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Abstract 

Transcription factors (TFs) play a key role in regulating gene expression and responses to stimuli. We 
conducted an integrated analysis of chromatin accessibility and RNA expression across various rat 
tissues following endurance exercise training (EET) to map epigenomic changes to transcriptional 
changes and determine key TFs involved. We uncovered tissue-specific changes across both omic layers, 
including highly correlated differentially accessible regions (DARs) and differentially expressed genes 
(DEGs). We identified open chromatin regions associated with DEGs (DEGaPs) and found tissue-specific 
and genomic feature-specific TF motif enrichment patterns among both DARs and DEGaPs. Accessible 
promoters of up- vs. down-regulated DEGs per tissue showed distinct TF enrichment patterns. Further, 
some EET-induced TFs in skeletal muscle were either validated at the proteomic level (MEF2C and 
NUR77) or correlated with exercise-related phenotypic changes. We provide an in-depth analysis of the 
epigenetic and trans-factor-dependent processes governing gene expression during EET. 
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Abbreviations 

Abbreviation Definition 

HEART Heart 

SKM-GN Skeletal muscle (Gastrocnemius) 

WAT-SC Subcutaneous white adipose tissue 

BAT Brown adipose tissue 

LIVER Liver 

LUNG Lung 

KIDNEY Kidney 

HIPPOC Hippocampus  

EET Endurance Exercise Training 

DAR Differentially accessible regions 

DEG Differentially expressed genes 

DEGaP Differentially expressed gene associated peaks 

TSS Transcription start site 

TES Transcription end site 

TF Transcription factor 

 

Introduction 

Regular exercise has a considerable impact on general health, as it helps to maintain muscle function, 
improves cardiovascular wellness and cognitive performance, and lowers the risk of cardiovascular 
disease and other disorders, including neurological diseases and cancer1. While a number of studies 
have focused on deciphering the molecular responses to acute exercise, the molecular changes induced 
by exercise training across tissues are poorly characterized. 
 
As the main regulators of gene transcription, transcription factors (TFs) act via the recruitment of other 
factors, co-activators, or co-repressors, to cis-regulatory elements at the promoter or distal regions of 
target genes. The access of TFs to cis-motifs partly depends on chromatin structure. Hence, along with 
changes in chromatin accessibility and other epigenetic modifications, TFs govern gene expression in 
tissues as well as gene responses to stimuli. TFs are critical exercise-response mediators2,3 and, in 
skeletal muscle, exercise training-induced transcriptomic changes have been associated with different 
TFs than those induced by acute exercise4.  
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The recent multi-tissue analysis of the molecular responses to endurance training points to a majority of 
tissue-specific differentially regulated genes, along with a smaller proportion of shared training-
response genes5. Thus, gene responses to training are likely mediated through the combinatorial 
function of tissue-enriched and shared transcriptional regulators. Shared exercise-induced TF regulation 
can elicit tissue-specific functions, as seen with PPARγ, which is implicated in PGC1α-stimulated 
mitochondrial biogenesis6, regulation of adipogenesis7, and hippocampal BDNF activity and its cognitive 
effects8. As complex regulatory patterns drive tissue-specific gene regulation9, they are likely to be 
involved in mediating the diverse effects of exercise training on tissues. This highlights the importance of 
identifying the TFs that coordinate gene responses to training in multiple tissues and inferring their 
underlying mechanisms. However, few studies have evaluated training-induced genome-wide changes 
in RNA expression and chromatin accessibility10, and most have concentrated on a few tissues, mainly 
skeletal muscle. 
 
We leveraged the study design of the Molecular Transducers of Physical Activity Consortium 
(MoTrPAC) endurance exercise training (EET) study in rats5 to characterize the TFs mediating gene 
responses to training across multiple tissues. During 8 weeks of EET, genome-wide transcriptome and 
chromatin accessibility were assayed in 8 tissues from male and female rats. By connecting both omes 
within the same tissues, we establish a map of the regulatory transcriptional responses to training 
across tissues. We investigate highly correlated omic responses to exercise and identify key TFs and 
pathways involved in those responses in each tissue. 

 

Results 

Characterization of epigenetic and transcriptional responses to endurance training  

To analyze the epigenetic and transcriptional changes during eight weeks of EET, we analyzed ATAC-seq 
and RNA-seq datasets generated in skeletal muscle (gastrocnemius; SKM-GN), heart, hippocampus 
(HIPPOC), kidney, liver, lung, brown adipose tissue (BAT), and subcutaneous white adipose tissue (WAT-
SC) from rats subjected to 1, 2, 4, and 8 weeks of training (Fig 1a) and untrained controls. Each of these 
5 groups consisted of 5 males and 5 females. 

We identified differentially accessible regions (DARs; F test adjusted p value < 0.1), and differentially 
expressed genes (DEGs; F test adjusted p value < 0.1) between EET and control groups (Fig 1b). To 
characterize the transcriptional and epigenomic changes induced by EET across tissues, we evaluated 
the tissue-specificity of DARs and DEGs. Although most expressed genes and open chromatin sites were 
detectable in multiple tissues, the majority of DARs (90%) and DEGs (66%) were identified in only one 
tissue (Fig 1c, Fig. S1). This suggested that gene regulatory responses to EET were largely confined to 
individual tissues, which was in line with another MoTrPAC manuscript (Nair et al., manuscript in 
preparation). 

We then examined the distribution patterns of log2 fold change (L2FC) in gene expression and L2FC in 
chromatin accessibility across time points and sexes (Fig. S2 and S3). While the ratio of up- to down-
regulated analytes (i.e. DEGs or DARs) was similar across sexes and time points in the majority of tissues, 
distribution patterns differed between tissues. Additionally, we observed sex differences in the 
expression changes in HIPPOC, BAT, and WAT-SC. We observed sex differences in the chromatin 
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accessibility changes in BAT as well. Overall, the proportion of DEGs showing concordant changes (L2FC) 
across the 8 timepoint and sex groups was higher than that of DARs (Fig. 1d). Notably, heart, SKM-GN, 
and kidney exhibited the most consistency in expression changes across groups, whereas WAT-SC 
showed the least. In BAT, we detected pronounced variations in DEG as well as in DAR profiles between 
earlier and late time points in both sexes (Fig. S2g and S3g). Gene set enrichment analysis among week 1 
or week 8 DEGs in males and females highlighted varying pathway enrichment patterns that were, in 
most cases, consistent across sexes and time points (Fig S4). SKM-GN and heart shared enrichment for 
oxidative phosphorylation and cardiac muscle contraction pathways, as well as markers for Parkinson’s, 
Huntington's, and Alzheimer's diseases. WAT-SC DEGs were enriched for the chemokine signaling 
pathway and immune-related diseases including systemic lupus erythematosus, asthma, and primary 
immunodeficiency. 

We investigated whether alterations in cell type proportions contributed to the expression changes 
observed. Cell type deconvolution analysis (See Methods) identified changes in immune cell type 
proportions that were related to training duration in BAT (Fig. 1e and Fig. S5) and to sex in WAT (Fig. 1f 
and Fig. S5). Differential analysis was conducted in male and female samples separately, suggesting that 
DEGs in WAT-SC are independent of sex-specific cell type composition changes; conversely, in BAT, DEGs 
and DARs cannot be separated from EET-associated changes in cell type composition.  

To further characterize the epigenomic changes induced by EET across tissues, we examined the 
genomic distribution of DARs vs. that of all open chromatin regions detected (Fig. 1g,h). Compared to all 
accessible regions, DARs were significantly enriched at proximal promoters across all tissues except 
WAT, which was excluded due to a scarcity of DARs identified (Fig 1h,k, Methods). Consistent with 
previous studies11,12, open chromatin peaks across tissues were predominantly located in intronic and 
distal intergenic regions. Given the importance of the proximal promoter in the regulation of gene 
transcription13, the enrichment of DARs in this region suggested that EET results in the transcriptional 
activation of target genes. Unlike DARs, open chromatin regions that mapped to DEGs, which we refer to 
as DEG-associated peaks (DEGaPs), shared a similar genomic distribution as the peaks associated with all 
expressed genes (Fig 1i,j,l). However, ATAC-seq peaks that mapped to either expressed genes or DEGs 
contained a higher proportion of intronic peaks compared to all open chromatin peaks in the dataset. 
This suggested that expressed genes tended to contribute intronic peaks, whereas non-expressed genes 
tended to contribute distal peaks but lack promoter peaks. Indeed, while 73% of genes expressed in 
SKM-GN contained both promoter and intronic accessible peaks, only 29% of non-expressed genes 
satisfied that metric. The distinct genomic distribution of DARs vs. DEGaPs suggests their involvement in 
different regulatory mechanisms. 

