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Introduction
Oral squamous cell cancer (OSCC) represents a leading cause of  cancer worldwide, with substantial 

mortality and morbidity. In contrast to other head and neck squamous cell cancer (HNSCC) subtypes, 

most OSCCs are attributed to smoking and alcohol, and an association with HPV infection is rare 

(1–4). While treatment with anti-PD-1 was recently shown to improve outcome for some patients with 

OSCC, a majority of  patients progress and die of  their disease (5, 6).

Since the risk stratification based on tumor size, lymph node, and distant metastasis (TNM stag-

ing), combined with histological grading alone, is not sufficient to predict the prognosis of  OSCC 

patients (7, 8), additional prognostic biomarkers are urgently required. For colorectal cancer (CRC), 

the infiltration of  adaptive immune cells composed of  T lymphocytes (CD3) with cytotoxic (CD8) and 

memory (CD45RO) phenotype located at the invasive margin (IM) and tumor center, and assessed 

using digital imaging and objective assessment tools, represents a significant independent parameter 

to predict recurrence and survival (9–11). Similar trends have been reported for other cancer types; 

however, due to unique characteristics, each histology needs to be evaluated separately (12–14). In 

contrast, a strong CD3+/CD8+ T cell infiltrate and a high frequency of  CD4+CD69+ T cells correlated 

with increased overall survival (OS) of  HNSCC patients (15–17). However, the prognostic effect of  

the frequency of  CD4+CD25+FoxP3+ Tregs remains controversial (18–20). In this context it is note-

worthy that most studies analyzing immune surveillance of  HNSCC focused either on HPV+ cancers 

or did not determine the patients’ HPV status (21). As HPV+ HNSCCs are frequently associated with 

Evaluation of T lymphocyte frequency provides prognostic information for patients with oral 

squamous cell cancer (OSCC). However, the e�ect of simultaneously evaluating T cell frequency 

and assessing suppressive elements and defects in antigen-processing machinery (APM) has not 

been clarified. Simultaneous characterization of CD3+, CD8+, FoxP3+, CD163+, and PD-L1+ cells using 

multispectral imaging was performed on sections from 119 patients with HPV– OSCC. Expression of 

β
2
-microglobulin, MHC class I heavy chain, and large multifunctional peptidase 10 was quantified, 

and all data were correlated with patient outcome. We found that, consistent with previous reports, 

high numbers of CD8+ T cells at the invasive margin correlated significantly with prolonged overall 

survival (OS), while the number of FoxP3+ or PD-L1+ cells did not. Compiling the number of FoxP3+ 

or PD-L1+ cells within 30 μm of CD8+ T cells identified a significant association with a high number 

of suppressive elements close to CD8+ T cells and reduced OS. Integrating this information into a 

cumulative suppression index (CSI) increased correlation with OS. Incorporating tumor expression 

levels of APM components with CSI further improved prognostic power. This multiparametric 

immune profiling may be useful for stratifying patients with OSCC for clinical trials.
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increased T and B cell infiltrates, higher levels of  IFN-γ secretion, and increased numbers of  FoxP3+ T 

cells, all features of  antiviral responses that may translate into enhanced antitumor immune responses 

(22–26), distinguishing HPV+ and HPV– tumors is essential (17, 27).

Immune surveillance is mediated by the composition of  the tumor microenvironment (TME); it is 

affected by a multitude of  strategies tumors use to escape immune recognition. These include (a) the lack 

or downregulation of  tumor antigen expression, (b) loss or reduced expression of  MHC class I molecules 

due to impaired expression of  components of  the antigen-processing machinery (APM), and (c) increased 

expression of  immune-suppressive molecules, like the programmed death-like receptor ligand 1 (PD-L1) 

and the nonclassical HLA-G and HLA-E antigens (28–31).

So far to our knowledge, a comprehensive analysis of  HPV– OSCC, characterizing the compo-

sition and location of  immune cells within and in close proximity to tumor cells in parallel with an 

assessment of  tumor immune escape mechanisms and association with clinical parameters, has not 

been performed. In order to get better insights into these processes and their effect on patient survival, 

which might help in selecting patients with rather adverse prognosis for specific immunotherapies, this 

study analyzed different components of  immune surveillance/escape using multispectral imaging and 

objective assessment combined with conventional IHC (32, 33).

Results
Density of  CD8+ T cells at the IM predicts outcome of  HPV– OSCC patients. Analysis of  HPV– OSCC identified 

that the IM harbored a more dense immune cell infiltrate than the tumor centers, a difference that was more 

pronounced than in the published data on CRC (9) (Figure 1). Based on these results, our studies focused 

on evaluating cells at the IM, which was further divided into tumor and stromal sides of  the IM (Figure 2).

