Optuna (version 2.0.0) was used.

We used the WFG benchmark suite again and prepared the following settings for n =
9, 15, 21, 27, 33, 39, 45.

(4) Medium-dimensional: (m = 2, n, k = 1, l = n− 1).

(5) Medium-dimensional many-objective: (m = 4, n, k = 3, l = n− 3).

Note that, when n = 9, the settings (4) and (5) are identical to the settings (2) and (3)
in Section 5.1.1 respectively. The evaluation budget (including initial evaluations) was
set to 1, 000, the number of initial observations was set to 100, γ was set to 0.10, and
nc was set to 24 for MOTPE. On the other hand, the evaluation budget for NSGA-II
was set to 10, 000. The remaining settings for NSGA-II were set to population size = 100,
mutation prob = 1/n, crossover prob = 0.9, and swapping prob = 0.5.6 For both methods,
the initial 100 solutions were sampled using the Latin hypercube sampling (McKay et al.,

6. The documentation of NSGA-II parameters: https://optuna.readthedocs.io/en/v2.0.0/reference/
multi_objective/generated/optuna.multi_objective.samplers.NSGAIIMultiObjectiveSampler.

html.
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Figure 8: Mean hypervolume vs. Number of variables: (m = 2, n, k = 1, l = n − 1) for
n = 9, 15, 21, 27, 33, 39, 45. The number in parentheses after a method name
indicates the number of evaluations, e.g., MOTPE (1000) shows the result of
MOTPE after 1, 000 evaluations. The error bars represent the standard error.

1979). For each method and setting, 21 optimization runs were performed to get a mean
hypervolume and a standard error. As a metric of performance, the hypervolume indicator
with the reference point (3, 5) (resp. (3, 5, 7, 9)) for m = 2 (resp. m = 4) was used as same
as Section 5.1.1.

Figure 8 and Figure 9 show the obtained hypervolumes. Based on the results, when
m = 2, MOTPE with 1, 000 evaluations achieves the same level of performance as NSGA-II
with 1, 500–2, 500 evaluations in many cases. When m = 4, MOTPE achieves the same
level of performance as NSGA-II with 3, 000–10, 000 evaluations. Thus, MOTPE is more
effective than NSGA-II in medium-dimensional problems with 1, 000 evaluations. However,
the results also indicate that the performance of MOTPE often degrades more than that
of NSGA-II when the number of variables increases. One of the potential reasons for
the performance degradation is that as the number of variables increases, it becomes more
difficult to estimate the density of a promising region for each variable. Although MOTPE’s
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Figure 9: Mean hypervolume vs. Number of variables: (m = 4, n, k = 3, l = n − 3) for
n = 9, 15, 21, 27, 33, 39, 45. The number in parentheses after a method name
indicates the number of evaluations. The error bars represent the standard error.

surrogate is more robust than GP in this respect based on the results in Section 5.1.1, it
never means there is no limitation. In MOTPE, failure of the density estimation results in
the sampling of poor candidates.

Then, the elapsed times of both methods averaged over all WFG problems are shown in
Figure 10. Note that both methods were not parallelized in our experiments. The elapsed
time of MOTPE is clearly a nonlinear function of the number of evaluations. This is because
MOTPE maintains all of the previous observations and the computational complexity of
operations such as the nondominated sorting is a nonlinear function of the number of vectors
sorted. Therefore, we conclude that the maximum budget that MOTPE can handle within
a reasonable time is at most a few thousand. On the other hand, the elapsed time of NSGA-
II is a linear function of the number of evaluations because NSGA-II maintains a fixed size
of population per generation.
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Figure 10: Elapsed time vs. Number of evaluations averaged over all WFG problems. Shad-
ings in (a) and (b) represent ± standard error.

