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Abstract—Projected demands for future space missions, 
where on-board sensor processing and autonomous control 
rapidly expand computational requirements, are outpacing 
technologies and trends in conventional embedded 
microprocessors.  To achieve higher levels of performance 
as well as relative performance versus power consumption, 
new processing technologies are of increasing interest for 
space systems.  Technologies such as reconfigurable 
computing based upon FPGAs and vector processing based 
upon SIMD processor extensions, often in tandem with 
conventional software processors in the form of 
multiparadigm computing, offer a compelling solution.  
This paper will explore design strategies and mappings of a 
Hyperspectral Imaging (HSI) classification algorithm for a 
mix of processing paradigms on an advanced space 
computing system, featuring MPI-based parallel processing 
with multiple PowerPC microprocessors each coupled with 
kernel acceleration via FPGA and/or AltiVec resources. 
Design of key components of HSI including auto-
correlation matrix calculation, weight computation, and 
target detection will be discussed, and hardware/software 
performance tradeoffs evaluated.  Additionally, several 
parallel-partitioning strategies will be considered for 
extending single-node performance to a clustered 
architecture.  Performance factors in terms of execution 
time and parallel efficiency will be examined on an 
experimental testbed.  Power consumption will be 
investigated, and tradeoffs between performance and power 
consumption analyzed.  This work is part of the Dependable 
Multiprocessor (DM) project at Honeywell and the 
University of Florida, one of the four experiments in the 
Space Technology 8 (ST-8) mission of NASA's New 
Millennium Program.  1 2 
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1. INTRODUCTION 

Many current and future space applications will generate 
enormous amounts of raw data which must be transmitted to 
the ground.  Unfortunately, this communication link can 
only support a limited amount of data and transmission time 
must be shared with other satellites in orbit.  One approach 
to alleviate the bottleneck of the downlink channel is to add 
additional processing capabilities to the satellite to reduce 
the amount of information that must be transmitted and also 
to allow some degree of autonomy.  In order to keep up 
with real-time constraints, the processing capabilities of 
future satellites must be increased substantially.  The 
performance of traditional space-borne computer systems is 
severely limited by the use of radiation-hardened 
components, which are necessary in order to be protected 
from the harsh radiation environment in which they operate. 
 While the radiation hardening process makes the 
components much more resilient to both transient and 
permanent faults, the processors used in these systems are 
very expensive and lag in performance compared to modern 
commercial-off-the-shelf (COTS) components. 

The Dependable Multiprocessor (DM) project aims to 
achieve reliable computation in space with the use of COTS 
technologies in order to provide a small, low-power 
supercomputer in space [1].  The DM system uses a cluster 
of high-performance COTS PowerPC CPUs connected via 
Gigabit Ethernet to obtain high-performance data 
processing, while employing a reliable software middleware 
to handle SEUs when they occur.  One of the goals of the 
DM system is to provide a familiar software interface for 
developers of scientific applications through the use of 
standard programming tools such as C and MPI running on 
Linux.  Fault tolerance features, such as checkpointing and 
replication, can be added by using API calls within a 
program. Additional performance can be achieved by using 
the on-chip AltiVec vector processing engine, or through 
external Field-Programmable Gate Array (FPGA) co-
processors. 

In a power- and space-constrained system, one possible 
approach to increasing performance is to use FPGAs as co-
processors available to the system.  These reconfigurable 
devices can be configured to perform almost any task in 
hardware, and can be modified at any time, even 
dynamically at application run-time.  Since these devices 
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apply algorithms directly to hardware, they hold the 
potential to provide large performance gains over software 
execution.  Additionally, through the use of reconfiguration, 
multiple ASICs could potentially be replaced with a single 
FPGA, resulting in substantial power, space, and cost 
savings. 

One potential application that could benefit from increased 
processing capabilities is Hyperspectral Imaging (HSI).  
HSI algorithms process large amounts of raw sensor data 
through filters in order to classify or detect targets in the 
data.  Raw images that are input to an HSI application can 
be on the order of several gigabytes of data, while the 
output is a much smaller list of possible targets and 
classifications.  These algorithms are very computationally 
intensive, requiring both large amounts of processing and 
memory bandwidth.  In this paper we explore several 
options for exploiting the parallelism of an example 
hyperspectral target classification application on a system 
similar to the DM.  Parallelism at several different scales 
will be exploited using a variety of tools: low-level data 
parallelism can be exploited with AltiVec SIMD 
instructions; high-level data parallelism can be exploited 
with multiple processing nodes using Message Passing 
Interface (MPI); and intermediate levels of parallelism will 
be candidates for acceleration using FPGAs. 