A correlation between a high density of  CD3+CD8+ T cells at the IM and improved OS was found (Fig-

ure 3, A and B). Through enumeration of  CD8+ T cells of  the IM, we found that the CD8+ T cell number 

on the tumor side had a greater effect on OS than that on the stromal side (P = 0.01, Figure 3, A and B), 

suggesting that, even within the IM, the relative location of  CD8+ T cells (tumor or stroma) plays a role.

Distance from FoxP3+ Tregs to CD8+ T cells predicts outcome in HPV– OSCC. While an increased number of  

CD3+ FoxP3+ T cells on the stromal side of  IM was associated with increased OS, the difference was not 

Figure 1. Di�erences in density and location 

of immune infiltrate in OSCC, as a typi-

cal example of squamous cell carcinoma, 

compared with colorectal cancer, as a typical 

example of intestinal adenocarcinoma. (A) 

Representative example with demonstration of 

topographic position of CD8+ infiltrate in OSCC 

(original magnification, ×40). (B) Represen-

tative example of CD8+ infiltrate in colorectal 

cancer (CRC) (original magnification, ×40). (C) 

Enumeration of immune cell infiltrate using the 

Definiens platform. In OSCC, most CD8+ cells are 

located within the stromal side invasive margin 

(IM), while, in CRC, the majority of CD8+ cells 

are located within the tumor and tumor side 

IM. Data are represented as dot plots (mean ± 

SEM). Two-tailed unpaired t test was performed 

to test statistical significance. n = 55 for OSCC, 

n = 199 for CRC. CT, core of tumor.
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significant (Figure 3, C and D). Similar findings have been reported for CRC, HPV+ OSCC, and gastric cancer 

(34, 35). Based on a positive correlation between an increased number of  Tregs and the CD8+ T cell infiltrate 

(Figure 4), we posited that Tregs recruited to the TME might not be close enough to the CD8+ T cells to sup-

press their effector function. To investigate this hypothesis, the local density of  FoxP3+ T cells around each 

CD8+ T cell was determined for the tumor and stromal side of  the IM and normalized for CD8+ T cells. Pre-

liminary analysis of  34 tumor cases revealed that an increased number of  Tregs within 30 μm of CD8+ cells 

(FoxP3
30μm

CD8n) was associated with worse outcome (Figures 5 and 6). Extrapolating this formula to the 

entire cohort of  119 patients identified a highly significant correlation, with significantly worse OS for patients 

with higher numbers of  FoxP3+ T cells within 30 μm of CD8+ T cells; this was true on the stromal and tumor 

side of  the IM (Figure 7, A and B). We next evaluated whether the FoxP3/CD8 ratio would provide a sim-

ilar prognostic power to that seen above. For both the tumor and stromal sides of  the IM, the FoxP3/CD8 

ratio, while trending in the same direction as the FoxP3
30μm

CD8n evaluation, failed to provide a prognostic 

signature that was statistically significant (Figure 7, C and D). These data suggest that Tregs more proximal to 

CD8+ T cells are more effective at suppressing anticancer function.

Distance from PD-L1+ cells to CD8+ T cells and PD-L1/CD8 ratio predict outcome in HPV– OSCC. Since enu-

meration of  PD-L1+ cells had no correlation with outcome (Figure 3, E and F), we evaluated the effect of  

Figure 2. Representative image of immune cell infiltrate in an OSCC tumor. Tissue sections were simultaneously stained for 7 antigens. Images 

(original magnification, ×20) with a high density of immune cell infiltrate were taken from stromal and tumor side invasive margin. Red overlay, 

recognized by software as tumor; green overlay, recognized by the software as stroma.
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having more PD-L1+ cells within 30 μm of  CD8+ T cells (PD-L1
30μm

CD8n). Patients with a high number 

of  PD-L1+ cells within 30 μm of  CD8+ T cells, normalized to CD8 T cell numbers, had a significantly 

worse outcome (Figure 8, A and B), with the effect being greatest for cells on the stromal side of  the IM 

(P < 0.0005). We also found that the ratio of  PD-L1/CD8+ cells for both the stromal and tumor side of  

the IM provided a strong biomarker for OS (Figure 8, C and D).

Combining assessment of  suppressive elements further separates patient populations. Since suppression mediat-

ed by FoxP3+ and PD-L1+ cells would be expected to be additive, we created a suppression index (SI) based 

on the variables enumerated above: specifically, the number of  FoxP3+ cells and the number of  PD-L1+ 

cells within 30 μm of  a CD8+ T cell, normalized to CD8+ T cell numbers. Patients who were in the top 50% 

for both categories were in the high SI category and had the worst OS. Patients who were in the top 50% 

Figure 3. E�ect of immune infiltrate density at the invasive margin on overall survival. Higher densities of CD8+, but not FoxP3+, T cells and PD-L1+ 

tumor cells at the invasive margin (IM) predict favorable OS, while this e�ect is more profound on the stromal side of the IM. Densities of CD8, FoxP3, and 

PD-L1 on both the tumor and stromal sides of the IM were enumerated using PerkinElmer inForm software. A median cuto� was used to separate high 

and low infiltrate. Log-rank statistics were performed to determine significance. n = 119.
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for one category were intermediate. Those in the lower 50% for both FoxP3 

and PD-L1 had the lowest SI and the highest OS. Evaluating the SI for both 

the tumor and stromal side of  the IM provided a highly significant prognostic 

biomarker for OS (Figure 9).

