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Abstract

IMPORTANCE Worldwide, preterm birth (PTB) is the single largest cause of deaths in the perinatal

and neonatal period and is associatedwith increasedmorbidity in young children. The cause of PTB is

multifactorial, and the development of generalizable biological models may enable early detection

and guide therapeutic studies.

OBJECTIVE To investigate the ability of transcriptomics and proteomics profiling of plasma and

metabolomics analysis of urine to identify early biological measurements associated with PTB.

DESIGN, SETTING, ANDPARTICIPANTS This diagnostic/prognostic study analyzed plasma and

urine samples collected fromMay 2014 to June 2017 from pregnant women in 5 biorepository

cohorts in low- andmiddle-income countries (LMICs; ie, Matlab, Bangladesh; Lusaka, Zambia; Sylhet,

Bangladesh; Karachi, Pakistan; and Pemba, Tanzania). These cohorts were established to study

maternal and fetal outcomes and were supported by the Alliance for Maternal and Newborn Health

Improvement and the Global Alliance to Prevent Prematurity and Stillbirth biorepositories. Data were

analyzed fromDecember 2018 to July 2019.

EXPOSURES Blood and urine specimens that were collected early during pregnancy (median

sampling time of 13.6 weeks of gestation, according to ultrasonography) were processed, stored, and

shipped to the laboratories under uniform protocols. Plasma samples were assayed for targeted

measurement of proteins and untargeted cell-free ribonucleic acid profiling; urine samples were

assayed for metabolites.

MAINOUTCOMES ANDMEASURES The PTB phenotype was defined as the delivery of a live infant

before completing 37 weeks of gestation.

RESULTS Of the 81 pregnant women included in this study, 39 had PTBs (48.1%) and 42 had term

pregnancies (51.9%) (mean [SD] age of 24.8 [5.3] years). Univariate analysis demonstrated functional

biological differences across the 5 cohorts. A cohort-adjustedmachine learning algorithmwas

applied to each biological data set, and then a higher-level machine learning modeling combined the

results into a final integrative model. The integrated model was more accurate, with an area under
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Abstract (continued)

the receiver operating characteristic curve (AUROC) of 0.83 (95% CI, 0.72-0.91) compared with the

models derived for each independent biological modality (transcriptomics AUROC, 0.73 [95% CI,

0.61-0.83]; metabolomics AUROC, 0.59 [95% CI, 0.47-0.72]; and proteomics AUROC, 0.75 [95% CI,

0.64-0.85]). Primary features associated with PTB included an inflammatory module as well as a

metabolomic module measured in urine associated with the glutamine and glutamate metabolism

and valine, leucine, and isoleucine biosynthesis pathways.

CONCLUSIONS ANDRELEVANCE This study found that, in LMICs and high PTB settings, major

biological adaptations during term pregnancy follow a generalizable model and the predictive

accuracy for PTBwas augmented by combining various omics data sets, suggesting that PTB is a

condition that manifests within multiple biological systems. These data sets, with machine learning

partnerships, may be a key step in developing valuable predictive tests and intervention candidates

for preventing PTB.

JAMA Network Open. 2020;3(12):e2029655. doi:10.1001/jamanetworkopen.2020.29655

Introduction

Preterm birth (PTB) is defined by theWorld Health Organization as the delivery of a live infant before

the completion of 37 weeks of gestation.1,2 The worldwide rate of PTB in 2014 was estimated to be

10.6% (uncertainty interval, 9.0%-12.0%), with 80% of all cases occurring in South Asia and

sub-Saharan Africa.2Many risk factors for PTB have been highlighted in previous studies and include

obstetrical (eg, previous PTB and multiple gestation), medical (eg, maternal obesity, diabetes, and

chronodisruption), and external (eg, smoking and maternal stress) conditions.3-9 For example, a

meta-analysis of individual- and population-level attributes among 4.1 million births concluded that