The remaining sections of this paper are organized as 
follows. Section 2 surveys previous work related to this 
topic.  Section 3 gives an overview of the algorithm that 
will be used in the following analysis.  Section 4 examines 
several parallel partitioning strategies that will be examined 
on the target system.  Section 5 discusses the design of 
components that are to be used on an FPGA for application 
speedup.  Section 6 presents results and analysis from 
experiments on the target platform.  Section 7 discusses the 
power consumption of the different parallelization strategies 
and explores power/performance tradeoffs. Finally, Section 
8 presents conclusions and provides directions for future 
research.   

2. RELATED WORK 

As mentioned previously, the goal of the DM project is to 
create a reliable supercomputer for space using COTS 
components.  For space systems, the increase in 
computational capacity will allow for new, previously 
intractable problems to be solved.  In previous papers, 
several traditional image processing and scientific 
applications were demonstrated running on a prototype 
system [1,2].  This previous work focused on single-
processor performance and reliability with simple algorithm 
kernels. 

High-performance designs of certain hyperspectral imaging 
applications have been explored previously.  Beauchamp et 

al. evaluated several different HSI operations, including 
Principal Component Analysis (PCA) and two distinct 
classifiers, on an Itanium architecture machine and the 
effects of using optimized BLAS libraries are discussed [3]. 
They were able to show significant performance increases 
using BLAS libraries, as well as identify performance 
differences between two different microprocessor 
architectures (32-bit x86 vs. 64-bit VLIW). 

Plaza et al. discuss an unsupervised hyperspectral 
classification algorithm that takes advantage of both spatial 
and spectral data that is developed and parallelized for use 
for cluster-based systems [4, 5].  Results are shown for an 
SGI Origin machine as well as for a 256-node commodity 
cluster.  Their algorithm achieves high-quality results with a 
fraction of the computation requirements from other 
unsupervised algorithms.  These unsupervised algorithms 
are very computationally intensive, and may exceed the 
abilities of modern and near-future space platforms.  
Supervised algorithms can substantially reduce the amount 
of computation required, but need certain knowledge about 
images being processed. 

Using FPGAs as a means for hyperspectral image 
compression was explored by Fry et al. [6].   A Set 
Partitioning in Hierarchical Trees (SPIHT) compression 
routine was implemented in hardware in order to reduce the 
amount of data needed for communication in a satellite 
system.  Such a reconfigurable system would allow a 
satellite system to change compression algorithms while in 
operation, either to adapt to processing requirements or to 
correct algorithmic errors.  Other HSI operations, such as 
Independent Component Analysis (ICA) [7] and other 
dimension-reducing algorithms [8], have also been 
performed using FPGAs.  These solutions usually target 
high-performance, high-powered machines, and may be ill-
suited for space systems. 

3. BACKGROUND 

There are many different types of hyperspectral imaging 
algorithms in the literature, each algorithm having different 
properties that may be useful for specific scenarios. The 
case-study HSI algorithm adopted for this research uses a 
linearly constrained minimum variance (LCMV) 
beamforming approach, as described in [9], and has a 
similar computational structure to many other HSI 
algorithms.  This approach does not require a priori 
knowledge of the environment; knowledge of the desired 
targets is sufficient.  Therefore this algorithm would be 
classified as a supervised classification algorithm. 
Additionally, this algorithm can be designed to process full 
images or to process images on a line-by-line basis, 
allowing for real-time processing.   
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For the algorithm discussed in this paper, target detection 
and classification of hyperspectral images can be divided 
into three stages:  metric calculation, weight computation, 
and target classification.  The metric of interest is the 
autocorrelation between the spectral bands of each pixel.  
The autocorrelation sample matrix (ACSM) is the metric 
used to determine specific qualities of a given image.  The 
equation for calculating the ACSM is shown in Equation 1, 
where x is a pixel vector consisting of L spectral bands, N is 
the total number of pixel vectors in the image, and RLxL is 
the final autocorrelation matrix. 
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Once the ACSM metric is calculated it can be used, along 
with information about targets of interest and possible 
classifications, to compute the optimal weight matrix.  The 
optimal weight calculation is shown in Equation 2, where T 
is the target matrix, C is the constraint matrix, and W* is the 
optimal weight matrix.  For more information on the target 
and constraint matrices, we refer the reader to [9]. 
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Finally, the weights are multiplied with the original data to 
find the classifications, Y, as shown in Equation 3.  The 
original image data is represented by the term X, which is a 
single two-dimensional matrix composed of all pixel vectors 
xi.  After classification, as a final step, simple thresholding 
functions are used to determine to which class, if any, each 
specific pixel belongs.  The output of this HSI application 
can be a simple list of pixels containing a certain class or, 
by color-coding each pixel according to its classification, 
the output can be a complete and viewable 2-D image. 