The SI is a strong prognostic marker, independent of  tumor size and UICC stage. 

To compare the well-known International Union Against Cancer (UICC) 

tumor-staging prognostic system with the SI, the OSCC cohort was separated 

into two groups based on OS (Figure 10). Patients with UICC stage III disease 

were grouped with those with UICC stage I and II disease based on their coincid-

ing approximately 70% 5-year OS. The SI was highly predictive for OS indepen-

dent of  OSCC UICC stage (I–III), particularly on the stromal side of  the IM, as 

patients with the lowest SI here achieved almost 90% 5-year OS compared with 

less than 40% for patients with the highest SI (Figure 11, A and B). The median 

cut point for the FoxP330um CD8n cells for the tumor and  stromal side (Fig-

ure 11, C and D) did not provide a significant separation in OS, but the stromal 

side tended to show a better separation of  the curves. The same analysis of  the 

PD-L130umCD8n cells was not significant for the tumor side, but evaluation of  

the stromal side provided a significant (P = 0.007) prognostic biomarker for OS 

(Figure 11, E and F) In patients with stage IV disease, the SI had the potential to 

discriminate patients with different disease course, in particular by evaluating the 

tumor side of  the IM rather than the stromal site (Figure 12, A and B). Here the 

median cut point for the FoxP330um CD8n cells for the tumor side, but not the 

stromal side, provided a significant (P = 0.003) separation in OS  (Figure 12, C 

and D). In the case of  PD-L130umCD8n cells the median cut point for both the tumor and stromal sides of  

the tumor provided a significant (P = 0.019 and P = 0.05, respectively) prognostic marker of  OS, but the tumor 

side, as seen for FoxP3, tended to give better separation of  the curves (Figure 12, E and F).

APM defects associated with worse outcome. As defects in antigen presentation represent immune escape strat-

egies of  tumors that can define disease outcome, these were assessed using MHC class I β
2
-microglobulin 

(β
2
m) and heavy chain (HC) as well as the large multifunctional peptidase 10 (LMP10). Using chromogenic 

IHC, patients with high (international rating score [IRS] 4–12) versus low (IRS 0–3) cytoplasmic expression 

levels of  β
2
m showed a tendency toward a worse OS (relative risk [RR] of  death 1.64, P = 0.08), independent 

of  T- and N-stage as well as grading, though this effect did not reach statistical significance (Figure 13A). This 

effect was predominantly accounted for in patients with UICC stage I–II tumors (RR 2.77, P = 0.07, Figure 

13B), rather than in those with UICC stage III–IV tumors (RR 1.23, P = 0.54). In contrast, a high membra-

nous β
2
m expression level was not a predictive biomarker in this study. Staining results for cytoplasmic expres-

sion of  HC10 mAb were in concordance with cytoplasmic β
2
m data showing a strong yet insignificant trend 

toward worse OS (RR 1.6, P = 0.08) in patients with high versus low cytoplasmic class I HC expression levels. 

No difference could be seen as dividing UICC stage I–II versus UICC stage III–IV tumors or membranous 

β
2
m expression levels. Regarding LMP10, patients with high versus low cytoplasmic expression showed a 

slight yet insignificant trend toward worse OS (RR 1.44, P = 0.28). No differences were detected when divid-

ing patients based on their UICC stage or in nuclear LMP10 level expression. Cumulative results regarding 

the cytoplasmic expression of  the three APM components are shown in Figure 14A.

Cumulative SI provides greater prognostic power for HPV– OSCC. By combining the SI generated from the stromal 

and tumor side of the IM, a cumulative suppressive index (CSI) was generated (Figure 14B). This CSI scoring 

system combines the evaluation of FoxP3+ and PD-L1+ within 30 μm of CD8+ T cells at both the stromal and 

tumor side of the IM. Each time a patient was in the top 50% for their cohort, they received 1 point. If  they were 

in the top 50% for all 4 assessments, they could receive a total of 4 points (Figure 14B). Applying the CSI to all 

patients (Figure 14C), or to stage I–III (Figure 14D) or stage IV patients (Figure 14E), identified patients with a 

Figure 4. Independent analysis and correlation of CD8+/FoxP3+ immune cell infil-

trates at the tumor and stromal side of the invasive margins. (A) Tumor side and 

(B) stromal side. Data are represented in a scattered plot with the best fit (solid line) 

and 95% confidence interval (dotted line) shown. Statistical test for P values was 

linear regression. n = 124 for both tumor and stroma.
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significant probability to do worse had the highest CSI. Even with patients with stage IV disease, patients with 

a CSI score of 0 had a 60% 5-year survival compared with those with a score of 4, who rapidly succumbed to 

their disease (Figure 14E). Thus, even for patients with late-stage HPV– OSCC, the CSI is still meaningful for 

separation of OSCC patients with rather good clinical outcome from those with poor clinical outcome.

