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SUMMARY The hardness of the syndrome decoding problem (SDP) is
the primary evidence for the security of code-based cryptosystems, which
are one of the finalists in a project to standardize post-quantum cryptogra-
phy conducted by the U.S. National Institute of Standards and Technology
(NIST-PQC). Information set decoding (ISD) is a general term for algo-
rithms that solve SDP efficiently. In this paper, we conducted a concrete
analysis of the time complexity of the latest ISD algorithms under the limi-
tation of memory using the syndrome decoding estimator proposed by Esser
et al. As a result, we present that theoretically nonoptimal ISDs, such as
May–Meurer–Thomae (MMT) andMay–Ozerov, have lower time complex-
ity than other ISDs in some actual SDP instances. Based on these facts,
we further studied the possibility of multiple parallelization for these ISDs
and proposed the first GPU algorithm for MMT, the multiparallel MMT
algorithm. In the experiments, we show that the multiparallel MMT algo-
rithm is faster than existing ISD algorithms. In addition, we report the first
successful attempts to solve the 510-, 530-, 540- and 550-dimensional SDP
instances in the Decoding Challenge contest using the multiparallel MMT.
key words: syndrome decoding problem, code-based cryptography, infor-
mation set decoding (ISD), graphics processing unit (GPU)

1. Introduction

The security of code-based cryptosystems such as the
McEliece cryptosystem is based on the syndrome decod-
ing problem (SDP) [1]. Information set decoding (ISD)
is known as a family of algorithms for efficiently solving
SDP. ISD probabilistically finds a solution for a given SDP
based on combinatorics. To date, many ISD algorithms have
been proposed including Dumer [2], May–Meurer–Thomae
(MMT) [3], Becker–Joux–May–Meurer (BJMM) [4], May–
Ozerov (MO) [5] and Both–May (BM) [6]. In these papers,
the asymptotic time complexity for each ISD was analyzed.
For example, the asymptotic time complexity of Both–May
in the setting of full distance decoding is 20.0885n, which is
known to be the smallest among existing ISDs. Here, n is
the dimension of the given SDP. In addition to ISD, several
papers provided a computational analysis of more general
decoding techniques [7]–[9]. There is also work on an es-
timator that analyzes the actual time complexity of ISDs
for SDPs with practical problem sizes associated with real
cryptosystems [10]–[13].

To estimate a secure parameter set for code-based cryp-
tosystems, it is important not only to verify the computational
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complexity of ISD algorithms theoretically but also to verify
towhat level of difficulty the actual SDP can be solved practi-
cally. There is existing research on fast ISD implementations,
including FPGA [14] and GPU implementations of Dumer’s
algorithm [15]. Recently, Esser et al. presented fast CPU-
based concrete implementations of the MMT and BJMM
algorithms in [16]. There are also papers on proposals for
quantum ISD algorithms, albeit simulation-based [17], [18].
However, these papers lacked a comparative study with other
ISDs in terms of computational complexity.

1.1 Contributions

In this paper, we analyze the actual time complexity of ma-
jor ISD algorithms under the limitation of memory using a
syndrome decoding estimator [10]. We also derive the op-
timal parameters of each ISD algorithm applicable to real
SDP instances, containing a difficulty level of approximately
250, which corresponds to the highest dimension of SDP
actually solved up to now (August 2021). As a result, con-
trary to the existing asymptotic results, we confirmed that the
MMT algorithm (asymptotic runtime: 20.112n) is faster than
BJMM (20.102n) for several memory sizes, including those
suitable for current midrange PC/Servers. Additionally, as
confirmed in [10], we showed that the May–Ozerov (MO)
algorithm (20.953n) has a smaller runtime than Both–May
(BM) (20.0885n) for some memory sizes and instances.

Furthermore, we found that the MMT algorithm can
be massively parallelized without increasing the amount of
memory required, and proposed a first GPU-optimized al-
gorithm for MMT called Multiparallel MMT. In our ex-
periments, we implemented Multiparallel MMT using the
CUDA language and compared the runtime with those of
existing CPU/GPU-based ISD algorithms. As a result, our
proposed algorithm achieved relatively smaller expected run-
time than conventional ISD for a 530-dimensional SDP in-
stance. In addition, we conducted experiments on large-scale
SDP instances in the Decoding Challenge [19], a cryptanaly-
sis web contest regarding code-based cryptosystems, known
as benchmark websites, to show the levels of difficulty of
code-based cryptosystems that can actually be solved with
the current algorithms and machine power. We succeeded
in solving the 510-, 530-, 540- and 550-dimensional SDP
for the first time using our proposed algorithm and several
modern GPUs. We believe that our results will contribute
to the selection of more rigorous security parameters for
post-quantum cryptosystems.

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers
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2. Notation

Let [i, j] be a set of integers {i, i + 1, . . . , j}. In particular,
[k] = {1, . . . , k}. An n-dimensional column vector is de-
noted by x = (x1, . . . , xn) ∈ Fn2 and x[i] = xi . A subsequence
of x from i to j (i < j) is denoted by x[i, j] = (xi, . . . , xj).
The zero vector is written as 0. A matrix of size m× n is de-
noted by A ∈ Fm×n2 . A−1 is the inverse of A. The horizontal
concatenation of two matrices A ∈ Fm×n2 and B ∈ Fm×n2 is
denoted by (A | B) ∈ Fm×2n

2 . A size of matrix A ∈ Fm×n2
is denoted by |A| = mn. I is the the identity matrix, and O
denotes the zero matrix. The Hamming weight for x ∈ Fm2
is denoted by wt(x) = |{i | x[i] = 1}|. The SDP is defined
as follows:

Definition 1 (SDP). For any integers n, k and w such that k ≤
n and w ≤ n, consider a parity check matrix H ∈ F(n−k)×n2
and a syndrome s ∈ Fn−k2 . Find a vector (solution) e ∈ Fn2 of
wt(e) = w such that He = s.

We denote a syndrome decoding problem with param-
eters n, k, w by SDP(n, k, w).

3. Information Set Decoding (ISD)

ISD is a general term for algorithms based on combina-
torics to solve SDP efficiently. A variety of ISDs have
been proposed thus far and can be roughly divided into
two categories: algorithms without the nearest neighbor
(NN) and those based on NN algorithms. In our pa-
per, we deal with six major ISD algorithms: Prange [20],
Dumer [2], May–Meurer–Thomae (MMT) [3], Becker–
Joux–May–Meurer (BJMM) [4] for ISDs without NN, and
May–Ozerov (MO) [5] and Both–May (BM) [6] for ISDs
with NN.

Before explaining each ISD, we will describe the com-
mon framework of ISD algorithms. Inputs to the ISD are
integers n, k, w, the parity check matrix H ∈ F(n−k)×n2 and the
syndrome s ∈ Fn−k2 . ISD outputs e ∈ Fn2 satisfying He = s
and wt(e) = w. ISD performs random column permutation
and Gaussian elimination on the input H and s. That is,
for an invertible column permutation matrix P ∈ Fn×n2 and
a matrix G ∈ F(n−k)×(n−k)2 corresponding to the Gaussian
elimination, let (Q | I) ← GHP and ŝ ← Gs. After this, a
search algorithm is performed on the matrix Q to compute
ê = Pe satisfying (Q | I)ê = ŝ and wt(ê) = w. If such an
ê is found, then e ← P−1ê is a solution of SDP(n, k, w). If
ê is not found, then the above procedure is performed again
for a different column permutation matrix P. We show the
common framework for ISD in Algorithm 1.

We will briefly describe the time complexity of ISD,
also called the work factor (WF). Let T be the time com-
plexity required for the single for loop (Lines 2–9) in Algo-
rithm 1. Additionally, let P be the probability of successfully
finding a solution with the single call of the search function
(Line 6). In this case, the WF of an ISD is expressed as

Algorithm 1: ISD Framework
Input: n, k , w,H, s
Output: e

1 e← ⊥
2 for i ← 1 To P−1 do
3 P← pick one permutation randomly
4 (Q | I) ← GHP
5 ŝ← Gs
6 ê← Search(Q, ŝ)
7 if wt(ê) = w then
8 e← P−1ê

9 if e , ⊥ then break

10 return e

TP−1. The actual values of T and P vary depending on the
ISD algorithm.