“unknown factors requiring further research to act upon account for ~2/3 of the preterm birth

rate.”10(p13)Unveiling and elucidating the role of early biological antecedents of PTB has been

deemed a necessary step toward developing new diagnostic tests and therapeutic interventions.11-13

Biological investigations into themechanisms of PTB are complicated, as indicated by accumulating

evidence that distinct patient subpopulations follow divergent biological trajectories.14,15 Given this

heterogeneity, simultaneously studying diverse cohorts is critical for identification of generalizable

biological pathways.16

Recent technological advances have enabled the characterization of a broad range of biological

changes during pregnancy. Biological layers explored include single-cell profiling of signaling

pathways,17measurements of plasma cell-free ribonucleic acid (cfRNA),18 proteome19,20 and

metabolome21 characterization of themicrobiome,14,22 and detailed genomics analysis.23 In addition,

a recent multiomics investigation demonstrated that biological changes during normal pregnancy

involve a number of intricate interactions of biological processes, which can bemeasured using a

coordinated set of assays.24 The integration of the large, multidimensional data sets generated in a

multiomics setting requires complex machine learning pipelines that will remain robust in the face of

the inconsistent intrinsic properties of these high-throughput assays and cohort-specific variations.15

To our knowledge, this is the first multiomics analysis of term and preterm pregnancies from

multiple cohorts in low- andmiddle-income countries (LMICs). These cohorts were established using

biorepositories of samples and phenotypic data for studyingmaternal and fetal outcomes collected

and stored from diverse populations of South Asia and sub-Saharan Africa. The study aimed to

investigate the ability of transcriptomics and proteomics profiling of blood plasma andmetabolomics

analysis of urine to identify early biological measurements associated with PTB.
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Methods

Approval was obtained from the Stanford University Institutional Review Board, and ethical

exemptions were sought and obtained independently from the respective country by each birth

cohort supported by the Alliance for Maternal and Newborn Health Improvement (AMANHI) and the

Global Alliance to Prevent Prematurity and Stillbirth (GAPPS) biorepositories. Written informed

patient consent was obtained from each participant in the original cohorts and extends to the

present study. We followed the Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) reporting guideline. This study analyzed plasma and urine

samples collected fromMay 2014 to June 2017, and data were analyzed fromDecember 2018 to

July 2019.

Participants and StudyDesign

The study population comprised pregnant women selected from 5 biorepository-supported cohorts

inMatlab, Bangladesh; Lusaka, Zambia; Sylhet, Bangladesh; Karachi, Pakistan; and Pemba, Tanzania.

No compensation or incentives were provided for participating in this study.

Plasma samples were assayed tomeasure targeted proteins and cfRNA, and urine samples were

analyzed for metabolites. The cfRNA analysis resulted in 20659measurements, the targeted

proteomics assaymeasured 1002 proteins in plasma, and 6630metabolites weremeasured in urine.

The number of measurements of these assays did not correlate with their modularity, as indicated

by the number of principal components needed to account for 90% of the total variance (Figure 1A).

This result highlighted the need for a 2-layer metadimensional integrative approach to prevent the

assays with more measurements to bias the predictive models (eMethods in the Supplement). An

overview of the entire data set was produced by first calculating a correlation network of all available

measurements and then producing a 2-dimensional layout for visualization using the t-SNE25

algorithm (Figure 1B).

Biological Assays

From all AMANHI and GAPPS cohorts, trained phlebotomists collected blood samples for

centrifugation and aliquoting of serum, plasma, and buffy coat for storage and future analyses. In

addition, maternal urine was collected in parallel. Collection and processing of all sample types were

performed according to harmonized operating procedures at all study cohorts. The eMethods in the

Supplement provides details on the biological assays.

