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ABSTRACT 

Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear and 

that poses a threat to both mothers and infants. Specific complex changes in women's 

physiology precede a diagnosis of preeclampsia. Understanding multiple aspects of such a 

complex changes at different levels of biology, can be enabled by simultaneous application of 

multiple assays. We developed prediction models for preeclampsia risk by analyzing six omics 

datasets from a longitudinal cohort of pregnant women. A machine learning-based multiomics 

model had high accuracy (area under the receiver operating characteristics curve (AUC) of 0.94, 

95% confidence intervals (CI): [0.90, 0.99]). A prediction model using only ten urine metabolites 

provided an accuracy of the whole metabolomic dataset and was validated using an 

independent cohort of 16 women (AUC=0.87, 95% CI: [0.76, 0.99]). Integration with clinical 

variables further improved prediction accuracy of the urine metabolome model (AUC=0.90, 

95% CI: [0.80, 0.99], urine metabolome, validated). We identified several biological pathways to 

be associated with preeclampsia.  The findings derived from models were integrated with 

immune system cytometry data, confirming known physiological alterations associated with 

preeclampsia and suggesting novel associations between the immune and proteomic dynamics. 

While further validation in larger populations is necessary, these encouraging results will serve 

as a basis for a simple, early diagnostic test for preeclampsia. 
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INTRODUCTION 

The World Health Organization estimates that more than 800 women worldwide die from 

pregnancy-related causes every day, with the highest rates of maternal mortality and morbidity 

in low-income countries1. One of the main causes is the hypertensive disorder of pregnancy – 

preeclampsia - for which the only treatment is to deliver, often too early. Preeclampsia affects 

3–5% of pregnancies in the United States and up to 8% of all pregnancies globally1, and 

accounts for 10–15% of maternal deaths2 and 15–20% of preterm births3.  

 

The pathophysiology of preeclampsia is complex and is thought to be caused in part by 

abnormal placentation as well as a women’s predisposition through genetic and immunological 

factors4. It is believed that the abnormal placentation leads to a maternal inflammatory 

response4. Placental ischemia, oxidative stress and the presence of a maternal angiogenic 

imbalance are all characteristics of preeclampsia5,6, leading to endothelial and end-organ 

damage, and in some cases to stroke and even death.  

 

Specific biological processes involved in the development of preeclampsia have remained 

understudied. Early prediction of preeclampsia has remained a clinical challenge, owing to 

incompletely understood causes, various risk factors and likely multiple pathogenic phenotypes 

of preeclampsia7,8. The recent availability of high-throughput omics (including the genome, 

transcriptome, proteome and metabolome) assays, where each can be performed on small 

sample volumes, has enabled joint analyses of the high-dimensional multidomain or multiomics 

data measured from the same biological sample4,9,10. The integrated analysis may capture 

complex dynamics involved in the pathogenesis of preeclampsia that could ultimately lead to 
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novel therapeutic interventions. Furthermore, applying machine learning methods capable of 

extracting the most predictive features from high-dimensional multiomics data, could lead to 

more accurate predictive models and better early detection of women at risk to develop 

preeclampsia. 

 

In this unique study, we performed a multiomics analysis of the transcriptome, proteome, 

metabolome, lipidome, and microbiome from a coordinated set of biospecimen collected 

longitudinally from pregnant women; we then integrated immune system mass spectrometry 

features that were available for a subset of the patients; and we combined the multiomics data 

with the available clinical/demographics data and performed joint analysis. Our goals were to: 

1) build an integrated multiomics predictive model of preeclampsia; 2) compare prediction 

capabilities of different omics sets; 3) develop a simple and interpretable predictive model 

based on a small number of biomarkers that can be used for a diagnostic test; 4) identify a 

specific signature of preeclampsia; and 5) gain insights into pathways involved in the 

pathogenesis of preeclampsia.  

 

RESULTS 

Multiomics Characterization of Normal and Preeclamptic Pregnancy Over Gestation 

Thirty-three and sixteen women were included in the discovery and validation cohorts, 

respectively (Fig. 1A). Maternal characteristics, demographics, and gestational ages at delivery 

are shown in Table S1. In the discovery cohort, 17 women developed preeclampsia and 16 had 

a pregnancy unaffected with preeclampsia. Among the preeclampsia patients, severe vs. mild 

preeclampsia was observed in 10 and 7 women, respectively; early- vs. late-onset preeclampsia 
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was observed in 5 and 12 women, respectively (Table S2). An additional cohort of 16 women, 

out of which 12 had preeclampsia, was used to validate the metabolomics results. Blood 

samples were collected longitudinally at two or three time points during pregnancy (early, mid, 

and late – see Fig. 1). Plasma, urine, and vaginal swabs from each woman were used for 

measurements of cfRNA (plasma transcriptome), proteome (plasma), metabolome (plasma and 

urine), lipidome (plasma), and microbiome (vaginal swab). The number of measurements 

differed markedly among omics datasets, with transcriptome containing the highest number of 

measurements (Fig. S1A). In contrast, the number of principal components explaining 90% of 

variance, that quantifies the internal correlation of a dataset, exhibited smaller difference 

among datasets (Fig. S1B).  Thus, although the amount of data varied several orders of 

magnitude among the dataset, their variability and thus the amount of information content was 

much more similar. 
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Figure 1. Overview of the study. A. Two independent cohorts were analyzed using 6 different 

assays. B. Sample collection timeline for plasma in discovery and validation cohorts. Circles 

indicate pre-delivery sample collection times and inverted triangles indicate delivery dates for 

individual women (one per horizontal line). 

