
 1

Multiparadigm Space Processing for
Hyperspectral Imaging
Adam Jacobs, Chris Conger, and Alan D. George

High-performance Computing and Simulation (HCS) Research Laboratory
Department of Electrical and Computer Engineering, University of Florida

{jacobs, conger, george}@hcs.ufl.edu

Abstract—Projected demands for future space missions,
where on-board sensor processing and autonomous control
rapidly expand computational requirements, are outpacing
technologies and trends in conventional embedded
microprocessors. To achieve higher levels of performance
as well as relative performance versus power consumption,
new processing technologies are of increasing interest for
space systems. Technologies such as reconfigurable
computing based upon FPGAs and vector processing based
upon SIMD processor extensions, often in tandem with
conventional software processors in the form of
multiparadigm computing, offer a compelling solution.
This paper will explore design strategies and mappings of a
Hyperspectral Imaging (HSI) classification algorithm for a
mix of processing paradigms on an advanced space
computing system, featuring MPI-based parallel processing
with multiple PowerPC microprocessors each coupled with
kernel acceleration via FPGA and/or AltiVec resources.
Design of key components of HSI including auto-
correlation matrix calculation, weight computation, and
target detection will be discussed, and hardware/software
performance tradeoffs evaluated. Additionally, several
parallel-partitioning strategies will be considered for
extending single-node performance to a clustered
architecture. Performance factors in terms of execution
time and parallel efficiency will be examined on an
experimental testbed. Power consumption will be
investigated, and tradeoffs between performance and power
consumption analyzed. This work is part of the Dependable
Multiprocessor (DM) project at Honeywell and the
University of Florida, one of the four experiments in the
Space Technology 8 (ST-8) mission of NASA's New
Millennium Program. 1 2

TABLE OF CONTENTS

1. INTRODUCTION..1
2. RELATED WORK ...2
3. BACKGROUND..2
4. PARALLELIZATION STRATEGIES3
5. FPGA CORE DESIGN ..5
6. EXPERIMENTAL RESULTS AND ANALYSIS7
7. POWER CONSUMPTION ...8
8. CONCLUSIONS ...9
ACKNOWLEDGMENTS ...10
REFERENCES ...10
BIOGRAPHY ...11
1
1 1-4244-1488-1/08/$25.00 ©2008 IEEE.
2 IEEEAC paper #1416, Version 3, Updated December 11, 2007

1. INTRODUCTION

Many current and future space applications will generate
enormous amounts of raw data which must be transmitted to
the ground. Unfortunately, this communication link can
only support a limited amount of data and transmission time
must be shared with other satellites in orbit. One approach
to alleviate the bottleneck of the downlink channel is to add
additional processing capabilities to the satellite to reduce
the amount of information that must be transmitted and also
to allow some degree of autonomy. In order to keep up
with real-time constraints, the processing capabilities of
future satellites must be increased substantially. The
performance of traditional space-borne computer systems is
severely limited by the use of radiation-hardened
components, which are necessary in order to be protected
from the harsh radiation environment in which they operate.
 While the radiation hardening process makes the
components much more resilient to both transient and
permanent faults, the processors used in these systems are
very expensive and lag in performance compared to modern
commercial-off-the-shelf (COTS) components.

The Dependable Multiprocessor (DM) project aims to
achieve reliable computation in space with the use of COTS
technologies in order to provide a small, low-power
supercomputer in space [1]. The DM system uses a cluster
of high-performance COTS PowerPC CPUs connected via
Gigabit Ethernet to obtain high-performance data
processing, while employing a reliable software middleware
to handle SEUs when they occur. One of the goals of the
DM system is to provide a familiar software interface for
developers of scientific applications through the use of
standard programming tools such as C and MPI running on
Linux. Fault tolerance features, such as checkpointing and
replication, can be added by using API calls within a
program. Additional performance can be achieved by using
the on-chip AltiVec vector processing engine, or through
external Field-Programmable Gate Array (FPGA) co-
processors.

In a power- and space-constrained system, one possible
approach to increasing performance is to use FPGAs as co-
processors available to the system. These reconfigurable
devices can be configured to perform almost any task in
hardware, and can be modified at any time, even
dynamically at application run-time. Since these devices

 2

apply algorithms directly to hardware, they hold the
potential to provide large performance gains over software
execution. Additionally, through the use of reconfiguration,
multiple ASICs could potentially be replaced with a single
FPGA, resulting in substantial power, space, and cost
savings.

One potential application that could benefit from increased
processing capabilities is Hyperspectral Imaging (HSI).
HSI algorithms process large amounts of raw sensor data
through filters in order to classify or detect targets in the
data. Raw images that are input to an HSI application can
be on the order of several gigabytes of data, while the
output is a much smaller list of possible targets and
classifications. These algorithms are very computationally
intensive, requiring both large amounts of processing and
memory bandwidth. In this paper we explore several
options for exploiting the parallelism of an example
hyperspectral target classification application on a system
similar to the DM. Parallelism at several different scales
will be exploited using a variety of tools: low-level data
parallelism can be exploited with AltiVec SIMD
instructions; high-level data parallelism can be exploited
with multiple processing nodes using Message Passing
Interface (MPI); and intermediate levels of parallelism will
be candidates for acceleration using FPGAs.

The remaining sections of this paper are organized as
follows. Section 2 surveys previous work related to this
topic. Section 3 gives an overview of the algorithm that
will be used in the following analysis. Section 4 examines
several parallel partitioning strategies that will be examined
on the target system. Section 5 discusses the design of
components that are to be used on an FPGA for application
speedup. Section 6 presents results and analysis from
experiments on the target platform. Section 7 discusses the
power consumption of the different parallelization strategies
and explores power/performance tradeoffs. Finally, Section
8 presents conclusions and provides directions for future
research.