Finally, we discuss when we should use MOTPE rather than NSGA-II. One possible
scenario that MOTPE is more preferable to NSGA-II is financially expensive optimization.
If our evaluation budget is limited because of financial constraints, we cannot increase our
evaluation budget so much even if many parallel workers are available. Therefore, MOTPE
is a better choice because it outperforms NSGA-II with the same evaluation budget. On
the other hand, if many parallel workers are available and our evaluation budget can be
increased, then parallelized NSGA-II seems to be more preferable. This is because NSGA-
II can be synchronously parallelized without performance degradation up to its population
size and the method with additional several thousand evaluations can outperform MOTPE.

5.1.3 CNN Design: Real-World Problem with Complex Search Space

Now, we compare MOTPE and other multiobjective Bayesian optimization algorithms on
the multiobjective CNN design, which is an important real-world problem with a com-
plex search space. Here, in addition to ParEGO, SMS-EGO, and PESMO, HyperMap-
per 2.0 (Nardi et al., 2019) is also used as a baseline. HyperMapper 2.0 employs random
forests as its surrogate so that it generally handles integer and categorical variables better
than GP-based methods.

The goal of our multiobjective CNN design problem is to design an accurate and fast to
predict CNN for object recognition. Formally, the objectives of this problem are to minimize
(1) the classification error rate for the CIFAR-10 dataset (Krizhevsky, 2009) and (2) the
average elapsed time to make 1, 000 predictions. Therefore, our task is to find a set of Pareto
optimal settings of several architecture parameters and hyperparameters in Table 2 for our
architecture template shown in Table 3. The problem has a complex search space, which is a
combination of real, integer, categorical, and conditional parameters. All parameters affect
the first objective and the parameters except for Dropout rate, Stochastic Gradient Descent
(SGD) learning rate, and SGD momentum affect the second objective. We remark that the
first objective which requires training a CNN is computationally expensive to evaluate so
that our evaluation budget cannot be large.
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Parameter Type Search range

Number of blocks (NB) Integer [1, 3]
Number of filters 1 (F1) Integer/conditional [16, 256]
Number of filters 2 (F2) Integer/conditional [16, 256]
Number of filters 3 (F3) Integer/conditional [16, 256]
Batch normalization 1 (B1) Categorical/conditional {False,True}
Batch normalization 2 (B2) Categorical/conditional {False,True}
Batch normalization 3 (B3) Categorical/conditional {False,True}
Pooling Categorical {Average,Max}
Dropout rate Real [0.0, 0.9]
Number of units (NU) Integer [16, 4096]
SGD learning rate Real [0.00001, 0.1]
SGD momentum Real [0.8, 1.0]

Table 2: Parameters of the multiobjective CNN design problem. The conditional parameter
Fj and Bj are active iff NB ≥ j (j = 1, 2, 3).

For all methods, we set the evaluation budget (including initial evaluations) to 150. The
number of initial observations ni was set to 50 following the single-objective CNN design
using TPE (Bergstra et al., 2013). The initial solutions were sampled using random sampling
because Latin hypercube sampling is not suitable for non-continuous variables. The method-
specific settings for each method were set as follows. For MOTPE, we set γ = 0.10, nc = 24,
the parameter scales for Number of units and SGD learning rate to log-uniform, and those
for the rest of the numerical parameters to uniform. For Spearmint, we set likelihood =
“GAUSSIAN” because the problem is noisy. Additionally, we marked Dropout rate, SGD
learning rate, and SGD momentum as “to ignore” for the second objective because our
second objective does not depend on these parameters. The rest of the parameters for
Spearmint were the same as in Table 1. For HyperMapper 2.0, we used the default settings
of the framework.7 In GP-based methods, categorical parameters were encoded to integers
(e.g., False = 0 and True = 1). In methods other than MOTPE, conditional parameters
were always sampled and ignored at evaluation if they were inactive. The CNNs were
implemented in the tf.keras (Tensorflow version 2.2.0) library and trained using the SGD
optimizer with a batch size of 32 during 50 epochs.8 The error rate was measured on a
set of 10, 000 images extracted from the training set. The rest of the training data, 40, 000
images, were used for training. For each method and setting, 12 optimization runs were
performed to get a mean hypervolume and a standard error. As a metric of performance,
we used the hypervolume indicator with the reference point (0.25, 0.25) because we wanted
accurate and fast to predict models. Especially, we considered that a fairly inaccurate model
is practically useless even if it is fast.