Evaluating the effect of  MHC class I β
2
m and HC as well as LMP10 expression levels, we also iden-

tified that the effect of  defects in these pathways could be additive, with patients with defects in all 3 

pathways having the worst outcome (Figure 14A). Since these defects were independent of  the FoxP3- and 

PD-L1–mediated suppression, we combined both the CSI and the APM defects. In doing so, we created 

an 8-point scoring system, ranging from 0 to 7 (Figure 14F). Each point, or category, is based on a median 

Figure 5. Presentation of a relationship analysis. A reference cell (star) 

was picked and surrounding cell types were enumerated within a certain 

distance. The overall relationship parameter is a function of an average of 

all certain cell types within the entire field (original magnification, ×20).
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cutoff. A score of  7 would imply that all categories (PD-L1 and FoxP3 suppression in tumor and stroma 

as well as APM defects that include the cytoplasmic portions of  β
2
m, HC10, and LMP10) were above the 

median cutoff. In contrast, patients with a score of  0 would be in the lowest group for all inhibitory mecha-

nisms specified. This CSI plus cytoplasmic APM index provided a striking and highly significant separation 

of  patients; for patients given a score of  0, 100% survived 5 years, and for those given a score of  7, all the 

patients had died within 30 months of  follow-up time.

Discussion
This immune profiling study objectively assessed not only the frequency and composition of  the immune 

cell infiltrate, but also the cell-to-cell topography and thereby the probability of  cell-to-cell interactions, 

with additional correlation to clinical and prognostic parameters. Multispectral imaging performed on 

HPV– OSCC enabled us to objectively assess 6 markers and quantify the number of  cells expressing that 

marker and their cartographic coordinates on one 4-μm section of  FFPE tissue (33).

Based on the density, composition, and localization of  immune cell infiltrates, in particular of  CD8+ T 

cells, the immunoscore was developed, which had independent prognostic relevance in CRC, in addition to 

other cancer types (36–38). In regards to HNSCC, various immune subsets have been correlated with clin-

ical outcome (39, 40), but the majority of  these reports either focused exclusively on HPV+ HNSCC or did 

not distinguish patient populations based on the HPV status. However, high-throughput analyses revealed 

that HPV+ and HPV– HNSCCs are two distinct clinical entities, which have specific molecular features and 

an altered immune phenotype characterized by CD8+ T cell infiltration (40).

Figure 6. Optimization of the cutoff of the distance of FoxP3+ cells within specified distance of CD8+ T cells, normalized for CD8+ T cell num-

ber. Cumulative survival for a test cohort of 34 patients characterized as being above (high) or below (low) the median for FoxP3
20μm

CD8n (A), 

FoxP3
30μm

CD8n (B), FoxP3
45μm

CD8n (C), and total FoxP3 (D). The number of FoxP3+ T cells within 30 μm of a CD8+ T cell, normalized to number of 

CD8+ T cells (FoxP3
30μm

CD8n) (B), provides the best statistical cutoff point and was therefore used for the analysis of the entire cohort of patients. 

Numbers of FoxP3+ T cells and distance were determined using PerkinElmer inForm and R script and were normalized to the number of CD8+ T cells 

(FoxP3
30μm

CD8n). A median cutoff was used to separate high and low infiltrate. Kaplan-Meier survival plots were made, and statistics were generat-

ed using log-rank test. n = 34.
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To date, our study, consisting of  119 patients from two centers, represents one of  the largest HPV– 

OSCC studies. Consistent with other reports, our results indicated a favorable association between high 

CD8+ T cell density and OSCC patient survival (41). By focusing exclusively on CD8+ T cells on the tumor 

side of  the IM, long-term survivors were identified independent from tumor stage, suggesting a prognostic 

value of  the immune cell repertoire in the TME. In contrast to our data, an inverse correlation between 

tumor PD-L1 expression and outcome of  HNSCC patients has recently been shown in a Chinese cohort 

(42), which might be at least partially explained by the lack of  distinction of  the HPV status and/or a dis-

tinct pathogenesis among ethnic groups. This might be of  great impact, as high PD-L1 expression levels 

can be mediated by external stimuli, including cytokines secreted from immune cells, or intrinsic consti-

tutive expression due to gene amplification (43), utilization of  an ectopic promoter by translocation (44), 

disruption of  the 3′ untranslated region of  PD-L1 (45), or aberrant signaling pathways (46).