2. RELATED WORK

As mentioned previously, the goal of the DM project is to
create a reliable supercomputer for space using COTS
components. For space systems, the increase in
computational capacity will allow for new, previously
intractable problems to be solved. In previous papers,
several traditional image processing and scientific
applications were demonstrated running on a prototype
system [1,2]. This previous work focused on single-
processor performance and reliability with simple algorithm
kernels.

High-performance designs of certain hyperspectral imaging
applications have been explored previously. Beauchamp et

al. evaluated several different HSI operations, including
Principal Component Analysis (PCA) and two distinct
classifiers, on an Itanium architecture machine and the
effects of using optimized BLAS libraries are discussed [3].
They were able to show significant performance increases
using BLAS libraries, as well as identify performance
differences between two different microprocessor
architectures (32-bit x86 vs. 64-bit VLIW).

Plaza et al. discuss an unsupervised hyperspectral
classification algorithm that takes advantage of both spatial
and spectral data that is developed and parallelized for use
for cluster-based systems [4, 5]. Results are shown for an
SGI Origin machine as well as for a 256-node commodity
cluster. Their algorithm achieves high-quality results with a
fraction of the computation requirements from other
unsupervised algorithms. These unsupervised algorithms
are very computationally intensive, and may exceed the
abilities of modern and near-future space platforms.
Supervised algorithms can substantially reduce the amount
of computation required, but need certain knowledge about
images being processed.

Using FPGAs as a means for hyperspectral image
compression was explored by Fry et al. [6]. A Set
Partitioning in Hierarchical Trees (SPIHT) compression
routine was implemented in hardware in order to reduce the
amount of data needed for communication in a satellite
system. Such a reconfigurable system would allow a
satellite system to change compression algorithms while in
operation, either to adapt to processing requirements or to
correct algorithmic errors. Other HSI operations, such as
Independent Component Analysis (ICA) [7] and other
dimension-reducing algorithms [8], have also been
performed using FPGAs. These solutions usually target
high-performance, high-powered machines, and may be ill-
suited for space systems.

3. BACKGROUND

There are many different types of hyperspectral imaging
algorithms in the literature, each algorithm having different
properties that may be useful for specific scenarios. The
case-study HSI algorithm adopted for this research uses a
linearly constrained minimum variance (LCMV)
beamforming approach, as described in [9], and has a
similar computational structure to many other HSI
algorithms. This approach does not require a priori
knowledge of the environment; knowledge of the desired
targets is sufficient. Therefore this algorithm would be
classified as a supervised classification algorithm.
Additionally, this algorithm can be designed to process full
images or to process images on a line-by-line basis,
allowing for real-time processing.

 3

For the algorithm discussed in this paper, target detection
and classification of hyperspectral images can be divided
into three stages: metric calculation, weight computation,
and target classification. The metric of interest is the
autocorrelation between the spectral bands of each pixel.
The autocorrelation sample matrix (ACSM) is the metric
used to determine specific qualities of a given image. The
equation for calculating the ACSM is shown in Equation 1,
where x is a pixel vector consisting of L spectral bands, N is
the total number of pixel vectors in the image, and RLxL is
the final autocorrelation matrix.

 ∑
=

× ×=
N

i

T
iiLL xx

N
R

0

1
 (1)

Once the ACSM metric is calculated it can be used, along
with information about targets of interest and possible
classifications, to compute the optimal weight matrix. The
optimal weight calculation is shown in Equation 2, where T
is the target matrix, C is the constraint matrix, and W* is the
optimal weight matrix. For more information on the target
and constraint matrices, we refer the reader to [9].

 CTRTTRW LL
T

LL
111*)(−−

×
−
×= (2)

Finally, the weights are multiplied with the original data to
find the classifications, Y, as shown in Equation 3. The
original image data is represented by the term X, which is a
single two-dimensional matrix composed of all pixel vectors
xi. After classification, as a final step, simple thresholding
functions are used to determine to which class, if any, each
specific pixel belongs. The output of this HSI application
can be a simple list of pixels containing a certain class or,
by color-coding each pixel according to its classification,
the output can be a complete and viewable 2-D image.

 *WXY T ×= (3)

4. PARALLELIZATION STRATEGIES

There are two approaches to exploiting the parallelism
inherent in all hyperspectral data: spatial parallelism and
spectral parallelism. Spatial parallelism refers to using a
data decomposition method in which whole pixel vectors
are divided among processing elements, and processed
independently. Many HSI algorithms do not rely on the
position of a specific pixel within the larger image; any
random permutation of the pixels will result in identical
classifications, making this approach feasible. Spectral
parallelism, in contrast, refers to dividing each pixel vector
into multiple sub-pixel vectors, each with fewer spectral
bands. For efficiency and practicality purposes, spatial
parallelism is a much more attractive target for exploitation
than spectral parallelism. Spectral parallelism is difficult to
use, mostly due to the amount of communication that would

be required amongst processing elements for every pixel
vector.

Before creating a parallelized version of a program, it is
essential to understand the properties of the original, serial
execution. In the following sections the sequential HSI
classification algorithm will be profiled and several possible
parallelization strategies will be explored.