Linking epigenetic to transcriptomic responses: few DARs map to adjacent DEGs; identification of 
distal DARs correlating with DEGs 

We next sought out DAR-DEG associations by assessing the concordance between chromatin 
accessibility and gene expression changes. We assigned each DAR to the nearest gene, and determined 
the fraction of DARs that were annotated to DEGs. Applying a hypergeometric test, we found that BAT, 
SKM-GN, and liver showed a significant overlap between DARs and DEGs (Fig 2a). The substantial 
overlap between DARs and DEGs in BAT may be related to the EET-induced increase in immune cell 
populations (see Fig. 1e). SKM-GN and liver showed the highest count of DARs among all tissues (Fig. 
1b). Despite hundreds of DARs in both kidney and lung, only a few of their nearest genes were DEGs (Fig 
2a). Reciprocally, we identified the DAR(s) that mapped to each DEG, and determined the fraction of 
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DEGs containing DAR(s) (Fig 2b). While BAT, SKM-GN, and liver showed a large set of DEGs containing 
DAR(s), only BAT and SKM-GN reached significance. 

The binding of TFs to distal open chromatin regions can regulate gene transcription14,15. Given the 
modest proportion of DARs mapped to adjacent DEGs, we extended the search window and sought 
relationships outside the closest gene for a given DAR. With respect to the location of DARs relative to 
the TSS of the nearest DEG, in all tissues, the majority of nearest DAR-DEG pairs reflected a normal 
distribution with a median centered approximately 1 Mb away from the nearest DEG, and a substantial 
left tail representing closer pairs (Fig 2c). BAT, SKM-GN, and liver contributed most of the DARs adjacent 
to a DEG, confirming our earlier observations (Fig 2a). When labeling DARs by their genomic region 
(promoter, intron, etc), we found that proximal promoter-located DARs were enriched among the DARs 
closest to DEGs (Fig 2d). DARs that were adjacent to DEGs tended to be more highly correlated with 
gene expression changes (Fig 2e, Fig S6). We focused on DARs and DEGs located within 500 kb of each 
other, and isolated those that were either positively or negatively correlated across time points and 
sexes (Pearson correlation coefficient > 0.5 or <-0.5, respectively; Fig. 2f, Supplementary Table 1). Thus, 
the identified DAR-DEG pairs comprised DARs that mapped to nearby DEGs along with distal, within-500 
kb DARs that correlated with DEGs. 

DAR-DEG pairs are associated with distinct pathways in each tissue and MAZ and SMAD3 represent 
key regulatory TFs 

We sought to determine which biological processes were associated with the DEGs that correlated, 
either positively or negatively, with DARs (located within 500 kb) across time points and sexes. Pathway 
enrichment analysis identified distinct patterns of enrichment for each tissue (Fig 3a). In agreement with 
the training-associated increase in immune cell types inferred from cell type deconvolution analysis (see 
Fig. 1e), BAT DAR-DEG pairs showed enrichment for several immune pathways. Lung also showed 
considerable enrichment for immune-associated pathways. By contrast, liver DAR-DEG pairs were 
primarily enriched for lipid biosynthesis and metabolic processes, while heart DAR-DEG pairs were 
enriched for muscle movement and filament sliding, and SKM-GN DAR-DEG pairs were enriched for 
myofiber synthesis and muscle contraction (Fig 3a). These results suggested that the correlated 
epigenetic and transcriptional changes induced by training affected tissue-specific functions.  

We analyzed TF motif enrichment at the DARs of DAR-DEG pairs to identify potential regulators of the 
training response in each tissue. Notably, we identified MAZ and SMAD3 as regulatory TFs in specific 
tissues (Fig. 3b-d). In SKM-GN, an 8.6% enrichment for MAZ binding sites was found among DAR-DEG 
pairs vs. a 2.7% enrichment among active peaks in that tissue (p-value = 0.01912). In lung, there was a 
26% enrichment for MAZ binding sites among DAR-DEG pairs vs. a 2.7% general enrichment (p-value = 
1.168e-04). In SKM-GN and in the lung, MAZ motifs were predominantly found in DARs that were 
negatively correlated with differential gene expression (Fig 3b,c). MAZ can act both as a transcriptional 
activator and a repressor13,16. In SKM-GN, MAZ target genes included: Igf2 (Fig 3e), which plays pivotal 
roles in exercise response17,18, SKM growth, and differentiation19; Ppp1r15a, which is associated with 
innate immunity20; and Sall2 (Fig 3f), a TF typically associated with development and neuronal 
differentiation21. In the lung, MAZ targets included immune response genes such as Mpeg1, Oas2, Nfkb2 
(Fig 3g), as well as stress response gene Hspb6.  

SMAD3 binding sites were enriched in the liver (Fig 3d), with a 22% enrichment among DAR-DEG pairs 
vs. a 5.4% general enrichment (p-value = 1.255e-05). Some of the SMAD3 target genes in liver had 
paired DARs corresponding to SMAD3 motifs, suggesting combinatorial transcriptional regulation (Fig 
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3d). Paired DAR sets were positively correlated with Glul expression (Fig S7a,b), negatively correlated 
with Lpar3 (Fig S7c,d) expression, and negatively correlated with multiple members of the Serpina gene 
family (Fig 3d, S7e,f). Fkbp4 expression was also negatively correlated with a single SMAD3 motif-
containing DAR (Fig 3h). The remaining SMAD3 targets Abhd2 (Fig S7g), Onecut1 (Fig S7h), Ccnd1 (Fig 
S7i), and Xbp1 (Fig S7j) shared a similar training response pattern with lower L2FC in male subjects than 
female subjects in most time points. Notably, SMAD3 has been identified as a major regulator of 
exercise response in human SKM22. Other potential transcriptional regulators along with target genes 
are illustrated in Fig. S7. 
 
Characterization of TF expression responses to EET in each tissue 

As putative transcriptional regulators were inferred from DAR-DEG correlations in a restricted number of 
tissues, we sought to independently characterize TF expression responses to EET per tissue over the 8-
week training period. We measured the RNA levels of all TF-encoding genes and assessed their protein 
levels, when available, based on mass spectrometry data obtained from a subset of 6 tissues. Various 
subsets of TFs exhibited significant changes at the transcriptome (Fig 4a) and proteome (Fig 4b) levels in 
each tissue. BAT had the largest and most significant changes in TF gene expression (Fig 4a), which 
included immune-related TF genes such as Irf1, Irf8, Pou2f2, and Spi1. While TF gene responses were 
largely tissue-specific, some gene expression changes were shared across tissues. Most notably, both 
Fos and Egr1 transcript levels decreased in SKM-GN, kidney, heart, lung, and to a lesser extent HIPPOC. 
Klf9 increased slightly in all tissues, and dramatically in SKM-GN, and Myb expression increased in WAT-
SC, HIPPOC, kidney, and lung. To evaluate inter-tissue differences in TF responses, we performed 
pairwise analyses of the fold-change in TF gene expression. Lung and kidney showed the highest 
correlation, and SKM-GN and heart, both striated muscle tissues, showed a relatively high correlation as 
well (Fig 4c).  
 
Similar to TF gene expression changes, TF protein level responses to EET were largely tissue-specific (Fig 
4b). WAT-SC and lung exhibited the most significant changes. While cross-tissue TF protein level changes 
showed little overlap, a few shared TFs decreased in protein abundance in both tissues, namely MAX, 
STAT4, ELF1, RUNX1, and HOXB4. CLOCK protein levels increased in WAT-SC and decreased in heart. 
NR4A1 (NUR77) and MEF2A levels decreased in SKM-GN, while MEF2C levels increased. ATF3 decreased 
at the proteomic level in heart and liver and at the transcriptomic level in SKM-GN. RORC levels 
decreased in lung, kidney, and liver, but increased in heart. Pairwise comparisons of the fold change in 
TF protein abundance across the subset of 6 tissues showed the strongest positive correlation between 
kidney and lung (Fig. 4d), which was consonant with TF gene expression fold changes. On the other 
hand, heart and kidney were the most negatively correlated, whereas they were positively correlated at 
the RNA level. Post-transcriptional or translational regulatory mechanisms could be responsible for this 
discordance. 
 