Statistical Analysis

Data were analyzed fromDecember 2018 to July 2019. All analyses were performedwith R, version

3.6.1 (R Foundation for Statistical Computing). All multivariatemodelingwas performedwith a 2-layer

cross-validation strategy to prevent overfitting of the data and to ensure generalizability. Mixed-

effectmodels were used to account for cohort-specific variations (eMethods in the Supplement). The

analysis is independently reproducible. Themeasured features from all 3 omics data sets

(transcriptomics, metabolomics, and proteomics); the algorithms and source codes for reproduction

of the results; and an interactive website for visualizing the entire data set, the feature evaluation

scores for PTB and gestational age (GA) at sampling, and the pathway enrichment analysis are

available online (https://nalab.stanford.edu/multiomicsmulticohortpreterm/).

We used linear discriminant analysis and principal component analysis (PCA), respectively, to

create a 2-dimensional representation of the entire cohort with cohort labels as the supervised guide

andwithout supervised information. To confirm the presence of cohort-specific signatures, we used

random forest analysis. We created models for each patient to estimate GA at the time of sample

collection. To simultaneously optimize the integrative model and test the performance of themodel

on previously unseen patients, we applied a cross-validation strategy. To predict PTB (GA at delivery
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<37 weeks), we used a leave-one-out cross-validation procedure to test themodels on blinded

participants.

Results

Of the 81 pregnant women included in this study, 39 had PTBs (48.1%) and 42 had term pregnancies

(51.9%). Themean (SD)maternal agewas 24.8 (5.3) years. Themedian sampling timewas 13.6weeks

of gestation, according to ultrasonography (Figure 1A).

DataQuality Assessment

To investigate cohort-specific data signatures, PCAwas used to create a 2-dimensional

representation of the entire cohort for each biological modality and all modalities combined

(eFigure 1A in the Supplement). The PCA demonstrated that the largest source of variation in the data

was not driven by fundamental differences between the cohorts. Supervised linear discriminant

analysis26 confirmed the existence of more subtle cohort-specific signatures that were not

statistically significant enough to be visualized in an unsupervised PCA (eFigure 1B in the

Supplement). The presence of cohort-specific signatures was confirmed using random forest

Figure 1. Study Overview
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analysis27 that underwent cross-validation to predict the cohort fromwhich the patient was selected

exclusively on the basis of each biological modality (eFigure 1C in the Supplement).

The impact of sample storage time was quantified with random forest analysis that underwent

cross-validation in which the number of days between sample collection and laboratory analyses was

used as a continuous prediction target. The results were statistically significant (thresholds of P =

1.25762 × 10−01 for transcriptomics, P = 8.83433 × 10−06 for metabolomics, and P = 5.56758 × 10−02

for proteomics) only in the case of the urine metabolomics data set, indicating the potential for

sample degradation over time (eFigure 1D in the Supplement). However, this result did not confound

the design of this study as GA at delivery did not correlate with storage time (r = –0.092; P > .41).

PredictiveModeling of Chronicity of Pregnancy

We built models to estimate GA at the time of sample collection (as a surrogate for the chronicity of

pregnancy) for each patient. A cross-validation strategy was used to simultaneously optimize the

integrativemodel and test the performance of themodel on previously unseen patients. Models built

on all 3 modalities (transcriptomics, metabolomics, and proteomics) as well as the integratedmodel

were statistically significantly correlated with GA at the time of sample collection (transcriptomics:

1.736089 × 10−03; metabolomics: 8.936983 × 10−23; proteomics: 2.227379 × 10−19; and integrated

model: 8.990768 × 10−22; Bonferroni-adjusted Spearman correlation P < .05) (Figure 2A and B). The

features that most correlated with the progression of pregnancy (Spearman correlation P < .05) are

color-coded in Figure 2C. A cluster of highly correlated metabolomics and proteomics features was

identified that included the trophoblast-derived placental growth factor (PGF). Previous studies have

demonstrated that PGF plays a substantial role in the pathogenesis of preeclampsia but has not been

associated with spontaneous PTB.28,29 Pathway analysis30 of themetabolites in this module

indicated the enrichment of the steroid hormone biosynthesis pathway (Fisher test for pathway

enrichment analysis P < 1.2 × 10−12). The purine metabolism pathway was enriched in an additional

module of metabolites (Fisher test for pathway enrichment analysis P < 1.7 × 10−5). Other proteins

that were included in themodel and close to this cluster were PAPP-A (pregnancy-associated plasma

protein A), MMP-7 (matrix metallopeptidase 7), FGF and FGFBP1 (fibroblast growth factors), and