Serial Baseline Profiling

By profiling the serial execution of the HSI application, the
major computational areas of the software can be identified
and prioritized for parallelization. As discussed previously,
the three major sections of the application are ACSM
calculation, weight computation, and target classification.
Table 1 shows a breakdown of the execution between these
sections for various dataset sizes. The number of spectral
bands selected was chosen to provide data for current (64,
256) and future (1,024) spectral sensor capabilities. The
timing values were measured by manually placing timing
functions before and after each function of interest, as well
as at the beginning and end of the program. As the number
of pixel vectors increases, the computation is dominated by
the ACSM calculation and the remainder of computation
occurs during target classification. Weight calculation time
is proportional to the number of spectral bands and is not
affected by image size (i.e. number of pixel vectors in the
input image). As the image size grows for a fixed number
of spectral bands, the significance of the weight
computation stage diminishes. For target classification, the
amount of computation needed is proportional to the
number of distinct classes, the number of pixel vectors in
the image, as well as the number of spectral bands in each
pixel vector. For this analysis, eight distinct classifications
were used. On average, approximately 90% of execution is
spent performing the ACSM calculation and most of the
remainder is in performing classification.

Table 1 — HSI Application Profile
Pixel Vectors (N) Spectral Bands (L) % ACSM % Weight % Classification

16,384 64 88 0.1 11
262,144 64 88 0.01 11
16,384 256 96 0.9 3

262,144 256 97 0.06 3
16,384 1,024 81 18 0.6

262,144 1,024 88 8 4

These results reveal that the first and last stages of this
application, ACSM calculation and target classification,
should be the main targets for speedup through
parallelization. We will use three different technologies to
provide parallel processing at different levels of granularity,
including AltiVec engines, FPGA co-processors, and
parallel software written using the Message Passing
Interface (MPI) communication library. The following
sections discuss these technologies, and how they are
applied to this particular HSI algorithm, in more detail.

 4

AltiVec Parallelism

The AltiVec engine present in the PowerPC 7455 of our
next-generation testbed (and also in the 7447A used on the
current DM system) uses SIMD instructions to operate on
128-bit vectors that can contain four 32-bit floating point
values, four 32-bit integers, eight 16-bit integers, or sixteen
8-bit integers. Since current compilers cannot effectively
create vectorized code, optimized AltiVec code usually
needs to be written at a low level. In some cases, critical
sections of the original, baseline code would need to be
completely rewritten to take full advantage of AltiVec.

One alternative to hand-coding certain mathematical
functions for SIMD support is to use Automatically Tuned
Linear Algebra Software (ATLAS). ATLAS automatically
determines important system parameters and builds Basic
Linear Algebra Subprogram (BLAS) libraries that are
optimal for that system, taking into account the memory
subsystem and architectural features such as MMX, SSE, or
AltiVec [10]. The BLAS library contains many functions
that are used extensively in scientific programming, such as
matrix and vector multiplication [11]. By using ATLAS, a
simple recompilation of the original code will enable the use
of AltiVec. The ACSM calculation can make use of the
vector-vector functions, weight computation uses matrix-
matrix multiplication, and target classification uses an
optimized dot product. Using AltiVec resources, these
operations can be calculated in parallel. The use of AltiVec
instructions has a maximum speedup potential of 4× when
using floating-point computations.

FPGA Parallelism

The ACSM and target classification sections both contain a
large amount of fine-grained parallelism that can be
exploited by using reconfigurable hardware. In this section,
we will briefly discuss where the parallelism exists in each
function. Meanwhile, Section 5 will go into detail on the
actual design used for our analysis.

For a single pixel vector, there is a large amount of
parallelism present in the autocorrelation calculation. As
seen in Equation 1, a single L-element vector is used to
generate a matrix containing L2 elements. Using spectral
data decomposition, each element of this matrix could be
calculated in parallel, given enough FPGA and memory
resources. This approach may be feasible for data sets
whose ACSM can fit within FPGA internal memory, but is
not scalable to architectures with relatively few external
memory connections. This approach could be used to gain
2× or 4× parallelism on modern FPGA architectures, as
many platforms have 2 or 4 independent banks of memory.
Alternately, spatial parallelism in the ACSM calculation can
be exploited by processing multiple pixels in parallel and
the intermediate results can be reduced on-chip. The
reduced data lowers memory requirements and can
temporarily be stored in on-board memory, which can be
accessed when the next “batch” of pixels is processed. On

modern FPGAs such as the Xilinx Virtex-4 and Virtex-5
series, this approach may be able to achieve up to 16-way
parallelism if using floating-point operators, and even more
parallelism if fixed-point arithmetic is acceptable.

During target classification, each target class calculates its
classification values independently using a common pixel
vector but with differing weight values, specific to each
class. Using FPGA resources, each of these classifications
can be calculated in parallel. An FPGA-assisted version of
target classification could potentially compute all
classifications in parallel, given a large enough FPGA.

Multi-Node Parallelism

The previous parallelization strategies that were explored
focused on parallelism within a single node. By connecting
multiple nodes together with an interconnect such as
Gigabit Ethernet we can harness their shared computational
power, using MPI to communicate between nodes.
Internally, each node can take advantage of the previously
mentioned AltiVec and FPGA parallelization strategies.
Additionally, a new level of parallelism between nodes
allows for the division of work at a higher level.

The ACSM calculation, as stated previously, is simply the
sum of the autocorrelations of each pixel vector in a given
image. Since there is no dependence between pixel vectors,
a coarse-grained, spatial data decomposition approach can
be employed. In a multiprocessor system, a portion of each
image can be distributed to each processor which will
calculate a partial ACSM. This partial result can be
collected and reduced at the end of the computation.
Communication between processors only occurs when
receiving data or sending results, a situation that normally
allows for high parallel efficiency.

Read Input
Data

ACSM

ACSM

ACSM

ACSM

Weight
Calculation

Classify

Classify

Write
Output
Data

Figure 1 — Generic Parallel-Pipelined HSI Architecture

Similarly, the target classification calculations are
performed on a per-pixel vector basis. Each processor in
the system must have a copy of the calculated weights and a
portion of the image data. A coarse-grained approach to
this calculation has the same benefits as in the ACSM case.

 5

If the same nodes are used for both ACSM and target
classification, the original data can be sent during the
ACSM stage and reused during classification, limiting the
required amount of communication.