Based on our previous data in melanoma (32), we investigated the ratios as well as the spatial rela-

tionship between CD8+ T cells and immune suppressors. Adapted from an optimal separation of  a test 

cohort of  34 patients (Figure 6), FoxP3 and PD-L1 expression was analyzed within a 3-lymphocyte-wide 

distance (30 μm) around CD8 T cells; the numbers of  FoxP3+ and PD-L1+ cells were normalized to the 

total number of  CD8 T cells, and this number was equal to the SI. By normalizing the number of  FoxP3 

and PD-L1 cells to CD8+ T cells in the region of  interest, this SI takes into consideration both the active 

suppressive mechanisms, FoxP3+ and PD-L1+ cells as well as an overall “suppressed” or absent anti-

cancer immune response, characterized by a low number of  CD8 T cells. Using this approach, OSCC 

patients with a low SI survived much longer compared with those with a high SI, while the OS for those 

with an intermediate SI fell right in the middle. Upon separating the patients by tumor stage, the stromal 

SI was more important in stage I–III patient, while the tumor SI appeared to be more important in stage 

IV patients. These results lead to the hypothesis that, in earlier tumor stages, without apparent organ 

metastases, the most important function of  stromal immune infiltrate involves the control of  tumor 

spreading, while in late-stage tumors with apparent organ metastases, tumor-infiltrating immune cells 

represent a favorable signature. Next, we combined the SI of  the stromal and the tumor side of  the IM to 

create the CSI and found that patients with the highest CSI had reduced survival. To further strengthen 

Figure 7. E�ect of topographic distance of FoxP3+ T 

cells from CD8+ T cells on prognosis. A high number of 

FoxP3+ cells within 30 μm of CD8+ T cells, normalized to 

CD8+ T cell numbers (FoxP3
30μm

CD8n), on the tumor (A) 

and the stromal (B) side of the invasive margin present 

a significant prognostic marker for worse OS, while the 

ratio of FoxP3/CD8 T cells failed to provide a significant 

prognostic signature (C and D). Absolute numbers of T 

cells as well as distance relationship were determined 

using PerkinElmer inForm and R script and were normal-

ized to the number of CD8+ T cells. A median cuto� was 

used to separate high and low distance relationships. 

Kaplan-Meier survival plots were made, and statistics 

were generated using log-rank test. n = 119.
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our scoring system, the expression of  APM components was determined. The cytoplasmic expression 

of  APM components inversely correlated with OS of  OSCC patients (Figure 14A). Thus, higher cyto-

plasmic expression of  HC and β
2
m might indicate a defect in the export of  MHC class I molecules to the 

cell surface, a mechanism already described in virus-infected cells, leading to reduced T cell–mediated 

killing (47). So far, altered MHC class I APM component expression in HNSCC and other cancers has 

been documented by others but has not been correlated to the immune cell infiltrate of  the tumor speci-

men (48–50). The underlying molecular mechanisms of  the disturbed APM component expression have 

not been analyzed in detail, but deregulation, rather than structural abnormalities, appears to be main 

cause (51). By combining APM parameters with CSI, patients with a 100% 5-year survival could be 

identified and distinguished from those who rapidly progressed, with none surviving at 30 months. Our 

study, while small in size and in need of  validation, not only confirms the importance of  CD8+ T cells 

in prognosis, but also highlights the complexity of  the TME, suggesting that the assessment of  multiple 

parameters is necessary in order to better identify those patients in need of  more aggressive treatment 

strategies. Future research should include a validation cohort and should evaluate whether to weigh 

suppressive elements or APM by some other factor than the median score and evaluate whether that may 

further improve outcome prediction of  the presented index. For that matter, the predictive value of  other 

APM components (e.g., TAP1/2, calreticulin/calnexin, ERp57, ERAP1/2) should also be tested. Addi-

tionally, our process of  normalizing the FoxP3 and PD-L1 relationships within 30 μm of  a CD8 T cell to 

the number of  CD8 T cells includes a reduced number of  CD8 T cells as a component of  the suppressive 

index. This reduced CD8 T cell number may represent the result of  active suppression, but, in many 

patients with “cold” tumors, it may be indicative of  the absence of  an immune response and not actual 

Figure 8. E�ect of topographic distance of PD-L1+ T cells from CD8+ T cells on prognosis. A high number of PD-L1+ within 30 μm of CD8+ T cells 

(PD-L1
30μm

CD8n) (A and B) as well as the ratio of PD-L1/CD8 T cells (C and D) on the tumor and the stromal side of the invasive margin present a significant 

prognostic marker for worse OS. Absolute numbers of T cells as well as distance relationship were determined using PerkinElmer inForm and R script and 

were normalized to the number of CD8+ T cells. A median cuto� was used to separate high and low distance relationships. Kaplan-Meier survival plots 

were made, and statistics were generated using log-rank test. n = 119.
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suppression. This could have important ramifications for clinical trial design by identifying patients who 

need an adoptive immunotherapy or a cancer vaccine as a component of  their combination immunother-

apy. Furthermore, the separation we identified supports evaluation of  the CSI in additional histologies. 