SIGLEC6 (sialic acid binding Ig-like lectin 6), all of which play important roles in placental

development.31-34 An additional cluster of proteins associated with cell migration and localization

was identified by gene ontology analysis (Protein Analysis Through Evolutionary Relationships

overrepresentation P < 10 × 10−7).

To further highlight the interplay between plasma proteins and urine metabolites, we

developed a random forest model to estimate the PGF levels of each patient using only the urine

metabolomics data set (eFigure 2 in the Supplement). Overall, this analysis highlighted the potential

for biological profiling for estimating GA during pregnancy (a substantial challenge in LMICs) and the

use of urine-based metabolite biomarkers as low-cost surrogates for models developed through

multiomics analysis.

PredictiveModeling of PTB

For prediction of PTB (GA at delivery <37weeks), we used a leave-one-out cross-validation procedure

to test the models on blinded participants. Before training the model using the entire data set, the

feature space was limited to the top features in the cohort that corresponded to the blinded sample

based on univariate testing. Overall, the models relied on a subset of all available features. The

median number of features used by themodels during cross-validation was 36 for transcriptomics,

35 for metabolomics, and 9 for proteomics. To combine predictions from eachmodel, we developed

an additional integration layer to produce the final weighted probabilities for statistical testing. The

integratedmodel wasmore accurate than themodel for each independentmodality (Figure 3A). The

mean area under the receiver operating characteristic curve (AUROC) and 95% CI for eachmodality

were as follows: transcriptomics (AUROC, 0.73; 95% CI, 0.61-0.83), metabolomics (AUROC, 0.59;

95% CI, 0.47-0.72), proteomics (AUROC, 0.75; 95% CI, 0.64-0.85), and integrated (AUROC, 0.83;
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95% CI, 0.72-0.91) (Figure 3A). eFigure 3 in the Supplement provides a comparison against other

machine learning strategies applied to the same data set (support vector regression AUROC, 0.57;

random forest AUROC, 0.66; lasso AUROC, 0.68; Gaussian process AUROC, 0.71; supervised learning

cohort-adjustedmodel AUROC, 0.83; merging AUROC, 0.71; stacked generalization AUROC, 0.76;

data integration cohort-adjustedmodel AUROC, 0.83). In an independent analysis, this same pipeline

was used tomodel participants whowere randomly assigned to case and control groups, confirming

that the findings presented in Figure 3 did not result frommodel overfitting (transcriptomics AUROC,

0.54; metabolomics AUROC, 0.50; proteomics AUROC, 0.50; integrated AUROC, 0.50) (eFigure 4

in the Supplement).

Field workers were trained to collect detailed phenotypic and demographic data from the

women and their families through scheduled household visits during pregnancy and postpartum.

Clinical covariates were manually harmonized across all 5 cohorts. Of all the variables collected, only

the weight of the baby and GA at delivery were statistically significantly correlated with the final

outcome of themodel predicting PTB (Spearman correlation = 0.73). (eFigure 5 and eTable in the

Supplement). This finding confirmed that themodel was not confounded by the other measured

clinical covariates.