Another approach for obtaining parallelism is the use of a
software functional pipeline. With this method, it is possible
to decrease the average latency of completing images. This
reduction of average execution time is accomplished by
partitioning the compute nodes into groups, so that each
group performs certain specific operations, and then passes
the resulting data to the next group of nodes, which perform
the next function. This approach can be used to adapt the
algorithm to meet certain real-time deadlines that may be
needed for specific missions. Additionally, dedicated nodes
can be used for I/O in order to avoid performance penalties
associated with disk access. A pipelined approach achieves
the most benefit when each pipeline stage performs an equal
amount of work, a situation that does not exist with this
application. However, it would be possible to exploit
enough data parallelism in the ACSM calculation that the
load balancing between stages becomes more favorable for
a pipeline parallelization, as shown in Figure 1. Each stage
in the parallel-pipeline approach may contain any number of
nodes, indicated as circles in Figure 1, and data must be
divided or combined as it is passed from one stage to the
next.

5. FPGA CORE DESIGN

Taking these parallelization strategies into account, we can
design one or more FPGA cores that exploit the low-level
parallelism of the ACSM and target classification functions.
In this section, we will present several different hardware
architectures and will perform a brief analysis to verify the
amenability of the hardware options on the target platform.

The Alpha Data ADM-XRC-4 FPGA boards used for this
work each consist of a Xilinx Virtex4-SX55 FPGA along

with 16MB of SRAM split into four separate banks. The
board connects to the remainder of the system through the
32-bit PCI bus running at 33 MHz. The Xilinx Virtex4 has
a very limited amount of on-chip memory (approximately 6
Mbits total) and the ADM-XRC-4's SRAM is also limited,
especially considering the normal dataset sizes for most HSI
applications. However, the memory should be used as much
as possible because the number of data transfers from the
CPU to the FPGA should be minimized to alleviate the
bottleneck presented by the PCI bus. Transferring data
across the PCI bus is much more efficient for a few, large
segments than it is for many small segments. Intermediate
results should be stored in the on-board memory, instead of
being communicated back to the host processor in order to
avoid unnecessary communication.

ACSM Hardware Core

As discussed in the previous section, there are two possible
approaches to exploiting the parallelism of this algorithm.
Figures 2a and 2b show general block diagrams for each
design.

Figure 2a shows a spectral decomposition using two
processing elements in parallel, each creating one half of the
intermediate result matrix. Each processing element needs
access to store its intermediate values in external memory.
Because the ADM-XRC platform does not allow concurrent
reads and writes to a single bank of memory, each
processing element requires access to two banks of external
memory. In the first pass one bank is read, while the other
is written; on alternate passes it is reversed. The ADM-
XRC platform limits the total parallelism available with this
approach to 2× due to the number of independent memory
banks available. In Figure 2b, there are again two
processing elements. In this case, a spatial decomposition
approach is used where each processing element calculates
an entire intermediate matrix. Results from each
intermediate value are summed before being written to the
on-board memory. This method only requires a single
memory bank, but additional FPGA resources are used to

Partial
Pixel A
Buffer

Full
Pixel A
Buffer

Multiply
and

Scale
Sum

External M
em

ory

Address C
ontroller

Partial
Pixel A
Buffer

Full
Pixel A
Buffer

Multiply
and

Scale
Sum

External M
em

ory

Pixel A
Buffer

Pixel A
Buffer

Multiply
and

Scale

Sum

E
xternal M

em
ory

A
ddress C

ontroller

Pixel B
Buffer

Pixel B
Buffer

Multiply
and

Scale

A
dder Tree

Figure 2a — Spectral Decomposition Figure 2b — Spatial Decomposition

 6

construct the adder tree. While two processing elements are
shown here, this approach can be scaled to the size of the
FPGA in use.

The input data is 16-bit integer data from an image sensor
or a preprocessing stage. Fortunately, this numerical format
allows for the use of integer multiplication and addition for
the majority of the hardware. Referring to Figure 2b, the
multiplication, scaling, and adder tree all use integer
arithmetic to reduce the amount of logic resources required.
 Before writing data values to temporary storage (or back to
main memory), the fixed-point result is converted into
single-precision floating point format. There are two
benefits from using this approach. First, only two floating-
point operations are required in the design, fixed-to-
floating-point conversion and addition. Second, processing
on a traditional microprocessor would result in floating-
point numbers; therefore, the results are already in the
correct format for subsequent processing steps. An
additional benefit of converting to floating point after the
adder tree is better preservation of precision than compared
to adding each result individually in floating point.

Additional computational savings can be obtained by taking
advantage of the symmetric nature of the autocorrelation
matrix. Instead of calculating the entire matrix, only the
upper triangular portion is truly needed. At the end of the
computation, the lower triangular portion can be filled in, if
desired. This approach leads to almost 2× savings in
computation, but it complicates memory addressing and
load balancing between processing elements when using a
spectral decomposition. The necessary modifications are

straightforward for the spatial decomposition approach.

Before implementing a design in hardware, some rough
estimates of performance can be gathered. By using the RC
Amenability Test [12], we can get an estimate of
performance based on communication and computation
ratios in a given algorithm. This simple test requires
information about the I/O capabilities and requirements of
the system, as well as rough estimates of throughput of the
hardware design. Figure 3 shows the results from using this
analysis for a 64-core, spatial decomposition hardware
design targeting 1,024 spectral bands. A small amount of
speedup was observed with as few as four hardware cores,
and with 64 cores, a speedup of 24× should be possible.
Additional improvement can be achieved by using double
buffering (i.e. transfer the next set of data while the current
set is still processing). The bandwidth limitations of the
PCI bus do not significantly limit the performance of this
hardware design. Based on the performance estimates, and
given a large enough FPGA, the PCI bus should be able to
sustain a 512-core design. An important trend that can be
seen using this analysis is that the hardware performance
advantage over traditional software processing grows as the
number of spectral bands is increased; speedup may be
difficult to achieve when using less than 64 spectral bands.