 

Machine Learning Modeling of Preeclampsia Over Gestation 

Multivariate models of preeclampsia were built for each dataset using the Elastic Net (EN) 

algorithm (see Methods). Predictions from separate models were then integrated in a final 

model using stacked regression. The performance of all models was evaluated using the leave-
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one-out cross-validation method). The integrated model exhibited high prediction accuracy 

(AUC=0.94, 95% confidence intervals (CI): [0.90, 0.99]) and outperformed predictions from each 

separate model in terms of the point estimate (Fig. 2). EN models generated from the proteome 

and urine metabolome exhibited high performance (AUC=0.89, 95% CI: [0.83, 0.96]; AUC = 0.87, 

95% CI: [0.80, 0.94], respectively).  

 

 

 

Figure 2. Single- and Multi-omics machine models for preeclampsia. Performance comparison 

of machine learning models shown on x-axis in terms of the area under the receiver operator 

curve (AUC) shown on y-axis. The integrated (stacked) model utilizing stacked regression 

exhibited the highest accuracy (AUC=0.94, 95% CI [0.9, 0.94]). Both proteome and metabolome 

(urine) had high prediction performance (AUC=0.89, 95% CI [0.83, 0.96] proteome; AUC = 0.87, 

95% CI [0.80, 0.94] urine metabolome).   
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In order to test the applicability of these models to resource-limited settings, machine learning 

models were developed that use a small set of the most informative features from the plasma 

proteomic and urine metabolomic datasets – the two sets that had the best prediction accuracy 

– as follows. For each data set, in each cross-validation step, we used a subset of features 

selected by EN to refit a regression model. The performance of refitted models as a function of 

the number of features is shown in Fig. 3A. The best prediction model was obtained with 30 

urine metabolites. A model using only ten metabolites provided the accuracy of the whole urine 

metabolomic dataset (AUC=0.88, 95% CI: [0.81, 0.95]) (Figs. 3A and 3B). Top urine metabolites 

included adenine, isovalerylglutamic acid, uric acid ribonucleoside, N-Acetyl-O-

acetylneuraminic acid, 1,5-anhydroglucitol, dehydroepiandrosterone, sialyllactose, N-epsilon-

acetyl-L-lysine, imidazolelactic acid, and nonanoylcarnitine. The levels of predictive metabolites 

differed greatly between control and preeclamptic women (Fig. 3C) and these differences were 

usually present during each trimester. As expected, EN models varied slightly due to variability 

of the chosen training set in each leave-one out cross-validation step11 and therefore, the ten 

metabolites chosen by EN varied slightly across cross-validations. We recorded frequency of 

occurrence for every feature across all cross-validation steps (Fig. S2). Having high frequency of 

occurrence indicates that the feature is relevant for all or a majority of patients, that is, it is 

more stable11. The model using ten urine metabolites was validated in an independent cohort, 

with an AUC of 0.87 (95% CI: [0.76, 0.99]) (Fig.4).  

 

A model using the ten top-scoring plasma proteins achieved an AUC of 0.83 (95% CI: (0.73, 

0.92]) (Figs 3A and 3B.) The most predictive plasma proteins selected by EN included leptin 

(LEP), vascular endothelial growth factor A (VEGFA), L-selectin (SELL), E-selectin (SELE), 
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interleukin-24 (IL-24), interleukin-22 (IL-22), and tyrosine-protein kinase transmembrane 

receptor (ROR1) (Fig. 3D).  

 

Figure 3. Refitted model for prediction of preeclampsia in resource-limited settings: urine 

metabolomic and plasma proteomic data sets. A. Cross-validated performance of the refitted 

models as a function of the number of features (support) for urine metabolome (blue) and 

proteome (orange). The best performance is observed for a model with 30 features. A model 

using ten metabolites provided the accuracy of the whole urine metabolomic dataset 

(AUC=0.88, 95% CI: [0.81, 0.95]).  B. Performance of cross-validated prediction model using ten 

metabolites (blue) or ten proteins (orange).  For the urine metabolome, prediction from ten 

features had the same performance as the prediction from the full metabolomics set (AUC = 
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0.88, 95% CI [0.81, 0.95]). Prediction from ten proteins yielded performance of AUC = 0.83, 95% 

CI: [0.73, 0.92]. C. Most informative metabolites. Y-axis shows a metabolite value stratified by 

normal pregnancy (grey) and preeclamptic pregnancy (blue).  D. Most informative proteins. Y-

axis shows a protein value stratified by normal pregnancy (grey) and preeclamptic pregnancy 

(blue).  

 

 

Figure 4. Validated model from urine metabolome using ten metabolites from the validation 

cohort. A. Area under the receiver operating curve, AUC = 0.874, 95% CI of [0.76, 0.99]. B. 

Prediction values (scores) for controls and preeclampsia (PE) groups. 
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clusters in the correlation network for the two groups of patients, potentially reflecting 

differential mechanisms in preeclampsia. 

 

 

Figure 5. Visualization of predictive features of transcriptome (yellow), proteome (orange), 

urine metabolome (dark blue), and plasma metabolome (light blue). Size of each node is 

proportional to the frequency at which it was chosen in prediction models during cross-

validation. High frequency of occurrence indicates that a feature is relevant for all or a majority 

of patients resulting in a more stable model.  A. Controls. B. Preeclampsia patients.  We observe 

different clusters for the two groups of patients. 
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Prediction of Preeclampsia in Early Pregnancy 

From a clinical perspective, early prediction of preeclampsia (i.e., within the first 16 weeks of 

gestation) is of critical importance as it would allow for early treatment of high-risk women 

(e.g., with low-dose aspirin12). It would also enable closer monitoring of high-risk pregnancies 

and allow for the enrichment of preemptive interventional studies in women at risk for 

developing preeclampsia. 13. Finally, the development of a simple and affordable diagnostic test 

would facilitate more ubiquitous testing in both high-income and low- and middle-income 

countries. For these reasons, an EN model using only biological data from samples collected 

only during first 16 weeks of pregnancy was derived. Plasma proteome and urine metabolome 

datasets generated predictive models with the highest performances (AUC=0.88, 95% CI: [0.75, 

1]; AUC=0.83, 95% CI: [0.69, 0.98], respectively, Fig. S4A) similarly to what we observed when 

using all samples collected during pregnancy. The refitted model with 10 features for the 

plasma proteome and urine metabolome provided high accuracy (AUC=0.88, 95% CI: [0.75, 1]; 

AUC=0.87, 95% CI: [0.74, 1], respectively, Fig. 6A). The most predictive metabolites and proteins 

also had high frequency of occurrence in the leave-one-out validation (Fig. S3). The heatmap of 

rank values of features selected by EN in the refitted models from all omics sets shows that 

these features distinguish women with preeclampsia from controls with no misclassification 

error (Fig. 6B). The plasma levels of the top-ranking proteins (Fig. 6C), urine metabolites (Fig. 