We next examined the target genes of TFs regulated in SKM-GN at both transcript and protein 
levels.   Genes with MEF2C or NR4A1 motifs in open proximal promoter regions were more likely to be 
DEGs (Fig 4e, Fig S8). There was a substantial increase in MEF2C protein levels in SKM-GN after 2 weeks 
of EET, followed by a return towards baseline. DEGs that harbored MEF2C motifs at the promoter 
showed diverse EET responses, yet the majority showed expression changes that positively correlated 
with MEF2C protein changes (Fig 4f). Among the MEF2C target genes, clock gene Per1 demonstrated the 
most differential expression throughout EET, while Sema6c and Phkg1 showed the strongest positive 
correlation with MEF2C protein changes. Dystrophin (Dmd), a critical protein for muscle fiber integrity23, 
was the most negatively correlated with MEF2C. Decreased expression of the four DEG targets of NR4A1 
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coincided with reduced NR4A1 protein levels in SKM-GN (Fig 4g). Heat shock protein Hspa1l and dual 
specificity phosphatase Dupd1 were the most differentially regulated. Altogether, these findings support 
the functional relevance of EET-regulated TFs.  

DARs vs. DEGaPs show distinct TF motif enrichment patterns that differentially correlate with TF gene 
expression 

The lack of nearby DARs for the majority of DEGs within each tissue (see Fig. 2a,b) led us to hypothesize 
that DARs and DEGaPs may mediate different paths of transcriptional regulation: i) DARs coordinating a 
combination of direct and long-range regulatory mechanisms, ii) a combination of statically open cis-
regulatory elements (DEGaPs) and changes in TF behavior influencing differential gene expression. To 
address this, we analyzed TF binding site enrichment at either DARs or DEGaPs relative to all open 
chromatin peaks in each tissue (Fig. 5a,b; see Methods).  
  
Due to their very low number of DARs, WAT and HIPPOC were removed from the analysis (Fig. 5a). Motif 
enrichment patterns varied greatly across the six remaining tissues, reflecting a high degree of tissue-
specificity. Motifs for both FOX and KLF families of TFs were over-represented among SKM-GN DARs. 
KLFs are zinc-finger TFs that have been associated with myogenesis and muscle fusion via their 
recruitment to Muscle Creatine Kinase (MCK) promoters24. SIX2 and MEF2C motifs were enriched in 
heart, COUP-TFII in kidney, and FOXO3 and SP2 in liver. HOXA10 and HOXD12 motifs were enriched in 
lung, while both IRF8 and IRF3 motifs were enriched in BAT. Tissue-specific patterns of motif enrichment 
were maintained when measuring the frequency of motif presence in DARs across tissues (Fig S9a). 
 
Motif enrichment patterns among DEGaPs differed considerably from those in DARs (Fig. 5b). Indeed, 
motif enrichment at DARs vs. that at DEGaPs per tissue were weakly correlated  (<0.39; Fig S11). Motif 
enrichment significance in DEGaPs was greater in lung, BAT, and WAT-SC, presumably due to their 
higher proportions of DEGs (see Fig. 1b). MEF2 TF motifs were enriched across lung, BAT, and WAT-SC, 
as well as in SKM and heart, forming one cluster; on the other hand, ETS and ELF TF motifs were more 
exclusively enriched in lung, BAT, and WAT-SC and formed another cluster. MEF2 TFs are typically 
involved in muscle tissue regeneration25. ETS and ELF TFs are associated with the regulation of 
immunity26,27, suggesting that they may be related to the immune cell type composition changes 
occurring in adipose tissues. With respect to tissue-specific enrichment, motifs of immediate early genes 
including JUN and FOS were enriched in HIPPOC (Fig S10a), HNF1 and ZIC families of TFs in kidney, and 
FOX and SOX TF families in liver.  
 
To establish correlations between the motifs enriched at either DARs or DEGaPs and the relative 
expression levels of the corresponding TFs, we examined TF gene expression patterns in control tissues 
(Fig S9b, Fig S10b respectively) and L2FC in TF gene expression following EET (Fig S9c, Fig S10c, 
respectively). We found a stronger correlation between motif enrichment and TF control gene 
expression levels among DEGaPs (Fig S10d-f) than among DARs (Fig S9d-f). Conversely, there was no 
correlation between motif enrichment and L2FC in TF gene expression, be it among DARs (Fig. S9a,c) or 
DEGaPs (Fig. S10a,c). These findings suggest that the influence of DEGaPs on DEG expression is more 
dependent upon the expression level of the associated TFs, whereas DARs can influence DEGs directly, 
supporting the concept that DEGaPs vs. DARs mediate two distinct paths of transcriptional regulation. 

DARs and DEGaPs show cross-tissue motif enrichment conservation at specific genomic regions 
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The different genomic distributions of DARs vs. DEGaPs (see Fig. 1h,j) also suggested that some regions 
may contribute more to the regulation of EET gene responses than others. Thus, following the mapping 
of tissue DARs and DEGaPs to various genomic regions (i.e. promoter, upstream, downstream, 3’UTR, 
5’UTR, intron, exon, distal intergenic), we examined motif enrichment among each subcategory of DARs 
and DEGaPs. We found that tissues shared conserved patterns of TF motif enrichment at the DARs 
mapped to proximal promoter, downstream, and 3’UTR regions (Fig 5c). Proximal promoter DARs 
showed strong enrichment for SP and KLF TFs, ZFX, NF1, and the circadian clock TF 
BHLHE41.  Downstream DARs were enriched for NPAS and BMAL1, two core circadian clock TFs, as well 
as NKX and HOX TFs. The NF1 subcluster also showed enrichment among 3’ UTR DARs, while THRB was 
most highly enriched among 3’ UTR DARs. 
  
Correlation analysis at DEGaPs revealed that TF motif enrichment was conserved across tissues 
predominantly at distal intergenic/intronic regions, followed by proximal promoter and exonic regions 
(Fig. 5d). When we selected the motifs showing the most differential enrichment between the different 
DEGaP subcategories, we found that proximal promoters were enriched for SP and KLF TFs, as in DARs, 
in conjunction with LRF, E2F3, and E2F4 (Fig. 5e). In contrast with DARs, AP-2γ was enriched at distal 
promoter DEGaPs. Members of the FOX TF family were enriched among intronic and distal intergenic 
DEGaPs. THRB and NF-E2 motifs were the most enriched among upstream DEGaPs. Overall, genomic 
features appeared to be a driving force in clustering the enriched binding motifs among DEGaPs and 
DARs, and in both instances motif enrichment was conserved across tissues at proximal promoters. 

Differential TF motif enrichment at DEGaPs of upregulated vs. downregulated DEGs  

In a concurrent MoTrPAC-study (Nair et al. manuscript in preparation), the biological pathways that 
were over-represented among upregulated vs. downregulated DEGs in each tissue after 8 weeks of 
training were divergent, suggesting that different sets of TFs were involved in their regulation. We 
sought to predict the sets of TFs that may preferably bind to up-regulated genes, and those that may 
bind to down-regulated genes. After identifying the DEGaPs related to up-regulated DEGs and those 
linked to downregulated DEGs in each tissue, we refined each DEGaP category into distal intergenic, 
intron, and promoter peak subsets (the most prevalent genomic features among DEGaPs, as shown in 
Fig. 5d), and determined their respective patterns of TF motif enrichment. We then generated z scores 
for each TF enrichment across the peak sets, and applied hierarchical clustering to the TFs. We found 
that, in most tissues, clustering was mainly driven by differences in TF motif enrichment between the 
promoter peaks associated with up-regulated DEGs vs. those associated with down-regulated DEGs (Fig 
S12). Adipose tissues had the greatest motif enrichment overlap between promoter peaks associated 
with upregulation and those associated with down-regulation. 
  
Restricting the TF motifs enriched within each subset of promoter peaks (i.e. promoter peaks associated 
with either up- or down-regulation) to those conserved across all four time points (Fig. S13), revealed 
some overlap in motif enrichment between the tissues (Fig. 6a,b). For instance, CLOCK, BHLHE41, and 
MYC (c-Myc) were among the TF motifs enriched across WAT-SC, heart, lung, SKM-GN, and kidney at the 
promoter peaks associated with upregulation; another set of TFs enriched primarily in heart and lung 
included ZFX and EBF2, while ATF2 was enriched in SKM-GN and kidney. Among the promoter peaks 
associated with downregulation, there was less consistent enrichment across tissues, however NKX2 
was enriched across SKM-GN, kidney, liver, and lung, and SOX9 was enriched among 6 of the 8 tissues. 
Twenty seven TFs were shared between the 50 TFs associated with upregulation (Fig. 6a) and the 39 
associated with downregulation (Fig. 6b), suggesting their involvement in both positive and negative 
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regulation depending on the tissue. Heart, SKM-GN, and kidney shared the most enriched motifs 
associated with upregulation and lung, liver, and HIPPOC shared the most enriched motifs associated 
with downregulation (Fig 6c,d). Overall, while gene responses and TF responses were largely tissue-
specific, tissues showed an overlap in the sets of TFs associated with either upregulated or 
downregulated DEGs, suggesting that specific patterns of EET-induced regulation could be conserved 
across tissues.  
 