Figure 2. Prediction of Gestational Age (GA) at the Time of Sample Collection
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Given the statistically significant differences observed across various cohorts, we usedmixed-

effect models (with each cohort encoded as a random effect) to compare the distribution of each

measurement between term pregnancies and PTBs (Figure 3B). Top features were contained within

2 correlatedmodules: (1) an inflammatorymodule, which included interleukin 6 (IL-6), IL-1 receptor

antagonist (IL-1RA, a regulatory member of the IL-1 family whose expression is induced IL-1β under

inflammatory conditions35,36), granulocyte colony-stimulating factor (G-CSF), retinoic acid receptor

responder 2 (RARRES2), and chemokine ligand 3 (CCL3), and (2) a metabolomic module, which

primarily consisted of urine metabolites enriched for glutamine and glutamate metabolism (Fisher

test for pathway enrichment analysis P < 4.4 × 10−9)30 and valine, leucine, and isoleucine

biosynthesis pathways (P < 7.3 × 10−6).37

The presence of inflammatory mediators among the features correlated with PTB is consistent

with finding in previous studies that suggested dysfunctional immune adaptations during pregnancy

was central to the pathogenesis of PTB.38,39However, the predictivemodel also highlighted a set of

proteomic features with no known inflammatory properties that were correlated with features from

the inflammatory module. These proteins included protein-arginine deiminase type II (PADI2), a

peptidylarginine deiminase that is responsible for protein citrullination and implicated in parturition

and sensing infections40,41; transferrin receptor (TfR), which is implicated in iron transport;

angiopoietin-like 4 (ANGPTL4), which regulates glucose homeostasis and lipid metabolism42; and

RARRES2, an adipokine that is increased in metabolic syndrome and gestational diabetes.43,44

To ascertain whether observed correlations between these proteins and the inflammatory

module reflected biologically relevant inflammatory properties, we examined the capacity of each of

these factors to stimulate human peripheral blood leukocytes using an ex vivomass cytometry

Figure 3. PredictiveModeling of Preterm Birth (PTB)

ROC analysis for prediction of preterm birthA Site-adjusted mixed-effect analysisB
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A, This receiver operating characteristic (ROC) curve analysis used each biological

modality and the integrated approach. Themean area under the ROC curve and 95% CI

for each modality were as follows: transcriptomics (AUROC, 0.73; 95% CI, 0.61-0.83),

metabolomics (AUROC, 0.59; 95% CI, 0.47-0.72), proteomics (AUROC, 0.75; 95% CI,

0.64-0.85), and integrated (AUROC, 0.83; 95% CI, 0.72-0.91). B, Circle size is

proportional to −log10 (Wilcoxon) P value for discrimination between term pregnancies

and PTBs. Top features included an inflammatory module (which included interleukin 6

[IL-6]; IL-1 receptor antagonist [IL-1RA], a regulatory member of the IL-1 family whose

expression is induced IL-1β under inflammatory conditions; granulocyte colony-

stimulating factor [G-CSF]; retinoic acid receptor responder protein 2 [RARRES2];

chemokine ligand 3 [CCL3]; angiopoietin-like 4 [ANGPTL4]; protein-arginine deiminase

type II [PADI2]; and transferrin receptor [TfR]) and a metabolomic module (which was

enriched for glutamine and glutamate metabolism [Fisher test for pathway enrichment

analysis P < 4.4 × 10−9] and valine, leucine, and isoleucine biosynthesis pathways [P < 7.3

× 10−6]).
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assay.45 The activity of major intracellular signaling responses previously17 implicated in maternal

immune adaptations during pregnancy was assessed at baseline and after a 15-minute stimulation in

major innate and adaptive immune cell types (eMethods in the Supplement). As expected, robust

and cell-specific signaling responses along the JAK/STAT andMyD88 signaling pathways were

observed in classical monocytes (CMC) after stimulation with known proinflammatory cytokines,

including IL-6 (mean [SD] pSTAT3 ArcSinh ratio over endogenous signal, 2.64 [0.22]; false discovery

rate [FDR]–adjusted vs unstimulated P < 1.0 × 10−6), G-CSF (mean [SD] pSTAT5 ArcSinh ratio over

endogenous signal, 0.42 [0.12]; P = .007), and CCL3 (mean [SD] pCREB ArcSinh ratio over

endogenous signal, 0.35 [0.09]; P < 1.0 × 10−6) (eFigures 6 and 7 and the eMethods in the