7. The default settings of HyperMapper 2.0 is available at: https://github.com/luinardi/hypermapper/
blob/ab618023722047c8d6b94a93f5438770c0b8d103/hypermapper/schema.json.

8. The code is available at https://doi.org/10.5281/zenodo.6258358.
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Component Output size Description

Input 32× 32× 3

(Block 1) Convolution 32× 32× F1 Kernel size: 3 × 3, Stride:
1, Padding: same, Activation:
Rectified Linear Unit (ReLU)

Convolution 32× 32× F1 Kernel size: 3 × 3, Stride:
1, Padding: same, Activation:
ReLU

Pooling 16× 16× F1 Pool size: 2× 2
(Batch normalization 1) 16× 16× F1

Dropout 16× 16× F1

(Block 2) Convolution 16× 16× F2 Kernel size: 3 × 3, Stride:
1, Padding: same, Activation:
ReLU

Convolution 16× 16× F2 Kernel size: 3 × 3, Stride:
1, Padding: same, Activation:
ReLU

Pooling 8× 8× F2 Pool size: 2× 2
(Batch normalization 2) 8× 8× F2

Dropout 8× 8× F2

(Block 3) Convolution 8× 8× F3 Kernel size: 3 × 3, Stride:
1, Padding: same, Activation:
ReLU

Convolution 8× 8× F3 Kernel size: 3 × 3, Stride:
1, Padding: same, Activation:
ReLU

Pooling 4× 4× F3 Pool size: 2× 2
(Batch normalization 3) 4× 4× F3

Dropout 4× 4× F3

Flatten (32/2NB)2FNB

Fully-connected NU Activation: ReLU
Dropout NU

Fully-connected 10 Activation: softmax

Table 3: Architecture template for the multiobjective CNN design problem. Note that the
component (Block j) exists iff NB ≥ j and the component (Batch normalization
j) exists iff NB ≥ j ∧Bj for j = 1, 2, 3.
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Figure 11: Results of the multiobjective CNN design. Shadings in (a) represent ± standard
error.

Figure 11 shows the results of the experiment. The results of initialization are removed
from Figure 11a because they are the same for all methods. MOTPE outperforms all of
the four baseline methods in achieved hypervolume values (Figure 11a). Figure 11b shows
that MOTPE can find a variety of models with preferable trade-offs between error rate and
prediction speed. As for the baseline methods, the GP-based methods, i.e., ParEGO, SMS-
EGO, and PESMO, generally find fast to predict models but those are relatively inaccurate
whereas HyperMapper 2.0 finds accurate models but those are relatively slow. Unlike the
WFG benchmark problems, the landscapes of the objective functions are unknown for the
multiobjective CNN design, so it is difficult to have a detailed discussion. However, our
results indicate that MOTPE handles the complex search space better than the baseline
methods and has a sufficient ability for practical use.

5.2 Investigations of MOTPE

Here, we conduct two additional experiments: an investigation of the influence of quantile
γ and an investigation of the effectiveness of parallelization.

5.2.1 Influence of Quantile γ

The quantile parameter γ of MOTPE has a significant impact on constructing its surrogate.
It is the most important parameter relative to optimization performance. Then, we empir-
ically investigated the effects of γ on MOTPE’s behavior and identify the optimal setting
for γ.

