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Objectives: The purpose of this study was to determine whether multipara-

metric magnetic resonance imaging (MRI) using dynamic contrast-enhanced

MRI (DCE-MRI) and diffusion-weighted MRI (DWI), obtained before and

after the first cycle of neoadjuvant chemotherapy (NAC), is superior to single-

parameter measurements for predicting pathologic complete response (pCR) in

patients with breast cancer.

Materials andMethods: Patients with stage II/III breast cancer were enrolled in

an institutional review board–approved study in which 3-T DCE-MRI and DWI

data were acquired before (n = 42) and after 1 cycle (n = 36) of NAC. Estimates of

the volume transfer rate (Ktrans), extravascular extracellular volume fraction (ve),

blood plasma volume fraction (vp), and the efflux rate constant (kep = Ktrans/ve)

were generated from the DCE-MRI data using the Extended Tofts-Kety model.

The apparent diffusion coefficient (ADC) was estimated from the DWI data.

The derived parameter kep/ADC was compared with single-parameter mea-

surements for its ability to predict pCR after the first cycle of NAC.

Results: The kep/ADC after the first cycle of NAC discriminated patients who

went on to achieve a pCR (P < 0.001) and achieved a sensitivity, specificity, pos-

itive predictive value, and area under the receiver operator curve (AUC) of

0.92, 0.78, 0.69, and 0.88, respectively. These values were superior to the single

parameters kep (AUC, 0.76) and ADC (AUC, 0.82). The AUCs between kep/ADC

and kep were significantly different on the basis of the bootstrapped 95% confi-

dence intervals (0.018–0.23), whereas the AUCs between kep/ADC and ADC

trended toward significance (−0.11 to 0.24).

Conclusions: The multiparametric analysis of DCE-MRI and DWI was supe-

rior to the single-parameter measurements for predicting pCR after the first

cycle of NAC.
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D ynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) and diffusion-weighted MRI (DWI) have matured to the

point where they are able to provide quantitative and complementary

information on tumor status.1–6 Dynamic contrast-enhanced magnetic
resonance imaging involves the serial acquisition of T1-weighted
magnetic resonance (MR) images of a tissue of interest before and
after an intravenous injection of a paramagnetic contrast agent (CA).
As the CA accumulates and then is eliminated, it changes the native
relaxation rate of tissue water and, therefore, the measured MR sig-
nal intensity. By fitting the resulting signal intensity time course to
an appropriate pharmacokinetic model, physiological parameters
can be extracted, which relate to tissue perfusion and permeability
(Ktrans, the volume transfer rate), blood plasma volume fraction (vp),
extravascular extracellular volume fraction (ve), and the efflux rate con-
stant (kep = Ktrans/ve). Diffusion-weighted MRI allows for the in vivo
measurement of the motion of water in tissue. By applying 2 or more
diffusion-sensitizing gradients with different amplitudes, the apparent
diffusion coefficient (ADC) can be estimated from the resulting DWI
data to describe the rate of water diffusion in cellular tissues. In well-
controlled studies, it has been shown that the ADC varies inversely
with cell density.7

There have been many efforts using DCE-MRI as a surrogate
biomarker for assessing and predicting the response of breast tumors
to neoadjuvant chemotherapy (NAC).8–15 For example, Johansen et al15

measured the relative signal intensity (ie, the mean signal intensity
of the second and third dynamic scans relative to the precontrast scan)
after a single cycle of NAC and used the technique to predict clinical
response and 5-year survival in 24 patients with locally advanced breast
cancer. The authors found that the relative signal intensity value was
reduced after only 1 cycle of NAC in patients with clinical treatment
response (P = 0.02). Ah-See et al12 calculated the changes in pharma-
cokinetic parameters estimated from DCE-MRI data before and after
2 cycles of treatment and reported that change inKtranswas the best pre-
dictor of pathologic nonresponse. They showed that the area under the
receiver operating characteristic curve (AUC) was 0.93 and that the
sensitivity and specificity were 0.94 and 0.82, respectively.12 Padhani
et al13 found that both tumor size and change in the range of histograms
in Ktrans after 2 cycles of treatment were equally able to predict eventual
response (AUC, 0.93 and 0.94, respectively).

Some studies investigating DWI have found that the ADC can
separate responders from nonresponders after NAC.14,16,17 For exam-
ple, Sharma et al16 measured the ADC, tumor diameter, and volume
at 4 time points during NAC from 56 patients with locally advanced
breast cancer and found that ADC had a higher specificity than mor-
phological variables. However, some other studies failed to show a cor-
relation between ADC and treatment response.18,19

In more recent studies,11,17,20–24 investigators have begun to
combine DCE-MRI and DWI data to predict response. However, most
previous studies reported the ability of both data to monitor or assess
treatment response separately and did not show the performance of
the combination of DCE-MRI and DWI. The objective of this study
was to determine whether a multiparametric combination of DCE-
MRI and DWI data can increase the overall accuracy for predicting
pathologic complete response (pCR) in patients with breast cancer

Received for publication April 15, 2014; and accepted for publication, after revision,
August 14, 2014.