A limitation of  these studies is the substantial user input for staining and evaluation of  multispectral 

images; for example, these include manual staining protocols and the selection of  regions of  interest, 

spectral libraries, and exposure times in inForm, which are prone to interobserver variability. In our 

opinion, what is needed now is to move multiplex immunohistochemical staining to an automated CLIA 

platform, make improvements to image acquisition technology to optimize signal strength for each slide, 

Figure 9. E�ect of a suppression index on prognosis. Use of a suppression index (SI) 

incorporating both the number of FoxP3+ cells and the number of PD-L1+ cells within 30 

μm of a CD8+ T cell, normalized to CD8+ T cell number, on both the tumor (A) and the 

stromal (B) side of the invasive margin separates patients into 3 distinct prognostic 

groups, providing a highly significant biomarker. Here, the expressions based on median 

cuto� of FoxP3
30μm

CD8n and PD-L1
30μm

CD8n were added together and ranked from high 

(score of 2) to low (score of 0). Patients who were in the top 50% for both categories were 

in the high SI category and had the worst OS. Patients who were in the top 50% for one 

category were intermediate, and those in the lower 50% for both FoxP3
30μm

CD8n and 

PD-L1
30μm

CD8n had the lowest SI and the highest OS. Log-rank statistics were performed 

to determine significance. The top P value refers to all comparisons, the bottom P value 

refers to the di�erence between the lowest and highest score. n = 119.

Figure 10. Stage distribution and basic patient characteristics. Kaplan-Meier survival plot of the 

cohort based on UICC stage.
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modify software so that it can automatically identify regions of  interest, and accelerate the time required 

to complete the analyses. Moving forward, we are working with collaborators to test improved image 

analysis algorithms and are evaluating automated multiplex staining methods. Successful development 

and application of  these tools should lead to accelerated analysis times and validated panels that could 

be used in “real-time” clinical decision making.

Overall, these data, while preliminary and in need of  validation, are consistent with a large body 

of  work and signify the importance of  T cell responses in HPV– OSCC. They provide a rationale for 

the utilization of  multiplex imaging in characterizing the possible escape mechanisms operational in a 

given patient. It is our vision that this type of  assessment, which may include additional markers and 

possibly other methodologies (52), will ultimately allow for the precise tailoring of  combination immu-

notherapy agents and aid in identifying patients that may require treatment intensification.

Figure 11. E�ect of the suppression index and distance relationships on OS in stage I–III OSCC patients. (A and B) Using a suppression index (SI) incor-

porating both FoxP3
30μm

CD8n and PD-L1
30μm

CD8n presents a significant prognostic marker for OS on the stromal side (B) but not on the tumor side of the 

invasive margin (IM) (A). (C–F) In stage I–III OSCC patients, only a high number of PD-L1
30μm

CD8n cells on the stromal side of the IM (F) presents a signifi-

cant biomarker, marking an unfavorable OS. For A and B, ranks were assigned as presented in Figure 9. For C–F, a median cuto� was used to separate high 

and low distance relationships. Kaplan-Meier survival plots were made, and statistics were generated using log-rank test. n = 59.



1 2insight.jci.org   https://doi.org/10.1172/jci.insight.93652

R E S E A R C H  A R T I C L E

Methods
Study population and selection criteria. The study included 152 OSCC primary tumors from Halle, Ger-

many, and 12 OSCC primary tumors from Portland, Oregon, USA. Forty-five patients were dropped 

from the study due to HPV positivity or lack of  IM in the tumor slides, resulting in 119 patients being 

available for study. UICC stage distribution as well as basic patient characteristics are summarized in 

Figure 10 and Tables 1 and 2.

Bright-field IHC and analysis. For bright-field IHC, the mAbs NAMB (β
2
m; SP09-36), HC10 (HLA class 

I HC; HSP09-35), and TO-7 (LMP10; SP08-225) were used (30). Tissue samples were deparaffinized 

with xylol and transferred via alcohol into aqua dest (Elix 5 Filter System, Merck-Millipore). Antigen 

decloaking was performed by steaming the slides with a preheated T-EDTA buffer (ZUC029-500, 1:10 

dilution, Zytomed Systems) at pH 9.0 and 98°C for 20 minutes in an oven (Braun, type 3216). After cool-

Figure 12. E�ect of the suppression index and distance relationships on OS in stage IV OSCC patients. (A and B) Using a suppression index (SI) incorpo-

rating both the FoxP3
30μm

CD8n and the PD-L1
30μm

CD8n provides a significant prognostic marker for OS on both the tumor (A) and the stromal side of the 

invasive margin (IM) (B), with a more profound e�ect on the tumor side (A). (C–F) A high number of FoxP3
30μm