To investigate the influence of γ, MOTPE was tested on the WFG benchmark
problems with different γ settings. There were 21 settings in the experiment: γ =
0.01, 0.05, 0.10, . . . , 0.95, 0.99. We prepared four problem settings that were the three set-
tings in Section 5.1.1, i.e., (m = 2, n = 3, k = 1, l = 2), (m = 2, n = 9, k = 1, l = 8),
and (m = 4, n = 9, k = 3, l = 6), and a new one (m = 2, n = 9, k = 3, l = 6). The
evaluation budget was set to 250 and the number of candidates nc was set to 24 as same as
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Section 5.1.1. To test the effect of the number of initial samples ni, we prepared the two
settings: ni = 32 and ni = 98 for each problem. For each setting, 21 optimization runs were
performed, using the hypervolume indicator as the performance metric with the reference
point (3, 5) (resp. (3, 5, 7, 9)) for m = 2 (resp. m = 4).

Figure 12 shows the mean hypervolumes for each γ setting. The observations made as
the results are as follows.

(1) There seem to be roughly two types of the problems: the problems with the relatively
large best γ (e.g., WFG1 and WFG4) and the problems with the relatively small best
γ (e.g., WFG9).

(2) The best γ for n = 3 tends to be greater than that for n = 9.

(3) The best γ for k = 3 tends to be greater than that for k = 1.

(4) The best γ for ni = 32 tends to be greater than that for ni = 98.

(5) The best γ for m = 4 tends to be greater than that for m = 2.

(6) Extremely small or large γ always results in poor performance.

(7) The relationship between the mean hypervolume and γ is roughly mountain-shape.

Based on the results and the observations, our empirical recommendation is γ = 0.10. This
setting was the winner in 17 out of 72 experiments in Figure 12. In summary, we conclude
that γ controls the balance of the pressure to converge and to make diversity. Our results
consistently show that a smaller γ has a stronger pressure to converge whereas a larger
γ has a stronger pressure to make diversity. A detailed discussion for each observation is
provided in the following.

Let us have a discussion for each observation to understand the effect of γ. Regarding
the observation (1), the key point is the convergence difficulty towards the ideal point of each
problem. WFG1 is extremely biased so that convergence towards the ideal point is hard in
this problem. Therefore, the achieved hypervolume is nearly determined by the diversity
of observations. In Figure 13a, the results show that larger γ achieves better diversity. On
the other hand, WFG4 is a very easy-to-converge problem. In Figure 13b, γ = 0.10, 0.25,
and 0.40 achieve almost the same level of good convergence for WFG4. WFG5 might be
also considered as this type of problem. WFG9 is a problem that is neither too easy nor
too difficult to converge. In Figure 13c, the results show that smaller γ achieves much
faster convergence. WFG2, WFG3, and WFG6–8 might be also categorized in this type of
problem.

Regarding the observation (2), the WFG problems with n = 9 are generally more
difficult to converge than those with n = 3 because the search space of the former is
larger. Therefore, when n = 9, achieving better hypervolume requires a stronger pressure
to converge than when n = 3. In Figure 14, it can be confirmed that γ = 0.10 converges
better than γ = 0.25, especially when n = 9.

Regarding the observation (3), increasing the number of position-related parameters k
of the WFG problems generally makes the problems more difficult in terms of diversity.
Therefore, when k = 3, achieving better hypervolume requires a stronger pressure to make
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Figure 12: Mean hypervolume vs. γ setting. Legends in the lower right mean (m, n, k, l,
ni) where m is the number of objectives, n is the number of variables, k and
l are the working parameters of the WFG problems, and ni is the number of
initial samples. The best value on each experiment is marked with ?.
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Figure 13: 50%-attainment surface: (m = 2, n = 9, k = 1, l = 8, ni = 98).
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Figure 14: 50%-attainment surface: (m = 2, k = 1, l = 8, ni = 98).

diversity than when k = 1. In Figure 15, there are three examples that a smaller γ converges
better than a larger one while both γ settings achieve the same level of diversity when k = 1.
On the other hand, a larger γ achieves better diversity than a smaller one when k = 3, and
the preferable γ is swapped compared to the case of k = 1.