From the *Institute of Imaging Science, †Department of Radiology and Radiological
Sciences, ‡the Vanderbilt-Ingram Cancer Center, Departments of §Biostatistics,
kRadiation Oncology, ¶Medical Oncology, #Surgical Oncology, **Pathology,
††Physics and Astronomy, ‡‡Cancer Biology, and §§Biomedical Engineering,
Vanderbilt University, Nashville, TN.

Conflicts of interest and sources of funding: Supported by the National Institutes of Health
through NCI R01CA138599, NCI 1U01CA142565, NCI 1U01CA174706, NCI 1P50
098131,NCIP30CA068485, andNCRR/NIHUL1RR024975-01 (Vanderbilt CTSA
grant) as well as the Kleberg Foundation (support for the imaging program at
our institution) and the AUR-GE Radiology Research Academic Fellowship.

The authors report no conflicts of interest.
Reprints: Thomas E. Yankeelov, PhD, Institute of Imaging Science, Vanderbilt Univer-

sity, AA-1105Medical Center North, 1161 21st Ave S, Nashville, TN 37232–2310.
E-mail: thomas.yankeelov@vanderbilt.edu.

Copyright © 2014 by Lippincott Williams & Wilkins
ISSN: 0020-9996/14/0000–0000

ORIGINAL ARTICLE

Investigative Radiology • Volume 00, Number 00, Month 2014 www.investigativeradiology.com 1

Copyright © 2014 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

mailto:thomas.yankeelov@vanderbilt.edu
www.investigativeradiology.com


undergoing NAC. In particular, we hypothesized that the derived
measurement kep/ADC is superior to single-parametric MRI for the
prediction of pathologic response to NAC. The eventual clinical goal
was to be able to predict, after the first cycle of NAC, which patients
will go on to achieve pCR.

MATERIALS AND METHODS

Patient Eligibility and Enrollment
Patients undergoing NAC for high-risk operable breast cancer

were eligible for this prospective, institutional review board–approved
study. All patients had histologically documented invasive breast cancer
at least 1 cm in the longest dimension with a sufficient risk for recur-
rence to warrant the use of NAC. This risk was determined by the
treating oncologist using pretreatment pathologic characteristics includ-
ing tumor size, nodal status, grade, Ki-67 level, as well as estrogen re-
ceptor, progesterone receptor, and human epidermal growth factor
receptor 2 (HER2) status as measured through immunohistochemistry.
Positivity of HER2 was defined as an immunohistochemical staining
score of 3+ or 2+ with an amplification ratio of 2.2 or greater on fluo-
rescence in situ hybridization.25 Estrogen and progesterone receptor
positivity was defined as at least 1% of tumor cells showing positive nu-
clear staining of any intensity.26 Receptor status was considered nega-
tive if less than 1% of tumor cells showed nuclear staining of any
intensity. In addition to tumor characteristics, patient characteristics
such as age and menopausal status were used to predict risk for recur-
rence. The patients providedwritten informed consent before participat-
ing in this study.

Schema
Magnetic resonance imaging was performed before initiating

chemotherapy (t1), after 1 cycle (t2), and at the conclusion (t3) of chemo-
therapy. The NAC regimen was left to the discretion of the treating on-
cologist on the basis of patient factors such as menopausal status and
age as well as tumor characteristics including size, grade, nodal status,
and receptor status.

Pathologic Assessment of Response
Several classifications are available to assess pathologic re-

sponse after NAC. In the National Surgical Adjuvant Breast and
Bowel Project B18 trial, pCR was defined as no histologic evidence
of invasive tumor cells in the breast. Recently, more complex mathemat-
ical determinations of residual tumor burden have been described.27–31

Sataloff et al32 proposed a dual system that separated assessed
residual tumor in the primary tumor site and nodes. Given the growing
evidence of the importance of residual nodal disease, we elected to use
the Sataloff classification, which takes into account both breast and
nodal status.33 Because the aim of our study was to predict, after the
first cycle of NAC, who will achieve pCR and who will not at the con-
clusion of NAC, we classified those who had no invasive tumor in the

breast and nodes as a “pCR” and thosewith any residual invasive cancer
in breast and/or nodes as “non-pCR.”