3.1 Prange

The Prange algorithm is the first ISD proposed in 1962.
In Prange, we do not perform any search on the matrix Q
but only check the weights of ŝ. If wt(ŝ) = w, then e =
P−1ê is a solution, where ê = (0, ŝ). This is because if
wt(ŝ) = w, then (Q | I)ê = ŝ and wt(ê) = w are satisfied by
taking ê = (0, ŝ). Intuitively, it is the case that for a matrix
(Q | I), all w columns corresponding to positions of “1”s
in e are contained in the part of I. Therefore, if a column
permutation P is applied to H such that all w positions of
“1”s in e are contained in I, then Prange can find a solution.
The probability of such a column permutation occurring
is P =

(n−k
w

)
/min(2n−k,

(n
w

)
), and the expected number of

loops required for Prange in Algorithm 1 is P−1. The time
complexity T required for one loop of Prange is the sum of
the time complexity required for column permutation and
Gaussian elimination, namely, Tge = n(n − k). The space
complexity S required for Prange is the size of the input
matrix H: S = |H| = n(n − k).

3.2 Dumer

In Dumer’s algorithm, an input matrix H is transformed as
follows:(

Q1 O
Q2 I

)
← GHP, (1)

where Q1 ∈ F
`×(k+`)
2 and Q2 ∈ F

(n−k−`)×(k+`)
2 for an integer

parameter ` > 0. Then, we run the following search algo-
rithm on the matrix Q1. First, we construct two lists L1 and
L2 for the enumeration parameter p > 0:

L1 = {(e1,Q1e1) | e1 = (a,0),a ∈ I} , (2)
L2 =

{
(e2,Q1e2 + ŝ[`]) | e2 = (0,a),a ∈ I

}
, (3)

where we define a set of binary vectors of weight p: I = {a ∈
F
(k+`)/2
2 | wt(a) = p}. L1 and L2 store the combination of p
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columns chosen from the left and right halves of Q1, respec-
tively. Then, for each element (e1,x1) ∈ L1, we run a depth-1
search for an element (e2,x2) ∈ L2 that satisfies x1 = x2.
This search can be implemented using buckets in time
max(|L1 |, |L1 |

2/2`). For each pair satisfying x1 = x2, there
exists a solution e if wt(Q2e1 +Q2e2 + s[`+1,n−k]) = w − 2p,
where e = P−1(e1 + e2,Q2e1 + Q2e2 + s[`+1,n−k]). Here,
we consider the success probability P of the column per-
mutation P such that ê = Pe has the correct form, i.e., w
“1”s in ê are distributed as p, p, w − 2p in the coordinate
intervals [1, (k + `)/2], [(k + `)/2 + 1, k + `], [k + ` + 1,n]
of ê, respectively. By considering the distribution of the
columns corresponding to the solutions, we obtain P =(
(k+`)/2

p

)2 (n−k−`
w−2p

)
/min(2n−k,

(n
w

)
). The time complexity T re-

quired for 1 loop of Dumer is the sum of the runtime required
for column permutation and Gaussian elimination and the
runtime required for Dumer’s search (list construction and
matching):

T = Tge + |L1 | +max(|L1 |, |L1 |
2/2`). (4)

where |L1 | =
(
(k+`)/2

p

)
. The required memory is S = |H| +

|L1 |.

3.3 May–Meurer–Thomae

In the MMT algorithm, we consider the following transfor-
mation of the matrix H:

©«
Q1
Q2

O
Q3 I

ª®¬← GHP, (5)

where Q1 ∈ F
`1×(k+`)
2 , Q2 ∈ F

`2×(k+`)
2 and Q3 ∈

F
(n−k−`)×(k+`)
2 for integer parameters `1 > 0, `2 > 0

and ` = `1 + `2. First, we construct four depth-2 lists
L11, L12, L21, L22 for the matrix Q1 as follows:

L11 = {(e11,Q1e11) | e11 = (a,0),a ∈ I2} , (6)
L12 = {(e12,Q1e12) | e12 = (0,a),a ∈ I2} , (7)
L21 = {(e21,Q1e21) | e21 = (a,0),a ∈ I2} , (8)
L22 =

{
(e22,Q1e22 + ŝ[`1])| e22 = (0,a),a ∈ I2

}
, (9)

where I2 = {a ∈ F(k+`)/22 | wt(a) = p/2}. Note that the
weight of a is p/2, unlike in Dumer. Then, the MMT search
starts from matching depth-2 lists regarding the `1-bit prefix
of binary vectors. Namely, L11 is matched with L12, and L21
is matched with L22. For instance, for (e11,Q1e11) ∈ L11,
we run a depth-2 search for an element (e12,Q1e12) ∈ L12
satisfying Q1e11 = Q1e12. As a result, the following 2
depth-1 lists are obtained in time max(|L11 |, |L11 |

2/2`1 ):

L1 = {(e1,Q2e1) | wt(e1) = p,Q1e1 = 0} , (10)
L2 =

{
(e2,Q2e2 + ŝ[`1+1,`]) | wt(e2) = p,Q1e2 = ŝ[`1]

}
,

(11)

where e1 = e11 + e12 and e2 = e21 + e22. Further-
more, for each depth-1 element (e1,Q2e1) ∈ L1, MMT

searches for an element (e2,Q2e2 + ŝ[`1+1,`]) ∈ L2 satisfy-
ing Q2e1 = Q2e2 + ŝ[`1+1,`] in time max(|L1 |, |L1 |

2/2`2 ). In
this way, we can compute the combination of 2p columns of
Q whose ` = `1 + `2 bit prefix exactly matches the syndrome
ˆs[`]. Finally, the remaining n− k − ` rows of Q (Q3) are veri-
fied. For each pair of L1 and L2, we can derive the solution e
if wt(Q3e1+Q3e2+ ŝ[`+1,n−k]) = w−2p as in Dumer’s algo-
rithm, where e = P−1(e1 + e2,Q3e1 + Q3e2 + ŝ[`+1,n−k]).
In this paper, the success probability P that ê = Pe
has the correct form by the random permutation is set to
P =

(
(k+`)/2

p

)2 (n−k−`
w−2p

)
/min(2n−k,

(n
w

)
) for simplicity as in the

original paper [3], which is the same as Dumer. Note that
the formula is not accurate since MMT can also find ê that
“1”s in ê are distributed as, for example, p − 2, p, w − 2p + 2
by considering the case where “1 + 1 = 0” that occurs when
merging L1 and L2 as in BJMM. The time complexity re-
quired for 1 loop of MMT is the sum of the runtime required
for the permutation, Gaussian elimination, and MMT search
as follows:

T = Tge + |L11 | + T1 + T2, (12)

where |L11 | =
((k+`)/2

p/2
)
and |L1 | = max(1, |L11 |

2/2`1 ).
The time complexity of the depth-2 list matching T2 =
max(|L11 |, |L11 |

2/2`1 ) and depth-1 list matching T1 =
max(|L1 |, |L1 |

2/2`2 ). The space complexity of the MMT
algorithm is S = |H| + |L11 | + |L1 |.

Split Representations

For a vector x ∈ Fn2 of weight wt(x) = w, a split represen-
tation of x is a pair (x1,x2) satisfying x = x1 + x2 and
wt(x1) = wt(x2) ≥ w/2. In the MMT algorithm, it is
known that there are R =

( p
p/2

)2 split representations for
each x if we consider the Cartesian product for depth-2 lists:
L11 × L12 × L21 × L22. Since multiple representations are
considered duplicates, we want to reduce the number of such
representations until the number of representations for x is
1. To do so, in the phase where L11 and L12 are matched,
filtering regarding the `1-prefix of x is applied. This reduces
the number of representations to RP, where P is the surviv-
ing probability of each representation by the filtering. In the
MMT, P = 1/2`1 . In the original paper [3], the authors se-
lect the parameter `1 in the range RP ≥ 1 to set the number
of representations to 1 or more. However, we can consider
the case RP < 1, which means stronger filtering. In this
case, the success probability P′ of obtaining a solution in
one MMT search is P′ = PRP, where P is the probability
of successful permutation. Together with RP ≥ 1, P′ can
be generalized to P′ = P min(1,RP). Later we will discuss
how strong the filtering rate should be to reduce the overall
runtime of ISD for actual SDP instances.