                              *WXY T ×=                                (3) 

4. PARALLELIZATION STRATEGIES 

There are two approaches to exploiting the parallelism 
inherent in all hyperspectral data: spatial parallelism and 
spectral parallelism.  Spatial parallelism refers to using a 
data decomposition method in which whole pixel vectors 
are divided among processing elements, and processed 
independently.  Many HSI algorithms do not rely on the 
position of a specific pixel within the larger image; any 
random permutation of the pixels will result in identical 
classifications, making this approach feasible.  Spectral 
parallelism, in contrast, refers to dividing each pixel vector 
into multiple sub-pixel vectors, each with fewer spectral 
bands.  For efficiency and practicality purposes, spatial 
parallelism is a much more attractive target for exploitation 
than spectral parallelism.  Spectral parallelism is difficult to 
use, mostly due to the amount of communication that would 

be required amongst processing elements for every pixel 
vector. 

Before creating a parallelized version of a program, it is 
essential to understand the properties of the original, serial 
execution.  In the following sections the sequential HSI 
classification algorithm will be profiled and several possible 
parallelization strategies will be explored. 

Serial Baseline Profiling 

By profiling the serial execution of the HSI application, the 
major computational areas of the software can be identified 
and prioritized for parallelization.  As discussed previously, 
the three major sections of the application are ACSM 
calculation, weight computation, and target classification.  
Table 1 shows a breakdown of the execution between these 
sections for various dataset sizes.  The number of spectral 
bands selected was chosen to provide data for current (64, 
256) and future (1,024) spectral sensor capabilities.  The 
timing values were measured by manually placing timing 
functions before and after each function of interest, as well 
as at the beginning and end of the program.  As the number 
of pixel vectors increases, the computation is dominated by 
the ACSM calculation and the remainder of computation 
occurs during target classification.  Weight calculation time 
is proportional to the number of spectral bands and is not 
affected by image size (i.e. number of pixel vectors in the 
input image).  As the image size grows for a fixed number 
of spectral bands, the significance of the weight 
computation stage diminishes.  For target classification, the 
amount of computation needed is proportional to the 
number of distinct classes, the number of pixel vectors in 
the image, as well as the number of spectral bands in each 
pixel vector.  For this analysis, eight distinct classifications 
were used.  On average, approximately 90% of execution is 
spent performing the ACSM calculation and most of the 
remainder is in performing classification. 

Table 1 — HSI Application Profile 
Pixel Vectors (N) Spectral Bands (L) % ACSM % Weight % Classification

16,384 64 88 0.1 11
262,144 64 88 0.01 11
16,384 256 96 0.9 3

262,144 256 97 0.06 3
16,384 1,024 81 18 0.6

262,144 1,024 88 8 4  

These results reveal that the first and last stages of this 
application, ACSM calculation and target classification, 
should be the main targets for speedup through 
parallelization.  We will use three different technologies to 
provide parallel processing at different levels of granularity, 
including AltiVec engines, FPGA co-processors, and 
parallel software written using the Message Passing 
Interface (MPI) communication library.  The following 
sections discuss these technologies, and how they are 
applied to this particular HSI algorithm, in more detail. 
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AltiVec Parallelism 

The AltiVec engine present in the PowerPC 7455 of our 
next-generation testbed (and also in the 7447A used on the 
current DM system) uses SIMD instructions to operate on 
128-bit vectors that can contain four 32-bit floating point 
values, four 32-bit integers, eight 16-bit integers, or sixteen 
8-bit integers.  Since current compilers cannot effectively 
create vectorized code, optimized AltiVec code usually 
needs to be written at a low level.  In some cases, critical 
sections of the original, baseline code would need to be 
completely rewritten to take full advantage of AltiVec. 

One alternative to hand-coding certain mathematical 
functions for SIMD support is to use Automatically Tuned 
Linear Algebra Software (ATLAS).  ATLAS automatically 
determines important system parameters and builds Basic 
Linear Algebra Subprogram (BLAS) libraries that are 
optimal for that system, taking into account the memory 
subsystem and architectural features such as MMX, SSE, or 
AltiVec [10].  The BLAS library contains many functions 
that are used extensively in scientific programming, such as 
matrix and vector multiplication [11].  By using ATLAS, a 
simple recompilation of the original code will enable the use 
of AltiVec.  The ACSM calculation can make use of the 
vector-vector functions, weight computation uses matrix-
matrix multiplication, and target classification uses an 
optimized dot product.  Using AltiVec resources, these 
operations can be calculated in parallel.  The use of  AltiVec 
instructions has a maximum speedup potential of 4× when 
using floating-point computations. 

FPGA Parallelism 

The ACSM and target classification sections both contain a 
large amount of fine-grained parallelism that can be 
exploited by using reconfigurable hardware.  In this section, 
we will briefly discuss where the parallelism exists in each 
function.  Meanwhile, Section 5 will go into detail on the 
actual design used for our analysis. 