MRI Data Acquisition
Magnetic resonance imaging examinations were performed on a

Philips 3-T Achieva MR scanner (Philips Healthcare, Best, The
Netherlands) and included both DCE-MRI and DWI acquisitions. Be-
fore the DCE-MRI acquisition, data for constructing a T1 map were
acquired with a radiofrequency-spoiled 3-dimensional gradient echo
multiflip angle approach with 10 flip angles from 2 to 20 degrees
in 2-degree increments. For the DCE study, each 20-slice set was
collected in 16 seconds at 25 time points for just under 7 minutes of
dynamic scanning. A catheter placed within an antecubital vein de-
livered 0.1 mmol/kg (9–15 mL, depending on patient's weight) of
gadopentetate dimeglumine, gadolinium-diethylenetriamine penta-
acetic acid, (Magnevist, Wayne, NJ) at 2 mL/s (followed by a saline
flush) via a power injector (Medrad, Warrendale, PA) after the
acquisition of the first 3 dynamic scans (baseline). Diffusion-weighted
MRI was acquired with a single-shot spin echo echo planar imaging
sequence in 3 orthogonal diffusion encoding directions (x, y, and z).
For 14 patients, b = 0 and 500 s/mm2, repetition time (TR)/echo time
(TE) of 2500 milliseconds/45 milliseconds, Δ = 21.4 milliseconds,
δ = 10.3 milliseconds, and 10 signal acquisitions were acquired. For
24 patients, b = 0 and 600 s/mm2, TR/TE of “shortest” (range, 1800–
3083 milliseconds/43–60 milliseconds), Δ = 20.7 to 29 milliseconds,
δ = 11.4 to 21 milliseconds, and 10 signal acquisitions were acquired.
For 4 patients, b = 50 and 600 s/mm2 for 2 patients, TR/TE of
“shortest” (range, 1840–3593 milliseconds/43–60 milliseconds), Δ =
20.6–29 milliseconds, δ = 11.5–21 milliseconds, and 10 signal
acquisitions were acquired. Table 1 lists the acquisition parameters for
the T1 map, DCE-MRI, and DWI. (The reasons that we used different
b values are that data collection occurred over an extended period of
time and that there were both hardware and software upgrades during
that time. Changes to the diffusion protocol were made to take
advantage of these upgrades to improve image quality. The most
recent protocol uses b = 0, 50, and 600 s/mm2 as a compromise
between maximizing lesion discrimination and signal-to-noise ratio.34,35)

We note that subsets of this patient cohort have been included in
a number of previous publications that focused on technical DCE-MRI
or DWI data acquisition methods23,36–41 and integrating such data into a
predictive mathematical model of tumor growth.42

Quantitative Image Analysis
For each patient at each time point, a region of interest (ROI)

was manually drawn to completely surround the enhancing tumor as
seen on each DCE-MRI tumor slice. The tumor was then defined as
the voxels in each ROI displaying a signal intensity increase of greater
than 80% after contrast injection. The threshold was calculated as
�
Spost−

�
Spre

� �

=�Spre

� �

�100, where�Spost is the averaged postcontrast signal

intensity and
�
Spre is the average of the 3 precontrast time points. The

threshold of 80% was selected because, in a previous study, it yielded
the largest concordance correlation coefficient between the longest

TABLE 1. Data Acquisition Parameters

TR, milliseconds TE, milliseconds FOV, mm
2

Acquisition Matrix Slice Thickness, mm Slices Flip Angle, degree

T1 map 7.9 4.6 220 � 220 192 � 192 5 20 2–20

DCE-MRI 7.9 4.6 220 � 220 192 � 192 5 20 20

DWI Shortest (1840–3593) Shortest (43–60) 192 � 192 144 � 144 5 12 90

DCE-MRI indicates dynamic contrast-enhanced magnetic resonance imaging; DWI, diffusion-weighted imaging; FOV, field of view; TE, echo time; TR, repetition time.
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dimension of the tumor measured on the surgical specimen and the
longest dimension measured on the DCE-MRI data just before sur-
gery as reported previously.38 The DWI data were rigidly regis-
tered43 to the DCE-MRI data, and the tumor ROIs as defined on
the DCE-MRI data were then copied to the registered DWI data so
that tumor voxels on both data sets were coaligned.

The extended Tofts-Kety model was used to estimate 4 physio-
logical parameters from the DCE-MRI data: the volume transfer rate
(Ktrans), blood volume fraction (vp), extravascular extracellular volume
fraction (ve), and the efflux rate constant (kep =Ktrans/ve). The arterial in-
put function (AIF) was a population-averaged AIF constructed from
50 individual AIFs obtained through a semiautomatic AIF tracking al-
gorithm.44 Voxels for which the extended Tofts-Kety model model did
not converge or converged to nonphysical values (ie,Ktrans > 5.0 min−1,
ve > 1.0, vp > 1.0, or any parameter below 0.0) were set equal to zero
and not included in the subsequent analyses.

The ADC maps were calculated with the following equation:
ADC = ln(S1/S2)/(b2 − b1), where S1 and S2 denote the signal acquired
with b values of b1 and b2, respectively. Voxels for which the model
could not fit the data or converged to nonphysical values (ie, ADC >
3.0 � 10−3 mm2/s or ADC < 0.01 � 10−3 mm2/s) were set to zero and
not included in the subsequent analyses.

At the first 2 time points, longest dimension (LD), mean DCE-
MRI parameters, andmeanADC valueswere computed for each patient
and the changes of each parameter between t1 and t2 were calculated.
The LD was measured from the tumor ROI estimated from the DCE-
MRI data; for each slice with tumor voxels, the distance between any
2 voxels was calculated and the maximum distance in all slices
was determined as the LD. The mean and change (from baseline to
the post–1-cycle time point) of the derived parameter kep/ADC were
also obtained. We hypothesized that the ratio kep/ADC would repre-
sent a more sensitive and specific metric than any single parameter
and is therefore superior for predicting treatment response.