Identification of DEGs associated with EET-induced phenotypic changes 

Exercise elicits various phenotypic changes such as increased aerobic capacity (VO2max) and reduced 
body fat mass, all of which reflect physiological adaptations. As several parameters were clinically 
measured throughout the EET period, we sought to: i) assess possible correlations between phenotypic 
alterations and gene expression responses to training, ii) infer key transcriptional regulators based on 
their motif enrichment at the accessible promoters of DEGs that correlated with phenotypic changes. 

Parameters measured included weight, body fat mass, body lean mass, body water, lactate levels, and 
VO2 max (Fig. S14). Body weight and fat mass were significantly lower in 8-week trained rats than in 
controls (Fig S14a,b), with the greatest difference observed in males. VO2 max significantly increased in 
both females and males in response to EET (Fig S14c). Body lean mass also increased in both sexes, 
though significance was only reached in females (Fig S14d). Lactate (Fig S14e) and body water (Fig S14f) 
showed no significant changes relative to control, though a significant decrease in lactate levels was 
observed between week 4 and week 8 in males. Positively correlated parameters included VO2 max vs. 
body lean mass, and body weight and body fat mass (Fig 7a). 
 
In most tissues, DEGs formed 2 separate clusters based on their either positive or negative correlation 
with a measured parameter change (Fig S15). Correlation with body fat involved the highest proportion 
of DEGs in most tissues (Fig. 7b), except for BAT and HIPPOC.  
 
Identification of key TFs associated with phenotypic changes 

To identify key regulators of the DEGs that were associated with phenotypic changes, we analyzed motif 
enrichment at the corresponding promoter DEGaPs. In SKM-GN, the promoter DEGaPs of genes that 
were positively correlated with changes in VO2 max were significantly enriched for NR5A2 and ERRG 
motifs (Fig. 7c). The VO2 max-correlated DEG targets of those two TFs and of AP-2GAMMA and AP-
2ALPHA, whose motif enrichment did not reach significance, showed considerable overlap (Fig 7d). The 
positive correlation between three of the DEGs targeted by either NR5A2, ERRG, or/and AP-2GAMMA 
(Me3, Rora, and Lgi3) and VO2 max change is depicted in Fig. 7e-g. 
 
In SKM-GN, we also found a positive correlation between DEGs and body weight changes, and identified 
the MyoD motif as significantly enriched at the corresponding promoter DEGaPs (Fig. 7h). While an 
enrichment for the COUP-TFII and ERRA motifs was also detected, it did not reach significance (Fig 7h). 
The Chd7, Rnf13, and RGD1562029 DEGs showed concurrent enrichment for the MyoD, COUP-TFII, and 
ERRA motifs (Fig 7i). The positive correlation between Chd7 expression and body weight change is 
illustrated in Fig. 7j. 
 
As MAZ and SMAD3 have been identified as major regulators of the DARs-associated DEGs (DAR-DEG 
pairs; see Fig. 3), we asked whether those DEGs correlated with phenotypic changes. In SKM-GN, we 
found that MAZ targets Igf2 and Sall2 were positively and negatively correlated with body fat change, 
respectively (Fig. 7k,l); in lung, Oas2 and Nfkb2 were negatively and positively correlated with body fat 
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change, respectively (Fig. 7m,n); in the liver, SMAD3-target Fkbp4 was also positively correlated with 
body fat change (Fig 7o). In each of those correlations, as well as in the positive correlation between 
Chd7 and body weight, we noted sex differences both in EET-dependent RNA levels and in phenotypic 
changes, as week 8-trained males deviated more from controls than week 8-trained females (Fig. 7j-o). 
 
In view of the characterization of TF expression responses to EET, we next evaluated correlations 
between TF expression changes, at either the RNA or protein level (see Fig. 4) and phenotypic changes. 
We observed the strongest correlations between TF RNAs and body fat changes (Fig S16a), with Pknox1 
in SKM-GN being the most positively correlated, and Srebf1 in the kidney being the most negatively 
correlated. Srebf1 in the kidney was also the most positively correlated with body lean mass changes. 
Rora was the most positively correlated with VO2 max changes. Zeb1 and Zeb2 shared similar 
correlation patterns, namely a positive correlation with body fat in WAT-SC. Gata2 had diverging 
correlation patterns depending on the tissue: positively correlated with body weight and body fat in 
WAT-SC, and negatively correlated with both measures in the lung. Similar to the correlations with TF 
RNA level-changes, the strongest correlations at the protein level were with body fat changes. 
Remarkably, liver showed the highest frequency of strong correlations (Fig S16b). In WAT-SC, JUN was 
the most positively correlated with body fat, while TCFL2 and EHF were the most negatively correlated. 
ZEB1 and ZEB2 maintained their correlation structure seen at the RNA level, with ZEB2 being also 
positively correlated with body fat in the lung. IRF3 in SKM-GN was the most positively correlated TF 
with body lean changes and CLOCK in WAT-SC was negatively correlated with body fat. Connecting EET-
modulated genes and proteins, and specifically TFs, with correlated phenotypic changes suggest 
potential mechanistic roles. In particular, MAZ and SMAD3 target gene correlation with body fat changes 
reinforces their functional role in the training response. 

 

Discussion 

Regular exercise has a variety of physiological benefits affecting many organ systems. We integrated 
chromatin accessibility and transcriptomic data from 8 rat tissues to infer the TFs underlying EET 
responses in each tissue. We found multiple layers of regulation characterizing EET adaptation, including 
utilization of the innate tissue-specific and genomic region-specific TF machinery, changes in TF 
expression at transcriptome and proteome levels, direct relationships between proximal promoter DARs 
and their associated DEGs, interactions between more distant highly correlated DAR-DEG pairs enriched 
for known TFs and specific training responses with distinct TF enrichment patterns, some conserved 
across tissues (Fig 8). We isolated MAZ and SMAD3 as key regulatory TFs in SKM-GN, lung, and liver, 
found the down-regulation of immediate-early response genes over EET and enrichment of KLF and SP 
TF motifs among proximal promoter DEGaPs. Consistent with the findings of a MoTrPAC companion 
study, we found that the DEGaPs of upregulated vs. downregulated DEGs show differential motif 
enrichment, which predominantly occurs at promoter regions. Finally, we singled out TFs that correlated 
with EET-induced phenotypic changes including VO2 max and body weight. 
 
The EET of rats allowed studying responses in systems not feasible in human subjects. Limitations of our 
study include the use of inbred rats, which eliminates effects of genetic diversity, and high variance in 
some tissues, thus reducing statistical power. However, differences in cell type composition within 
testing groups of same strain, same age, same sex rats suggest greater than initially anticipated variation 
and stronger applicability to the diversity expected in human responses to EET. Exercise effects on cell 
type composition could only be addressed computationally in assays of bulk tissue. Many integrated 
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multiomic EET responses that we identified, such as muscle development in SKM-GN, innate immunity in 
lung, increased immune cell type proportions in adipose tissues, and metabolic processes in liver may 
contribute to known health effects of exercise. However, as the goal of the MoTrPAC study is to provide 
a systematic compendium of exercise effects, follow-up studies of the multi-organ roadmap of genomic 
regulatory responses that we have identified are warranted.   
 
In liver, the SMAD3 TF motif was the most enriched among correlated DAR-DEG pairs following EET. 
While SMAD3 was recently established as a key regulator of the acute exercise response in SKM22, it is 
also an intracellular mediator of the TGF-β signaling pathway, which has been associated with hepatic 
stellate cell (HSC) activation and liver fibrosis28,29. SMAD3-target genes include collagens and fibrogenic 
markers such as smooth muscle actin and cadherin. In this work, SMAD3 motif-containing DARs anti-
correlated with Serpina family gene responses. Low serum levels of Serpina4, also known as kallistatin, 
have been associated with liver diseases, including liver fibrosis30. SMAD3-target gene Lpar3 has been 
linked to liver regeneration following damage31 and Lpar family members were previously associated 
with liver fibrosis32. RNA expression of Glul, another potential SMAD3-target gene, was reported to 
decrease in activated HSCs, which are responsible for extracellular matrix deposition in liver fibrosis33. 
We speculate that TGF-β/SMAD signaling, which regulates ECM production and cytoskeletal 
organization in HSCs, may be modulated by EET.  
 