3.4 Becker–Joux–May–Meurer

BJMM is a generalized algorithm of MMT in terms of the
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enumeration parameter p. BJMM can consider more num-
bers of split representations R than MMT. In other words,
it is possible to apply stronger filtering while preserving
the number of representations RP ≥ 1. In this paper, we
consider the depth-2 BJMM algorithm, which has the same
depth as MMT, for simplicity of description and implemen-
tation. BJMM differs from MMT in the construction of the
depth-1 lists L1 and L2. In BJMM, the weights of e1 and e2
are p1 = p + 2ε instead of p. To distinguish from MMT, we
consider ε > 0 hereafter. As a result, the weights of depth-2
lists L11, L12, L21, and L22 become p/2 + ε . When merging
L1 and L2, BJMM generates e = e1+e2 with weight 2p from
XORing of e1 and e2. That is, BJMM considers the case
where the common 2ε 1s in e1 and e2 are cancelled out by
1+ 1 = 0. In this case, the number of split representations is
R =

( p
p/2

)2 ((k+`)/2−p
ε

)2, which differs from MMT. The sur-
vival probability of representations is P = 1/2`1 , the same
as for MMT. The success probability P is the same as MMT.
The time complexity T is the case when |L11 | =

((k+`)/2
p1/2

)
in

Eq. (12).

3.5 May–Ozerov

MO is an algorithm that introduces the nearest neighbor
(NN) algorithm to ISD. In this subsection, we will explain
the MO algorithm applied to the BJMM (or MMT). We
set the parameter `1 used in the MMT to `1 = ` (`2 = 0).
First, we construct four depth-2 lists L11, L12, L21, L22 and
merge them into two depth-1 lists L1, L2 as in MMT. Then,
L1 and L2 are merged using an NN algorithm. For the NN
algorithm, we use themeet-in-the-middle (MITM) algorithm
used in [6] and the locality sensitive hashing (LSH)-based
algorithm proposed in [10]. The following theorem is known
about the time complexity of these NN algorithms:

Theorem 1. (NN algorithm [6], [10]) For two lists L1, L2 of
size L whose elements are vectors of length m, there exists
an NN algorithm to find all pairs (x1,x2) ∈ L1 × L2 whose
Hamming distance is δ in time TN (L,m, δ).

TN (L,m, δ) = max

(
L
(

m
δ/2

)
, L2

(
m
δ/2

)2
/2m

)
[6], (13)

TN (L,m, δ) =
(
m
δ

)
/

(
m − λ
δ

)
max

(
L, L2/2λ

)
[10],

(14)

where λ = min(lg L,m − 2δ).

Note that an NN algorithm [6] finds all pairs exactly,
but another NN algorithm [10] does not necessarily find
all solutions since it solves the problem probabilistically by
using the locality sensitive hashing technique. In themerging
of L1 and L2, the NN algorithm with weight w − 2p is
performed on a vector of length n − k − `. Thus, the time
complexity of the NN algorithm is TN (|L1 |,n− k − `, w−2p)
from Theorem 1. A solution of the NN algorithm is the
solution of the SDP. The success probability P that ê = Pe

has the correct form by the random permutation is P =(
(k+`)/2

p

)2 (n−k−`
w−2p

)
/min(2n−k,

(n
w

)
) in MO, which is same as

MMT and BJMM. The time complexity of MO is as follows:

T = Tge + |L11 | + T1 + T2, (15)

where |L11 | and T2 are the same as those of BJMM, and
T1 = TN (|L1 |,n − k − `, w − 2p). The required memory
S = Tge + |L11 | + |L1 |, number of split representations R and
survival probability P are the same as in BJMM.

3.6 Both–May

BM is an ISD proposed in 2018 based on the NN algorithm
following MO. This paper addresses the depth-2 BM for
comparison with other ISDs. The input matrix H is trans-
formed into(

Q1
Q2

I
)
← GHP, (16)

where Q1 ∈ F
`×k
2 and Q2 ∈ F

(n−k−`)×k
2 for a parameter `.

First, we construct four lists L12, L22, L21 and L22 from the
matrix Q1 similar to MMT:

L11 = {(e11,Q1e11)) | e11 = (a,0),a ∈ I2} , (17)
L12 = {(e12,Q1e12)) | e12 = (0,a),a ∈ I2} , (18)
L21 = {(e21,Q1e21)) | e21 = (a,0),a ∈ I2} , (19)
L22 =

{
(e22,Q1e22 + s[`]))| e22 = (0,a),a ∈ I2

}
(20)

where I2 = {a ∈ Fk/22 | wt(a) = p1/2} and p1 = p + 2ε . In
BM, we assume ε ≥ 0 in order to consider both MMT and
BJMM cases. Then, these four lists are merged into two lists
L1 and L2 using an NN algorithm:

L1 = {(e1,Q2e1) | wt(e1) = p1,wt(Q1e1) = w1} , (21)
L2 ={(e2,Q2e2 + ŝ[`+1,n−k]) | (22)

wt(e2) = p1,wt(Q1e2 + ŝ[`]) = w1},

where w1 ≥ 0 is a weight parameter, e1 = e11 + e12 and
e2 = e21 + e22. The time complexity of the depth-2 NN is
TN (|L11 |, `, w1) from Theorem 1. Depth-1 lists L1 and L2,
which are merged using an NN algorithm as well as MO.
In particular, consider the weight parameter w2 ≤ 2w1 and
perform an NN algorithm with length n − k − ` and weight
w − 2p − w2. This yields the following set I:

I = {(e′,e′′) | wt(e′) = 2p,wt(e′′) = w − 2p} , (23)

where e′ = e1 + e2, wt(Q2e′) = w − 2p−w2, wt(Q1e′) = w2,
and e′′ = (Q1e′,Q2e′). The time complexity of the NN is
TN (|L1 |,n − k − `, w − 2p − w2). If I , ∅, then any element
of I is a solution of SDP. The success probability of the
BM is P =

(k/2
p

)2 ( `
w2

) ( n−k−`
w−2p−w2

)
/min(2n−k,

(n
w

)
). The time

complexity for one BM search T is the case when |L11 | =(k/2
p1

)
, |L1 | = max(1, |L11 |

2 ( `
w1

)
/2`), T2 = TN (|L11 |, `, w1),

T1 = TN (|L1 |,n − k − `, w − 2p − w2) in Eq. (12). The
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Table 1 Asymptotic runtime for each ISD (value α for 2αn).
Algorithm Prange Dumer MMT BJMM MO BM

Asymptotic runtime 0.121 0.117 0.112 0.102 0.0953 0.0885

required memory S and number of representations R are the
same as with BJMM. In summary, the filtering part of the
BM corresponds to the constraint regarding weights w1 and
w2 for vectors of length `. The survival probability P is
P =

( w2
w2/2

) ( `−w2
w1−w2/2

)
/2` .

4. Complexity Analysis

In this section, we briefly describe the syndrome decoding
estimator (SDE) and analyze the actual time complexity for
each ISD under the memory constraint. SDE refers to a
program that calculates the optimal time/space complexity
and its parameters of ISDs for actual SDP instances. While
there are several existing studies on SDE [10], [12], [13], we
use an SDE proposed by Esser and Bellini [10].

First, we show the asymptotic time complexity for each
ISD in the full distance decoding setting in Table 1. Full
distance decoding is a problem setting of SDP where input
parameters satisfy

(n
w

)
≈ 2n−k , where the values in Table 1

correspond to α in the asymptotic runtime 2αn for the full
distance decoding that is maximized over all constant 0 ≤
c ≤ 1 with the asymptotic parameter k = cn. From Table 1,
BM has the smallest asymptotic runtime.

4.1 Syndrome Decoding Estimator (SDE)

An SDE takes SDP(n, k, w) as input and outputs the optimal
work factorWF = TP−1, runtime required for one search call
T , success probability P, required memory S and parame-
ters for these complexities. The following is the concrete
procedure of the SDE to compute the optimal work factor.
First, for SDP(n, k, w), the SDE computes the set of feasible
integer parameters J for each ISD. Then, while computing
T,P,S and WF for each j ∈ J , we keep the minimum work
factor WF and parameter jmin at that time. The SDE outputs
WF and jmin stored after processing for all feasible parameter
sets as optimal values. The formulae for T , P and S of each
ISD are given in Sect. 3.