Target Classification Core

The Virtex4-SX55 has a large number of built-in 18×18
multiply-and-accumulate blocks available for use. In fact, if
the data and weight information were to be presented as 18-
bit fixed-point numbers, it would be possible to classify up
to 512 classes in parallel. (Due to routing difficulties, this

throughput(ideal) (MB/s) 133
α(input) 0<α<1 0.75
α(output) 0<α<1 0.75
of Input Elements # 1048576
of Output Elements # 1048576
Bytes per element (B) 4

t(soft) (sec) 146.381
N (iterations) 8

of Comp Elements # 2048
Ops per element (ops/elem) 1048576
throughput(proc) (ops/cycle) 64
f(clock) (MHz) 50

Double Buffered Single Buffered
t(soft) 1.464E+02 <= (same)
t(comm) 8.410E-02 <= (same)
t(comp) 6.711E-01 <= (same)
t(RC) 5.369E+00 6.041E+00

Double Buffered Single Buffered
util(proc) 100.0% 88.9%
util(IO) 12.5% 11.1%
speedup(kernel) 27.3 24.2

estimated FPGA execution time

original software execution time

Software Parameters

time to send & recv data to/from FPGA

calls to FPGA for HW-assisted app

time to process one input buffer of data

Computation Parameters

Constants/User-Defined Parameters

Constants/User-Defined Parameters

Communication Parameters
PCI-X, PCI-Express, etc…

Throughput efficiency to FPGA

of elements written to FPGA

precision

Throughput efficiency from FPGA

of elements read from FPGA

Calculated Key Metrics

all SW, RC-ported section only

of elements of computation

clock frequency of FPGA core

Calculated Sub-metrics (in seconds)

operations performed per cycle
related to order of complexity

Figure 3 — RC Amenability Test for ACSM Core

throughput(ideal) (MB/s) 500
α(input) 0<α<1 0.75
α(output) 0<α<1 0.75
of Input Elements # 1048576
of Output Elements # 16384
Bytes per element (B) 4

t(soft) (sec) 13.854
N (iterations) 128

of Comp Elements # 2048
Ops per element (ops/elem) 8192
throughput(proc) (ops/cycle) 8
f(clock) (MHz) 50

Double Buffered Single Buffered
t(soft) 1.385E+01 <= (same)
t(comm) 1.136E-02 <= (same)
t(comp) 4.194E-02 <= (same)
t(RC) 5.369E+00 6.823E+00

Double Buffered Single Buffered
util(proc) 100.0% 78.7%
util(IO) 27.1% 21.3%
speedup(kernel) 2.6 2.0

of elements of computation

clock frequency of FPGA core

Calculated Sub-metrics (in seconds)

operations performed per cycle
related to order of complexity

Calculated Key Metrics

all SW, RC-ported section only

of elements written to FPGA

precision

Throughput efficiency from FPGA

of elements read from FPGA

Constants/User-Defined Parameters

Communication Parameters
PCI-X, PCI-Express, etc…

Throughput efficiency to FPGA

estimated FPGA execution time

original software execution time

Software Parameters

time to send & recv data to/from FPGA

calls to FPGA for HW-assisted app

time to process one input buffer of data

Computation Method A

Constants/User-Defined Parameters

Figure 4 — RC Amenability Test for Classification Core

 7

number would not truly be achievable.) The weight vectors
are loaded once for each image at startup. When
computation begins, pixel vectors are loaded onto the
FPGA, and the classifications are stored in on-board
memory. Each classification is calculated independently,
with each hardware core containing one multiply-
accumulate block and one weight buffer. A pixel buffer
containing the current pixel vector being classified is shared
among every core.

When operating on a traditional microprocessor, target
classification would normally work on floating-point
numbers. If an FPGA design uses fixed-point arithmetic, an
analysis on the precision effects would need to be
performed. Conversion from floating-point precision to
fixed-point precision can be handled easily on the FPGA,
but prior knowledge of typical weight ranges can ensure
acceptable amounts of precision loss. A fully floating-point
target classification design would not scale well due to the
limited resources on the FPGA.

Again, we can look at some performance estimates before
spending resources on constructing a hardware design. The
results of the target classification amenability test are shown
in Figure 4. Unlike the previous example, target
classification is not likely to see significant gains from using
a hardware-specific core. In this case, the I/O is a large
bottleneck and adding additional hardware resources would
have no effect on performance. A throughput of
approximately 500 MB/s from the host processor to the
FPGA would be needed to achieve a 2× speedup over the
AltiVec-optimized target classification stage. As a result,
we will not migrate the target classification stage to an
FPGA co-processor for our experimental analyses.

6. EXPERIMENTAL RESULTS AND ANALYSIS

This section will combine and analyze the approaches used
in Sections 4 and 5, by discussing the complete architecture
of our experimental platform and presenting performance
results obtained by executing and analyzing the case study
HSI application with various levels of parallelism.

Experimental Testbed

A 10-node PowerPC cluster was used to gather results.
Each node contains a 1.4 GHz PowerPC 7455 with AltiVec
and 1GB of SDRAM. The nodes are connected together
with Gigabit Ethernet. Additionally, four nodes are
equipped with ADM-XRC-4 FPGA boards from Alpha
Data, each containing a Xilinx Virtex4-SX55 FPGA and
four independent 4MB SRAM modules. This testbed is
intended to simulate a possible “next-generation”
Dependable Multiprocessor system. The major differences
between the testbed and the current DM system are a faster
CPU (1.4GHz vs. 1.0GHz) and the use of an FPGA
coprocessor.