Statistical Analysis
All statistical analyses were performed using MATLAB R2012a

(The Mathworks, Natick, MA). Receiver operator characteristic (ROC)
curve analysis was performed to test the ability of each single-parameter
measurement as well as the derived parameter kep/ADC to predict
pCR.45 “Optimal” cutoff points, sensitivities, specificities, and pos-
itive predictive values (PPV) were calculated to satisfy the Youden
index; that is, the point on the ROC curve that is farthest from chance
and minimizes the overall rate of misclassification.46 The areas under
the curve were estimated using the trapezoidal rule. The nonpara-
metric Wilcoxon rank sum test47 was also used to detect whether the
parameters between the 2 response groups were significantly different.

To investigate whether the AUC of kep/ADC was significantly
different from the AUC of kep or ADC, the bootstrap method48 was
performed to generate the differences in AUC between kep/ADC
and kep as well as those between kep/ADC and ADC with 1000 rep-
licates. The bootstrapped 95% confidence intervals (CIs) for the AUC
differences were then estimated.

RESULTS

Clinical Patient Data
Forty-two patients completed scanning at t1 and 36 patients com-

pleted scanning at t2. The median age of the patients was 46 years
(range, 28–67 years). The median time between t1 and t2 was 14 days
(range, 7–29 days). The median time between the baseline MRI
scan and the first cycle of treatment administration was 3 days (range,
0–15 days). Table 2 summarizes the salient features of the study pop-
ulation, the receptor status, and the corresponding treatment regi-
mens for all patients.

At completion of NAC, 14 patients (33.3%) were defined as
having achieved pCR. In the patients who did not achieve pCR,
the median size of the residual tumor was 1.4 cm (range, 0.3–8 cm).

Representative Imaging Data
The rows of Figure 1 display the Ktrans, kep, ve, vp, and ADC

maps, respectively, superimposed on anatomical T1-weighted images
for a representative patient achieving pCR. The numbers under the
panels indicate the mean values for each parameter at each time point.
The last row of the figure shows the difference image between pre-
contrast and postcontrast DCE-MRI. For this complete responder, both
the mean Ktrans and the mean kep decreased after 1 cycle of therapy (the
changes are −11% and −26%, respectively), whereas the mean values of
ve, vp, and ADC increased (16%, 2%, and 30%, respectively). Figure 2
displays similar data for a non-pCR patient for which the mean
Ktrans, kep, and ve increased by 22%, 15%, and 4%, respectively, after
1 cycle of treatment, whereas vp and ADC decreased by 20% and
23%, respectively.

Predictive Performance of DCE-MRI and DWI Data at t1

Table 3 displays the ROC analysis of the pretreatment data
(ie, LD, the DCE-MRI parameters, the ADC, and the parameter
kep/ADC) to predict pathologic response. In this table, the cutoff
point, sensitivity, specificity, PPV, and AUC are listed for all the
parameters. Table 3 shows that the LD and DCE-MRI parameters
(Ktrans, kep, ve, vp, kep/ADC) all resulted in an AUC less than 0.7. The
ADC data yielded a moderate AUC of 0.72, with sensitivity, specificity,
and PPV of 0.93, 0.52, and 0.50, respectively, at the cutoff point of
1.2 � 10−3 mm2/s.

Predictive Performance of Changes in DCE-MRI and
DWI From t1 to t2

Thirty-six patients were available for analyzing the changes of
both the DCE-MRI and ADC data between the pretherapy and post–1
cycle therapy time points. The LD yielded an AUC of 0.67, with a
sensitivity, specificity, and PPVof 0.92, 0.48, and 0.48, respectively.
Among the 4 DCE-MRI parameters, the change of kep yielded the
best AUC of 0.68, with a sensitivity, specificity, and PPV of 0.83,
0.62, and 0.56, respectively, at the cutoff point of −18.8%. The derived
parameter kep/ADC yielded an AUC, sensitivity, specificity, and PPVof
0.74, 0.83, 0.67, and 0.59, respectively, at the cutoff point of −20.9%.
These data are summarized in Table 4.

Predictive Performance of DCE-MRI and DWI at t2

Both the DCE-MRI data and the ADC data after the first cycle of
chemotherapy were available for the 36 patients. Figure 3 displays the
ROC curves and the optimal cutoff points for kep, ADC, and kep/ADC,
respectively. The dotted line shows the ROC curve of kep alone, with
the optimal cutoff point of 0.28 min−1 (marked as a triangle), and the
dashed line shows the ROC curve for ADC alone, with the optimal point
of 1.4 mm2/s� 10−3 (marked as a star). The solid line displays the ROC
curve for kep/ADC, with the optimal point of 3.32 1/mm2 (marked as a
star). The kep yielded an AUC, sensitivity, specificity, and PPVof 0.76,
0.83, 0.65, and 0.56, respectively. The ADC yielded an AUC, sensitivity,
specificity, and PPVof 0.82, 0.83, 0.67, and 0.59, respectively. The
derived parameter kep/ADC achieved an AUC, sensitivity, specificity,
and PPV of 0.88, 0.92, 0.78, and 0.69, respectively. The LD yielded
an AUC of only 0.57, with sensitivity, specificity, and PPV of 0.83,
0.42, and 0.42, respectively. These data are summarized in Table 5.