Regarding the observation (4), the key point is the number of iterations for MOTPE.
When we have the fixed evaluation budget 250, the number of iterations is equal to 250−ni.
Therefore, it generally needs to converge faster when ni = 98 than when ni = 32. In
Figure 16, there are three examples that a larger γ achieves better diversity than a smaller
one while both γ settings achieve the same level of convergence when ni = 32. On the other
hand, a smaller γ converges better than a larger one when ni = 98, and the preferable γ is
swapped compared to the case of ni = 32.

Regarding the observation (5), the key point is the ratio of nondominated observations.
In general, the larger m is, the greater the ratio of nondominated observations is because the
higher the dimension is, the more difficult it is to satisfy the condition ∀i : yi ≤ y′i for two
vectors y and y′. Therefore, we consider that when m = 4, the ratio of good observations,
γ, is preferred to be large compared to when m = 2.

Observation (6) gives us an empirical proper range for γ. As shown in Figure 12, γ set-
tings out of the proper range always degrade the performance of MOTPE. This information
is useful for tuning of γ.

Observation (7) indicates that γ is relatively robust to the performance of MOTPE.
Therefore, fortunately, tuning γ seems to be not so difficult.
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Figure 15: 50%-attainment surface: (m = 2, n = 9, l = n− k, ni = 98).
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Figure 16: 50%-attainment surface: (m = 2, n = 9, k = 1, l = 8).

5.2.2 Effectiveness of Parallelization

In this subsection, we demonstrate the effectiveness of the asynchronous parallel MOTPE
algorithm introduced in Section 3.3. Parallelization is vital to solving real-world problems
in practice.

To test the effectiveness of parallelization, we solved the WFG benchmark problems
with the setting (m = 2, n = 9, k = 1, l = 8) by using Algorithm 5 with the number of
workers np = 1, 10, 20, 30. We set the evaluation budget to 250 for np = 1, which means
no parallelization, and more than 250 for np = 10, 20, 30 to investigate the degradation
of the sample efficiency due to parallelization. When evaluating the objective, we set the

algorithm to sleep s
iid∼ N (µ = 60, σ2 = 152) seconds to simulate the situation that objectives

are computationally expensive. The rest of the method and the problem settings were the
same as in Section 5.1.1. For each method and setting, 21 optimization runs were performed
to get a mean hypervolume and a standard error.

Figure 17 shows the elapsed time and the number of evaluations to achieve the same level
of hypervolume as np = 1 on WFG4 as a representative. The results of the initialization
step are omitted in Figure 17b. Table 4 shows the results of all WFG problems.

We find that the elapsed time to achieve the baseline hypervolume was drastically re-
duced by parallelization for all problems. Speedups for each setting were 257.0/27.9 ≈ 9.21,
257.0/17.7 ≈ 14.5, and 257.0/13.1 ≈ 19.6 respectively. Parallelization efficiencies for each
setting were 257.0/(27.9×10) ≈ 0.92, 257.0/(17.7×20) ≈ 0.73, and 257.0/(13.1×30) ≈ 0.65
respectively. This effectiveness is based on the asynchrony of the parallelization in MOTPE.

As for the number of evaluations, we find that the more workers we use, the more
observations are needed to achieve the baseline. Therefore, the sample efficiency of MOTPE

1239



Ozaki, Tanigaki, Watanabe, Nomura, & Onishi

256150 60 120 180
Elapsed time (minutes)

7.76

6.00

7.00

M
ea

n
hy

pe
rv

ol
um

e

np = 1

np = 10

np = 20

np = 30

(a) Mean hypervolume vs. Number Elapsed time.

98 150 200 250 269 295 333
Number of evaluations

7.77

6.00

7.00

M
ea

n
hy

pe
rv

ol
um

e

np = 1

np = 10

np = 20

np = 30

(b) Mean hypervolume vs. Number of evaluations.

Figure 17: Parallelization: WFG4. Shadings in (a) and (b) represent ± standard error.