AltiVec Performance Results

Using ATLAS 3.6.0 compiled for the testbed system, the
ACSM calculation, weight computation, and classification
function calls were replaced with their BLAS equivalents.
Table 2 shows the comparison of the full application
performance using AltiVec-enabled code versus the original
baseline. Through the use of cache prefetching, AltiVec
instructions, and other optimizations, the program using the
ATLAS libraries was able to decrease execution time by at
least 80% for a range of image parameters. Optimizations
that account for symmetry in the autocorrelation matrix
calculation were not used in either the baseline or the
AltiVec version. The maximum amount of speedup occurs
when processing images with 256 spectral bands,
corresponding to the largest tested matrix size that is
capable of fitting in the L2 cache of a PowerPC 7455
processor.

Table 2 — Full, HSI Speedup: AltiVec versus Baseline
Spectral Bands Baseline (s) AltiVec (s) Speedup

64 43.34 6.70 6.47
256 624.83 85.47 7.31

1024 10634.35 1964.11 5.41

FPGA Performance Results

Table 3 shows the amount of speedup that is achievable
during the ACSM calculation when using an FPGA. The
results were gathered from three 512×512 images, each with
a differing number of spectral bands. The performance of a
single FPGA-assisted node was compared to the AltiVec-
enabled execution times for ACSM portion of the
application. As we expected from the analysis in the
previous section, images with more spectral bands
experience a larger benefit from the hardware solution,
reaching a 20× improvement when processing images with
1,024 spectral bands. For images that only contain a few
spectral bands, the AltiVec-enabled version has the fastest
execution.

For full application performance on a single node, the
FPGA-assisted version of HSI will use the FPGA for
ACSM calculations while the weight computation and target
classification functions will be identical to those used by the
AltiVec-enabled version. For subsequent results, we will
focus on images with either 256 or 1,024 spectral bands.
The former value is approximately the number of spectral
bands available on current sensors, such as AVIRIS or the
Hyperion sensor on EO-1 [13, 14]. The larger hyperspectral
image will be used to show trends for possible future
sensors.

Table 3 — ACSM Speedup: FPGA versus AltiVec

64 5.55 1.79 3.10 2.27
256 81.14 7.17 11.31 7.48

1024 1917.22 94.46 20.30 14.23

Full HSI
SpeedupSpectral Bands AltiVec (s) FPGA (s) ACSM

Speedup

 8

Multi-Node Performance Results

The HSI algorithm was parallelized with MPI using the
spatial data decomposition method described in Section 4.
The ACSM calculation and target classification stages were
parallelized such that each node processes an independent
portion of the original image, and the results are returned to
a master node. Weight computation is performed
sequentially on the single master node, after which the
weights are broadcasted to all nodes before the beginning of
the target classification stage.

Figure 5 shows the results of this parallelization using both
the AltiVec-enabled software, as well as the FPGA-assisted
version for the entire HSI application. In this experiment,
the image is a 512×512 image with either 256 or 1,024
spectral bands. The 10-node cluster using the AltiVec-
enabled HSI code was able to complete a 256-spectral-band
image in 14 seconds and a 1,024-spectral-band image in
272 seconds, for speedups of 6 and 7.2 over the single-node
performance, respectively. The 4-node FPGA-assisted
system can finish a 256 spectral band image in 6 seconds
and a 1,024 spectral band image in 60 seconds, a speedup of
13 and 26, respectively, over a single AltiVec-enabled node.

Parallel HSI Performance

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

Number of Nodes

Ex
ec

ut
io

n
Ti

m
e

(s
)

AltiVec (256 Bands) AltiVec (1024 Bands) FPGA (256 Bands) FPGA (1024 Bands)

Figure 5 — Parallel System Performance (512×512 Image)

For the AltiVec-enabled version of the application, the
scalability of the parallel code is very good for small node
sizes. At two or four nodes, the program is able to achieve
approximately 90% parallel efficiency. However, as the
number of nodes scales higher the parallel efficiency,
shown in Figure 6, begins to drop; 10-node performance
achieves between 60% and 70% efficiency. As the number
of nodes in the system increases, the computation-to-
communication ratio begins to decrease, and the effects of
the network start to impact performance.

For the FPGA-assisted version of the full HSI application,
the single-node baseline executes 14 times faster than the
AltiVec-enabled version, when using 1,024 spectral bands.
This fact has the effect of changing the application profile
so that the weight computation stage, which was not
parallelized, is no longer an insignificant portion of the

application. For example, weight computation takes
approximately 22 seconds for an image using 1,024 spectral
bands, accounting for 16% of the total execution time. For
that reason, the parallel efficiency of the hardware-
accelerated version is significantly lower than the original
software version. Additionally, since the FPGAs complete
the ACSM computation so quickly, the communication time
using Gigabit Ethernet becomes a significant performance
factor. A system using all four FPGA-equipped nodes in
parallel achieves less than 60% parallel efficiency. Figure 6
shows the parallel efficiency for both the AltiVec-enabled
and FPGA-assisted applications. In order to significantly
improve the efficiency of the parallel algorithm, it will be
necessary to parallelize the weight computation section of
the application.

HSI Parallel Efficiency

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of Nodes

Ef
fic

ie
nc

y
(%

)

AltiVec (256 Bands) AltiVec (1024 Bands) FPGA (256 Bands) FPGA (1024 Bands)

Figure 6 — Parallel Efficiency (512×512 Image)

7. POWER CONSUMPTION

Power consumption is a significant design criterion for
embedded systems, and space systems have a particularly
strict power envelope. This section will explore the power
consumption of the systems previously discussed. Table 4
shows the power consumption of several important
components used in this analysis. The FPGA power
consumption was gathered using the Xilinx XPower
Estimator spreadsheet, with an average toggle rate of 25%.
The other power values were collected from the appropriate
datasheets. When fully utilized, the ADM-XRC-4 FPGA
board, including the on-board SRAM, will consume
approximately 8W. On the other hand, the maximum power
consumption of the PowerPC 7455 is 45W. Other
contributors to power consumption, such as the network
interconnect or system memory, could not be reliably
measured and are not included in the following analysis.