For a single pixel vector, there is a large amount of 
parallelism present in the autocorrelation calculation.  As 
seen in Equation 1, a single L-element vector is used to 
generate a matrix containing L2 elements.  Using spectral 
data decomposition, each element of this matrix could be 
calculated in parallel, given enough FPGA and memory 
resources.   This approach may be feasible for data sets 
whose ACSM can fit within FPGA internal memory, but is 
not scalable to architectures with relatively few external 
memory connections.  This approach could be used to gain 
2× or 4× parallelism on modern FPGA architectures, as 
many platforms have 2 or 4 independent banks of memory.  
Alternately, spatial parallelism in the ACSM calculation can 
be exploited by processing multiple pixels in parallel and 
the intermediate results can be reduced on-chip.  The 
reduced data lowers memory requirements and can 
temporarily be stored in on-board memory, which can be 
accessed when the next “batch” of pixels is processed.  On 

modern FPGAs such as the Xilinx Virtex-4 and Virtex-5 
series, this approach may be able to achieve up to 16-way 
parallelism if using floating-point operators, and even more 
parallelism if fixed-point arithmetic is acceptable. 

During target classification, each target class calculates its 
classification values independently using a common pixel 
vector but with differing weight values, specific to each 
class.  Using FPGA resources, each of these classifications 
can be calculated in parallel.  An FPGA-assisted version of 
target classification could potentially compute all 
classifications in parallel, given a large enough FPGA. 

Multi-Node Parallelism 

The previous parallelization strategies that were explored 
focused on parallelism within a single node.  By connecting 
multiple nodes together with an interconnect such as 
Gigabit Ethernet we can harness their shared computational 
power, using MPI to communicate between nodes.  
Internally, each node can take advantage of the previously 
mentioned AltiVec and FPGA parallelization strategies.  
Additionally, a new level of parallelism between nodes 
allows for the division of work at a higher level. 

The ACSM calculation, as stated previously, is simply the 
sum of the autocorrelations of each pixel vector in a given 
image.  Since there is no dependence between pixel vectors, 
a coarse-grained, spatial data decomposition approach can 
be employed.  In a multiprocessor system, a portion of each 
image can be distributed to each processor which will 
calculate a partial ACSM.  This partial result can be 
collected and reduced at the end of the computation.  
Communication between processors only occurs when 
receiving data or sending results, a situation that normally 
allows for high parallel efficiency.   

Read Input 
Data

ACSM

ACSM

ACSM

ACSM

Weight 
Calculation

Classify

Classify

Write 
Output 
Data

 

Figure 1 — Generic Parallel-Pipelined HSI Architecture 

Similarly, the target classification calculations are 
performed on a per-pixel vector basis.  Each processor in 
the system must have a copy of the calculated weights and a 
portion of the image data.  A coarse-grained approach to 
this calculation has the same benefits as in the ACSM case.  
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If the same nodes are used for both ACSM and target 
classification, the original data can be sent during the 
ACSM stage and reused during classification, limiting the 
required amount of communication. 

Another approach for obtaining parallelism is the use of a 
software functional pipeline. With this method, it is possible 
to decrease the average latency of completing images.  This 
reduction of average execution time is accomplished by 
partitioning the compute nodes into groups, so that each 
group performs certain specific operations, and then passes 
the resulting data to the next group of nodes, which perform 
the next function.  This approach can be used to adapt the 
algorithm to meet certain real-time deadlines that may be 
needed for specific missions.  Additionally, dedicated nodes 
can be used for I/O in order to avoid performance penalties 
associated with disk access. A pipelined approach achieves 
the most benefit when each pipeline stage performs an equal 
amount of work, a situation that does not exist with this 
application.  However, it would be possible to exploit 
enough data parallelism in the ACSM calculation that the 
load balancing between stages becomes more favorable for 
a pipeline parallelization, as shown in Figure 1.  Each stage 
in the parallel-pipeline approach may contain any number of 
nodes, indicated as circles in Figure 1, and data must be 
divided or combined as it is passed from one stage to the 
next. 

5. FPGA CORE DESIGN 

Taking these parallelization strategies into account, we can 
design one or more FPGA cores that exploit the low-level 
parallelism of the ACSM and target classification functions. 
In this section, we will present several different hardware 
architectures and will perform a brief analysis to verify the 
amenability of the hardware options on the target platform. 

The Alpha Data ADM-XRC-4 FPGA boards used for this 
work each consist of a Xilinx Virtex4-SX55 FPGA along 

with 16MB of SRAM split into four separate banks.  The 
board connects to the remainder of the system through the 
32-bit PCI bus running at 33 MHz.  The Xilinx Virtex4 has 
a very limited amount of on-chip memory (approximately 6 
Mbits total) and the ADM-XRC-4's SRAM is also limited, 
especially considering the normal dataset sizes for most HSI 
applications. However, the memory should be used as much 
as possible because the number of data transfers from the 
CPU to the FPGA should be minimized to alleviate the 
bottleneck presented by the PCI bus.  Transferring data 
across the PCI bus is much more efficient for a few, large 
segments than it is for many small segments. Intermediate 
results should be stored in the on-board memory, instead of 
being communicated back to the host processor in order to 
avoid unnecessary communication.   