CD8n (C) and PD-L1
30μm

CD8n (E) cells on the 

tumor side of the IM provides a significant biomarker, identifying an unfavorable OS. For A and B, ranks were assigned as presented in Figure 9. For C–F, 

a median cuto� was used to separate high and low distance relationships. Kaplan-Meier survival plots were made, and statistics were generated using 

log-rank test. n = 60.
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ing down for 20 minutes and rinsing with aqua dest, slides were blocked for 7–10 

minutes with 3% H
2
O

2
. Following another rinsing step and application of  wash-

ing buffer (ZUC202-2500, 1:20 solution, Zytochem Plus HRP Kit/Plus Polymer 

System, Zytomed), the antibodies β
2
m (1:50 dilution), HC10 (1:2,500 dilution), 

and LMP10 (1:200 dilution) were added dropwise on the tissue area and incubat-

ed for 30 minutes at room temperature. Antibody removal was performed by vac-

uum followed by a washing step. Then, slides were incubated with a biotinylated 

secondary antibody (Broad Spectrum, Zytochem Plus HRP Kit, Zytomed) for 

15 minutes at room temperature and rinsed with washing buffer, followed by 15 

minutes of  incubation with HRP (Zytochem Plus HRP, Zytomed). The epitopes 

were visualized with DAB (10 minutes, DAB Substrate Kit, Zytomed). After fur-

ther rinsing steps (aqua dest), the slides were counterstained with hemalaun (Dr. 

K. Hollborn & Sons) for 30 seconds, transferred into xylol, and covered (Eukitt, 

ORSAtec) for bright-field analysis.

Staining results were semiquantitatively evaluated utilizing the IRS, as described 

by Remmele et al. (53). In short, staining intensity (0, negative; 1, low; 2, moderate; 

3, strong positive) and the percentage of  stained cells (0, negative; 1, <10%; 2, 10%–

50%; 3, 51%–80%; 4, >80%) were evaluated, and the IRS score was then calculated 

as the product of  the two, ranging from 0–12. Tissue samples were independently cat-

egorized by two pathologists (CW and DB). Ten percent of  all cases plus all cases pre-

senting any technical challenges were coreviewed by both pathologists to harmonize 

and ensure reproducibility of  the APM scoring. All the remaining cases were scored by one pathologist (DB).

Multiplex IHC and analysis. Multispectral imaging was performed as previously described in detail 

in the supplemental section of  Feng et al. (32) with minor changes, using mAbs directed against 

PD-L1 (E1L3N, Cell Signaling), CD8 (M239, Spring Bioscience), FoxP3 (236A/E7, Abcam), CD3 

(2GV6, Ventana, prediluted, incubation for 45 minutes), CD163 (MRQ26, Ventana), and cytokeratin 

(AE1/AE3, DAKO, 1:100 dilution, incubation for 45 minutes) as well as DAPI (Invitrogen). TSA-

Cy5 (PerkinElmer Inc.), TSA-Cy3 (PerkinElmer Inc.), TSA-FITC (PerkinElmer Inc.), TSA-Alexa594 

(Life Technologies), TSA-Biotin-Alexa514 (PerkinElmer Inc., Life Technologies), and TSA-Coumarin 

(PerkinElmer Inc.) were applied to each antibody. Slides were imaged using the PerkinElmer Vectra 

platform. A “hotspot” analysis was performed. Three ×20 fields from the IM were manually select-

ed based on the highest lymphocytic infiltrate. Tumor (cytokeratin+) and stromal (cytokeratin–) areas 

within hotspots were identified using inForm software (example in Figure 2), and cell number and 

cartographic coordinates (distance from each cell and location within tumor or stroma) for each cell 

were obtained (example Figure 5). Images were analyzed in small batches using PerkinElmer inForm 

and R script for cell phenotype enumeration and relationship analysis. Cells that were positive for both 

CD3 and CD8 were classified as CD8+. Cells that were CD3+ and had nuclear staining for FoxP3 were 

considered FoxP3+. Except for CD3+PD-L1+ double-positive cells, any cell that expressed PD-L1 was 

considered a PD-L1+ cell. This includes both tumor cells and macrophages. Evaluation of  FoxP3+ and 

PD-L1+ within 30 μm of  a CD8 T cell, normalized to the number of  CD8 T cells, was performed by 

first obtaining the number of  FoxP3+ or PD-L1+ cells within 30 μm of  a CD8 T cell and then normaliz-

ing that to the number of  CD8 T cells according to the following formula: number of  FoxP3 within 30 

μm of  a CD8 T cell/total CD8s = FoxP3
30μm

CD8n. The median number of  FoxP3
30µm

CD8n was 1.93 × 

10–3  for the tumor and 1.28 × 10–3 A for the stromal side of  the invasive margin. A similar formula was 

applied for characterizing PD-L1: number of  PD-L1+ macrophages and tumor cells within 30 μm of  

a CD8 T cell/total CD8s = PD-L1
30μm

CD8n. The median number of  PD-L1
30µm

CD8n was 1.32 × 10–3  

for the tumor and 1.25 × 10–3 A for the stromal side of  the invasive margin.