4.2 Optimal WF and Parameters for Each ISD

In this subsection, we present the results of the analysis
using Esser’s SDE for several SDP instances. First, we
show the optimal time complexity of each ISD when mem-
ory is unlimited. As an actual SDP instance, we consider
SDP(n = 500, k = 250, w = 61). This SDP has a difficulty of
approximately 253 in the Decoding Challenge [19] and was
the most difficult SDP that had been successfully solved as
of August 2021. We show the optimal WF and parameters
of each ISD calculated by the SDE in Table 2. Note that
log2 is applied to all values. First, with respect to WF, a
comparison of the asymptotic runtime in Table 1 and actual

Table 2 Optimal complexity for SDP(500, 250, 61).
Alg. lg WF lgT − lg P lg S lg RP

Prange 70.62 16.93 53.68 16.93 –
Dumer 53.63 20.07 33.55 20.07 –
MMT 51.99 29.79 21.84 28.79 −0.36
BJMM 51.33 38.83 11.90 37.64 −0.61
MO 50.95 40.67 9.58 30.49 −0.69
BM 52.04 40.33 6.02 36.23 −5.69

Table 3 Optimal parameters for SDP(500, 250, 61).
Algorithm p e ` `1 `2 w1 w2
Dumer 3 – 18 – – – –
MMT 6 – 38 9 29 – –
BJMM 10 1 68 31 37 – –
MO 8 1 27 – – – –
BM 14 2 48 – – 1 2

runtime in Table 2 indicates that BM has a larger WF than
other ISDs such as MMT, BJMM and MO, unlike the results
for the asymptotic analysis. For T and P−1 (the number of
loops), T tends to be larger and P−1 smaller as one moves
down Table 1. Thus, the newer ISDs tend to have a higher
search cost and higher success probability for one search
when WF is minimized.

The required memory S is proportional to the search
cost T . It can also be seen that BJMM consumes the most
memory under the optimal WF. The relationship between S
and the actual memory usage depends on the size of the data
type that stores one element. For example, if one uses an
8-byte long long type, then at least 8S bytes of memory is
required in total. In this paper, we assume that the 8-byte
data type is used. For the expected number of representations
after filtering RP, all ISDs using the representation have the
smallest WF when lgRP < 0. That is, considering the case
lgRP < 0, which implies stronger filtering, helps to reduce
the WF of the ISD. The parameters of each ISD that derive
the optimal WF are listed in Table 3. Prange is omitted
because it has no parameter.

4.3 Optimal WF under Memory Constraints

Next, we analyze how the computational complexity of each
ISD changes when the amount of available memory is con-
strained. We calculated the optimal WF for each ISD un-
der memory constraints for SDP(500,250,61) and a much
more difficult instance: SDP(1000,500,119). The results
are shown in Fig. 1 and Fig. 2. The x-axis represents the
maximum amount of memory that can be used. The y-
axis represents WF. The optimal WF and S of Prange are
lg WF = 70.62 and lg S = 16.93 for SDP(500,250,61) and
lg WF = 127.66 and lg S = 18.93 for SDP(1000,500,119).
First, we compare three non-NN-based methods: Dumer,
MMT, and BJMM. Dumer has the largest WF for most
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amounts of memory, but the memory requirement for the
optimal WF is small. For MMT and BJMM, contrary to the
asymptotic analysis, the WF of MMT is smaller than that
of BJMM in the range lg S < 31 for SDP(500,250,61) and
lg S < 41 for SDP(1000,500,119). Note that the asymp-
totic runtime of BJMM could be larger than MMT since the
asymptotic result does not consider the memory limitation.
To solve SDP(500,250,61), MMT seems to be theoretically
faster than BJMM when using midrange workstations or
GPUs since 231 corresponds to 8 GB, and it requires several
times as much memory as 8 GB practically. For the two
NN-based methods, MO was found to be faster than BM for
any S, contrary to the asymptotic result. Consequently, MO
has the smallest WF.

Comparing Fig. 1 and Fig. 2, it can be seen that the
amount of memory required for the optimal WF increases
drastically for larger SDPs. However, it is physically im-
possible to allocate 290 of memory to achieve the optimal
WF of MO in SDP(1000,500,119) in practice. Assuming a
midrange computer is used, it is realistic to choose an ISD
near S ∼ 227. Looking at the area around lg S ≈ 27 in Fig. 1,

Fig. 1 Work factor under memory constraint for SDP(500, 250, 61).

Fig. 2 Work factor under memory constraint for SDP(1000, 500, 119).

we can see that the WFs of MO and MMT are relatively
small. MO has a smaller WF than MMT in both figures.
However, we emphasize that MO has larger polynomial fac-
tors than MMT. Therefore, we focus on the MMT to propose
a multiparallel algorithm in this paper.

5. Parallel Optimization for MMT

We presented that the runtime of MMT is relatively small
compared to other ISDs when the memory usage is up to
several GB. In this section, we construct a fast algorithm
for MMT using the parallelization technique and propose
the first multiparallel optimization algorithm for MMT, the
multiparallel MMT.

5.1 Multiparallel MMT Algorithm

First, the runtime ofMMT for each process (corresponding to
Eq. (12)) was extracted under the optimal WF to identify the
process that should be parallelized. The results are listed in
Table 4. Here, the target SDP instance is SDP(500,250,61).
We choose p = 2,4,6, which corresponds to the memory
sizes of small, medium and large, respectively. Especially,
the parameter setting p = 6 produces the optimal WF among
all p. For example, the optimal WF is 52.43 with a memory
size of 35.46 in the case where p = 8. From Table 4, T2
and T1 seem to be bottlenecks of entire runtime for p = 4,6
and Tge and T1 are bottlenecks for p = 2. In fact, runtime
profiling using GNU Profiler showed that the actual runtime
of T2,T1 accounted for more than 95% of the total for p =
4,6, and Gaussian elimination accounted for 54% for p = 2
when using the optimal parameters obtained by the SDE.
Therefore, we decided to adopt the following strategy in
parallelizing MMT.

• We focus on p = 4, p = 6 since WF is smaller than
p = 2.

• We use GPU to accelerate the heavy processing corre-
sponding to T2 and T1, namely, list merging for depth-2
and depth-1.
We describe in detail the multiparallel construction and

merging of lists, which is the core of the multiparallel MMT.

Multiparallel Construction and Merging

In multiparallel MMT, a depth-2 list L11 is first constructed
on the CPU as a two-dimensional static array L11. This
is because the optimal runtime |L11 | in Table 4 is suffi-
ciently small compared to other processes. Note that we
do not actually need to construct L12, L21 and L22 as al-
ready suggested in [21]. L11[i][ j] stores the j-th ele-
ment e11 such that i = Q1e11. We set 0 ≤ i < 2`1 and

Table 4 Runtime of MMT for each process at p = 2, 4, 6.
lg S p lg WF lgTge lg |L11 | lgT2 lgT1
16.98 2 55.78 16.93 7.02 12.04 16.09
20.55 4 52.13 16.93 13.21 20.41 20.83
28.79 6 51.99 16.93 18.89 28.79 28.79
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0 ≤ j <
((k+`)/2

p/2
)
/2`1 since there are 2`1 distinct vectors

Q1e11 and the expected number of Q1e11 stored in the i-th
bucket L11[i] is

((k+`)/2
p/2

)
/2`1 . L11 can be implemented by a

static integer array using simple integer hashing technique.
See the reference implementation in Appendix for details.
Of course, the static bucket size will cause leakage when
the actual number of elements to be stored in bucket L11[i]
exceeds

((k+`)/2
p/2

)
/2`1 , but to simplify the process, we ignore

this case. L11 is copied to the global memory in the GPU
after construction.

Next, we explain the depth-2 merging on the GPU. In
multiparallel MMT, |L12 | =

((k+`)/2
p/2

)
elements are enumer-

ated by threads on GPU in parallel instead of actually con-
structing L12, and each thread searches matched elements
in L11 in parallel to generate the depth-1 list L1. Namely,
each thread storing one pair (e12,Q1e12) ∈ L12 accesses L11
by i = Q1e12. If L11[i] is not empty, we construct a pair
(e11,e12) for each element e11 ∈ L11[i] and e12. For such
a pair, (e11 + e12,Q2(e11 + e12)) ∈ L1. Actually, L1 is con-
structed in parallel as a one-dimensional static array L1 on
the GPU. L1[i] stores e11 + e12 for i = Q2(e11 + e12), where
0 ≤ i < `2. That is, we set the bucket size of L1[i] to 1 since
we found that |L1 | ∼ 2`2 is satisfied when WF is optimized.
Therefore, loss of candidates may occur in L1 as similar as
in L11. We will discuss the effect of the leakage on the suc-
cess probability P in the next subsection. Since all threads
access L1 at the same time, concurrent writes to the same
location i may occur. We handle this by applying competi-
tive writing. Competitive writing is a write without thread
synchronization where only one thread is guaranteed to write
to the location. Since L1[i] can store only one element, we
do not need to use thread synchronization. Similarly, L2 is
constructed from L11.
L1 and L2 are merged using parallel processing on the

GPU. All the 2`2 elements in L2 are enumerated in parallel.
Then, each thread searches the pair from L1 in parallel.
Each thread having (e2,Q2e2 + ŝ[`1+1,`]) accesses L1[i] by
i ← Q2e2+ ŝ[`1+1,`]. Then, ifL1[i] , ∅, (e1,e2) is a matched
pair, where e1 ← L1[i]. Finally, each thread checks whether
the Hamming distance between Q3(e1 + e2) and ŝ[`+1,n−k] is
exactly w − 2p. If it passes, e← P−1(e1 + e2,Q3e1 +Q3e2 +
ŝ[`+1,n−k]) is a solution of a given SDP.