S4B) and genes (Fig. S4C) selected by EN, measured early in pregnancy, markedly differed 

between controls and preeclamptic women. Fig. 7 summarizes the most predictive plasma 

protein and urine metabolites both in early pregnancy and during entire pregnancy. Plasma 

proteins that were predictive in both models included LEP, SELL, CCL23, HIPK3, APCS, GPNMB, 

and IL-24, while some were mostly predictive in early pregnancy (FGF19, TIMP2), and others 
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over entire gestation (VEGFA, SELE, SPARCL1, APOB, ROR1, and IL-22) (Fig. 7A). Urine 

metabolites that were predictive over entire gestation mostly differed from urine metabolites 

predictive in early pregnancy (Fig 7B) with the exception of adenine and nonadienoylcarnitine. 

 

 

Figure 6. Prediction models in early pregnancy.  A. Performance comparison of EN models 

derived from different omics data sets using the top-ranked ten features, in terms of the AUC.  

The plasma proteomic and the urine metabolomic models performed best (AUC=0.88, 95% CI of 

[0.75, 1] for proteome; AUC=0.87, 95% CI of [0.74, 1] for  urine metabolome). B.  Heatmap of 

ranked values of features identified by EN, perfectly distinguishing preeclamptic women from 
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controls. C. Top eight proteins. Y-axis shows the value in early pregnancy stratified by normal 

(grey) versus preeclamptic pregnancy (light-blue). 

 

Figure 7. Biomarker comparison: entire pregnancy vs. early pregnancy. X-axis and Y-axis show the 

respective frequency of each biomarker in early pregnancy and over gestation. A. Most predictive 

proteins. B. Most predictive urine metabolites. Blue circles around dots imply the same position for 

more than one protein/urine metabolite. 
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were integrated with our plasma proteome and urine metabolome prediction models, as these 

two models had the best accuracy. Immune cell dynamics between 1st and 2nd trimester blood 

samples obtained from high-dimensional mass cytometry were previously used to develop a 

prediction model of preeclampsia15. We found that seven of the immune features reported by 

Han et al. correlated highly with the prediction based on our integrated algorithm (Spearman 

correlation 𝑝 <  0.05) (Figure 8A, highlighted in orange), confirming the predictive value of 

both immune cell features as well as plasma proteins and urine metabolites. To investigate 

whether this correlation between predictive features was biologically meaningful, we focused 

on the correlations of feature behavior between the eight earlier reported predictive immune 

features (Fig. 8A) and the top twelve most informative plasma proteome features (Fig. 3E) 

across pregnancy (Fig. 8B). Leptin (LEP) and soluble L-Selectin (SELL) levels were particularly 

strongly correlated with the eight immune cell features (Fig. 8B). Interestingly, basal pSTAT5 

signaling in Th1 cells (CD4+Tbet+), the top immune feature to distinguish control from 

preeclamptic pregnancies (Han et al. 2019), correlated with LEP levels in both control and 

preeclamptic patients. Uniquely in preeclamptic cases, LEP levels were correlated with basal 

pSTAT1 signaling in intMCs  (Spearman correlation 𝑝 =  0.002) and basal STAT5 signaling in 

mDCs (Spearman correlation 𝑝 =  0.01). Moreover, SELL levels were uniquely correlated with 

immune features in preeclamptic pregnancies and not with controls, i.e. correlated with basal 

pNFkB and pSTAT1 signaling in cMCs, basal pSTAT5 signaling in Th1 cells and mDCS, and basal 

pMAPKAPK2 signaling in naive CD4 Tcells.  Preeclamptic pregnancies were not characterized by 

- in other words, had potentially lost - concerted proteome/immune behavior which was 

prominently observed in healthy pregnancies, i.e. correlations of leptin with basal pP38 
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signaling in Treg and TCRgd cells. These correlations exemplify the biological connection 

between responsiveness of immune cells and its plasma environment. 

 

Figure 8.  A. Visualization of immune features. Visualization indicates features most correlated with 

the prediction of the stacked model. Features shown in orange are the seven most predictive 

immunome features that also highly correlate with the multiomics predictive model. Size of each 

node is proportional to the -log10(p-value) of spearman correlation. B. Comparison of p-value of 

correlation for the top immune and top proteome features. Each node is a pair comprising an 

immune and a proteome feature.  

 

 

 

A
B
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Relationship Between Clinical Data and Omics Measurements  

Clinical and demographics data contains maternal characteristics known to be associated with 

the risk of preeclampsia, e.g., preexisting hypertension, race, BMI, height, gravida. We 

combined ten variables that were available in this data set (Table S1) with the most predictive 

sets: 1) plasma proteome and 2) urine metabolome models, to better understand their mutual 

relationship. The ten clinical variables were included together with the top ten omics features – 

all combined in the single cross-validation step. Inclusion of clinical and demographics data 

improved the performance both when combined with the plasma proteome and the urine 

metabolome (urine metabolome AUC=0.96, 95% CI: [0.92, 0.99] and; proteome AUC=0.91, 95% 

CI: [0.85, 0.97], respectively) (Fig. 9A). The most predictive clinical variables included maternal 

age, BMI, height, and preexisting hypertension. We observed several significant correlations 