ACSM Hardware Core 

As discussed in the previous section, there are two possible 
approaches to exploiting the parallelism of this algorithm.  
Figures 2a and 2b show general block diagrams for each 
design.   

Figure 2a shows a spectral decomposition using two 
processing elements in parallel, each creating one half of the 
intermediate result matrix.  Each processing element needs 
access to store its intermediate values in external memory.  
Because the ADM-XRC platform does not allow concurrent 
reads and writes to a single bank of memory, each 
processing element requires access to two banks of external 
memory.  In the first pass one bank is read, while the other 
is written; on alternate passes it is reversed.  The ADM-
XRC platform limits the total parallelism available with this 
approach to 2× due to the number of independent memory 
banks available.  In Figure 2b, there are again two 
processing elements.  In this case, a spatial decomposition 
approach is used where each processing element calculates 
an entire intermediate matrix.  Results from each 
intermediate value are summed before being written to the 
on-board memory. This method only requires a single 
memory bank, but additional FPGA resources are used to 
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Figure 2a — Spectral Decomposition Figure 2b — Spatial Decomposition 
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construct the adder tree.  While two processing elements are 
shown here, this approach can be scaled to the size of the 
FPGA in use. 

The input data is 16-bit integer data from an image sensor 
or a preprocessing stage.  Fortunately, this numerical format 
allows for the use of integer multiplication and addition for 
the majority of the hardware. Referring to Figure 2b, the 
multiplication, scaling, and adder tree all use integer 
arithmetic to reduce the amount of logic resources required. 
 Before writing data values to temporary storage (or back to 
main memory), the fixed-point result is converted into 
single-precision floating point format.  There are two 
benefits from using this approach.  First, only two floating-
point operations are required in the design, fixed-to-
floating-point conversion and addition.  Second, processing 
on a traditional microprocessor would result in floating-
point numbers; therefore, the results are already in the 
correct format for subsequent processing steps.  An 
additional benefit of converting to floating point after the 
adder tree is better preservation of precision than compared 
to adding each result individually in floating point. 

Additional computational savings can be obtained by taking 
advantage of the symmetric nature of the autocorrelation 
matrix.  Instead of calculating the entire matrix, only the 
upper triangular portion is truly needed.  At the end of the 
computation, the lower triangular portion can be filled in, if 
desired.  This approach leads to almost 2× savings in 
computation, but it complicates memory addressing and 
load balancing between processing elements when using a 
spectral decomposition.  The necessary modifications are 

straightforward for the spatial decomposition approach. 

Before implementing a design in hardware, some rough 
estimates of performance can be gathered.  By using the RC 
Amenability Test [12], we can get an estimate of 
performance based on communication and computation 
ratios in a given algorithm.  This simple test requires 
information about the I/O capabilities and requirements of 
the system, as well as rough estimates of throughput of the 
hardware design.  Figure 3 shows the results from using this 
analysis for a 64-core, spatial decomposition hardware 
design targeting 1,024 spectral bands.  A small amount of 
speedup was observed with as few as four hardware cores, 
and with 64 cores, a speedup of 24× should be possible.  
Additional improvement can be achieved by using double 
buffering (i.e. transfer the next set of data while the current 
set is still processing).  The bandwidth limitations of the 
PCI bus do not significantly limit the performance of this 
hardware design.  Based on the performance estimates, and 
given a large enough FPGA, the PCI bus should be able to 
sustain a 512-core design. An important trend that can be 
seen using this analysis is that the hardware performance 
advantage over traditional software processing grows as the 
number of spectral bands is increased; speedup may be 
difficult to achieve when using less than 64 spectral bands. 

Target Classification Core 

The Virtex4-SX55 has a large number of built-in 18×18 
multiply-and-accumulate blocks available for use.  In fact, if 
the data and weight information were to be presented as 18-
bit fixed-point numbers, it would be possible to classify up 
to 512 classes in parallel. (Due to routing difficulties, this 
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# of Output Elements # 1048576
Bytes per element (B) 4

t(soft) (sec) 146.381
N (iterations) 8

# of Comp Elements # 2048
Ops per element (ops/elem) 1048576
throughput(proc) (ops/cycle) 64
f(clock) (MHz) 50

Double Buffered Single Buffered
t(soft) 1.464E+02 <= (same)
t(comm) 8.410E-02 <= (same)
t(comp) 6.711E-01 <= (same)
t(RC) 5.369E+00 6.041E+00

Double Buffered Single Buffered
util(proc) 100.0% 88.9%
util(IO) 12.5% 11.1%
speedup(kernel) 27.3 24.2

estimated FPGA execution time

original software execution time

Software Parameters

time to send & recv data to/from FPGA

# calls to FPGA for HW-assisted app

time to process one input buffer of data

Computation Parameters

Constants/User-Defined Parameters

Constants/User-Defined Parameters

Communication Parameters
PCI-X, PCI-Express, etc…

Throughput efficiency to FPGA

# of elements written to FPGA

precision

Throughput efficiency from FPGA

# of elements read from FPGA

Calculated Key Metrics

all SW, RC-ported section only

# of elements of computation

clock frequency of FPGA core

Calculated Sub-metrics (in seconds)