For the single-node AltiVec-enabled version of the HSI
application, we will assume that the processor reaches its
maximum power consumption, 45 Watts, since all sections
of the code are computationally intensive. During weight
computation on a multi-node system, only one processor

 9

will consume maximum power, while the other processors
consume less power as they wait for results. The average
power consumption of the AltiVec-enabled system is given
by Equations 4 through 7, where N is the number of nodes
in the system and tACSM, tWC, and tTC are the execution times
of the ACSM, weight computation, and target classification
stages, respectively. The power consumptions during each
major function, PACSM, PWC, and PTC, are estimated, and
those values are applied proportionally to estimate the
average power, Pavg, of the system.

 CPUmaxACSM PNP ⋅= (4)

 () CPUtypCPUmaxWC 1 PNPP ⋅−+= (5)

 CPUmaxTC PNP ⋅= (6)

TCWCACSM

TCTCWCWCACSMACSM
avg ttt

tPtPtP
P

++
⋅+⋅+⋅

= (7)

For the FPGA-assisted version of the application, we will
assume the CPU consumes only 34 Watts (typical) when the
FPGA is being utilized, and the FPGA is in idle mode when
the CPU is performing weight computation or target
classification. The average power consumption of a node is
determined by Equation 7, shown above, and Equations 8
through 10, shown below. During the ACSM calculation,
each node consumes maximum power from the FPGA and
typical power from the CPU. During weight computation,
the CPU on one node consumes maximum power while all
other devices consume their typical values. During target
classification, each CPU is assumed to consume maximum
power while the FPGAs consume their idle values. The
average power of each system is determined by the
percentage of time spent in each function.

 ()CPUtypFPGAonACSM PPNP +⋅= (8)

 () FPGAoffCPUtypCPUmaxWC 1 PNPNPP ⋅+⋅−+= (9)

 ()FPGAoffCPUmaxTC PPNP +⋅= (10)

To compare algorithms, we will use an energy metric,
power multiplied by time. Table 5 augments the parallel
performance data with estimates of average power for each
system, using the previous equations. The most energy-
efficient system is the single-node, FPGA-assisted system.
The FPGA not only provides a 15× speedup, but the
combined power consumption of the FPGA and the CPU in
a low computational scenario (PFPGAon + PCPUtyp) is less than
the maximum power consumption of the CPU (PCPUmax). As
more nodes are added to the system, shifting performance
bottlenecks to non-parallelized sections of code, the
additional CPUs will be unused for longer periods of time
consuming a reduced amount of power. While the energy
usage of the FPGA-assisted system is much lower than the
AltiVec-enabled system, the difference in power
consumption is small, less than 5% of the total system
power consumption. The reduction in energy consumption
comes directly from the reduced execution time for FPGA-
assisted systems.

8. CONCLUSIONS

The use of non-traditional processing resources such as
FPGAs or AltiVec engines is an effective method for
increasing performance in systems where computational
power is the largest concern. Using a few simple profiling
and estimation techniques on an original sequential
program, candidates for acceleration are easily determined.
The ACSM calculation, accelerated using an FPGA co-
processor, was able to achieve a 15× speedup. While
FPGAs are capable of large performance gains in many
situations, I/O bandwidth can limit their potential, as seen
with target classification, which was not able to achieve a
speedup with the current platform’s bandwidth capabilities.
By optimally combining FPGA and AltiVec resources to
create a multi-paradigm HSI application, single-processor
performance could be improved by as much as two orders
of magnitude over the original software baseline.
Additional performance gains were possible with multiple
nodes communicating using MPI, achieving a 33× speedup
over a single AltiVec-enabled node using four FPGA-
equipped nodes. The major factor limiting parallel

Table 4 — Power Consumption Values
Variable Description Value

P CPUmax Maximum CPU power consumption 45W
P CPUtyp Typical CPU power consumption 34W
P FPGAon FPGA power consumption during computation 8.0W
P FPGAoff FPGA power consumption while idle 7.1W

Table 5 — Parallel System Performance and Power Estimates

Nodes Execution Time (s) Speedup Avg. Power (W) Energy (kJ) Execution Time (s) Speedup Avg. Power (W) Energy (kJ)
1 1964.11 1.00 45.00 88.4 127.00 15.46 44.39 5.6
2 1001.16 1.96 89.76 89.9 81.90 23.98 87.20 7.1
4 567.73 3.46 178.75 101.5 59.76 32.86 172.51 10.3
6 434.92 4.52 267.14 116.2
8 330.16 5.95 354.82 117.1

10 272.71 7.20 441.90 120.5

AltiVec-Enabled FPGA-Assisted

 10

scalability was the sequential nature of the weight
computation stage. The average power consumption of an
FPGA-assisted node was estimated to be almost equivalent
to a non-FPGA node (45W), due to the FPGA power
consumption offsetting the reduced amount of power
consumed by the CPU while idle.

Future work may explore methods for efficiently
parallelizing the weight computation section, which
involves a large matrix inversion and several small matrix
multiplications. Additionally, we plan to explore the use
of algorithm-based fault tolerance (ABFT) in this HSI
algorithm. ABFT is an efficient method of protecting
against data corruption, which can be useful for high-
altitude or space missions where single-event upsets are
likely.