Problem np = 1 10 20 30

WFG1 257 24 19 12
WFG2 258 28 17 13
WFG3 258 28 17 15
WFG4 256 27 15 11
WFG5 257 25 15 11
WFG6 256 34 21 16
WFG7 258 28 16 12
WFG8 256 26 17 12
WFG9 257 31 22 16
Mean 257.0 27.9 17.7 13.1

(a) Elapsed time (minutes).

Problem np = 1 10 20 30

WFG1 250 247 389 348
WFG2 250 275 341 401
WFG3 250 279 350 448
WFG4 250 269 295 333
WFG5 250 246 291 327
WFG6 250 343 421 480
WFG7 250 277 319 367
WFG8 250 258 347 352
WFG9 250 307 434 470
Mean 250.0 277.9 354.1 391.8

(b) Number of evaluations.

Table 4: Elapsed time and the number of evaluations to achieve the same level of hyper-
volume as np = 1.

decreases by parallelization. However, we consider that additional tens to a few hundreds
of evaluations speed up the algorithm about 10–20 times is practical enough.

Finally, we solved the multiobjective CNN design problem described in Section 5.1.3
using MOTPE with four workers (np = 4) to demonstrate its practicality in the real-world
problem. Although np = 4 is relatively small, this is a realistic setting as it is not easy to
prepare dozens of graphics processing units. The remaining method/problem settings were
the same as applied in Section 5.1.3. We ran MOTPE (np = 4) to reach the same level of
hypervolume as MOTPE (np = 1) shown in Figure 11a.

Figure 18 shows the results of the experiment. We find that parallelization drastically
speeds up MOTPE. The speedup was 142/555 ≈ 0.26. The average time, the minimum
time, and the maximum time required for an evaluation among all evaluations were about
765.4 ± 1085.5 (± indicates the standard deviation), 69.4, and 4391.7 seconds respectively

1240



Multiobjective Tree-Structured Parzen Estimator

0 60 240 300 360 420 480 555142
Elapsed time (minutes)

0.000

0.005

0.010

0.015

0.025

0.021
M

ea
n

hy
pe

rv
ol

um
e

np = 1

np = 4

(a) Mean hypervolume vs. Elapsed time.

50 75 100 125 150159
Number of evaluations

0.010

0.015

0.025

0.021

M
ea

n
hy

pe
rv

ol
um

e

np = 1

np = 4

(b) Mean hypervolume vs. Number of evaluations.

Figure 18: Parallelization: Multiobjective CNN design. Shadings in (a) and (b) represent
± standard error.

when np = 4. This fact indicates the importance of asynchronous parallelization without
wait time in practice. In the end, we conclude that asynchronously parallelized MOTPE is
quite effective and practical.

6. Concluding Remarks

In this study, we have introduced MOTPE, which is a practical multiobjective Bayesian
optimization algorithm. MOTPE has been designed to solve problems having a complex
search space with a limited number of evaluations. The method has also been designed
to be scalable compared to standard GP-based methods and effectively parallelized in an
asynchronous manner. Our numerical results have demonstrated that MOTPE can solve a
variety of problems and has a great ability for practical use. It has also been shown that
MOTPE is useful to solve problems with the medium dimension and medium budget setting.
In the investigations of MOTPE, we have found that MOTPE’s γ parameter controls the
balance of the pressure to converge and to make diversity. We have also validated the
effectiveness of asynchronous parallel MOTPE.