Supplement). Stimulation with PADI2 activated the key elements of the MyD88 pathway, including

P38 (mean [SD] ArcSinh ratio over endogenous signal, 0.91 [0.52]; FDR-adjusted vs unstimulated P =

.007), MK2 (mean [SD] ArcSinh ratio over endogenous signal, 0.38 [0.10]; P = .002), and NFkB

(mean [SD] ArcSinh ratio over endogenous signal, 0.14 [0.03]; P = .009), in monocytes, although

little or no signaling responses were observed after stimulation with ANGPTL4, TfR, or RARRES2.

We also tested whether stimulation with themost informative proteomic features of the

predictive model of PTB would alter the effector function of circulating immune cells. To this end, we

quantified the intracellular expression of select cytokines in circulating immune cells that were

stimulated with the target proteins for 4 hours. In addition to the expected cytokine responses after

exposure to CCL3, IL-6, and G-CSF, the results show that PADI2 and ANGPTL4 stimulated

proinflammatory cytokine production in CMC (mean [SD] frequency of PADI2-stimulated IL-1β +

CMC: 18.66 [1.93], FDR-adjusted vs unstimulated P < 1.0 × 10−6; mean [SD] frequency of PADI2-

stimulated IL-6 + CMC: 8.01 [1.47], P = 1.0 × 10−6; mean [SD] frequency of PADI2-stimulated TNF +

CMC: 7.43 [1.44], P = 1.0 × 10−6) (eFigure 8 and eMethods in the Supplement).

In contrast, stimulation with RARRES2 or TfR elicited little intracellular cytokine responses

(mean [SD] frequency of RARRES2-stimulated IL-1β + CMC: 5.63 [0.25], FDR-adjusted vs

unstimulated P < 1.0 × 10−6; mean [SD] frequency of TfR-stimulated IL-1β + CMC: 2.25 [0.66], P = .16).

These results provide evidence of the potential communication between different biological systems

and add new elements to the complex pathogenesis of preterm birth. Furthermore, the results

suggest that PADI2, in conjunction with other inflammatory cytokines (such as IL-1β), may

exacerbate proinflammatory innate immune responses during PTBs, thereby playing a role in the

early onset of labor.

Discussion

To our knowledge, this study is the first multicohort andmultiomics analyses of term and preterm

birth conducted in LMICs through use of biorepository samples from relevant geographies in a

harmonized fashion. The plasma and urine samples were collected, processed, stored, and shipped

to the laboratories under uniform protocols. In this proof-of-concept study, a machine learning

approach was implemented for quality control, analysis of the timing of pregnancy, and prediction of

PTB. Cohort-specific signatures were observed in all cohorts, and data quality was consistent across

all modalities.

The prediction of GA at the time of sample collection was driven by an internally correlated

module of placenta-related plasma proteins and urine metabolites. Correlations within this module

provided an excellent example of leveragingmultiomics data for identification of low-cost surrogates

in an accessible biological sample (in this case, urine) for an otherwise complex plasma-based

measurement with direct applications in LMICs. Accurate prediction of GA through laboratory testing

of blood or urine, if validated in larger andmore diverse cohorts, has the potential for widespread

implementation in settings in which ultrasonography-based GA dating is not available or is

impractical.