Figure 4 shows boxplots of kep, ADC, and kep/ADC for pCRs
and non-pCRs. The lines within the boxes denote the median, and the
bottom and top edges of the boxes denote the 25th and 75th percen-
tiles, respectively. The medians of kep for non-pCRs and pCRs were
0.32 min−1 and 0.23 min−1 (P = 0.014), respectively, whereas they were
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1.24mm2/s� 10−3 and 1.59mm2/s� 10−3 for ADC (P = 0.0019) aswell
as 4.32 1/mm2 and 2.63 1/mm2 for kep/ADC (P = 0.00032), respectively.

Figure 5 shows the distributions of the AUC differences between
kep/ADC and kep as well as those between kep/ADC and ADC generated

by the bootstrap method. The bootstrapped 95% CIs of the AUC differ-
ences between kep/ADC and kep were 0.018 to 0.23, indicating
that the AUCs between kep/ADC and kep were significantly different.
Although the 95% bootstrap CIs of the AUC differences between

TABLE 2. Clinical Features of the Study Population

Patient

No.

Age,

y Treatment Regimens

Receptor

Status
Tumor

Grade

Excised Tumor

Size

Pathologic

Response SurgeryER PR HER2

1 50 dd AC � 4→ Taxol � 12 + + − 3 0.5 Non-pCR Mastectomy

2 52 dd Taxotere � 4 + − + 3 1.5 Non-pCR Lumpectomy

3 60 dd AC � 2→ Taxol−Herceptin � 12 + + + 1 2.9 Non-pCR Lumpectomy

4 36 Cisplatin/taxol ± RAD001 � 12* − − − 2 2.9 Non-pCR Mastectomy

5 48 dd AC � 4→ Taxol � 4 + + − 1 1.3 Non-pCR Lumpectomy

6 43 dd AC � 4→ Taxol � 4 + + − 2 2.6 Non-pCR Mastectomy

7 59 dd AC � 4→ Taxol � 4 + + − 2 4.2 Non-pCR Mastectomy

8 53 Cisplatin/taxol +/−RAD001 � 12 − − − 2 1.3 Non-pCR Lumpectomy

9 35 Trastuzumab + Carboplatin +
Ixabepilone � 6

+ + + 3 1.4 Non-pCR Lumpectomy

10 28 cisplatin/taxol +/−RAD001 � 12 − − − 3 0.8 Non-pCR Lumpectomy

11 33 AC � 4→ Taxol � 12 + + − 3 1.2 Non-pCR Mastectomy

12 39 AC � 4→ Taxol � 12 + + − 1 2.5 Non-pCR Mastectomy

13 57 AC � 4→ Taxol � 12 − − − 3 N/A† Non-pCR Progressed with brain
mets

14 67 AC � 4→ Taxol/Herceptin � 12 − − + 3 1.8 Non-pCR Lumpectomy

15 45 Cisplatin/taxol +/−RAD001 � 12 − − − 3 0.5 Non-pCR Mastectomy

16 46 Taxotere/Carboplatin/Herceptin � 6 + + + 3 0.3 Non-pCR Mastectomy

17 47 Taxotere � 3→ dd AC � 4 + + − 1 8.0 Non-pCR Mastectomy

18 36 dd AC � 4→ Taxol � 12 + + + 2 1.0 Non-pCR Mastectomy

19 43 cisplatin/taxol +/−RAD001 � 12 − − + 3 0.7 Non-pCR Mastectomy

20 55 dd AC � 4→ Taxol � 10 + + − 2 3.5 Non-pCR Mastectomy

21 58 cisplatin/taxol +/−RAD001 � 12 − + − 2 1.7 Non-pCR Mastectomy

22 36 dd AC � 4→ Taxol � 12 + + − 2 2.1 Non-pCR Lumpectomy

23 43 Cisplatin/taxol +/−RAD001 � 12 − − − 3 1.4 Non-pCR Mastectomy

24 42 cisplatin/taxol +/−RAD001 � 6 + + − 2 3.5 Non-pCR Mastectomy

25 53 dd AC � 4→ Taxol−Herceptin � 7 − − + 3 0 pCR Lumpectomy

26 46 ddTaxotere→ AC − + − 3 0 pCR Mastectomy

27 46 dd AC � 4→ Taxol−Herceptin � 12 − − + 2 0 pCR Mastectomy

28 33 ddAC � 4→ Taxol � 12 − − − 3 0 pCR Mastectomy

29 39 Trastuzumab and Lapatinib � 12 − − + 2 0 pCR Mastectomy

30 46 ddAC � 4→ Taxol � 12 + − − 3 0 pCR Lumpectomy

31 42 Cisplatin/taxol +/−RAD001 � 12 − − − 3 0 pCR Lumpectomy

32 34 ddTaxotere→ AC − − − 3 0 pCR Lumpectomy

33 44 Trastuzumab and Lapatinib � 12 − − + 3 0 pCR Mastectomy

34 37 Cisplatin/taxol +/−RAD001 � 11 − − − 3 0 pCR Mastectomy

35 39 ddAC � 4→ Taxol x 10 − − − 3 0 pCR Lumpectomy

36 48 Taxotere/Carboplatin/Herceptin � 5 − − + 3 0 pCR mastectomy

37 51 ddAC � 4→ Taxol � 12 − − − 3 0 pCR Lumpectomy

38 67 Herceptin/Lapatinib � 12 − − + 3 0 pCR Lumpectomy

39 48 AC � 4→ Taxol/Herceptin � 12 − − + 3 0.4 Non-pCR Lumpectomy

40 65 Herceptin/Lapatinib � 12 − − + 3 1.7 Non-pCR Mastectomy

41 55 ddAC � 4→ Taxol � 12 + + − 3 0.9 Non-pCR Lumpectomy

42 62 Herceptin/Lapatinib � 24 − − + 3 0.9 Non-pCR Mastectomy

*The study is ongoing and we are blinded to the randomization.

†This patient was transferred to another hospital, and the tumor size is not available.