We summed up the above procedure in Algorithm 2.
Algorithm 2 is repeatedly called as the search function in
Algorithm 1 until a solution e is successfully found. The
major difference between our previous GPU implementa-
tion [15] and the implementation of our proposed algorithm
is thread synchronization when creating the depth-1 list L1.
In the previous implementation, L1 is a one-dimensional list
constructed by synchronously counting the number of ele-
ments in each bucket using the CUDA atomicAdd function
without losing candidates. Unlike Dumer, the size of L1 is
not fixed inMMT since L1 is constructed bymerging L11 and
L12. We cannot apply the synchronous counting in the mul-
tiparallel Dumer to the multiparallel MMT since dynamic
memory allocation is needed to construct L1 for MMT. Our

Algorithm 2: Search of multiparallel MMT
Input: Q1,Q2,Q3, ŝ
Output: e

1 e← ⊥
2 Construct L11 from Q1
3 Initialize L1, L2
4 parallel for (e12,Q1e12) ∈ L12 do
5 i ← Q1e12
6 for e11 ∈ L11[i] do
7 x ← Q2(e11 + e12)
8 L1[x] ← e11 + e12

9 j ← Q1e12 + ŝ[`1]

10 for e11 ∈ L11[j] do
11 x ← Q2(e11 + e12) + ŝ[`1+1,`]
12 L2[x] ← e11 + e12

13 parallel for e2 ∈ L2 do
14 i ← Q2e2 + ŝ[`1+1,`]
15 e1 ← L1[i]
16 x ← Q3(e1 + e2) + ŝ[`+1,n−k]
17 if wt(x) = w − 2p then
18 e← P−1(e1, e2,Q3e1 +Q3e2 + ŝ[`+1,n−k])

19 return e

new implementation constructs L1 without thread synchro-
nization, which incurs the loss of candidates. We experi-
mentally confirmed that the candidate loss has little impact
on the runtime.

5.2 Complexity Analysis

We analyze the complexity of the multiparallel MMT algo-
rithm. Replacing the search function ofAlgorithm 1withAl-
gorithm 2, the time complexity T of the multiparallel MMT
required for one loop in Algorithm 1 is

T = Tge + |L11 | + N−1 (T1 + T2) , (24)

where N is the number of threads. Note that the number
of threads on a GPU cannot be assumed to be N since the
per-thread performance of a GPU is generally lower than
that of a CPU. For this reason, T in the multiparallel MMT
is measured as the actual processing time. The success
probability P′ of obtaining a solution in one search of the
multiparallel MMT is P′ = P min(1,RPPL11 PL1 ), where P,
R and P are the same as in the MMT. PL11 and PL1 are the
survival probabilities of each candidate in constructing lists
L11 and L1, respectively. PL11 and PL1 are approximately
obtained as follows:

PL11 =
1

2`1
+

1
|L11 |

|L11 |∑
i= |L11 |/2`1+1

p(i) (25)

PL1 =
1
|L1 |

|L1 |∑
i=1

q(i), (26)

where p(i) =
∑ |L11 |/2`1−1

c=0
(i−1
c

)
(1/2`1 )c(1 − 1/2`1 )i−1−c . and

q(i) =
(

2`2−1
2`2

) |L1 |−i
. Considering PL11 , we assume that when
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Table 5 Effect of number of threads on runtime for SDP(550, 275, 67).
#threads for L11 16 128 1024 11175
#threads for L2 16 128 1024 262144

T (ms) 3005.55 402.37 57.14 1.63
Ratio 1840.40 246.38 34.99 –

Table 6 Runtime comparison for SDP(250, 125, 32).
p Algorithm Runtime Ratio
4 MMT 22.94s 20.67

Multi-Parallel MMT 1.11s –
6 MMT 108.10s 51.95

Multi-Parallel MMT 2.11s –

the i-th element e(i)11 is attempted to be written to L11[xi] by
xi = Q3e(i)11, processing of up to (i − 1)-elements has been
completed. Then p(i) represents the probability that c < B
out of i − 1 pieces has been placed in the bucket L11[xi]
of size B = |L11 |/2`1 . That is, p(i) is the probability that
there is one or more vacancies in bucket L11[xi]. PL11 is the
sum of p(i) for all i. For PL1 , we assume that i-th element
e(i)1 is successfully written to L1[xi] by xi = Q2e(i)1 . Then,
the remaining |L1 | − i elements are randomly overwritten
into 2`2 buckets of L1. q(i) denotes the probability that the
remaining |L1 | −i pieces are written outside of bucketL1[xi]
and e(i)1 remains inL1 until the end. Additionally, we rewrite
PL1 =

2`2
|L1 |
(1 − exp−|L1 |/2`2 ) by approximation.

5.3 Experimental Results

We show the experimental results of the multiparallel MMT.
We implemented our algorithm using C++17 and CUDA
11.0. We used an AMD Ryzen 9 3900 for CPU and an
NVIDIA Tesla V100 for a GPU. First, we compared the
runtime of the ordinary CPU-based MMT and multiparallel
MMT for p = 4,6. We used SDP(250,125,32) as a solvable
SDP instance. For both MMT and multiparallel MMT, we
set the parameters `1 = 6 and `2 = 18 for p = 4 and `1 = 6
and `2 = 21 for p = 6. The random seed for the column per-
mutation was fixed. Table 6 lists the results. Ratio means the
runtime of MMT divided by the that of multiparallel MMT.
From Table 6, it is confirmed that our proposed algorithm
solved the SDP several tens of times faster than the normal
MMT for both parameters p = 4,6.

We conducted an ablation study on the impact of the
number of threads N on runtime. For SDP(550,275,67),
we measured the runtime for one loop in Algorithm 1 when
varying the number of GPU threads. The optimal parameters
p = 4, `1 = 8, `2 = 18 were used. The results are shown in
Table 5. #threads for L11 in Table 5 (resp. #threads for L2)
corresponds to the number of threads in Line 4 (resp. Line 13
) in Algorithm 2. The maximum number of threads in Line 4
is |L11 | =

((k+`)/2
p/2

)
= 11175 and |L2 | = 2`2 = 262144 in

Line 13. Table 5 shows that T decreases as the number of
threads increases and supports the correctness of Eq. (24) of
the multiparallel MMT.

Table 7 Expected runtime for SDP(550, 275, 67).
Alg. T (ms) − lg P Runtime Ratio
MMT 522 34.15 872.13y 235

MP Dumer 1.98 38.33 21.75y 5.9
MP MMT 0.48 33.83 3.69y –

Next, we compared the expected runtime for a large
SDP instance SDP(550,275,67) between MMT, multiparal-
lel (MP) MMT and MP Dumer [15], which is an existing
GPU-optimized ISD algorithm. Since this instance was un-
solved, we compared the expected runtime TP−1 per server
with a Tesla V100 GPU and an AMD Ryzen CPU calcu-
lated from the runtime T required for one loop in Algo-
rithm 1 and the success probability P (or P′ ) of each algo-
rithm. The parameters used for MMT and MP Dumer were
p = 4, `1 = 6, `2 = 20 and p = 3, ` = 19, respectively. We
used p = 4, `1 = 8 and `2 = 18 for the MP MMT, which are
experimentally optimal values. Table 7 shows the result.