(Spearman correlation 𝑝 <  0.05) between clinical variables and plasma proteins/urine 

metabolites that were present only among preeclamptic women. These included: leptin with 

maternal BMI/weight, in agreement with existing literature16; CCL23 with height; SELL with 

gravida (Fig. 9B); maternal age with adenine – previously observed17 – and maternal age with 

isovalerylglutamic acid (Fig. 9C). 
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Figure 9. Relationship between urine metabolome and proteome with clinical features over 

gestation. A. Prediction accuracy  of urine metabolome and plasma proteome. Dark blue (for 

urine metabolome) and orange (for proteome) bars show performance without clinical data 

(proteome: AUC = 0.83, 95% CI: [0.73, 0.92); urine metabolome: AUC = 0.88, 95% CI [0.81, 

0.95]). Grey bars show performance with clinical data (proteome AUC=0.91, 95% CI: [0.85, 

0.97];  urine metabolome AUC=0.96, 95% CI: [0.92, 0.99]). B. Comparison of p-value of 

correlations of the top proteome and clinical features. Value of − log10 𝑝 for preeclamptic 

patients and controls is shown on x-axis and y-axis, respectively. Each node is a pair of a 

proteome and a clinical feature. C. Comparison of p-value of correlations of the top urine 

metabolites and EHR features. Each node is a pair of a proteome/urine metabolome and a 

clinical feature. 
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Exploration of Preeclampsia Pathogenesis from Multiomics Measurements  

Over the Course of Pregnancy 

Changes over gestation of 1215 metabolic features among 8718 were significantly associated 

with preeclampsia outcome (FDR < 0.05 LME Model with Benjamini-Hochberg procedure). 

Pathways enrichment analysis using these urine metabolites identified the following      

pathways (p<0.05) (Fig. 10A): 1) tryptophan metabolism; 2) caffeine metabolism; 3) tyrosine 

metabolism; 4) steroid hormone biosynthesis; 5) pentose and glucuronate interconversions; 6) 

linoleic acid metabolism. The steroid hormone biosynthesis pathway plays an important role in 

pregnancy progression18. Both the steroid hormone biosynthesis pathway and the caffeine 

metabolism pathways have previously been associated to pregnancy19, and tryptophan 

metabolism with preeclampsia20. Metabolites in the steroid hormone biosynthesis pathway and 

in the caffeine metabolism pathway present in the data with high level of significance are 

respectively shown in Figs. S5C and S5D.  

 

Among 1305 proteins, 437 had changes that were significantly associated with preeclampsia 

outcome over gestation (FDR < 0.05 LME Model with Benjamini-Hochberg procedure). The top 

64 proteins at significance level  𝑝 < 5 ∙ 10−4 (LME Model) showing markedly different values 

between normal and preeclamptic women are depicted in Fig. S6. Top proteins included 

interleukin-1 receptor accessory protein (IL1RAP) and SELL – both known to play a role in the 

immune response21 (Fig. S5). Enriched pathways grouped into ten biological processes, the 

most prevalent being positive regulation of cellular process (including biological, cellular, 

protein metabolic, immune system, and apoptotic processes among others) (Fig. S7). In the 

cfRNA set, 306 features were significantly associated with preeclampsia outcome over gestation 



 21 

(FDR < 0.05 LME Model with Benjamini-Hochberg procedure) resulting in several enriched 

pathways (Fig. S8). Top features included YOD1, BIRC2, CEP63, and LCP1. Top proteome, 

transcriptome and urine and plasma metabolome features formed 17 distinct communities (Fig. 

S9). 

 

Early Pregnancy 

In early pregnancy, 497 out of 8718 urine metabolic features had changes significantly 

associated with preeclampsia when compared to controls (FDR<0.05, Wilcoxon signed-rank test 

with Benjamini-Hochberg procedure). Pathways enrichment analysis on these urine metabolites 

identified the following pathways (p < 0.05) (Fig. 10B): 1) tyrosine metabolism; 2) lysine 

degradation; 3) tryptophan metabolism; 4) phenylalanine metabolism; 5) steroid hormone 

biosynthesis; 6) arachidonic acid metabolism which is a central regulator of the inflammatory 

response and has a known role in the pathogenesis of preeclampsia22 ; 7) phenylalanine, 

tyrosine and tryptophan biosynthesis and; 8) aminoacyl-tRNA biosynthesis. Individual 

metabolite from these two pathways are shown in Figs. S5A and S5B. 

 

In the proteome set containing 1305 proteins, three proteins -- LEP, CCL23 and FAM3D -- were 

significantly associated with preeclampsia outcome (FDR<0.05, Wilcoxon signed-rank test with 

Benjamini-Hochberg procedure) identifying one significantly enriched pathway, negative 

regulation of glucagon secretion (Fisher’s exact test with Benjamini-Hochberg procedure, FDR< 

0.05).  
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Figure 10. Identified enriched pathways from urine metabolome urine over gestation and in early 

pregnancy. A. Pathways enrichment analysis over gestation using metabolites from urine that were 

significant (FDR<0.05, Wilcoxon signed-rank test with Benjamini-Hochberg procedure). Pathways 

shown above the dotted line were significant (p < 0.05). B. Pathways enrichment analysis for early 

pregnancy using metabolites from urine that were significant (FDR<0.05, Linear Mixed Effects model 

with Benjamini-Hochberg procedure). The color and the size of a circle are proportional to the −𝑙𝑜𝑔(𝑝) and pathway impact value, respectively, where 𝑝 denotes a p-value.   

 

Outlier analysis 

We observed that a few patients in our cohort were consistently misclassified by our prediction 

algorithm (Fig. S10). A few control patients resembled preeclamptic patients on a molecular 

level in some of the top predictive features, across omics sets. And vice versa, there were some 

preeclamptic patients whose top molecular features more closely resembled those of controls. 