ER indicates estrogen receptor; HER2, human epidermal growth factor receptor 2; pCR, pathologic complete response; PR, progesterone receptor.
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kep/ADC and ADC included zero (−0.11 to 0.24), Figure 5 clearly
shows a trend approaching significance.

DISCUSSION
To our knowledge, this is the first report of multiparametric

quantitative MRI to predict, after the first cycle of NAC, whether
patients with breast cancer will achieve pCR at the conclusion of

NAC. We chose to study the derived parameter kep/ADC for statistical
and physiological reasons. We reasoned that, in the case of a positive
response, kep would decrease and ADC would increase, whereas in
the case of a lack of response, kep would increase and ADC would
decrease. Thus, we hypothesized that the ratio kep/ADC has the poten-
tial to increase the statistical separation between patients going on to
achieve pCR versus those who do not (Fig. 4). For this practical reason,
the ratio kep/ADC is a reasonable parameter to consider; indeed, such

FIGURE 1. The first 5 rows show the Ktrans, kep, ve, vp, and ADC maps, respectively, superimposed over the postcontrast DCE-MR images at each of
the 3 time points (ie, the 3 columns correspond to before treatment, after 1 cycle, and after all cycles of NAC) for 1 patient achieving pCR. The
numbers under each panel are themean values for the parametric map. The last row displays the difference image between precontrast and postcontrast
DCE-MRI at each time point.
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derived parameters have been used before, even in the particular case
of assessing therapeutic response of breast cancer in the neoadjuvant
setting (see, eg, the study of Cerussi et al49).

Our results show that the combined parameter kep/ADC was
able to predict pCR with greater accuracy (AUC, 0.88) than did either
kep (AUC, 0.76) or ADC (AUC, 0.82) in isolation. The bootstrap
method showed that the AUCs between kep/ADC and kep were signifi-
cantly different and that the AUCs between kep/ADC and ADC showed

a trend approaching significance. Although these results may be consid-
ered preliminary owing to our small sample size, we consider them
encouraging signs of multiparametric MRI’s potential to depict tumor
biology and assess therapeutic response early in the course of treat-
ment.50 Thus, we believe this study contributes to the growing body
of knowledge in this developing area.

A secondary finding in this study is that data obtained after the
first cycle of therapy were the most statistically robust for predicting

FIGURE 2. The first 5 rows show the Ktrans, kep, ve, vp, and ADC maps, respectively, superimposed over the postcontrast DCE-MR images at each
of the 3 time points (ie, the 3 columns correspond to before treatment, after 1 cycle, and after all cycles of NAC) for 1 non-pCR patient. The numbers
under each panel are the mean values for the parametric map. The last row displays the difference image between precontrast and postcontrast
DCE-MRI at each time point.
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eventual treatment response. Many previous studies have focused on ei-
ther pretreatment data or the change between pretreatment data and data
acquired after 1 or 2 cycles of chemotherapy.11–13 Only the study by
Fangberget et al20 reported that the mean ADC values after 4 cycles
of NAC showed a significant difference between patients in the pCR
and non-pCR groups, whereas the percent change of ADC did not. In
our study, we found that the mean parameters of both the DCE-MRI
and DWI data after 1 cycle of therapy yielded a better performance
(as measured by the ROC analysis) than either the pretreatment data
or the percent change of the parameters did.