There are still some issues that MOTPE has not addressed. One, for instance, is con-
strained multiobjective optimization (Feliot et al., 2017; Garrido-Merchán & Hernández-
Lobato, 2019) and another is multiobjective multifidelity optimization (Belakaria, Deshwal,
& Doppa, 2020). Falkner, Klein, and Hutter (2018) proposed a multifidelity single-objective
Bayesian optimization method called BOHB based on TPE and Hyperband (Li, Jamieson,
DeSalvo, Rostamizadeh, & Talwalkar, 2017). Therefore, the idea of multifidelity MOTPE
seems to be pragmatic. One more example is solving extremely biased problems. Based
on our results in Section 5.1.1, all tested algorithms could not solve the extremely biased
WFG1 problem well. There may be an extremely biased real-world problem although the
multiobjective CNN design problem in Section 5.1.3 was not so biased. Some nontrivial
algorithm improvements are needed to solve such extremely biased problems. These can be
considered as our future directions.
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Appendices

Appendix A provides the derivation of Probability of Hypervolume Improvement (PHVI).
Appendix B investigates whether enhancing the ability to sample boundary points improves
the performance of MOTPE or not.

Appendix A. Probability of Hypervolume Improvement

Here we introduce an acquisition function called PHVI for multiobjective optimization.
PHVI for Y ∗ and xi is defined as follows:

PHVIY ∗(xi) := p(y ∈ R | xi) (12)

where R = {y | (y ≺ Y ∗) ∨ (y ‖ Y ∗)}. This PHVI criterion is a natural extension
of Probability of Improvement (PI) (Kushner, 1964), which is a well-known criterion for
single-objective Bayesian optimization.

Then, we show that the two acquisition functions of PHVI and EHVI work equivalent
in MOTPE. As same as Equation (10), based on Equation (8), γ = p(y ∈ R), and p(xi) =∫
p(xi | y)p(y)dy = γl(xi) + (1− γ)g(xi); therefore, p(y ∈ R | xi) is calculated as below:

p(y ∈ R | xi) =

∫
R
p(y | xi)dy

=

∫
R

p(xi | y)p(y)

p(xi)
dy

=
γl(xi)

γl(xi) + (1− γ)g(xi)

=
γ

γ + (1− γ)g(xi)
l(xi)

∝
(
γ + (1− γ)

g(xi)

l(xi)

)−1

.

(13)

Thus, based on Equation (11) and Equation (13),

argmax
xi∈Xi

PHVIY ∗(xi) = argmax
xi∈Xi

l(xi)

g(xi)

= argmax
xi∈Xi

EHVIY ∗(xi)
(14)

holds in MOTPE.
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Appendix B. Enhancing Ability to Sample Boundary Points

In Section 5.1.1, we have discussed that MOTPE achieved relatively poor results on WFG5
because the algorithm has less ability to sample boundary points in the search space. Here
we confirm whether enhancing this ability actually improves the performance of MOTPE
or not.

To enhance the ability, we modified the sampling procedure of MOTPE as follows. First,
(non-truncated) Gaussian was used to estimate densities and to sample candidate values
instead of truncated Gaussian used in the original. Second, if the sampled value was out of
bounds, clipping to the boundary value was applied.

We tested and compared the modified version of MOTPE and the original MOTPE on
the WFG problems with the experimental settings used in Section 5.1.1. For each method,
51 optimization runs were performed to get a mean hypervolume and a standard error.
The Wilcoxon rank sum test was conducted at the 0.05 significance level to verify the
performance improvement.

Table A1 shows the results of the original and the modified MOTPEs after 250 evalu-
ations. The results show that enhancing the ability actually improves the performance of
MOTPE on WFG5 to some degree. The modified MOTPE achieved 8.01±0.01, 7.30±0.05,
and 602.01± 3.37 on WFG5 (2, 3, 1, 2), (2, 9, 1, 8), and (4, 9, 3, 6) respectively. These results
are comparable to or better than the results achieved by PESMO that are 7.95 ± 0.02,
7.31± 0.08, and 505.58± 7.92 in Section 5.1.1. There are also other improved cases such as
WFG4 (2, 3, 1, 2) and WFG7 (4, 9, 3, 6). However, the modification also caused performance
degradation on WFG1 (2, 3, 1, 2) and WFG1 (2, 9, 1, 8).