Reexamination of the clinical charts revealed that one of the preeclampsia patients, while 
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clearly hypertensive, had proteinuria in the context of gross hematuria obscuring whether 

proteinuria related to preeclampsia. Therefore, the patient may have been misdiagnosed with 

preeclampsia but rather only had gestational hypertension. This highlights that the predictive 

model can pick up discrepancies within the clinical chart. For the other patients whose clinical 

diagnosis held, this implies that their phenotypical features that were classifying these patients 

in either control or preeclampsia group, did not match their molecular phenotypes. Of interest, 

one patient in the preeclamptic group, that prediction classified as control, developed HELLP 

very late in gestation at 41+3 weeks. So, if she had delivered closer to the due date, she would 

have been considered a control.  Thus, if others in the control group have similar molecular 

phenotype this may represent a late-onset preeclampsia related to placental aging in the post-

term period.      

 

DISCUSSION 

Recent omics studies of preeclampsia typically included up to two omics datasets10,23,24. Ours is 

the first study to present the integrated analysis of six high-throughput omics datasets, 

containing more than 50,000 measurements per sample. This multiomics analysis enabled 

uniform comparison of omics sets, and revealed improved predictive ability for preeclampsia 

status relative to individual biological modalities, and indications of biological processes 

associated with the disease across multiple modalities.  

 

One of the main strengths of our study is that, in our cohort, biological samples were not only 

collected longitudinally from each woman; but also, each individual sample was simultaneously 

measured for proteome, transcriptome, metabolome, lipidome, and vaginal swab for 
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microbiome, thereby providing a unique opportunity to systematically study changes due to 

preeclampsia over gestation, and compare the capability of each of these omics sets to predict 

and characterize preeclampsia. These analyses involved more than 50,000 measurements, 

which were used in the prediction algorithm to agnostically identify the best biomarkers of 

preeclampsia.  

 

Among our six datasets, plasma proteomic and urine metabolomic datasets had the highest 

prediction accuracies, both over gestation and early in pregnancy. A prediction model using 

only ten urine metabolites provided high accuracy over gestation (AUC=0.88, cross-validated 

and AUC = 0.87 validated on an independent cohort) and early in pregnancy (AUC=0.875, cross-

validated). 

 

The EN prediction model with ten plasma proteins achieved AUC of 0.83 over gestation and of 

0.88 in early pregnancy. Vascular endothelial growth factor A (VEGF-A) was among the most 

predictive proteins. Reduced levels of VEGF-A have previously been described in preeclamptic 

pregnancies due to increased levels of placental soluble fms-like tyrosine kinase-1 (sFLT-1) 

which validate our study 25–27. Observed changes in several other proteins such as LEP, SELL, 

SELE, and ROR-1, were in agreement with existing literature21,28–30. Other biomarkers including 

IL-24, IL-22, CCL23, and HIPK3 were also identified as highly predictive. In early pregnancy, 

FGF19 and TIMP2 were the most predictive.  Univariate analysis also identified IL1RAP and IL6 - 

features known to play a role in immune response. Some of the other known biomarkers of 

preeclampsia – sFLT-1, PAPP-A, PIGF and ENG – were not significantly different between the 

controls and preeclamptic women neither over gestation, nor early in pregnancy (Fig. S11) and 
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were, consequentially, not identified by our prediction model. This is possibly due to a small 

size of our cohort.  We did not have PP13 (Galectin13) measurements, another known 

biomarker of preeclampsia. 

 

Preeclampsia is accompanied by a dysregulated maternal immune adaptation to pregnancy, 

which is already detectable in early pregnancy14,15. This aberrant signature was previously 

identified in women who developed preeclampsia later on15. Here we report that the intricate 

functional capacities of immune cells are co-evolving with their environment throughout the 

course of pregnancy, showing that top informative immune feature levels are highly correlated 

with top informative plasma protein levels. This interconnectedness supports both prediction 

approaches, confirming their individual usefulness, while complementing each other’s validity. 

Specifically, the results highlight known pathology of preeclampsia and suggest novel 

associations between immunological and proteomic dynamics. In preeclamptic pregnancies, 

immune responses were uniquely correlated with levels of leptin and soluble L-Selectin. 

 

Leptin, known to be elevated in the plasma of pre-eclamptic women31, is an immune regulatory 

hormone produced by adipose tissue and by the placenta31,32. Leptin activates the JAK/STAT 

and MAPK pathway, directly through binding to the leptin receptor expressed on leukocytes 

and thereby modulates both innate and adaptive immune responses33,34, including skewing of 

CD4 T cells towards Th1 polarization35 and inhibiting Treg proliferation34. Accordingly, we 

observed that leptin levels in preeclamptic and control pregnancies correlated with STAT and 

MAPK pathway signaling both in innate and adaptive immune cells, suggesting that 

dysregulated leptin levels in preeclamptic pregnancies might contribute to the aberrant 
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immune signature, while, reciprocally, inflammation itself might enhance plasma leptin 

levels32,33. Moreover, while in healthy pregnancies leptin levels correlated with pP38 signaling 

in Treg and TCRgd, this correlation was lost in preeclamptic pregnancies, suggesting that 

regulation of immune tolerance might be disrupted in preeclamptic pregnancies.  

 

Further, we reported decreased L-Selectin levels in preeclamptic pregnancies that correlated 

with basal pSTAT, pNFkB and pMAPKAP2 signaling in innate (mDC and cMC) and adaptive 

immune cells (Th1 and naive CD4 T cells). L-Selectin is shed from leukocytes during activation 

and migration, and soluble L-Selectin can be used as a surrogate marker for inflammation36. 