Finally, we performed several experiments on
unresolved SDP instances in the Decoding Chal-
lenge [19]. We chose the following instances:
SDP(510,255,62), SDP(530,265,65), SDP(540,270,66)
and SDP(550,275,67). We used p = 4, `1 = 6, `2 = 21
for SDP(510,255,62) and p = 4, `1 = 8, `2 = 18 for the
others. The expected runtimes per one Tesla V100 for each
instance are 153.6, 219.8, 461.5 and 1350 days, respec-
tively. We solved SDP(510,255,62) and SDP(530,265,65),
taking 24.7 and 12.5 actual days, respectively, using four
Tesla V100 servers. Moreover, we solved SDP(540,270,66),
which took 79.44 days, using 22 Tesla V100 servers and
solved SDP(550,275,67), which took 13.03 days, using four
Tesla V100 servers. This result was posted as an official
record on the Decoding Challenge website.

5.4 Comparisonwith Other ISD Implementations and SDP
Instances

On the Decoding Challenge website, Meyer solved
SDP(500,250,61) instance in 20.3 GPU-days using an ISD
of Dumer’s variant with Tesla V100 server(s). We achieved
the expected runtime of 37.62 days for this instance using
the multiparallel MMT with a single Tesla V100 server with
optimal parameters p = 8, `1 = 7 and `2 = 19.

We also conducted an experiment on the McEliece
instances in the Decoding Challenge website. Recently,
SDP(1284,1028,24) in the McElice setting was solved by
Esser, May and Zweydinger using their fast ISD implemen-
tation based on CPU parallelism [16]. They reported that the
expected runtime to solve the instance with 4 AMD EPYC
7742 processors (512 threads) is 37.47 days and they solved
the instance in 31.43 days. The expected runtime of the mul-
tiparallelMMTwith 4TeslaV100 servers is 158.22 dayswith
optimal parameters p = 8, `1 = 10, `2 = 26, which is slower
than their estimation. One reason for this is the high mem-
ory consumption of our algorithm. The memory required
to solve SDP(530,264,65), which has a similar complexity
to SDP(1284,1028,24), is only 395 MB, while the memory
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required for SDP(1284,1028,24) is 16.51 GB. If a smaller
parameter p = 4 is chosen, the number of combinations for
the base list L12 becomes (k +`)/2, which does not achieve a
sufficient number of parallels for GPU. In such cases, simple
instance parallelization would be more effective than intra-
algorithm parallelization.

5.5 Analysis of the Number of Solutions

Finally, we performed an analysis on the distribution of the
number of solutions for SDP instances. The motivation for
this subsection is to confirm that luck in random seed se-
lection does not play an important role in practice. The
expected number of solutions for SDP(n, k, w) is given by(n
w

)
/2n−k . We consider k = n/2 and

(n
w

)
> 2n−k , i.e.,

there exist multiple solutions. Especially, the weight pa-
rameter w is set to w = d1.05dGVe as SDP instances in
the Decoding Challenge, which is slightly higher than the
Gilbert–Varshamov distance. The Gilbert–Varshamov dis-
tance is the smallest integer d satisfying

∑d−1
j=0

(n
j

)
≥ 2n−k .

By setting w = d1.05dGVe, there exist at least one solution
with very high probability [19]. However, the actual num-
ber of solutions varies depending on the instance (random
seeds for H and s), we analyzed how the number of solutions
is distributed to investigate the influence of the seed on the
runtime of ISD.

As the result, we confirmed that the distribution
of the number of solutions for SDP(n, k, w) fits the bi-
nomial distribution B(N, p), where N =

(n
w

)
and p =

1/2n−k . For instance, the distribution for SDP(550,275,67)
is B(2289.57,2−275). The varianceσ2 = Np(1−p) = 27433.8.
The standard deviation σ = 165.6. Since the expected num-
ber of solutions is Np = 27433.8, the actual number of
solutions may vary by up to 3%. When p � 1, the variance
can be approximated by Np. Therefore, it was verified that
luck by random seeds has less impact on the actual runtime
of an ISD algorithm for large SDP instances.

6. Conclusion

In this paper, we analyzed the computational complexity of
the modern ISD algorithms. We showed that the computa-
tional complexity of the MMT algorithm is lower than those
of other ISDs when available memory is limited by using the
Esser’s syndrome decoding estimator. Furthermore, we pro-
posed the multiparallel MMT algorithm, an optimized vari-
ant of MMT for multiparallel environments such as GPUs.
In our experiment, we presented that the multiparallel MMT
algorithm is faster than existing ISD implementations in sev-
eral problem settings. In addition, we succeeded in solving
four unresolved SDP instances on the Decoding Challenge
website using the multiparallel MMT algorithm. A future
work is to generalize the multiparallel MMT implementation
in terms of parameter p so that it can be used as the mul-
tiparallel BJMM, which has a smaller WF than MMT for a
larger amount of memory.
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Appendix: Reference Implementation in C++ CUDA

#include <array>
#include <bitset>
#include <cassert>
#include <fstream>
#include <iostream>
#include <random>
#include <thrust/copy.h>
#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
#include <thrust/scan.h>

using namespace std;

const int n = 550;
const int k = n / 2;
const int p = 8; // cannot be modified
const int N = ((n - k) + 63) / 64;
const int l1 = 18;
const int l2 = p;
const int l = l1 + l2;
const int mid = (n - k / 2 - l / 2);
const int size_L1 = ((k + l) / 2) * ((k + l) / 2 - 1) / 2;
const int size_L = pow(size_L1, 2) / pow(2, l2);
const int bucket_L1 = pow(2, l2);
const int bucket_L = pow(2, l1);
const int avg_L1 = size_L1 / bucket_L1;
const int num_L1 = avg_L1;
const int threads = 128;

#define CUDA_SAFE_FREE(x) \
if((x) != NULL) { \

cudaFree((x)); \
(x) = NULL; \

}

int gaussian_elimination(array<bitset<n>, n - k> &h2, bitset<n - k> &s) {
int rows = h2.size(), cols = h2[0].size();
int rank = n - k - l;
int r = 0;
for(int c = 0; c < rank; c++) {

int r2 = r;
if(h2[r][cols - 1 - c] == 0) {

for(; (r2 < rows) && (h2[r2][cols - 1 - c] == 0); ++r2) {
}
if(r2 >= rows) {

return r;
}
swap(h2[r], h2[r2]);
bool tmp = s[rows - 1 - r];
s[rows - 1 - r] = s[rows - 1 - r2];
s[rows - 1 - r2] = tmp;

}
for(int i = 0; i < rows; i++) {

if(i == r)
continue;

if(h2[i][cols - 1 - c] == 1) {
h2[i] = h2[i] ^ h2[r];
s[rows - 1 - i] = s[rows - 1 - i] ^ s[rows - 1 - r];

}
}
r = r + 1;

}
return r;

}

int Combination(int num, int r) {
int c = 1;
int b = 1;
for(int i = 0; i < r; ++i) {

c *= (num - i);
b *= (i + 1);

}

return c / b;
}

void make_combination(int *comb, int start_index , int end_index , int step) {
int *indexes = new int[step];
int size = 0;
int write_index = 0;
while(size >= 0) {

for(int i = start_index; i <= end_index; ++i) {
indexes[size++] = i;
if(size == step) {

memcpy(&comb[write_index], indexes, sizeof(int) * step);
write_index += step;
break;

}
}
if(--size < 0)

break;
start_index = indexes[size] + 1;

}
delete[] indexes;

}

bool MakeCombination(int nLeftCols , int nLeftComb , int *hLeftComb ,
int *pdLeftComb , int nRightCols , int nRightComb ,
int *hRightComb , int *pdRightComb) {

try {
make_combination(&hLeftComb[0], (n - k - l), mid - 1, p / 4);
make_combination(&hRightComb[0], mid, n - 1, p / 4);

cudaMemcpy(pdLeftComb , hLeftComb , sizeof(int) * nLeftComb * p / 4,

cudaMemcpyHostToDevice);
cudaMemcpy(pdRightComb , hRightComb , sizeof(int) * nRightComb * p / 4,

cudaMemcpyHostToDevice);
} catch(...) {

return false;
}
return true;