There are currently few studies that have simultaneously evalu-
ated both DWI and DCE-MRI for predicting the response of breast
tumors to NAC11,17,20,51 and even fewer that have done so after the
first cycle of NAC.52 Furthermore, most of these studies analyzed
DWI and DCE-MRI separately and compared their relative predictive
abilities, rather than considering their combined utility. Our own group
contributed an early hypothesis-generating article on this topic in a
small cohort of 11 patients,11 where we showed that both Ktrans and
ADCwere sensitive to longitudinal changes in breast tumor status. Belli
et al17 calculated the longest diameter from contrast-enhanced MRI
and the ADC for 51 patients (who received a number of different ther-
apeutic regimens) before and after all cycles of NAC. They reported
that the change in the longest diameter accurately evaluated response
after NAC with an AUC, sensitivity, specificity, and accuracy of 0.87,
96%, 73%, and 84%, whereas ADC returned values of 0.80, 80%,
84%, and 82%, respectively. Importantly, for the longest diameter, the
investigators defined “responders” as those who have a complete re-
sponse or partial response on the basis of Response Evaluation Criteria
in Solid Tumors,53–55 whereas for the ADC analysis, the investigators

defined “responders” as those who had complete regression, presence
of rare cancer cells within fibrotic tissue, or an increase in the number
of residual cancer cells provided that fibrosis still dominated the tissue.
(Note that this is a markedly different definition of response than that
used in the present study.) Fangberget et al20 assessed ADC, tumor size
from contrast-enhanced MRI, and changes in tumor size for 31 patients
(also receiving different NAC regimens) before treatment, after 4 cycles,
and after all cycles of NAC. The authors showed that the ADC yielded a
sensitivity and specificity of 88% and 80%, whereas the tumor volume
reduction yielded 91% and 80%, respectively, after 4 cycles of NAC.
Hahn et al51 evaluated the longest diameter from DCE-MRI, DWI,
and DCE-MRI plus DWI for 78 patients (also receiving different NAC
regimens) before and after all cycles of NAC. Different NAC regimens
were assigned according to the receptor status of the biopsied specimen.
The investigators simultaneously evaluated the DCE-MRI and DWI

TABLE 3. ROC Analysis of the Parameters at t1

Parameter Cutoff Sensitivity Specificity PPV AUC

LD 3.14 cm 0.86 0.44 0.44 0.63

ADC 1.22 �10−3 mm2/s 0.93 0.52 0.50 0.72

Ktrans 0.08 min−1 0.36 0.88 0.63 0.59

kep 0.32 min−1 0.79 0.44 0.44 0.53

ve 0.31 0.29 0.88 0.57 0.51

vp 0.07 0.93 0.28 0.42 0.53

kep/ADC 5.18 (1/mm2) 0.79 0.48 0.46 0.55

ADC indicates apparent diffusion coefficient; AUC, area under the curve; kep,
the efflux rate constant; Ktrans, the volume transfer rate; LD, longest dimension;
PPV, positive predictive value; ROC, receiver operator characteristic; ve, extravas-
cular extracellular volume fraction; vp, blood plasma volume fraction.

FIGURE 3. The ROC analysis for kep (dotted line), ADC (dashed line),
and kep/ADC (solid line). Individually, kep and ADC yielded AUC values
of 0.76 and 0.82, respectively, whereas kep/ADC had an AUC of 0.88.
The corresponding optimal cutoff points are also marked by the triangle
(kep), square (ADC), and circle (kep/ADC). The sensitivity, specificity,
and PPV at the cutoff points are 0.83, 0.65, and 0.56 for kep; 0.83, 0.67,
and 0.59 for ADC; and 0.92, 0.78, and 0.69 for kep/ADC, respectively.

TABLE 4. ROC Analysis of Parameter Changes From t1 to t2

Parameter Cutoff Sensitivity Specificity PPV AUC

LD −1.5% 0.92 0.48 0.48 0.67

ADC 6.5% 0.50 0.78 0.55 0.63

Ktrans 12.7% 1.00 0.33 0.46 0.57

kep −18.8% 0.83 0.62 0.56 0.68

ve 11.9% 0.67 0.76 0.62 0.60

vp 75.0% 1.00 0.29 0.44 0.55

kep/ADC −20.9% 0.83 0.67 0.59 0.74

ADC indicates apparent diffusion coefficient; AUC, area under the curve;
kep, the efflux rate constant; Ktrans, the volume transfer rate; LD, longest di-
mension; PPV, positive predictive value; ROC, receiver operator characteristic;
ve, extravascular extracellular volume fraction; vp, blood plasma volume fraction.