In SKM-GN and lung, MAZ was the most enriched TF motif among correlated DAR-DEG pairs. Although it 
was not previously linked to EET, MAZ can act both as a transcriptional activator and a repressor13,16. 
Multiple MAZ target genes found among the DAR-DEG pairs were associated with immune response: 
Ppp1r15a (Gadd34) is necessary for interferon production34; Igf2, which is primarily a growth hormone 
during development, is also involved in immune response35–37; Hspb6 acts as a mediator of platelet 
aggregation along with smooth muscle relaxation38; Mpeg1 expresses a transmembrane protein in 
macrophages in an antimicrobial capacity39; Oas2 is a type I-interferon response gene40; mutations in 
Nfkb2 greatly damage the immune system41. Thus, MAZ could be involved in the inflammatory response 
occurring in SKM following exercise42.  
 
Several TFs that were downregulated by EET in SKM-GN either at the RNA level (Fos, Jun, Egr1, and Atf3) 
or at the protein level (NR4A1) represent immediate-early response genes (IEGs), which were previously 
reported to be induced by acute exercise43–46. Stress-inducible ATF3 was shown to reduce the RNA 
expression of inflammatory chemokines and cytokines in mouse SKM following acute exercise, and ATF3 
knockout resulted in impairment of some of the molecular adaptations to exercise training43,47. In SKM, 
NR4A1 regulates genes associated with glucose uptake, glycogen synthesis, and promoting muscle 
growth48 as well as mediating inflammatory response49,50. As exercise represents a stressful stimulus, 
modulation of IEGs may help tissues like SKM-GN to recover their homeostasis and thus facilitate their 
adaptation to exercise training. The two gene targets of NR4A1 with the largest correlated decreases in 
EET-response gene expression were the heat shock protein Hspa1l51, a critical element of the cellular 
stress response, and Dupd1 (Dusp29), which has been linked to regulation of muscle cell differentiation, 
development, and atrophy52. 
 
In the present work, we determined that DARs vs. DEGaPs have different genomic distributions and 
distinct TF motif enrichment profiles, and found a much stronger correlation between motif enrichment 
and control TF gene expression levels at DEGaPs compared to DARs. These findings suggest that DARs 
and DEGaPs represent two distinct patterns of transcriptional regulation in response to EET. The DAR-
mediated mechanism involves EET-induced changes in chromatin accessibility at either promoter or 
distal gene regions, resulting in the activation or repression of gene transcription. The DEGaP-mediated 
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mechanism involves chromatin regions that are already accessible in the control tissue, and thus is most 
likely driven by TF activity. TF activity is influenced by post-translational modifications (PTMs), 
heterodimerization, and interactions with co-factors. PTMs include phosphorylation, sumoylation, 
ubiquitination, acetylation, glycosylation, and methylation53. PTMs can: i) alter TF conformation and 
subsequently their affinity for DNA or their stability, ii) influence TF nuclear translocation and hence 
their access to DNA. Although our results support a model wherein one path is predominantly controlled 
by the impact of EET on chromatin structure, and the other is predominantly driven by the effect of EET 
on the transcriptional activity of TFs, further analysis is needed to investigate this concept. 
 
In both DARs and DEGaPs, the proximal promoter region best illustrated the clustering of motif 
enrichment. Notably, KLF and SP TFs, whose motifs were over-represented at promoter DEGaPs, bind to 
GC-rich regions and GT boxes54, which are typically enriched at proximal promoters. These members of 
the KLF and SP TF families are known to act on a variety of biological pathways depending upon tissue 
and context. Tissue-specific expression of KLF and SP family members is likely the critical step for 
determining their functionality. For example, Klf5 gene expression was highest in lung, while Klf14 was 
primarily expressed in WAT-SC. 
 
We found that binding sites for circadian clock TFs were over-represented at the promoter DEGaPs of 
DEGs that were associated with VO2 max changes in SKM-GN. Notably, there were enriched motifs for 
the nuclear receptors NR5A2 and ERRG55 which bind to the core clock proteins CLOCK56 and BMAL157, 
respectively. Moreover, we found an over-representation of binding sites for circadian clock-related TFs 
at promoter DARs (BHLHE41 motif), at downstream DARs (NPAS and BMAL1 motifs), and at the DEGaPs 
of upregulated DEGs (CLOCK motif) in multiple tissues, suggesting a cross-tissue, exercise training effect 
on circadian clock factors. It is noteworthy that the EET program in rats was conducted during an active, 
dark phase, thus excluding that the enrichment for circadian clock TF motifs would be related to exercise 
training in the inactive phase. Recent studies revealed interactions between exercise and circadian 
rhythms. Some demonstrated that time of exercise can modify the transcriptional response to acute 
exercise, while others showed that exercise can modify the muscle clock phase and expand the circadian 
transcriptome in SKM58–63. 
 
In summary, our multi-omic analysis across rat tissues allowed us to map the epigenomic changes to the 
transcriptional changes occurring during EET and infer the TFs driving training responses. By providing a 
view of the complex interplay between chromatin structure modifications, gene transcription, and TF 
abundance throughout EET, this work sets the stage for a molecular understanding of the multi-organ 
effects of regular exercise. Ultimately, this knowledge will be utilized to maximize the benefits of 
exercise to healthy individuals and develop targeted therapies for patients with a disease or disability. 

 

Methods 

Animal study design 

Animal care 

Male and female Fischer 344 (F344) inbred rats from the National Institute on Aging were transported to 
the University of Iowa a minimum of 4 weeks prior to starting exercise training. Rats were housed with 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.523450doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?S2OhZM
https://www.zotero.org/google-docs/?YCjPTl
https://www.zotero.org/google-docs/?6DDzkw
https://www.zotero.org/google-docs/?U45swU
https://www.zotero.org/google-docs/?QsGOrI
https://www.zotero.org/google-docs/?8c62NA
https://doi.org/10.1101/2023.01.10.523450
http://creativecommons.org/licenses/by-nd/4.0/


the same sex, 2 per cage (146.4 square inches of floor space) in ventilated racks (Thoren Maxi-Miser IVC 
Caging System) on Tekland 7093 Shredded Aspen bedding and fed the Lab Diet 5L79 pelleted diet. 

Rats were acclimated to a reverse dark-light cycle with lights OFF at 9:00am and lights ON at 9:00pm, 
with temperature controlled at 68-77°F and humidity of 25-55%. For these studies we will use Zeitgeber 
Time (ZT) to refer to time of day relative to the time of lights off/lights on with lights off at ZT12. All 
experimental interventions and husbandry were performed during the active, dark phase of the rats 
under red light. All animal procedures were approved by the Institutional Animal Care and Use 
Committee at the University of Iowa. 

Treadmill familiarization 

Prior to exercise training, rats were acclimated to treadmill exercise on a Panlab 5-lane rat treadmill 
(Harvard Instruments, Model LE8710RTS). Day 1-2 consisted of static treadmill exploration for 10 
minutes. Days 3-5 consisted of running at 6m/min at 0° incline for 10 minutes, speed was increased to 
10m/min between Days 6-12. On Day 12, rat running behavior was scored for compliance with running 
at 12m/min for 5 minutes at a 10° incline. Based on running behavior, rats received a score from 1-4 
with 4 being the highest score. Rats that were assigned a score of 1 were removed from the study.  25 
male and 25 female compliant rats were randomized to a control or training group and the body weights 
of the rats within each group were not different.. 

Progressive exercise training protocol 

At 6-months of age, 1, 2, 4 or 8 weeks of exercise training began. Control rats were placed on a static 
treadmill for 15 min per day, 5 times per week. Exercise training consisted of a progressive training 
protocol 5 times per week at ZT13-20, to target 70% VO2max (see below). Week 1 sessions started at 
13m/min for males and 16m/min for females at 5° for 20 minutes, with duration increased by one 
minute each day until reaching 50 min on day 31 of training. The treadmill grade was increased from 5° 
to 10° at the start of week 3. The treadmill speed increased at the start of week 2 (15m/min males, 
18m/min females), 4 (18m/min males, 21m/min females), 5 (20m/min males, 23m/min females), 6 
(23m/min males, 26m/min females),  and 7 (25m/min males, 28m/min females) and was fixed for the 
final 10 days of training. Rats performing less than 4 days of training per week were removed from the 
study and euthanized as described below. 

Body composition measurements 

Body composition (lean tissue%, fat tissue% and body fluid) was measured for all rats 13 days prior to 
the start of training and 5 days prior to euthanasia in the 4 and 8-week training groups  using the 
minispec LF90II Body Composition Rat and Mice Analyzer (Bruker, 6.2 MHz Time Domain Nuclear 
Magnetic Resonance (TD-NMR) system). VO2max was determined prior to commencing training in all 
rats, and during the last week of training for rats in the 4- and 8-week exercise groups, in a single-lane 
enclosed treadmill (Columbus Instruments Metabolic Modular Treadmill), with rats acclimated two days 
prior to testing. For testing, the rat was placed in the treadmill and testing began once oxygen 
consumption stabilized. The testing protocol consisted of a 15 min warm up at 9 m/min and 0° incline. 
The incline was increased to 10° and treadmill speed was increased by 1.8 m/min every 2 minutes64. 
During the test, electric shocks were used if the rat stopped running and sat on the shock area. Testing 
stopped when the rat sat on the shock area 3 consecutive times and did not respond to increased shock. 
Blood was then taken from the tail to measure lactate. VO2max was determined as a leveling off of 
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oxygen uptake, despite increased workload, a respiratory exchange ratio above 1.05, and an 
unhaemolyzed blood lactate concentration ≥6 mM. 