}

bool InitializeDeviceMemory(u_int64_t **ppdH, int **ppdH1, int **ppdH2,
u_int64_t **ppdS, int nLeftComb , int **

ppdLeftComb ,
int nRightComb , int **ppdRightComb ,
u_int64_t **ppdX, int **ppdL1, u_int64_t **ppdL,
u_int64_t **ppdR, int **ppdCounter , int **ppdE) {

if(NULL != ppdH)
cudaMalloc(ppdH, sizeof(u_int64_t) * N * (u_int64_t)n);

if(NULL != ppdH1)
cudaMalloc(ppdH1, sizeof(int) * (int)n);

if(NULL != ppdH2)
cudaMalloc(ppdH2, sizeof(int) * (int)n);

if(NULL != ppdS)
cudaMalloc(ppdS, sizeof(u_int64_t) * N);

if(NULL != ppdLeftComb)
cudaMalloc(ppdLeftComb , sizeof(int) * nLeftComb * p / 4);

if(NULL != ppdRightComb)
cudaMalloc(ppdRightComb , sizeof(int) * nRightComb * p / 4);

if(NULL != ppdX)
cudaMalloc(ppdX, sizeof(u_int64_t) * bucket_L * N);

if(NULL != ppdL1)
cudaMalloc(ppdL1, sizeof(int) * bucket_L1 * num_L1);

if(NULL != ppdL)
cudaMalloc(ppdL, sizeof(u_int64_t) * bucket_L);

if(NULL != ppdR)
cudaMalloc(ppdR, sizeof(u_int64_t) * bucket_L);

if(NULL != ppdCounter)
cudaMalloc(ppdCounter , sizeof(int) * bucket_L1);

if(NULL != ppdE)
cudaMalloc(ppdE, sizeof(int) * 8);

return true;
}

void UninitializeDeviceMemory(u_int64_t **ppdH, int **ppdH1, int **ppdH2,
u_int64_t **ppdS, int **ppdLeftComb ,
int **ppdRightComb , u_int64_t **ppdX, int **

ppdL1,
u_int64_t **ppdL, u_int64_t **ppdR,
int **ppdCounter , int **ppdE){

CUDA_SAFE_FREE((*ppdH)) CUDA_SAFE_FREE((*ppdH1)) CUDA_SAFE_FREE((*ppdH2))
CUDA_SAFE_FREE((*ppdS)) CUDA_SAFE_FREE((*ppdLeftComb))

CUDA_SAFE_FREE((*ppdRightComb)) CUDA_SAFE_FREE((*ppdX))
CUDA_SAFE_FREE((*ppdL1)) CUDA_SAFE_FREE((*ppdL))

CUDA_SAFE_FREE((*ppdR)) CUDA_SAFE_FREE((*ppdCounter))
CUDA_SAFE_FREE((*ppdE))}

__global__ void GPU_compute_L(int *dCounter , int *pdH2, int *pdH1, int *pdL1,
u_int64_t *pdL, int nRightComb , int *pdLeftComb

,
int *pdRightComb , int num_L1) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if(idx < nRightComb) {

int *pComb = pdRightComb + (p / 4 * idx);
int h1 = *(pComb + 0);
int h2 = *(pComb + 1);
int x2 = pdH2[h1] ^ pdH2[h2];
for(int i = 0; i < min(num_L1 - 1, dCounter[x2]); i++) {

int idx2 = pdL1[x2 * num_L1 + i];
int *lComb = pdLeftComb + (p / 4 * idx2);
int hl1 = *(lComb + 0);
int hl2 = *(lComb + 1);
int x1 = pdH1[hl1] ^ pdH1[hl2] ^ pdH1[h1] ^ pdH1[h2];
u_int64_t a = 0;
a += ((u_int64_t)idx2 << 32);
a += (idx);
pdL[x1] = a;

}
}

}

__global__ void GPU_compute_R(int *dCounter , int *pdH2, int *pdH1, int *pdL1,
u_int64_t *pdR, int nRightComb , int *pdLeftComb

,
int *pdRightComb , int num_L1, int s2, int s1) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if(idx < nRightComb) {

int *pComb = pdRightComb + (p / 4 * idx);
int h1 = *(pComb + 0);
int h2 = *(pComb + 1);
int x2 = pdH2[h1] ^ pdH2[h2] ^ s2;
for(int i = 0; i < min(num_L1 - 1, dCounter[x2]); i++) {

int idx2 = pdL1[x2 * num_L1 + i];
int *lComb = pdLeftComb + (p / 4 * idx2);
int hl1 = *(lComb + 0);
int hl2 = *(lComb + 1);
int x1 = pdH1[hl1] ^ pdH1[hl2] ^ pdH1[h1] ^ pdH1[h2] ^ s1;
u_int64_t a = 0;
a += ((u_int64_t)idx2 << 32);
a += (idx);
pdR[x1] = a;

}
}

}
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__global__ void GPU_match_LR(int bucket_L , int *pdH1, u_int64_t *pdH,
u_int64_t *pdL, u_int64_t *pdR, int *pdLeftComb ,
int *pdRightComb , u_int64_t *s, int w, int *pdE,
u_int64_t *pdX) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if(idx < bucket_L) {

if(pdL[idx] != 0 && pdR[idx] != 0) {
int leftL = (pdL[idx] >> 32);
int rightL = ((u_int32_t)~0 & pdL[idx]);
int *l1i = pdLeftComb + (p / 4 * leftL);
int *l2i = pdRightComb + (p / 4 * rightL);
int e[8];
e[0] = *(l1i + 0);
e[1] = *(l1i + 1);
e[2] = *(l2i + 0);
e[3] = *(l2i + 1);
int leftR = (pdR[idx] >> 32);
int rightR = ((u_int32_t)~0 & pdR[idx]);
int *r1i = pdLeftComb + (p / 4 * leftR);
int *r2i = pdRightComb + (p / 4 * rightR);
e[4] = *(r1i + 0);
e[5] = *(r1i + 1);
e[6] = *(r2i + 0);
e[7] = *(r2i + 1);
u_int64_t *x = &(pdX[N * idx]);
for(int b = 0; b < N; b++) {

x[b] = 0;
}
for(int i = 0; i < p; i++) {

for(int b = 0; b < N; b++) {
x[b] = x[b] ^ pdH[N * e[i] + b];

}
}
int diffs = 0;
for(int b = 0; b < N; b++) {

diffs += __popcll(x[b] ^ s[b]);
}
if(diffs <= w - p) {

for(int i = 0; i < p; i++) {
pdE[i] = e[i];

}
}

}
}

}

array<int, n> MMT(array<array<u_int64_t , N>, n> h, array<u_int64_t , N> s, int
w,

u_int64_t *pdH, int *pdH1, int *pdH2, u_int64_t *pdS,
int nLeftComb , int *hLeftComb , int *pdLeftComb ,
int nRightComb , int *hRightComb , int *pdRightComb ,
u_int64_t *pdX, int *pdL1, u_int64_t *pdL, u_int64_t *pdR,
int *dCounter, int *pdE) {

auto error = cudaGetLastError();
array<int, n> earray = {};
u_int64_t *h_array = new u_int64_t[(u_int64_t)(n)*N];
u_int64_t *pRefH = h_array;
for(int i = 0; i < n; ++i) {

for(int j = 0; j < N; ++j, pRefH++) {
(*pRefH) = h[i][j];

}
}
cudaMemcpy(pdH, h_array, sizeof(u_int64_t) * n * N,

cudaMemcpyHostToDevice);

int *h2 = new int[n];
for(int i = 0; i < n; i++)

h2[i] = 0;
for(int i = 0; i < n; ++i) {

for(int j = 0; j < l2; j++) {
if(((h[i][N - 1] >> j) & 1) == 1)

h2[i] += (1 << j);
}

}
cudaMemcpy(pdH2, h2, sizeof(int) * n, cudaMemcpyHostToDevice);

int *h1 = new int[n];
for(int i = 0; i < n; i++)

h1[i] = 0;
for(int i = 0; i < n; ++i) {

for(int j = 0; j < l1; j++) {
if(((h[i][N - 1] >> (j + l2)) & 1) == 1)

h1[i] += (1 << j);
}

}
cudaMemcpy(pdH1, h1, sizeof(int) * n, cudaMemcpyHostToDevice);

u_int64_t *s_array = new u_int64_t[N];
for(int j = 0; j < N; ++j) {

s_array[j] = s[j];
}
cudaMemcpy(pdS, s_array, sizeof(u_int64_t) * N, cudaMemcpyHostToDevice);

int s2 = 0;
for(int j = 0; j < l2; j++) {

if(((s[N - 1] >> j) & 1) == 1)
s2 += (1 << j);