Prediction of PTB using a multiomics model adjusted for each cohort resulted in an AUROC of

0.83. The sparse nature of the developedmethods indicated the possibility of developing simplified
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models in a validation cohort for scalable analysis of larger cohorts. Mixed-effect modeling revealed

several features of interest. The top-ranked features, including IL-1RA, pointed to promising anti-

inflammatory therapy candidates that were under active development.46 Although the prediction of

GA at the time of sample collection was consistent across all 5 cohorts, models for prediction of PTB

required cohort-specific adjustments. This finding is consistent with that in previous publications

that indicated that, although the normal chronicity of pregnancymay be shared across populations,

pathological pregnancies are likely to be population-specific.47,48

Eachmultiomics data set differed not only across the subcohorts but also in terms of their size

and internal complexities. Therefore, we used a 2-step machine learning strategy in which a model

was first built on each omics data set and then combined for final predictions. This approach

prevented large untargeted data sets from overwhelming small yet carefully targeted assays that

could have a similar or evenmore discriminatory information content. This approach resulted in an

increase in predictive power and improved interpretability of the results.

In the present study, the predictive accuracy for PTBwas augmented by combining various

omics data sets, which was consistent with previous studies suggesting that PTBwas a condition

manifesting within multiple biological systems.18,49-52Observed differences between cohorts also

highlighted that the causes of PTBmay be associatedwith varying environmental and socioeconomic

factors.53 From a biological standpoint, examination of individual components of themultiomics

model emphasized the role of inflammation in the pathobiological features of PTB. As such,

inflammatory cytokines previously shown to be elevated in PTBs, including IL-6 and IL-1RA (often

considered as a surrogate marker of IL-1β expression54) were among themost informative features

of the multiomics model.55 These cytokines were integrated within a broader inflammatory module

that revealed novel factors associated with preterm labor with previously unsuspected properties

(eg, PADI2). In neutrophils, citrullination of histones by PADI2 is an important step in the formation of

neutrophil extracellular traps, a defensive immunity tool that allows neutrophils to trap and kill

bacteria.56-60 Increased soluble PADI2 observed in PTBsmay potentially reflect heightened

inflammatory responses to a bacterial pathogen, consistent with an infectious cause for PTB. We

show that soluble PADI2 can also directly activate proinflammatory signaling pathways and cytokine

production in classical monocytes, highlighting a synergistic mechanism that may further enhance

the inflammatory state of PTB.

Strengths and Limitations

This study had several strengths. First, the AMANHI and GAPPS biorepositories used accurate early

trimester ultrasonography scans for GA dating. Second, urine and plasma specimens were collected,

processed, and transported in a harmonizedmanner. All samples underwent a single freeze-thaw

cycle only at Stanford University before final processing and analysis. Third, the machine learning

strategy used was able to detect patterns that were generalizable across cohorts.

This study also had several limitations. First, it used a small sample size compared with the

number of measurements (which we accounted for through a rigorous 2-step cross-validation

process). Therefore, reproduction of these results in larger andmore diverse cohorts remains amajor

priority for our future efforts. For reproduction of these results to be successful, the validation of a

reduced model with increased scalability will be a key step. Second, given the exploratory nature of

this study, the cohort was clinically homogeneous (eTable and eFigure 2 in the Supplement), which

limits the generalizability of the results to real-world heterogeneous populations. Therefore, a future

area of investigation is the direct integration of clinical covariates into the predictive models61 to

increase the generalizability in data sets with diverse phenotypes.

Conclusions

This diagnostic/prognostic study found that, in LMICs and high PTB settings, major biological

adaptations during pregnancymay follow a generalizable model, but the biological signals that
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correlate with or are potentially associated with PTB can be detected using robust machine learning

algorithms. In addition, this study demonstrated that a multiomics approach has the potential to

both improve and help identify low-cost predictive surrogates in accessible biological samples for

LMICs. Research to expand this analysis to a larger patient population and to broader cohorts and

omics platforms are already under way. The data sets, together with state-of-the-art machine

learning partnerships,62will be a key step in developing valuable predictive tests and intervention

candidates to tackle the long-term clinical challenge of preventing PTB.
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