Notably, a drop in soluble L-Selectin levels is observed during sepsis37. Previous studies 

reported conflicting results for circulating sL-Selectin levels in preeclampsia38–40 , including low 

sL-Selectin levels at 20 weeks of gestation, prior to onset of preeclampsia39. Pre-eclampsia-

associated enhanced ectodomain shedding of cell adhesion molecules could be directly linked 

to changes in signaling responses in circulating immune cells by shedding-mediated activation 

of intracellular pathways36. Alternatively, the correlation could reflect independent 

inflammatory mechanisms as decreased levels of circulating L-Selectin have been proposed to 

be due to its adsorption to luminal vascular ligands, which are upregulated by an activated 

endothelium, a feature of pre-eclampsia6,39,41. 

 

The model with urine metabolites was the most performant to predict PE condition.  

Enrichment analysis identified discriminant biological pathways associated with PE when 

considering early and all time points. Steroid hormone biosynthesis pathway was significant 

(𝑝 < 0.05) in both models while arachidonic acid metabolism was significant in early 
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pregnancy. Arachidonic acid (AA) is a precursor to a myriad of bioactive lipids including 

prostaglandins (PG), prostacyclin, thromboxane, HPETE, leukotrienes, lipoxins, hypoxins, 

anandamide, and epoxyeicosatrienoic acids, that play key roles in inflammatory, vascular and 

coagulation processes42. As early as the 1960’s the role of the eicosanoids in preeclampsia 

pathogenesis was proposed and by the 1970’s evidence supported that an increase in 

thromboxane (TXA2; produced by platelets) over prostacyclin (PGI2; produced by endothelium) 

associated with preeclampsia43. This is one of the biological underpinnings for the use of low-

dose aspirin for the prevention of preeclampsia. Mills et al.44 reported longitudinal 

measurements of the urinary metabolites of thromboxane and prostacyclin throughout 

gestation. Although they did not find a significant increase in the urinary concentrations of 

TXA2, they did find a significant decrease in PGI2 as early as 13–16 weeks of gestation and a 

significant elevation in the ratio of thromboxane to prostacyclin as early as 17–20 weeks of 

gestation in women destined to develop preeclampsia. While this PG imbalance is noted both 

prior to and at the time of clinical presentation (after 20 weeks), the fact that AA metabolism 

was only observed in early pregnancy may explain why clinical studies note that low-dose 

aspirin initiation prior to 16 weeks is needed for significant prevention of preeclampsia45.  

 

Tryptophan pathway was identified as highly associated with preeclampsia over gestation (Fig 

10A). Indoleamine- 2,3- dioxygenase (IDO) is the first and rate limiting enzyme in this pathway 

producing kynurenine which then is converted into a number of bioactive metabolites. IDO is 

an intracellular enzyme produced by many cell types and while not secreted, impacts 

neighboring cells by tryptophan depletion and production of bioactive metabolites. The role of 

IDO in both normal and abnormal pregnancies, including preeclampsia, has been recently 
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reviewed46. IDO expression increases with pregnancy and tryptophan depletion in the placenta 

inhibits T- cell- mediated rejection of semiallogeneic fetal tissues47. Kynurenine is an 

endogenous ligand that activates the aryl hydrocarbon receptor (AhR)48. This activation skews 

the differentiation of T cells to immunosuppressive T regulatory cells rather than 

proinflammatory Th17 cells after exposure to TGF- β49,50. Notably, kynurenic acid and 

xanthurenic acid, two metabolites of kynurenine, can also activate AhR signaling and may 

participate in immune regulation51,52. Therefore, deficiency of IDO impacts Treg development. 

Notably, IDO KO mice, when pregnant, develop a preeclampsia-like phenotype53. The metabolic 

signal related to tryptophan metabolism in the model over gestation  may be related to the 

immune signature of preeclampsia, highlighting the importance of the immune alteration 

occurring in the later stages of preeclampsia. Caffeine metabolism was also identified as highly 

associated with preeclampsia over gestation. This pathway has previously been associated to 

pregnancy progression19. 

 

Models to predict preeclampsia early in pregnancy were previously based on maternal 

characteristics (demographics and medical history), followed by addition of uterine artery 

Doppler measurements and specific biomarkers54–59. Levels of angiogenic and/or anti-

angiogenic proteins (PlGF, sFlt-1, and endoglin), or their ratios, have been established as 

biomarkers with high prediction accuracy later in pregnancy25,26,60. More recently, analysis of 

omics datasets have been successfully applied to identify various biomarkers related to 

preeclampsia10,23,61. Most of these studies were based on measurements from one or at most 

two omics datasets, and often from samples taken only at one time point during pregnancy. 
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Here we show that clinical and demographics characteristics (i.e., weight, height, race) were 

complementary to omics measurements and improved prediction models 

 

Our study is limited by a small sample size and consideration of a cohort from a single hospital. 

Inherently to machine learning approach, developing a prediction model depends on the 

underlying sample distribution of the data which is used. Distribution shift, caused by 

differences among various cohorts, can impact the performance of a machine learning 

algorithm62. In this study, the mass cytometry data was not included in the multiomics 

prediction model because this data was not available for 14 out of 33 patients. However, 

integrative analysis on the restricted set of common samples revealed important connections 

between our model and key immune features. 

 

While encouraging, our results need to be validated on a larger, more diverse set of patients. If 

the results prove generalizable, our findings demonstrating high predictive power from a small 

number of urine metabolites and proteins could lead to a simple prediction test based on a 

small number of urine metabolites suitable for use both in developed and developing parts of 

the world.  

 

METHODS 

Study Design 

We performed a longitudinal, prospective study of a cohort of pregnant women receiving 

routine ante- and post-partum care at the Lucile Packard Children’s Hospital at Stanford 

University, California, as previously described15,63. Women were eligible for the study if they 
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were at least 18 years of age and were in their first trimester of pregnancy. The study was 

approved by the Institutional Review Board of Stanford University (#21956), and all participants 

signed an informed consent. 