Then, we briefly investigate how the behavior of MOTPE changed by the modification.
Figure A1 shows the nondominated vectors found after 250 evaluations by the original and
the modified MOTPEs on WFG5 (2, 9, 1, 8) and WFG1 (2, 9, 1, 8) by an optimization run
as examples. The figure also shows the solutions (i.e., the values of x1, . . . , x9) for some
objective vectors. In Figure A1a, we confirm that the modified MOTPE could sample
solutions on the boundary of the search space as expected. These solutions are certainly
better than the solutions that are not on the boundary found by the original MOTPE. As
a result, the modified MOTPE achieved better results than the original MOTPE on WFG5
(2, 9, 1, 8). In Figure A1b, we find that the modified MOTPE found the two solutions on
the boundary with the best f1 value and the best f2 value among all solutions sampled.
However, we also find that the modified MOTPE is worse than the original MOTPE in
the ability to find solutions achieving moderate trade-offs between f1 and f2. Based on
the figure and our results, we find that solutions with the moderate trade-offs between
the two objectives have a small but positive x1 value, i.e., x1 ∈ (0, ε) for small ε ∈ R,
such as x1 = 0.0002 . . . on WFG1 (2, 9, 1, 8) as shown in Figure A1b. Unfortunately, our
modification that makes MOTPE easy to sample boundary values seems to make it difficult
to sample values near the boundary but not on the boundary instead and this results in the
poor performance on WFG1 (2, 9, 1, 8).

In the end, we conclude that enhancing the ability to sample boundary points is some-
times helpful but we need to be aware that small differences in the search space can result
in large differences in the objective space when a target problem is extremely biased.
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Problem MOTPE (original) MOTPE (modified)

WFG1 2.47± 0.03 1.57± 0.02
WFG2 11.08± 0.01 11.11± 0.01
WFG3 10.64± 0.01 10.66± 0.01
WFG4 8.25± 0.01 8.28± 0.01
WFG5 7.96± 0.01 8.01± 0.01
WFG6 8.40± 0.01 8.41± 0.01
WFG7 8.41± 0.00 8.44± 0.00
WFG8 5.60± 0.04 5.67± 0.04
WFG9 8.34± 0.01 8.35± 0.01

(a) Setting: (m = 2, n = 3, k = 1, l = 2).

Problem MOTPE (original) MOTPE (modified)

WFG1 2.34± 0.03 1.50± 0.03
WFG2 9.70± 0.06 9.79± 0.06
WFG3 9.75± 0.04 9.81± 0.04
WFG4 7.78± 0.02 7.79± 0.02
WFG5 7.16± 0.04 7.30± 0.05
WFG6 7.10± 0.05 7.05± 0.05
WFG7 7.66± 0.05 7.64± 0.05
WFG8 6.31± 0.03 6.28± 0.03
WFG9 7.38± 0.07 7.40± 0.07

(b) Setting: (m = 2, n = 9, k = 1, l = 8).

Problem MOTPE (original) MOTPE (modified)

WFG1 178.76± 2.52 195.34± 4.27
WFG2 780.10± 3.66 778.90± 3.81
WFG3 608.29± 1.72 608.80± 1.92
WFG4 593.37± 6.77 616.06± 7.34
WFG5 590.04± 3.24 602.01± 3.37
WFG6 563.93± 4.24 565.32± 4.04
WFG7 602.53± 5.95 616.02± 5.47
WFG8 442.84± 3.15 447.10± 2.87
WFG9 562.43± 6.75 575.83± 7.16

(c) Setting: (m = 4, n = 9, k = 3, l = 6).

Table A1: Mean hypervolume ± standard error. Bold means that the performance differ-
ence is statistically significant.
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(a) WFG5 (2, 9, 1, 8).
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(b) WFG1 (2, 9, 1, 8).

Figure A1: Scatter plots of the nondominated vectors found. Each set of values {x1, . . . , x9}
is the solution for the corresponding point. Each value is shown up to the fourth
decimal place for readability.
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