Euthanasia and tissue collection 

On the day of euthanasia, food was removed at ZT11.5, 3 hours before tissue collections which took 
place between ZT14.5-17.5, a minimum of 48 hours post their last exercise bout. Rats were sedated 
with  approximately 1-2% isoflurane in oxygen, then hearts removed followed by immediate 
decapitation using a guillotine. The brain was removed from the skull and hippocampus dissected. All 
tissues (heart, lung, liver, kidney, white adipose, brown adipose, skeletal muscle, and hippocampus) 
were cleaned of excess connective/fat tissue and immediately flash-frozen in liquid nitrogen, placed in 
cryovials and stored at -80°C. Rat tissues were archived and cyropulverized at the MoTrPAC 
Biospecimens Repository, until distributed to Chemical Analysis Sites for respective assays5. 

Data production and quantification 

ATAC-seq data generation 

Nuclei from 30 mg white adipose, 15 mg brown adipose, and 10 mg of other tissue samples were 
extracted using the Omni-ATAC protocol with modifications65. The white adipose, brown adipose, and 
hippocampus tissues were processed using no-douncing nuclei extraction. Cryopulverized tissue powder 
was incubated in the homogenization buffer for 10 min at 4°C, tubes inverted every 2-3 minutes. Other 
tissue powder was incubated in the homogenization buffer for 5 minutes on ice and dounced 10 times 
using pestle A and 20 times with pestle B. Nuclei were stained with DAPI and counted using an 
automated cell counter. 50,000 nuclei (or max. 500 µl nuclei) were added to 1 ml ATAC-RSB buffer and 
spun at 1000 g for 10 minutes, and the supernatant was removed. 

The nuclei pellet was resuspended in 50 µl of transposition mixture and incubated at 37°C for 30 
minutes with 1000 rpm shaking. The transposed DNA was purified using Qiagen MinElute Purification 
kits (Qiagen # 28006), and amplified using NEBnext High-Fidelity 2x PCR Master Mix (NEB, M0541L) and 
custom indexed primers65. 1.8x SPRIselect beads were used to clean the PCR reaction and remove 
primer dimers. The ATAC-seq libraries were sequenced on a NovaSeq 6000 using 2x50bp with 35 million 
pairs of reads per sample. 

ATAC-seq data processing and normalization 

Reads were demultiplexed with bcl2fastq2 (v2.20.0) and processed with the ENCODE ATAC-seq pipeline 
(v1.7.0) (https://github.com/ENCODE-DCC/atac-seq-pipeline)66. Samples from the same sex and training 
group were analyzed as biological replicates. Reads were aligned to genome rn6.0.9667 with Bowtie 2 
(v2.3.4.3)68. Duplicate and mitochondrial chromosome mapped reads were removed. Peaks were called 
using MACS2 (v2.2.4)69, both from reads from each sample and pooled reads from all biological 
replicates. Pooled peaks were compared with the peaks called for each replicate individually using 
irreproducible discovery rate70 and thresholded to generate an optimal set of peaks. Optimal peaks from 
all workflows were concatenated, trimmed to 200 base pairs around the summit, sorted and merged 
with bedtools (v2.29.0)71 to generate a master peak list. This peak list was intersected with the filtered 
alignments from each sample using bedtools coverage to generate a peak by sample matrix of raw 
counts. Peaks from non-autosomal chromosomes were removed. Peaks that did not have at least 10 
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read counts in four samples in a tissue were removed. Filtered raw counts were then quantile-
normalized with limma-voom72. This version of the normalized data was used for downstream analyses.  
 
ATAC-seq peak assignment to genomic features 

Accessible regions identified using ATAC-seq were assigned to one of the nine terms of genomic features 
using Ensembl Rn6 GTF (gene annotation file) and function annotatePeak of package ChIPseeker73 
(v1.8.6). 

Nine genomic features are defined as:  
Promoter (<=1 kb) (proximal promoter): within +/- 1 kb from the transcription start site (TSS);  
Promoter (1-2 kb): +/- 1 to 2 kb from the TSS;  
Upstream (<5kb) 2-5 kb upstream from the TSS;  
Downstream (< 5 kb): within 5kb downstream of the transcription end site (TES);  
5' UTR (5’ untranslated region); Exon; Intron; 3' UTR (3’ untranslated region);  
Distal Intergenic: regions > 5kb downstream of TES or > 5kb upstream from next TSS; 
Overlaps Gene: overlaps with gene annotation, but not in any terms above. 

All ATAC-seq identified accessible regions were assigned to the closest genomic feature of a genome. 
Differentially expressed gene associated peaks (DEGaPs) are defined as all accessible regions assigned to 
the differentially expressed gene.  

RNA-seq data generation 

Rat tissue powders were further disrupted using Agencourt RNAdvance tissue lysis buffer (Beckman 
Coulter, Brea, CA) with a tissue ruptor (Omni International, Kennesaw, GA, # 19-040E). The total RNA 
was quantified using NanoDrop (ThermoFisher Scientific, # ND-ONE-W) and Qubit assay (ThermoFisher 
Scientific). Total RNA quality was determined by either Bioanalyzer or Fragment Analyzer analysis. 

500 ng total RNA was used for library generation. Universal Plus mRNA-Seq kit from NuGEN/Tecan (# 
9133) was used to select polyadenylated RNA. The generated sequencing libraries contain dual barcodes 
(i7 and i5) and UMIs (unique molecular identifiers) to accurately quantify the transcript levels. The RNA-
seq libraries were sequenced on a NovaSeq 6000 using 2x100 bp with 35 million pairs of reads per 
sample. 

RNA-seq data processing and normalization 

Reads were demultiplexed with bcl2fastq2 (v2.20.0). Adapters were trimmed with cutadapt (v1.18). 
STAR (v2.7.0d) was used to index and align reads to genome rn6.0.96 and gene annotations67. Bowtie 2 
(v2.3.4.3) was used to index and align reads to globin, rRNA, and phix sequences in order to quantify the 
percent of reads that mapped to these contaminants and spike-ins68. UMIs were used to accurately 
quantify PCR duplicates with NuGEN’s “nudup.py” script (https://github.com/tecangenomics/nudup). 
QC metrics from every stage of the quantification pipeline were compiled, in part with multiQC (v1.6)74. 
Lowly expressed genes (having 0.5 or fewer counts per million in all but one sample) were removed and 
normalization was performed separately in each tissue. These filtered raw counts were used as input for 
differential analysis with DESeq275. To generate normalized sample-level data, filtered gene counts were 
TMM-normalized using edgeR::calcNormFactors, followed by conversion to log counts per million with 
edgeR::cpm76. The same normalization technique was used on the 8 week control samples of each tissue 
for cross-tissue comparisons. 
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Proteomics data generation 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) was conducted on six tissues: heart and 
liver at the Broad Institute and skeletal muscle, kidney, lung, and white adipose at Pacific Northwest 
National Laboratory (PNNL). Sample processing followed a modified version of a previous protocol77. 
Peptides were labeled using tandem mass tag (TMT)78 and samples were grouped into sex- and training 
time point-based TMT11 multiplexes. Multiplex samples were fractionated by high pH reversed phase 
separation. Heart and liver samples underwent online separation with a nanoflow Proxeon EASY-nLC 
1200 UHPLC system (Thermo Fisher Scientific), and then analyzed with a Q-Exactive Plus mass 
spectrometer (Thermo Fisher Scientific). The remaining tissues’ samples underwent online separation 
with a nanoAcquity M-Class UHPLC system (Waters), and analyzed with a Q Exactive HF mass 
spectrometer (Thermo Fisher Scientific).  

Proteomics data processing and normalization 

For heart and liver, raw MS/MS data samples were processed by a Spectrum Mill (v.7.09.215) (Agilent 
Technologies). For the remaining tissues, sample processing was implemented by an in-house cloud-
based proteomics pipeline executed in the Google Cloud Platform5. In all tissues, MS2 spectra were 
processed and searched against the rat RefSeq protein database (downloaded November 2018). Log2 
TMT ratios to the common reference were used as quantitative values for all proteins. Principal 
component analysis and median protein abundance across samples were used to find sample outliers. 
Proteomics features that were not fully quantified in at least two plexes within a tissue and non-rat 
contaminants were removed. Median-centering and mean absolute deviation scaling of Log2 TMT ratios 
were done for sample normalization. Plex batch effects were removed using limma::removeBatchEffect 
function in R (v 3.48.0).  