 

Peripheral blood samples (for mass cytometry analysis), plasma samples (for proteomic, cell-

free transcriptomic (cfRNA), metabolomic, and lipidomic analyses), urine samples (for 

metabolomics analysis), and vaginal swabs (for microbiome analysis) were collected from each 

woman at two or three time points during pregnancy. Sample collection and their analyses 

were previously described9 and are presented in the Supplemental Materials. The validation 

cohort included 16 women from the same hospital, for which longitudinal samples with only 

metabolomic analyses were available. Metabolomic analyses were performed following the 

same methodology as for the discovery cohort.  

 

Definition of Preeclampsia 

Preeclampsia was defined using the American College of Obstetrics and Gynecology 

classification3 as follows: hypertension that develops after 20 weeks of gestation (systolic or 

diastolic blood pressure 140 mm Hg and/or 90 mm Hg, respectively, measured on at least two 

occasions, 4 hours to 1 week apart) and proteinuria (300 mg in a 24-hour urine collection, a 

protein/creatinine ratio of at least 0.3 (each measured as mg/dL) or if these were not readily 

available a random urine specimens containing 1+ protein by dipstick). In the absence of 

proteinuria preeclampsia was diagnosed if the presence of thrombocytopenia (platelet count 

less than 100,000/microliter), impaired liver function (elevated blood levels of liver 

transaminases to twice the normal concentration), the new development of renal insufficiency 
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(elevated serum creatinine greater than 1.1 mg/dL), pulmonary edema, or new-onset cerebral 

or visual disturbances. Early-onset  and late-onset preeclampsia were distinguished based on 

whether diagnosis was before or after 34 weeks of gestation. 

 

Machine learning analyses  

A two-level cross-validation approach was used to build predictive models to estimate the risk 

of preeclampsia.  At the first level, prediction models were developed for each omics set using 

an elastic net (EN) model64. Given 𝑁 × 𝑝 matrix of predictors (measurements) 𝑋 = (𝑥1, … 𝑥𝑝)  

and a vector of responses 𝑦 = (𝑦1, … , 𝑦𝑁) , regression coefficients 𝛽 = (𝛽1, … , 𝛽𝑝) and an 

intercept term 𝛽0 in the EN model are obtained  by maximizing the likelihood, or equivalently 

minimizing the negative log-likelihood together with 𝐿1 and 𝐿2 penalty: 

[1𝑁 ∑𝑁
𝑖=1 𝐿(𝛽0, 𝛽; 𝑦, 𝑋) + 𝜆((1 − 𝛼)‖𝛽‖2 + 𝛼‖𝛽‖)]  

Logistic regression was used, for which the negative log-likelihood evaluates to: 

𝐿(𝛽0, 𝛽; 𝑦, 𝑋) = ∑𝑁
𝑖=1 𝑦𝑖(𝛽0 + 𝑥𝑖𝑇𝛽) − 𝑙𝑜𝑔 (1 + 𝑒𝛽0+𝑥𝑖𝑇𝛽)  

For the high-dimensional setting (𝑝 ≫ 𝑁) considered here, EN, which performs both shrinkage 

and automatic selection of predictors, can provide both high accuracy and facilitate 

interpretability.  

 

At the second level, predictions of EN models were integrated using stacked regression65–67. 

Specifically, in order to use EN models in the two-level approach, for each modality 𝑘, 𝑘 =1, … 𝐾 and data 𝑋𝑘 = (𝑥1𝑘 , … 𝑥𝑝𝑘𝑘 )  a leave-one-out EN model, denoted 𝑐−𝑖𝑘 (𝑥𝑖) was repeatedly 
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fitted and evaluated at patient 𝑖. At the second level, stacked regression with nonnegative 

coefficients11 was used, so that the regression coefficients of the final model (𝛾1, … , γK)  were 

determined by:   

min ∑𝑁
𝑖=1 (𝑦𝑖 − ∑𝐾

𝑘=1 𝛾𝑘𝑐−𝑖𝑘 (𝑥𝑖𝑘))2   𝑠. 𝑡.  𝛾𝑖 ≥ 0.   
Note that the leave-one-out approach used in stacked regression has a purpose to form an 

unbiased linear combination of EN models66. In contrast to the original stacking approach in 

which different prediction models fit on the same data are stacked, here, we use the same 

model (EN) but fit to different omics to obtain different estimators which are then stacked. A 

stacked regression model can be regarded as a special case of a two-layer neural network; its 

special construction provides for an easier interpretation. 

 

One of our main goals was to identify a small subset of specific biomarkers that can predict 

preeclampsia with high accuracy and could thereby be used as a simple diagnostic test.  For 

these reasons, performance of the refitted EN model for each omics set  was evaluated by 

treating the EN model as a model-selection procedure and performing a refitting step on the 

selected support, in the same cross-validation step68. It is known that 𝐿1-penalization used in 

EN performs excessive shrinkage of the large coefficients of the prediction model69. Refitting 

can resolve this problem and obtain a model with a smaller number of features. Finally, to 

investigate a possible gain from integration of available clinical and demographics 

characteristics, a prediction model that takes omics (from a specific multiomics set), and clinical 

and demographics variables as an input to an EN model was fit and evaluated. 
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Performance was estimated using a leave-one-out cross-validation procedure, such that in each 

cross-validation step all measurements of one patient are left out from training set and are 

used for testing. In addition, urine metabolome prediction models, with and without 

clinical/demographics variables were validated on a separate validation cohort. The prediction 

accuracy of the model in terms of the area under receiver operating characteristics curve was 

evaluated. For the network visualization, a k-nearest neighbor graph (with 𝑘 = 2), was 

constructed between features. The network layout was computed with the LargeVis 

algorithm70. The analysis was performed using R software (version 3.6.1). 