# operations performed per cycle
related to order of complexity

 
Figure 3 — RC Amenability Test for ACSM Core 
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Figure 4 — RC Amenability Test for Classification Core 
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number would not truly be achievable.)  The weight vectors 
are loaded once for each image at startup.  When 
computation begins, pixel vectors are loaded onto the 
FPGA, and the classifications are stored in on-board 
memory.  Each classification is calculated independently, 
with each hardware core containing one multiply-
accumulate block and one weight buffer.  A pixel buffer 
containing the current pixel vector being classified is shared 
among every core. 

When operating on a traditional microprocessor, target 
classification would normally work on floating-point 
numbers.  If an FPGA design uses fixed-point arithmetic, an 
analysis on the precision effects would need to be 
performed.  Conversion from floating-point precision to 
fixed-point precision can be handled easily on the FPGA, 
but prior knowledge of typical weight ranges can ensure 
acceptable amounts of precision loss.  A fully floating-point 
target classification design would not scale well due to the 
limited resources on the FPGA. 

Again, we can look at some performance estimates before 
spending resources on constructing a hardware design.  The 
results of the target classification amenability test are shown 
in Figure 4.  Unlike the previous example, target 
classification is not likely to see significant gains from using 
a hardware-specific core.  In this case, the I/O is a large 
bottleneck and adding additional hardware resources would 
have no effect on performance.  A throughput of 
approximately 500 MB/s from the host processor to the 
FPGA would be needed to achieve a 2× speedup over the 
AltiVec-optimized target classification stage.  As a result, 
we will not migrate the target classification stage to an 
FPGA co-processor for our experimental analyses. 

6. EXPERIMENTAL RESULTS AND ANALYSIS 

This section will combine and analyze the approaches used 
in Sections 4 and 5, by discussing the complete architecture 
of our experimental platform and presenting performance 
results obtained by executing and analyzing the case study 
HSI application with various levels of parallelism. 

Experimental Testbed 

A 10-node PowerPC cluster was used to gather results.  
Each node contains a 1.4 GHz PowerPC 7455 with AltiVec 
and 1GB of SDRAM.  The nodes are connected together 
with Gigabit Ethernet.  Additionally, four nodes are 
equipped with ADM-XRC-4 FPGA boards from Alpha 
Data, each containing a Xilinx Virtex4-SX55 FPGA and 
four independent 4MB SRAM modules.  This testbed is 
intended to simulate a possible “next-generation” 
Dependable Multiprocessor system.  The major differences 
between the testbed and the current DM system are a faster 
CPU (1.4GHz vs. 1.0GHz) and the use of an FPGA 
coprocessor. 

AltiVec Performance Results 

Using ATLAS 3.6.0 compiled for the testbed system, the 
ACSM calculation, weight computation, and classification 
function calls were replaced with their BLAS equivalents.  
Table 2 shows the comparison of the full application 
performance using AltiVec-enabled code versus the original 
baseline.  Through the use of cache prefetching, AltiVec 
instructions, and other optimizations, the program using the 
ATLAS libraries was able to decrease execution time by at 
least 80% for a range of image parameters.  Optimizations 
that account for symmetry in the autocorrelation matrix 
calculation were not used in either the baseline or the 
AltiVec version.  The maximum amount of speedup occurs 
when processing images with 256 spectral bands, 
corresponding to the largest tested matrix size that is 
capable of fitting in the L2 cache of a PowerPC 7455 
processor. 

Table 2 — Full, HSI Speedup:  AltiVec versus Baseline 
Spectral Bands Baseline (s) AltiVec (s) Speedup

64 43.34 6.70 6.47
256 624.83 85.47 7.31

1024 10634.35 1964.11 5.41  

FPGA Performance Results 

Table 3 shows the amount of speedup that is achievable 
during the ACSM calculation when using an FPGA.  The 
results were gathered from three 512×512 images, each with 
a differing number of spectral bands.  The performance of a 
single FPGA-assisted node was compared to the AltiVec-
enabled execution times for ACSM portion of the 
application.  As we expected from the analysis in the 
previous section, images with more spectral bands 
experience a larger benefit from the hardware solution, 
reaching a 20× improvement when processing images with 
1,024 spectral bands.  For images that only contain a few 
spectral bands, the AltiVec-enabled version has the fastest 
execution.  