Statistical analysis  

Differential analysis 

Differential analyses were performed in each tissue of each ome. Males and females in one dataset 
were analyzed separately. Limma with empirical Bayes variance shrinkage was used for ATAC-seq and 
proteomics data79; DESeq2 was used for RNA-Seq75. For all proteomics and ATAC-seq data, the input for 
differential analysis was normalized as described above. For RNA-Seq, the input was filtered raw counts, 
in accordance with the DESeq2 workflow. 

To select analytes that changed over the training time course, we performed F-tests (limma) or 
likelihood ratio tests (DESeq2::nbinomLRT, lrtest) to compare a full model with ome-specific technical 
covariates and training group as a factor variable (i.e. sedentary control, 1 week, 2 weeks, 4 weeks, 8 
weeks) against a reduced model with only technical covariates. For each analyte, male- and female-
specific p-values were combined using Fisher’s sum of logs meta-analysis to provide a single p-value, 
referred to as the training p-value. To account for false discovery rate across all statistical tests, the 
training p-values were adjusted across all datasets within each ome using Independent Hypothesis 
Weighting (IHW) with tissue as a covariate80. Training-differential features were selected at 5% IHW 
FDR.  

We used the contrasts of each training time point versus the sex-matched sedentary controls to 
calculate time- and sex-specific effect sizes, their variance, and their p-values (e.g., using linear F-tests), 
referred to as the timewise summary statistics. Specifically, for limma models we used 
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limma::contrasts.fit and limma::eBayes, for DESeq2 models we used DESeq2::DESeq. Covariates were 
selected from assay-specific technical metrics that explained variance in the data and were not 
correlated with exercise training: RNA integrity number (RIN), median 5’-3’ bias, percent of reads 
mapping to globin, and percent of PCR duplicates as quantified with Unique Molecular Identifiers (UMIs) 
for RNA-Seq; fraction of reads in peaks and library preparation batch for ATAC-seq.  

Identification of transcription factor motifs using HOMER 

Transcription factor motif enrichment analysis was performed on sets of DARs and DEGaPs for each 
tissue. DARs for motif enrichment analysis were selected for each tissue by satisfying an adjusted p-
value threshold of 0.1. Similarly, DEGaPs for each tissue were selected by isolating the DEGs that 
satisfied an adjusted p-value threshold of 0.1, and selecting peaks annotated to the DEGs that contained 
a median normalized accessibility of -1. For genomic feature-specific analysis, DEGaPs were divided 
based upon their gene region annotation. The analysis was carried out by findMotifsGenome.pl (HOMER 
v4.11.1)81. It was performed on the ±50 bp flanking regions of the peak summits. The search lengths of 
the motifs were 8, 10, and 12 bp. We applied the -find flag to generate a list of all known rat motifs 
contained within the ±50 bp flanking regions of the summits for each peak in the ATACseq dataset, using 
the same settings as above. 

DAR genomic feature TF motif enrichment analysis 

Applying the output from HOMER, the top ten significantly enriched TF motifs among DARs and DEGaPs 
in each tissue were selected for further downstream analysis and cross-tissue comparisons. TFs were 
removed from further analysis if their gene was not expressed in the tissue in which their motifs were 
enriched. TF motif enrichments for differentially accessible regions (DARs) divided into gene features 
were calculated using the Fisher test. The test compared the ratio of DARs containing the motif for a 
specific TF/non-DARs containing this motif in one genomic feature, and the ratio of DARs containing this 
motif / non-DARs containing this motif in other genomic features. p values were adjusted and FDR cutoff 
= 0.1 to select significant motifs in specific genomic features. 

Correlations between DARs and DEGs 

We selected DARs whose centers were within 500kb of a DEG TSS in each tissue. We then calculated the 
Pearson correlation of the L2FC of the DAR and the DEG for each sex at each week. We considered a 
DAR-DEG pair for further analysis if their training response Pearson correlation was greater than 0.5 or 
less than -0.5 and the DAR contained a known motif for a TF expressed within the tissue. 

Cell-type deconvolution 

Cell type deconvolution was conducted by the R package CellCODE82 using the getallSPVs function. 
Marker sets were generated using the IRIS (Immune Response In Silico83 and DMAP (Differentiation 
Map) reference datasets84. The Kruskal-wallis test was implemented with the R function kruskal.test to 
determine if the variability in cell type proportion across samples in a given tissue would suggest a 
significant training response or sex difference. 

Pathway enrichment 

Pathway enrichment analysis of up-regulated DEGs at each time point was performed using the R 
package gprofiler2:gost85 against Gene Ontology Biological Process, Reactome, WikiPathways and KEGG 
databases. Top 10 pathway enrichments for each tissue are displayed as bubble plots with sizes 
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indicating the number of significant genes enriched in different pathways relative to the pathway size 
(number of genes in that pathway) and colors indicating the significance (BH-corrected p-value). At least 
10 genes were required to be enriched in a pathway with a maximum of 200 genes. 
 
Correlations between Phenotypic Measures and DEGs 

Phenotypic measures were calculated at weeks 4 and 8 of EET and in week 8 controls. Measures were 
presented as changes between time point and original baseline measurements in each rat. For each 
phenotypic measure and DEG combination, we calculated the Pearson correlation between the change 
in phenotypic measure between baseline and a given time point, and the gene expression of the DEG at 
the time point for each animal subject. We isolated the DEGs that exhibited > 0.5 or < -0.5 correlations 
with each phenotypic measure in each tissue and selected the DEGaPs annotated to the promoter 
region of the DEGs. TF motif enrichment significance among a set of positively or negatively correlated 
DEG’s promoter DEGaPs in a tissue were determined by an exact binomial test comparing the frequency 
of enrichment among phenotype-correlated DEGs versus general enrichment among the promoter 
DEGaPs in the tissue. 

Data Availability 
MoTrPAC data will be publicly available at time of publication via motrpac-data.org/data-access. 
Data access inquiries should be sent to motrpac-helpdesk@lists.stanford.edu. Additional 
resources can be found at motrpac.org and motrpac-data.org. 

Code Availability 
MoTrPAC data processing pipelines for RNA-Seq, ATAC-seq, RRBS, and proteomics will be made public at 
the time of publication: https://github.com/MoTrPAC/motrpac-rna-seq-pipeline, 
https://github.com/MoTrPAC/motrpac-atac-seq-pipeline, https://github.com/MoTrPAC/motrpacrrbs-
pipeline, https://github.com/MoTrPAC/motrpac-proteomics-pipeline. Normalization and QC scripts will 
be available at https://github.com/MoTrPAC/motrpac-bic-norm-qc. Code for the underlying differential 
analysis for the manuscript will be provided in the MotrpacRatTraining6mo R package 
(motrpac.github.io/MotrpacRatTraining6mo). Code for conducting the analysis and generating the 
figures contained within this paper will be available at 
https://github.com/gsmith990306/MoTrPAC_PASS1B_Transcription_Factor_Paper. 
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Figure 1: Epigenetic and transcriptional responses to training programs. (a) 6-month old rats of both 
sexes underwent training programs. Tissues were collected and subjected to multiomics profiling, 
including ATAC-seq, RNA-seq, proteomics. (b) Higher number and percentage of differentially expressed 
genes (DEGs) were identified than differentially accessible regions (DARs) after training in most tissues (F 
test FDR<0.1). (c) Many accessible regions and genes were identified in all tissues and training-induced 
features were highly tissue-specific. (d) Frequency of differential genes and analytes L2FC direction 
consistent in 100% (8) or 75% (6) sex and week-specific data points for each tissue. Training-induced 
responses were more consistent between genders and time points in DEGs than in DARs, highest in 
heart, SKM-GN and kidney. (e,f) Cell type deconvolution analysis-generated -log10 p-values of Kruskal-
Wallis test measuring significant predicted changes in tissue cell type composition based on training (e) 
or sex (f). Brown adipose exhibited increased proportions of immune cell types after training. White 
adipose exhibited sex-specific changes in proportions of immune cell types and pericytes. (g-j) 
Distribution of genomic locations of all accessible regions (g), DARs (h), accessible regions in all active 
genes (i) and accessible regions in DEGs (DEGaPs) (j). (k) DARs enriched for the proximal promoter 
compared to all accessible regions. (l) DEGaPs enriched for exon and contained fewer distal intergenic 
features in some tissues.  
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Figure 2: Responses in chromatin accessibility may not directly link with the expression of the closest 
genes. (a) Count of DARs annotated to a DEG or a non-DEG. The closest gene to most DARs is not a DEG. 
* reflects p < 0.05 for hypergeometric test measuring the significance of the DAR-DEG overlap. (b) Count 
of DEGs with an annotated DAR. Most DEGs did not contain DARs in their vicinity. * reflects p < 0.05 for 
hypergeometric test measuring the significance of the DAR-DEG overlap (c-d) Distribution of distance 
between DARs and nearest DEG TSS. DARs colored by tissue (c) and genomic feature (d). (e) Density 
scatter plot of DAR-DEG training response correlation vs. distance. DARs with high correlation to gene 
expression enriched for TSS-proximal regions in most tissues. (f) Subsets of tissue DEGs with DARs 
located within 500 kb, DEGs correlated with within-500 kb DARs, and DEGs correlated with within-500 
kb DARs containing annotated TF motifs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.523450doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523450
http://creativecommons.org/licenses/by-nd/4.0/


