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Multiparticle collision dynamics modeling of viscoelastic fluids

Yu-Guo Tao,a� Ingo O. Götze,b� and Gerhard Gompperc�

Theoretical Soft Matter and Biophysics Group, Institut für Festkörperforschung,
Forschungszentrum Jülich, D-52425 Jülich, Germany

�Received 9 November 2007; accepted 23 January 2008; published online 9 April 2008�

In order to investigate the rheological properties of viscoelastic fluids by mesoscopic

hydrodynamics methods, we develop a multiparticle collision �MPC� dynamics model for a fluid of

harmonic dumbbells. The algorithm consists of alternating streaming and collision steps. The

advantage of the harmonic interactions is that the integration of the equations of motion in the

streaming step can be performed analytically. Therefore, the algorithm is computationally as

efficient as the original MPC algorithm for Newtonian fluids. The collision step is the same as in the

original MPC method. All particles are confined between two solid walls moving oppositely, so that

both steady and oscillatory shear flows can be investigated. Attractive wall potentials are applied to

obtain a nearly uniform density everywhere in the simulation box. We find that both in steady and

oscillatory shear flows, a boundary layer develops near the wall, with a higher velocity gradient than

in the bulk. The thickness of this layer is proportional to the average dumbbell size. We determine

the zero-shear viscosities as a function of the spring constant of the dumbbells and the mean free

path. For very high shear rates, a very weak “shear thickening” behavior is observed. Moreover,

storage and loss moduli are calculated in oscillatory shear, which show that the viscoelastic

properties at low and moderate frequencies are consistent with a Maxwell fluid behavior. We

compare our results with a kinetic theory of dumbbells in solution, and generally find good

agreement. © 2008 American Institute of Physics. �DOI: 10.1063/1.2850082�

I. INTRODUCTION

It is the characteristic feature of soft matter systems that

a macromolecular component of nano- to micrometer size is

dispersed in a solvent of much smaller molecules. The me-

soscopic length scale of the dispersed component implies

that crystalline phases have a very small shear modulus—

which roughly scales like the inverse of the third power of

the structural length scale—and that both crystalline and

fluid phases are characterized by long structural relaxation

times. Soft matter systems have therefore interesting dy-

namical properties, because the time scale of an external per-

turbation can easily become comparable with the intrinsic

relaxation time of the dispersed macromolecules.

One of the unique properties of soft matter is its vis-

coelastic behavior.
1

Due to the long structural relaxation

time, the internal degrees of freedom cannot relax suffi-

ciently fast in an oscillatory shear flow, so that there is some

elastic restoring force which pushes the system back to its

previous state. A very well studied example of viscoelastic

fluids are polymer solutions and polymer melts.
1–3

In the

case of polymer melts, the characteristic time scale is given

by the reptation time, e.g., by the time it takes a chain to

slide by its contour length along the tube formed by other

polymer chains.
3

In order to bridge the length- and time-scale gaps be-

tween the solvent and macromolecular or colloidal scales,

several mesoscopic simulation techniques—such as the

lattice-Boltzmann method, dissipative-particle dynamics

�DPD�, and multiparticle collision �MPC� dynamics—have

been suggested in recent years and are in the process of

being developed further. The idea of all these methods is to

strongly simplify the microscopic dynamics in order to gain

computational efficiency but at the same time to exactly sat-

isfy the conservation laws of mass, momentum, and energy,

so that hydrodynamic behavior emerges naturally on larger

length scales.

We will focus here on the MPC dynamics technique,
4–6

also called stochastic rotation dynamics
7 �SRD�, originally

developed for Newtonian fluids. This particle-based hydro-

dynamics method consists of alternating streaming and col-

lision steps. In the streaming step, point particles move bal-

listically. In the collision step, particles are sorted into the

cells of a simple cubic �or square� lattice. All particles in a

cell collide by a rotation of their velocities relative to the

center-of-mass velocity around a random axis.
4

A random

shift of the cell lattice is performed before each collision step

in order to restore Galilean invariance.
7

This method has

been applied very successfully to study the hydrodynamic

behavior of many complex fluids, such as polymer solutions

in equilibrium
8,9

and flow,
10–12

colloidal dispersions,
13,14

vesicle suspensions,
15,16

and reactive fluids.
17,18

The viscoelastic behavior of polymer solutions leads to

many unusual flow phenomena, such as shear-induced phase

separation,
19–21

viscoelastic phase separation,
22

and elastic

turbulence.
23

A coarse-grained description of viscoelastic flu-

ids is necessary in order to obtain a detailed understanding of

the role of elastic forces in such flow instabilities.
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However, there is a second level of complexity in soft

matter system, in which a colloidal component is dispersed

in a solvent, which is itself a complex fluid. Examples are

spherical or rodlike colloids dispersed in polymer solutions

or melts, which are exposed to a shear flow.
24–28

Shear flow

can induce particle aggregation and alignment in these sys-

tems. This is important, for example, in the processing of

nanocomposites.
28

The aim of this paper is therefore the development of a

MPC algorithm, which is able to describe viscoelastic phe-

nomena, but at the same time retains the computational sim-

plicity of standard MPC for Newtonian fluids, and thereby

allows to take advantage of this mesoscale simulation for the

investigation of flow instabilities as well as suspensions with

viscoelastic solvents. We show that this goal can be achieved

by replacing the point particles of standard MPC by har-

monic dumbbells. In order to obtain a strong elastic contri-

bution, we consider a fluid, which consists of dumbbells

only. However, it is of course straightforward to mix dumb-

bells with a point-particle solvent. A similar idea has been

suggested recently for DPD fluids.
29

II. THE MODEL

A. Algorithm

In our MPC model, we consider Np point particles of

mass m, which are pairwise connected by a harmonic poten-

tial V�r1 ,r2�=
1

2
K�r1−r2�2 to form dumbbells, where K is the

spring constant. The center-of-mass position ri
c and velocity

vi
c for each dumbbell i, with i=1,2 , . . . ,Np /2, are repre-

sented by

ri
c =

1

2 �ri1 + ri2�, vi
c =

1

2 �vi1 + vi2� . �1�

Here ri1, ri2 and vi1, vi2 denote the position and velocity of

the two point particles composing a dumbbell i, respectively.