For full application performance on a single node, the 
FPGA-assisted version of HSI will use the FPGA for 
ACSM calculations while the weight computation and target 
classification functions will be identical to those used by the 
AltiVec-enabled version.  For subsequent results, we will 
focus on images with either 256 or 1,024 spectral bands.  
The former value is approximately the number of spectral 
bands available on current sensors, such as AVIRIS or the 
Hyperion sensor on EO-1 [13, 14].  The larger hyperspectral 
image will be used to show trends for possible future 
sensors. 

Table 3 — ACSM Speedup:  FPGA versus AltiVec 

64 5.55 1.79 3.10 2.27
256 81.14 7.17 11.31 7.48

1024 1917.22 94.46 20.30 14.23

Full HSI 
SpeedupSpectral Bands AltiVec (s) FPGA (s) ACSM 

Speedup
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Multi-Node Performance Results 

The HSI algorithm was parallelized with MPI using the 
spatial data decomposition method described in Section 4.  
The ACSM calculation and target classification stages were 
parallelized such that each node processes an independent 
portion of the original image, and the results are returned to 
a master node. Weight computation is performed 
sequentially on the single master node, after which the 
weights are broadcasted to all nodes before the beginning of 
the target classification stage. 

Figure 5 shows the results of this parallelization using both 
the AltiVec-enabled software, as well as the FPGA-assisted 
version for the entire HSI application.  In this experiment, 
the image is a 512×512 image with either 256 or 1,024 
spectral bands.  The 10-node cluster using the AltiVec-
enabled HSI code was able to complete a 256-spectral-band 
image in 14 seconds and a 1,024-spectral-band image in 
272 seconds, for speedups of 6 and 7.2 over the single-node 
performance, respectively. The 4-node FPGA-assisted 
system can finish a 256 spectral band image in 6 seconds 
and a 1,024 spectral band image in 60 seconds, a speedup of 
13 and 26, respectively, over a single AltiVec-enabled node. 

Parallel HSI Performance
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Figure 5 — Parallel System Performance (512×512 Image) 

For the AltiVec-enabled version of the application, the 
scalability of the parallel code is very good for small node 
sizes.  At two or four nodes, the program is able to achieve 
approximately 90% parallel efficiency.  However, as the 
number of nodes scales higher the parallel efficiency, 
shown in Figure 6, begins to drop; 10-node performance 
achieves between 60% and 70% efficiency. As the number 
of nodes in the system increases, the computation-to-
communication ratio begins to decrease, and the effects of 
the network start to impact performance. 

For the FPGA-assisted version of the full HSI application, 
the single-node baseline executes 14 times faster than the 
AltiVec-enabled version, when using 1,024 spectral bands.  
This fact has the effect of changing the application profile 
so that the weight computation stage, which was not 
parallelized, is no longer an insignificant portion of the 

application.  For example, weight computation takes 
approximately 22 seconds for an image using 1,024 spectral 
bands, accounting for 16% of the total execution time.  For 
that reason, the parallel efficiency of the hardware-
accelerated version is significantly lower than the original 
software version.  Additionally, since the FPGAs complete 
the ACSM computation so quickly, the communication time 
using Gigabit Ethernet becomes a significant performance 
factor.  A system using all four FPGA-equipped nodes in 
parallel achieves less than 60% parallel efficiency.  Figure 6 
shows the parallel efficiency for both the AltiVec-enabled 
and FPGA-assisted applications.  In order to significantly 
improve the efficiency of the parallel algorithm, it will be 
necessary to parallelize the weight computation section of 
the application. 

HSI Parallel Efficiency
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Figure 6 — Parallel Efficiency (512×512 Image) 

7. POWER CONSUMPTION 

Power consumption is a significant design criterion for 
embedded systems, and space systems have a particularly 
strict power envelope.  This section will explore the power 
consumption of the systems previously discussed.  Table 4 
shows the power consumption of several important 
components used in this analysis.  The FPGA power 
consumption was gathered using the Xilinx XPower 
Estimator spreadsheet, with an average toggle rate of 25%.  
The other power values were collected from the appropriate 
datasheets.  When fully utilized, the ADM-XRC-4 FPGA 
board, including the on-board SRAM, will consume 
approximately 8W.  On the other hand, the maximum power 
consumption of the PowerPC 7455 is 45W.  Other 
contributors to power consumption, such as the network 
interconnect or system memory, could not be reliably 
measured and are not included in the following analysis.  

For the single-node AltiVec-enabled version of the HSI 
application, we will assume that the processor reaches its 
maximum power consumption, 45 Watts, since all sections 
of the code are computationally intensive.  During weight 
computation on a multi-node system, only one processor 
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will consume maximum power, while the other processors 
consume less power as they wait for results.  The average 
power consumption of the AltiVec-enabled system is given 
by Equations 4 through 7, where N is the number of nodes 
in the system and tACSM, tWC, and tTC are the execution times 
of the ACSM, weight computation, and target classification 
stages, respectively.  The power consumptions during each 
major function, PACSM, PWC, and PTC, are estimated, and 
those values are applied proportionally to estimate the 
average power, Pavg, of the system. 