TABLE 5. ROC Analysis of the Parameters at t2

Parameter Cutoff Sensitivity Specificity PPV AUC

LD 1.94 cm 0.83 0.42 0.42 0.57

ADC 1.4 �10−3 mm2/s 0.83 0.67 0.59 0.82

Ktrans 0.1 min−1 0.67 0.74 0.57 0.68

kep 0.28 min−1 0.83 0.65 0.56 0.76

ve 0.41 0.67 0.48 0.40 0.54

vp 0.04 0.50 0.78 0.55 0.61

kep/ADC 3.32 1/mm2 0.92 0.78 0.69 0.88

ADC indicates apparent diffusion coefficient; AUC, area under the curve;
kep, the efflux rate constant; Ktrans, the volume transfer rate; LD, longest di-
mension; PPV, positive predictive value; ROC, receiver operator characteristic;
ve, extravascular extracellular volume fraction; vp, blood plasma volume fraction.
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data to measure the longest diameter on both the abnormally enhancing
lesions with concurrent high signal intensity on DWI. Using this
approach, they reported an improved ability for detecting residual
cancer with a sensitivity, specificity, accuracy, PPV, and negative
predictive value of 94.8%, 80.0%, 91.0%, 93.2%, and 84.2%, re-
spectively, compared with DCE-MRI alone (91.4%, 45.0%, 79.5%,
82.8%, and 64.3%, respectively) and DWI alone (91.4%, 65.0%, 84.6%,
88.3%, and 72.2%, respectively).

To date, there is only a single (pilot) study that assessed changes
in quantitative DCE-MRI and DWI after the first cycle of NAC. Jensen
et al52 assessed tumor diameter and volume, ADC, Ktrans, and ve for
15 patients receiving different treatment regimens, 12 of whom were
scanned both before and after the first cycle of NAC. For each parame-
ter, a logistic regression analysis with leave-one-out cross-validation
was performed. They found that the best predictor for treatment re-
sponse was a change in tumor diameter with 2 of 12 misclassified
patients. The mean change of the longest diameters for the re-
sponders was −13% versus −5% for the nonresponders (P = 0.29).

The results of the present study are of clinical relevance for a
number of reasons. Accurate early assessment of therapeutic response
would provide the opportunity to replace an ineffective treatment with
an alternative regimen, potentially avoiding or curtailing debilitating
adverse effects or toxicities. Patients proven at an early stage to be re-
fractory tomultiple NAC regimens could be referred directly to surgery.
Techniques for early response assessment will also be important for
response-adaptive clinical trials, in which there is growing interest.56

In light of the current literature (briefly reviewed previously), our re-
sults provide compelling motivation for continuing to apply integrated
DCE-MRI and DWI to the problem of predicting the eventual response
of patients with breast cancer early in the course of NAC. Importantly,
the integrated DCE-MRI and DWI approach outperformed the results
achieved by the longest diameter size measurement, which is, of course,
the basis of Response Evaluation Criteria in Solid Tumors. The cur-
rent criterion standard for response prediction in the neoadjuvant
setting for breast cancer is the I-SPY trial,57which achieved an area under
the ROC of 0.73 for early prediction of pCR. Thus, our methods compare
well with the current state-of-the-art.

There are several limitations of this study. First, the temporal res-
olution of 16 seconds is not optimal for characterizing the AIF, and this
can confound a quantitative DCE-MRI analysis. This temporal resolu-
tion was chosen as a compromise between temporal and spatial

resolution and field of view coverage (please refer to the study of
Li et al38 for an in-depth discussion). Second, a population AIF
was used to estimate the DCE-MRI parameters. In practice, it is
difficult to estimate reliable AIFs at each scanning session for each
patient. Hence, we used a population AIF as an alternative approach.
Third, the patient population received a number of different treat-
ment regimens and it is certainly possible that the imaging bio-
markers could vary by both the biology of the disease as well as
the agents used. However, current studies58,59 have a disagreement
over the treatment effect on the ability of MRI to predict treatment
response. Hence, this is an important area for further study. Another
limitation is the modest sample size in our study (data were available
on 42 patients before NAC, whereas we were able to acquire data on

FIGURE 4. Boxplots of kep (left panel), ADC (middle panel), and kep/ADC (right panel) at t2 for non-pCR and pCR patients. The central marks show the
median, and the edges of the box are the 25th and 75th percentiles. The medians of kep for non-pCRs and pCRs were 0.32 min−1 and 0.23 min−1,
respectively, whereas they were 1.24 mm2/s � 10−3 and 1.59 mm2/s � 10−3 for ADC as well as 4.32 1/mm2 and 2.63 1/mm2 for kep/ADC, respectively.

FIGURE 5. The figure displays density distributions of the AUC differences
between kep/ADC and kep (dotted line) and those between kep/ADC
and ADC (solid line) after 1 cycle of NAC. The 95% CIs of the AUC
differences between kep/ADC and kep were 0.018 to 0.23, whereas the
95% CIs of the AUC differences between kep/ADC and ADC were
−0.11 to 0.24. The areas outside the 95% CIs are shadowed for both
distributions and indicate that the AUCs between kep/ADC and kep were
significantly different (zero is included in the shadowed area).
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36 patients both before and after 1 cycle of NAC). Our findings are
thus of a preliminary nature and will need to be validated in larger
prospective trials.

In summary, our study shows that combining DCE-MRI and
DWI data into a single derived multiparametric measurement kep/ADC
can increase the ability to predict breast cancer response to NAC at a
very early time point. It may allow clinicians to tailor therapy on an
individual basis. Future work will include investigating multivariate
analysis of DCE-MRI and DWI on a larger cohort of patients.
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