 

Pathway Enrichment Analysis 

Univariate analysis was performed to identify features with significant associations between 

each feature and the pregnancy outcome, both in early pregnancy (Wilcoxon signed-rank test) 

and over gestation (Linear Mixed-effects Model). The Benjamini-Hochberg procedure was used 

to control the false discovery rate (FDR)71. Metabolome pathway enrichment analysis on 

identified metabolites was performed using MetaboAnalyst72. The hypergeometric test was 

used for overrepresentation analysis in MetaboAnalyst. Proteome pathway enrichment analysis 

was performed using GeneOntology73,74. Circular Gene Ontology (CirGO) software for visualizing 

two-level hierarchically structured gene ontology terms75, was used to visualize proteome and 

transcriptome pathway enrichment.  
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Figures

Figure 1

Overview of the study. A. Two independent cohorts were analyzed using 6 different assays. B. Sample
collection timeline for plasma in discovery and validation cohorts. Circles indicate pre-delivery sample
collection times and inverted triangles indicate delivery dates for individual women (one per horizontal
line).



Figure 2

Single- and Multi-omics machine models for preeclampsia. Performance comparison of machine learning
models shown on x-axis in terms of the area under the receiver operator curve (AUC) shown on y-axis. The
integrated (stacked) model utilizing stacked regression exhibited the highest accuracy (AUC=0.94, 95% CI
[0.9, 0.94]). Both proteome and metabolome (urine) had high prediction performance (AUC=0.89, 95% CI
[0.83, 0.96] proteome; AUC = 0.87, 95% CI [0.80, 0.94] urine metabolome).



Figure 3

Re�tted model for prediction of preeclampsia in resource-limited settings: urine metabolomic and plasma
proteomic data sets. A. Cross-validated performance of the re�tted models as a function of the number of
features (support) for urine metabolome (blue) and proteome (orange). The best performance is observed
for a model with 30 features. A model using ten metabolites provided the accuracy of the whole urine
metabolomic dataset (AUC=0.88, 95% CI: [0.81, 0.95]). B. Performance of cross-validated prediction
model using ten metabolites (blue) or ten proteins (orange). For the urine metabolome, prediction from
ten features had the same performance as the prediction from the full metabolomics set (AUC = 0.88,
95% CI [0.81, 0.95]). Prediction from ten proteins yielded performance of AUC = 0.83, 95% CI: [0.73, 0.92].
C. Most informative metabolites. Y-axis shows a metabolite value strati�ed by normal pregnancy (grey)
and preeclamptic pregnancy (blue). D. Most informative proteins. Y-axis shows a protein value strati�ed
by normal pregnancy (grey) and preeclamptic pregnancy (blue).



Figure 4

Validated model from urine metabolome using ten metabolites from the validation cohort. A. Area under
the receiver operating curve, AUC = 0.874, 95% CI of [0.76, 0.99]. B. Prediction values (scores) for controls
and preeclampsia (PE) groups.

Figure 5



Visualization of predictive features of transcriptome (yellow), proteome (orange), urine metabolome (dark
blue), and plasma metabolome (light blue). Size of each node is proportional to the frequency at which it
was chosen in prediction models during cross-validation. High frequency of occurrence indicates that a
feature is relevant for all or a majority of patients resulting in a more stable model. A. Controls. B.
Preeclampsia patients. We observe different clusters for the two groups of patients.

Figure 6

Prediction models in early pregnancy. A. Performance comparison of EN models derived from different
omics data sets using the top-ranked ten features, in terms of the AUC. The plasma proteomic and the
urine metabolomic models performed best (AUC=0.88, 95% CI of [0.75, 1] for proteome; AUC=0.87, 95% CI
of [0.74, 1] for urine metabolome). B. Heatmap of ranked values of features identi�ed by EN, perfectly
distinguishing preeclamptic women from controls. C. Top eight proteins. Y-axis shows the value in early
pregnancy strati�ed by normal (grey) versus preeclamptic pregnancy (light-blue).



Figure 7

Biomarker comparison: entire pregnancy vs. early pregnancy. X-axis and Y-axis show the respective
frequency of each biomarker in early pregnancy and over gestation. A. Most predictive proteins. B. Most
predictive urine metabolites. Blue circles around dots imply the same position for more than one
protein/urine metabolite.



Figure 8

A. Visualization of immune features. Visualization indicates features most correlated with the prediction
of the stacked model. Features shown in orange are the seven most predictive immunome features that
also highly correlate with the multiomics predictive model. Size of each node is proportional to the -
log10(p-value) of spearman correlation. B. Comparison of p-value of correlation for the top immune and
top proteome features. Each node is a pair comprising an immune and a proteome feature.

Figure 9

Relationship between urine metabolome and proteome with clinical features over gestation. A. Prediction
accuracy of urine metabolome and plasma proteome. Dark blue (for urine metabolome) and orange (for
proteome) bars show performance without clinical data (proteome: AUC = 0.83, 95% CI: [0.73, 0.92); urine
metabolome: AUC = 0.88, 95% CI [0.81, 0.95]). Grey bars show performance with clinical data (proteome
AUC=0.91, 95% CI: [0.85, 0.97]; urine metabolome AUC=0.96, 95% CI: [0.92, 0.99]). B. Comparison of p-
value of correlations of the top proteome and clinical features. Value of -log_10 p for preeclamptic
patients and controls is shown on x-axis and y-axis, respectively. Each node is a pair of a proteome and a
clinical feature. C. Comparison of p-value of correlations of the top urine metabolites and EHR features.
Each node is a pair of a proteome/urine metabolome and a clinical feature.



Figure 10

Identi�ed enriched pathways from urine metabolome urine over gestation and in early pregnancy. A.
Pathways enrichment analysis over gestation using metabolites from urine that were signi�cant
(FDR<0.05, Wilcoxon signed-rank test with Benjamini-Hochberg procedure). Pathways shown above the
dotted line were signi�cant (p < 0.05). B. Pathways enrichment analysis for early pregnancy using
metabolites from urine that were signi�cant (FDR<0.05, Linear Mixed Effects model with Benjamini-
Hochberg procedure). The color and the size of a circle are proportional to the -log(p) and pathway
impact value, respectively, where p denotes a p-value.
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