                           CPUmaxACSM PNP ⋅=                            (4) 

                  ( ) CPUtypCPUmaxWC 1 PNPP ⋅−+=               (5) 

                              CPUmaxTC PNP ⋅=                              (6) 

     
TCWCACSM

TCTCWCWCACSMACSM
avg ttt

tPtPtP
P

++
⋅+⋅+⋅

=        (7) 

For the FPGA-assisted version of the application, we will 
assume the CPU consumes only 34 Watts (typical) when the 
FPGA is being utilized, and the FPGA is in idle mode when 
the CPU is performing weight computation or target 
classification.  The average power consumption of a node is 
determined by Equation 7, shown above, and Equations 8 
through 10, shown below.  During the ACSM calculation, 
each node consumes maximum power from the FPGA and 
typical power from the CPU.  During weight computation, 
the CPU on one node consumes maximum power while all 
other devices consume their typical values.  During target 
classification, each CPU is assumed to consume maximum 
power while the FPGAs consume their idle values.  The 
average power of each system is determined by the 
percentage of time spent in each function.  

                  ( )CPUtypFPGAonACSM PPNP +⋅=                  (8) 

 ( ) FPGAoffCPUtypCPUmaxWC 1 PNPNPP ⋅+⋅−+=       (9) 

                      ( )FPGAoffCPUmaxTC PPNP +⋅=              (10) 

To compare algorithms, we will use an energy metric, 
power multiplied by time.  Table 5 augments the parallel 
performance data with estimates of average power for each 
system, using the previous equations.  The most energy-
efficient system is the single-node, FPGA-assisted system.  
The FPGA not only provides a 15× speedup, but the 
combined power consumption of the FPGA and the CPU in 
a low computational scenario (PFPGAon + PCPUtyp) is less than 
the maximum power consumption of the CPU (PCPUmax).  As 
more nodes are added to the system, shifting performance 
bottlenecks to non-parallelized sections of code, the 
additional CPUs will be unused for longer periods of time 
consuming a reduced amount of power.  While the energy 
usage of the FPGA-assisted system is much lower than the 
AltiVec-enabled system, the difference in power 
consumption is small, less than 5% of the total system 
power consumption.  The reduction in energy consumption 
comes directly from the reduced execution time for FPGA-
assisted systems. 

8. CONCLUSIONS 

The use of non-traditional processing resources such as 
FPGAs or AltiVec engines is an effective method for 
increasing performance in systems where computational 
power is the largest concern.  Using a few simple profiling 
and estimation techniques on an original sequential 
program, candidates for acceleration are easily determined. 
The ACSM calculation, accelerated using an FPGA co-
processor, was able to achieve a 15× speedup.  While 
FPGAs are capable of large performance gains in many 
situations, I/O bandwidth can limit their potential, as seen 
with target classification, which was not able to achieve a 
speedup with the current platform’s bandwidth capabilities. 
By optimally combining FPGA and AltiVec resources to 
create a multi-paradigm HSI application, single-processor 
performance could be improved by as much as two orders 
of magnitude over the original software baseline.  
Additional performance gains were possible with multiple 
nodes communicating using MPI, achieving a 33× speedup 
over a single AltiVec-enabled node using four FPGA-
equipped nodes.  The major factor limiting parallel 

Table 4 — Power Consumption Values 
Variable Description Value

P CPUmax Maximum CPU power consumption 45W
P CPUtyp Typical CPU power consumption 34W
P FPGAon FPGA power consumption during computation 8.0W
P FPGAoff FPGA power consumption while idle 7.1W  

Table 5 — Parallel System Performance and Power Estimates     

Nodes Execution Time (s) Speedup Avg. Power (W) Energy (kJ) Execution Time (s) Speedup Avg. Power (W) Energy (kJ)
1 1964.11 1.00 45.00 88.4 127.00 15.46 44.39 5.6
2 1001.16 1.96 89.76 89.9 81.90 23.98 87.20 7.1
4 567.73 3.46 178.75 101.5 59.76 32.86 172.51 10.3
6 434.92 4.52 267.14 116.2
8 330.16 5.95 354.82 117.1

10 272.71 7.20 441.90 120.5

AltiVec-Enabled FPGA-Assisted
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scalability was the sequential nature of the weight 
computation stage.  The average power consumption of an 
FPGA-assisted node was estimated to be almost equivalent 
to a non-FPGA node (45W), due to the FPGA power 
consumption offsetting the reduced amount of power 
consumed by the CPU while idle. 

Future work may explore methods for efficiently 
parallelizing the weight computation section, which 
involves a large matrix inversion and several small matrix 
multiplications.    Additionally, we plan to explore the use 
of algorithm-based fault tolerance (ABFT) in this HSI 
algorithm.  ABFT is an efficient method of protecting 
against data corruption, which can be useful for high-
altitude or space missions where single-event upsets are 
likely. 
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