ACKNOWLEDGMENTS

This work was supported in part by the NMP Program at
NASA, our Dependable Multiprocessor project partners at
Honeywell Inc., and the Florida High-Technology Corridor
Council. The authors would like to thank Casey Reardon
and Eric Grobelny of the HCS Lab for their support in
writing this paper.

REFERENCES

[1] J. Samson, J. Ramos, I. Troxel, R. Subramaniyan, A.
Jacobs, J. Greco, G. Cieslewski, J. Curreri, M. Fischer, E.
Grobelny, A. George, V. Aggarwal, M. Patel, and R.
Some, “High-Performance, Dependable Multiprocessor,”
Proc. of IEEE Aerospace Conference, Big Sky, MT,
March 4-11, 2006.

[2] J. Greco, G. Cieslewski, A. Jacobs, I. Troxel, and A.
George, “Hardware/Software Interface for High-
Performance Space Computng with FPGA Coprocessors,”
Proc. of IEEE Aerospace Conference, Big Sky, MT,
March 4-11, 2006.

[3] W. Lugo-Beauchamp, K. Cruz, C. Carvajal-Jimenez, and
W. Rivera, “Performance of Hyperspectral Imaging
Algorithms Using Itanium Architecture,” Proc. of
IASTED International Conference, pp. 327-332,
November 2004.

[4] A. Plaza, D. Valencia, J. Plaza, and C. Chang, “Parallel
Implementation of Endmember Extraction Algorithms
from Hyperspectral Data,” IEEE Geoscience and Remote
Sensing Letters, Vol. 3, no. 3, pp. 334-338, July 2006.

[5] A. Plaza, D. Valencia, J. Plaza, and P. Martinez,
“Commodity cluster-based parallel processing of
hyperspectral imagery,” Journal of Parallel and
Distributed Computing, no. 66, pp. 345-358, 2006.

[6] T. Fry, and S. Hauck, “Hyperspectral Image Compression
on Reconfigurable Platforms,” Proc. of 10th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines, pp. 251-260, 2002.

[7] H. Du, H. Qi, “A Reconfigurable FPGA System for
Parallel Independent Component Analysis,” EURASIP
Journal on Embedded Systems, Vol. 2006, Article ID
23025, 12 pages, 2006.

[8] E. El-Araby, T. El-Ghazawi, J. Le Moigne, and K. Gaj,
“Wavelet spectral dimension reduction of hyperspectral
imagery on a reconfigurable computer,” Proc. of IEEE
International Conference on Field-Programmable
Technology, pp. 399-402, Dec. 6-8, 2004.

[9] C. Chang, H. Ren, and S. Chiang, “Real-time processing
algorithms for target detection and classification in
hyperspectral imagery,” IEEE Transactions on
Geoscience and Remote Sensing, Vol. 39, no. 4, pp. 760-
768, April 2001.

 [10] R. Whaley, A. Petitet, and J. Dongarra, “Automated
Empirical Optimization of Software and the ATLAS
Project,” Parallel Computing, Vol. 27, no. 1-2, pp. 3-25,
2001.

[11] C. Lawson, R. Hanso, D. Kincaid, and F. Krogh, “Basic
Linear Algebra Subprograms for Fortran Usage,” ACM
Transactions on Mathematical Software (TOMS), Vol. 5,
issue 3, pp. 308-323, September 1979.

[12] B. Holland, K. Nagarajan, C. Conger, A. Jacobs, and A.
George, “RAT: A Methodology for Predicting
Performance in Application Design Migration to FPGAs,”
First International Workshop on High-Performance
Reconfigurable Computing Technology and Applications
(HPRCTA), Supercomputing Conference (SC), Reno, NV,
Nov. 11, 2007.

 [13] R. Green, M. Eastwood, C. Sarture, T. Chrien, M.
Aronsson, B. Chippendale, J. Faust, B. Pavri, C. Chovit,
M. Solis, M. Olah, O. Williams, “Imaging spectroscopy
and the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS),” Remote Sensing of Environment, Vol. 65, no.
3, pp. 227-248, September 1998.

[14] S. Ungar, J. Pearlman, J. Mendenhall, and D. Reuter,
“Overview of the Earth Observing One (EO-1) mission,”
IEEE Transactions on Geoscience and Remote Sensing,
Vol. 41, issue 6, pp. 1149-1159, June 2003.

 11

BIOGRAPHY

Adam Jacobs is a Ph.D. student in
Electrical and Computer Engineering at
the University of Florida. He is a
research assistant in the Advanced Space
Computing group at the High-

Performance Computing and Simulation Research
Laboratory. His research interests include fault-tolerant
FPGA architectures and high-performance, multi-paradigm
computing. He is a student member of the IEEE.

Chris Conger is a Ph.D. student in
Electrical and Computer Engineering at
the University of Florida. He is a research
assistant with the NSF Center for High-
performance Reconfigurable Computing
(CHREC), investigating dynamic partial
reconfiguration and reconfigurable fault

tolerance in FPGA systems. His research interests include
reconfigurable and fault-tolerant embedded computing,
space systems, and defense applications.

Alan D. George is Professor of Electrical
and Computer Engineering at the
University of Florida, where he serves as
Director of the HCS Research Lab and
Director of the new NSF Center for High-
performance Reconfigurable Computing
(CHREC). He received the B.S. degree in

Computer Science and the M.S. in Electrical and Computer
Engineering from the University of Central Florida, and the
Ph.D. in Computer Science from the Florida State
University. Dr. George's research interests focus upon
high-performance architectures, networks, systems, and
applications in reconfigurable, parallel, distributed, and
fault-tolerant computing. He is a senior member of IEEE
and SCS, a member of ACM and AIAA, and can be reached
by e-mail at ageorge@ufl.edu.

 12