}
int s1 = 0;
for(int j = 0; j < l1; j++) {

if(((s[N - 1] >> (j + l2)) & 1) == 1)
s1 += (1 << j);

}

cudaMemset(pdL1, 0, sizeof(int) * bucket_L1 * num_L1);
cudaMemset(dCounter, 0, sizeof(int) * bucket_L1);

int *counterL1 = new int[bucket_L1];
for(int i = 0; i < bucket_L1; i++)

counterL1[i] = 0;
int *L1 = new int[bucket_L1 * num_L1];
for(int i = 0; i < bucket_L1 * num_L1; i++)

L1[i] = 0;
int x2 = 0;
for(int i = 0; i < nLeftComb; i++) {

int *pComb = hLeftComb + (p / 4 * i);
int i1 = *(pComb + 0);
int i2 = *(pComb + 1);
x2 = h2[i1] ^ h2[i2];
L1[x2 * num_L1 + min(num_L1 - 1, counterL1[x2])] = i;
counterL1[x2] += 1;

}
cudaMemcpy(dCounter , counterL1 , sizeof(int) * bucket_L1 ,

cudaMemcpyHostToDevice);
cudaMemcpy(pdL1, L1, sizeof(int) * bucket_L1 * num_L1,

cudaMemcpyHostToDevice);

cudaMemset(pdL, 0, sizeof(u_int64_t) * bucket_L);
GPU_compute_L <<<(nRightComb + threads - 1) / threads, threads >>>(

dCounter , pdH2, pdH1, pdL1, pdL, nRightComb , pdLeftComb , pdRightComb ,
num_L1);

cudaDeviceSynchronize();

cudaMemset(pdR, 0, sizeof(u_int64_t) * bucket_L);
GPU_compute_R <<<(nRightComb + threads - 1) / threads, threads >>>(

dCounter , pdH2, pdH1, pdL1, pdR, nRightComb , pdLeftComb , pdRightComb ,
num_L1, s2, s1);

cudaDeviceSynchronize();

int *e = new int[8];
for(int i = 0; i < 8; i++)

e[i] = -1;
cudaMemset(pdE, -1, sizeof(int) * 8);
cudaMemset(pdX, 0, sizeof(u_int64_t) * N * bucket_L);
GPU_match_LR <<<(bucket_L + threads - 1) / threads, threads >>>(

bucket_L , pdH1, pdH, pdL, pdR, pdLeftComb , pdRightComb , pdS, w, pdE,
pdX);

cudaDeviceSynchronize();
cudaMemcpy(e, pdE, sizeof(int) * 8, cudaMemcpyDeviceToHost);

if(e[0] != -1) {
for(int i = 0; i < p; i++) {

earray[e[i]] ^= 1;
}
array<uint64_t , N> diff = {0};
for(int i = 0; i < p; i++) {

if(e[i] != -1) {
for(int b = 0; b < N; b++)

diff[b] = diff[b] ^ h[e[i]][b];
}

}
for(int b = 0; b < N; b++)

diff[b] = diff[b] ^ s[b];

int diffs = 0;
for(int b = 0; b < N; b++)

diffs += __builtin_popcountll(diff[b]);

uint64_t mask;
int j = n - k - 1;
for(int b = N - 1; b >= 0; b--) {

for(int i = 0; i < 64; i++) {
mask = (1ULL << i);
mask = mask & diff[b];
if(mask != 0ULL) {

earray[j] = 1;
}
j--;
if(j < 0)

break;
}

}
}
delete[] h_array;
delete[] h2;
delete[] h1;
delete[] s_array;
delete[] counterL1;
delete[] L1;
delete[] e;
return earray;

}

int main() {
int w;
bitset<n - k> s;
bitset<n - k> s_mirror;
bitset<n - k> x2;
bitset<n> e;
array<int, n> earray = {};
array<bitset<n>, n - k> h;
array<bitset<n>, n - k> h2;
array<array<uint64_t, N>, n> hb;
array<uint64_t, N> sb;
u_int64_t *pdH = NULL;
int *pdH1 = NULL;
int *pdH2 = NULL;
u_int64_t *pdS = NULL;
int nLeftComb = 0;
int *pdLeftComb = NULL;
int nRightComb = 0;
int *pdRightComb = NULL;
int *pdL1 = NULL;
int *dCounter = NULL;
u_int64_t *pdL = NULL;
u_int64_t *pdR = NULL;
u_int64_t *pdX = NULL;
int *pdE = NULL;
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string input_path = "./Challenges/SD/SD_" + to_string(n);
ifstream in(input_path);
cin.rdbuf(in.rdbuf());
for(int i = 0; i < 9 + k; i++) {

string input_string;
int bit;
getline(cin, input_string);
if(i == 5) {

w = stoi(input_string);
} else if(i >= 7 && i < 7 + k) {

for(int j = 0; j < n - k; j++) {
bit = int(input_string[j]) - 48;
h[j][(k - 1) - (i - 7)] = bit;

}
} else if(i == 8 + k) {

s = bitset<n - k>(input_string);
for(int j = 0; j < n - k; j++) {

bit = int(input_string[j]) - 48;
s_mirror[n - k - 1 - j] = bit;

}
}

}
for(int i = 0; i < n - k; i++) {

h[i][n - 1 - i] = 1;
}
random_device rnd;
mt19937 mt(rnd());
uniform_int_distribution <> randn(0, n - 1);
array<int, n> v;
iota(v.begin(), v.end(), 0);
int target, tmp;
int nLeftCols = (mid - (n - k - l));
int nRightCols = (n - mid);
nLeftComb = Combination(nLeftCols , 2);
nRightComb = Combination(nRightCols , 2);
int *hLeftComb = new int[(int)nLeftComb * p / 4];
int *hRightComb = new int[(int)nRightComb * p / 4];

InitializeDeviceMemory(&pdH, &pdH1, &pdH2, &pdS, nLeftComb , &pdLeftComb ,
nRightComb , &pdRightComb , &pdX, &pdL1, &pdL, &pdR,
&dCounter , &pdE);

MakeCombination(nLeftCols , nLeftComb , hLeftComb , pdLeftComb , nRightCols ,
nRightComb , hRightComb , pdRightComb);

while(true) {
int rank;
while(true) {

for(int i = 0; i < n; i++) {
target = randn(mt);
tmp = v[target];
v[target] = v[n - 1 - i];
v[n - 1 - i] = tmp;

}
x2 = s_mirror;
for(int i = 0; i < n - k; i++) {

for(int j = 0; j < n; j++)
h2[i][n - 1 - j] = h[i][n - 1 - v[j]];

}
rank = gaussian_elimination(h2, x2);
if(rank == n - k - l)

break;
}
for(int i = 0; i < n; i++) {

int m = n - k - 1;
for(int b = N - 1; b >= 0; b--) {

hb[i][b] = 0ULL;
for(int j = 0; j < 64; j++) {

if(h2[m][n - 1 - i]) {
hb[i][b] += (1ULL << j);

}
m--;
if(m < 0)

break;
}

}
}
int m = n - k - 1;
for(int b = N - 1; b >= 0; b--) {

sb[b] = 0ULL;
for(int j = 0; j < 64; j++) {

if(x2[n - k - 1 - m]) {
sb[b] += (1ULL << j);

}
m--;
if(m < 0)

break;
}

}
earray = MMT(hb, sb, w, pdH, pdH1, pdH2, pdS, nLeftComb , hLeftComb ,

pdLeftComb , nRightComb , hRightComb , pdRightComb , pdX,
pdL1,

pdL, pdR, dCounter , pdE);

for(int i = 0; i < n; i++) {
if(earray[i] == 1)

goto sol;
}

}
sol:

int j = 0;
for(int i : v) {

e[n - 1 - i] = earray[j];
j++;

}
bitset<n - k> He;
array<bitset<n - k>, n> h_col;
for(int i = 0; i < n; i++)

for(int j = 0; j < n - k; j++)
h_col[n - 1 - i][n - k - 1 - j] = h[j][i];

for(int i = 0; i < n; i++) {
if(e[n - 1 - i] == 1) {

He = He ^ h_col[i];
}

}
cout << " e (answer): " << e << endl;
assert(He == s);
delete[] hLeftComb;
delete[] hRightComb;
UninitializeDeviceMemory(&pdH, &pdH1, &pdH2, &pdS, &pdLeftComb ,

&pdRightComb , &pdX, &pdL1, &pdL, &pdR, &dCounter
,

&pdE);
return 0;

}
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