Srsf2
Sall2

Eif4g3

Igf2
Ppp1r15a

Ubxn10

chr5:156876386−156877903

chr15:28377380−28379537

chr10:106240894−106241724

chr1:215717291−215717943

chr1:101688627−101688863

−1

−0.5

0

0.5

1

Nfkb2

Hspb6

Ffar2
M

peg1

ENSRNOG00000046050

Oas2

chr9:10013042−10013917

chr12:41383568−41385582

chr1:266254052−266254965

chr1:228394822−228395897

chr1:88873960−88874629 −1

−0.5

0

0.5

1

Fkbp4

A2m
l1

Onecut1

Serpina6

Serpina4

Serpina3m

Xbp1
Lpar3

Abhd2

Ccnd1

Glul
ENSRNOG00000054946

chr8:81786424−81786624

chr6:128053698−128054123

chr6:127996953−127997200

chr4:161803914−161804131

chr3:142384375−142386573

chr2:252479939−252480482

chr2:252476877−252477104

chr14:85759503−85759752

chr13:71341549−71342573

chr13:71340307−71341460

chr13:71185743−71185977

chr1:218568052−218568320

chr1:141073154−141074190

−1

−0.5

0

0.5

1

F W1

F W2

F W4

F W8

M W1

M W2

M W4

M W8

0.0

0.1

0.2

0.3

0.4

−0.8 −0.6 −0.4 −0.2 0.0
RNA.L2FC

AT
A

C
.L

2F
C

SKM−GN: Igf2 vs chr1:215717291−215717943
Pearson Correlation: −0.6839

F W1

F W2

F W4

F W8

M W1

M W2

M W4

M W8

−0.3

−0.2

−0.1

0.0

0.1

0.00 0.25 0.50
RNA.L2FC

AT
A

C
.L

2F
C

SKM−GN: Sall2 vs chr15:28377380−28379537
Pearson Correlation: 0.72380

F W1

F W2

F W4

F W8

M W1

M W2

M W4

M W8

0.0

0.1

0.2

−0.2 −0.1 0.0
RNA.L2FC

AT
A

C
.L

2F
C

LUNG: Nfkb2 vs chr1:266254052−266254965
Pearson Correlation: −0.5779

F W1

F W2

F W4

F W8

M W1

M W2

M W4

M W8

0.0

0.1

0.2

−0.2 −0.1 0.0
RNA.L2FC

AT
A

C
.L

2F
C

LIVER: Nfkb2 vs chr1:266254052−266254965
Pearson Correlation: −0.5779

a

b

c

d

e f g h

Correlation Correlation

Correlation

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2023. ; https://doi.org/10.1101/2023.01.10.523450doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523450
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Enriched pathway and responsive transcription factors in correlated DAR-DEG pairs. (a) Per 
tissue pathway enrichment analysis of DEGs with correlated DARs located within 500 kb . (b-d) 
Correlation heatmaps of correlated DAR-DEG pairs with binding sites for enriched TFs Maz in SKM-GN 
(b), and lung (c), and Smad3 in liver (d). (e-h) Training response L2FC scatter plots of correlated DAR-DEG 
Maz and Smad3 targets. Maz-target DARs in SKM-GN correlated with Igf2 (e), and Sall2 (f), and in lung 
correlated with Nfkb2 (g). SMAD3-target DAR in liver correlated with Fkbp4 (h). 
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Figure 4: TFs showed significant EET responses at multiple omic levels. (a-b) Significant TF training 
responses at the transcriptomic (a) and proteomic (b) levels. Adjusted p-values generated by the F test 
of differential analysis and highest magnitude L2FC across sexes and time points are displayed for each 
TF. (c-d) Pearson correlation of cross-tissue highest magnitude L2FC for each TF at the transcriptomic (c) 
and proteomic (d) levels. Kidney and lung shared the most similar TF training responses. (e) Frequency 
of DEGs among gene targets of TFs with significant proteomic training response in skeletal muscle. The 
dashed line represents the frequency of DEGs among active genes in skeletal muscle. Gene targets are 
divided by presence of TF motif within active peaks annotated to the proximal promoter (orange), intron 
(brown) or distal intergenic (gold) features. (f,g) L2FC training response of DEG proximal promoter 
targets of MEF2C (f) and NR4A1 (NUR77) (g). Pearson correlation between target DEG L2FC and TF 
protein L2FC is annotated for each row. 
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Figure 5: TF motif enrichment at the tissue level and at the genomic feature level in each tissue. (a-b) -
log10 p-value of TF motif enrichment in tissue DARs (a) and DEGaPs (b). Top enriched TFs were selected 
for each tissue in (a) and (b). (c) -log10 p-value of TF motif enrichment among sets of DARs split by 
genomic feature. TF motifs significantly enriched in proximal promoter regions (<=1kb from TSS) were 
shared by multiple tissues. (d) Correlation between TF motif enrichment of tissue DEGaPs split by 
genomic feature. TF motif enrichment in proximal promoter DEGaPs among all tissues were highly 
correlated. (e) Most differentially enriched TFs between genomic feature-classified DEGaPs. 
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Figure 6: Tissues shared sets of TFs enriched in the promoter regions of genes that were up- or down-
regulated after 8 weeks of training. (a-b) Heatmaps of relative enrichment of TFs among the promoter 
peaks of up- (a) or down-regulated genes (b) across tissues. (c-d) Number of enriched TFs shared 
between pairs of tissues in the promoter peaks of up- (c) or down-regulated genes (d).  
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Figure 7: TF enrichment among phenotype-correlated DEGs. (a) Heatmap of Pearson correlation 
between phenotypic measures. Strong relationships between body lean and VO2 max and body fat and 
weight gain. (b) Frequency of tissue DEGs positively (> 0.5) or negatively (< -0.5) correlated with each 
phenotypic measure. (c) Comparison of TF enrichment among the active promoter peaks of VO2 max 
positively correlated DEGs vs TF enrichment among the total active promoter peak set in SKM-GN. * 
represents binomial test significance (p < 0.05) for difference in phenotype correlated DEG frequency 
and general frequency. (d) Overlap of target DEGs for most enriched TFs among VO2 max positively 
correlated DEG promoter peaks. (e-g) Scatter plots of gene expressed vs correlated phenotypic measure. 
In SKM-GN, VO2-max change is positively correlated with Me3 (e), Rora (f), and Lgi3 (g). (h) Comparison 
of TF enrichment among the active promoter peaks of body weight positively correlated DEGs vs TF 
enrichment among the total active promoter peak set in SKM-GN. * represents binomial test 
significance (p < 0.05) for difference in phenotype correlated DEG frequency and general frequency. (i) 
Overlap of target DEGs for most enriched TFs among body weight positively correlated DEG promoter 
peaks. (j-o) Scatter plots of gene expression vs correlated phenotypic measure. In SKM-GN, weight gain 
is positively correlated with Chd7 (j), and body fat change is positively correlated with Igf2 (k), and 
negatively correlated with Sall2 (l). In lung, body fat change is negatively correlated with Oas2 (m), and 
positively correlated with Nfkb2 (n), and in liver, body fat change is positively correlated with Fkbp4 (o). 
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Figure 8: Transcription factors regulate exercise training-induced gene expression via multiple methods. 
Following eight weeks of endurance training, multiomic analysis across eight tissues have noted gene 
regulation through direct proximal promoter DAR to DEG relationships, DAR to distant correlated DEG 
relationships, tissue-specific or gene-region-specific TF machinery, and through changes in TF expression 
within a specific tissue. Enriched TF gene targets are associated with metabolism, muscle regeneration, 
immune responses and circadian rhythm pathways. 
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