Figure 13. E�ect of cytoplasmic expression of β
2
m on OS. (A) Kaplan-Meier curve high-

lighting the strong yet insignificant tendency toward a prognostic e�ect of high levels of 

cytoplasmic expressed β
2
m (IRS 4–12 vs. 0–3), leading to a 1.64-fold increase (P = 0.08) in the 

relative risk (RR) of death, independent of T- and N-stage and grading. (B) This e�ect was 

predominantly accounted for by patients with T1–2 stage tumors (RR 2.77, P = 0.07), rather 

than in T3–4 stage tumors (RR 1.23, P = 0.54, data not shown).
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Statistics. Statistical analyses for bright-field IHC were performed using SPSS 20.0 software (SPSS 

Inc.). To evaluate survival probabilities in patients with low group sizes, two groups (low vs. high pro-

tein expression levels) were selected for each marker based on an even distribution of  patients’ scores in 

these groups. IHC results were then correlated with clinical data using univariable and multivariable Cox 

Figure 14. The cumulative suppression index is a highly indicative prognostic marker superior to the prognostic index of the single markers. (A) 

Kaplan-Meier curve showing the influence of the combined cytoplasmatic expression levels of β
2
m, HC, and LMP10 on OS. Patients were separated 

as above or below the median for each marker. A score of 0 represents below-median cutoff expression, and a score of 3 represents high expression 

for all three APM components. (B) Combining suppression indices (SI) from tumor and stroma to obtain cumulative suppression index (CSI). Each 

column represents FoxP3
30μm

CD8n and PD-L1
30μm

CD8n in tumor and stroma, with red indicating above-median cutoff, marking increased suppres-

sion. (C) Analysis of the entire cohort demonstrates the highly significant stepwise reduction of OS based on an increasing CSI, with 0 representing 

the lowest and 4 representing the most suppression relative to CD8+ T cells. (D) Kaplan-Meier curve for the CSI for patients with stage I–III disease. 

(E) Kaplan-Meier curve for the CSI for patients with stage IV disease. (F) Analysis of CSI in combination with the 3 APM components, demonstrat-

ing a highly significant stepwise reduction of OS based on an increasing score. A score of 0 represents low suppression and low cytoplasmatic APM 

expression (below-median cutoff); a score of 7 represents high (above-median) cutoff for all 7 categories. (A and C–F) Log-rank statistics were 

performed to determine significance. The top P value refers to all comparisons, the bottom P value refers to the difference between the lowest and 

highest score. n = 119 (A, C, and F); 59 (D); E = 60 (E).
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regression analysis. In multivariable Cox regression, T- and N-stage and grading were included as con-

founding factors. Survival probability was visualized using Kaplan-Meier graphs. A P value of  less than 

0.05 was considered as significant result. For Figure 1, 2-tailed unpaired t tests were performed using 

PRISM, and a P value of  less than 0.05 was considered significant.

For multiplex IHC, medians for all presented immune markers are summarized in Table 3. For multiplex 

data, Kaplan-Meier survival curves were established using SPSS statistical software v23. For Figures 3, 6–12, 

and 14, a median cutoff was used, log-rank and Breslow tests were performed, and a P value from the most 

appropriate test was reported. A P value of less than 0.05 was considered significant. For SI studies, a binary 

value for each category was assigned based on a median cutoff, the sum of all values was used to generate the 

SI score. Analyses were appropriately corrected for multiple comparisons when comparing two or more groups. 

Multivariate Cox regression incorporating stage and grade was performed where applicable. A P value of less 

than 0.05 was considered significant. For Figure 4, linear regression was performed using PRISM, and 95% con-

fidence interval is shown. R2 value is shown, and a P value of less than 0.05 was considered significant.

Study approval. The study was carried out in compliance with the Helsinki Declaration. The study was 

approved by the ethics committee of  the Medical Faculty of  Martin Luther University Halle-Wittenberg 

and the institutional review board of  the Providence Portland Medical Center (12-075A).
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Table 1. Cohort age, stage, grade, and follow-up data

Age(yr) Follow-up (mo) Stage Grade

No. 119 119 119 119

Median 58 26 3 2

Minimum 22 3 1 1

Maximum 83 60 4 3

 

Table 2. Cohort sex, treatment, and survival percentages

Male (%) 62.0

Received radiation (%) 40.0

Received chemotherapy (%) 100.0

HPV– cases (%) 51.8

Survival at last follow-up (%) 75.9
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