The MPC algorithm consists of two steps, streaming and

collisions.
4,5,30

In the streaming step, within a time interval h,

the motion of all dumbbells is governed by Newton’s equa-

tions of motion,

mc
dvi

c

dt
= fi

c,
dri

c

dt
= vi

c, �2�

where mc=2m is the mass of a dumbbell and fi
c is the total

external force on dumbbell i. We consider only constant

force fields. The center-of-mass positions and velocities of

dumbbells are then given by a simple ballistic motion. The

evolution of the relative coordinates of each dumbbell is de-

termined by the harmonic interaction potential, so that

ri1�t + h� − ri2�t + h� = Ai�t�cos��0h� + Bi�t�sin��0h� ,

�3�

vi1�t + h� − vi2�t + h� = − �0Ai�t�sin��0h�

+ �0Bi�t�cos��0h� , �4�

with angular frequency �0=�2 K /m. The vectors Ai and Bi

are different for each time step and are calculated from the

relative positions and velocities of the point particles of

dumbbell i before the streaming step,

Ai�t� = ri1�t� − ri2�t�, Bi�t� =
1

�0

�vi1�t� − vi2�t�� . �5�

In the MPC algorithm described here, r
c, v

c, A, and B are the

continuous variables, evolving in discrete increments of

time. In the absence of shear flow, the average length of the

dumbbell is r
0

�d����r2�eq=�dkBT /K for a d-dimensional sys-

tem.

In the collision step, the point particles are sorted into

the cells of a cubic lattice with lattice constant a0. Multi-

particle collisions are performed for all particles in a cell J,

by the same SRD algorithm
4

as for point-particle fluids. The

velocity of each particle relative to the center-of-mass veloc-

ity vc.m.,J of the cell is rotated around a randomly chosen axis

by a fixed angle �,

v j��t + h� = vc.m.,J + R̂����v j�t + h� − vc.m.,J� , �6�

where R̂��� is a stochastic rotation matrix, and

vc.m.,J = 	
j=1

NJ

v j/NJ, �7�

with NJ the number of particles within cell J. This step guar-

antees that each particle changes the direction as well as the

magnitude of its velocity during the multi-particle collisions,

while the local momentum and the kinetic energy are con-

served. Random shifts are applied in each direction, so that

the Galilean invariance is ensured even in the case of small

mean free path.
7,31

In order to describe Couette or oscillatory shear flow, the

system is confined within two parallel hard walls in the y

direction, which are moving oppositely along the x direction.

Here, Lx, Ly, and Lz are used to denote the dimension of the

simulation box along the corresponding directions. For a

steady shear flow, the shear rate is given by �̇=2vwall,x /Ly,

with vwall,x the x component of the velocity of the wall mov-

ing along the positive direction. Periodic boundary condi-

tions are applied in the x and z direction, bounce-back

boundary condition in the y direction. The system is there-

fore divided into Lx /a0 and Lz /a0 cells in the x and z direc-

tions �parallel to the walls� but Ly /a0+1 cells in the y direc-

tion because of the random shifts. At the walls, for collision

cells which are not completely filled by particles, extra vir-

tual point particles are added to conserve the monomer num-

ber density � defined by the average number of monomers

per cell.
6

In principle, the velocities of the virtual particles

can be drawn from a Maxwell–Boltzmann distribution of

average velocity equal to the wall velocity and variance
�kBT /m, where kBT is the bulk temperature. In the simula-

tion code, it is not necessary to sample the velocity of virtual

wall particles individually. A random vector from Maxwell–

Boltzmann distribution with wall velocity and variance
���−n�kBT /m is then used instead of the contribution of the

entire virtual particles in the cell, where n is the number of

real particles in that cell. For point particles, the combination

of bounce-back boundary condition and virtual wall particles

has been shown to guarantee no-slip boundary condition to a

very good approximation.
6
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B. Thermostats

In order to keep the system temperature constant, vari-

ous thermostats can be employed. In the first case, the MPC

method with collisions by stochastic rotations �MPC-SRD�
of relative velocities is augmented by velocity rescaling. The

simulation box is subdivided into Ly /a0 layers parallel to the

walls. In each layer, the new velocity v j� of each particle j in

cell J is obtained by rescaling the velocity relative to the

center-of-mass velocity of that cell,

v j� = vc.m.,J + �v j − vc.m.,J�� kBT

kBT�
. �8�

Here kBT� is calculated from the actual velocity distribution

	
J�layer

	
j=1

NJ
1

2
m�v j − vc.m.,J�

2 = 
 	
J�layer

NJ − Ñlayer�kBT�,

�9�

where NJ denotes the number of particles in cell J and Ñlayer

the number of cells which contains particles within a layer.

In the second case, Anderson’s thermostat version of

MPC, denoted MPC-AT, is applied.
32,33

This thermostat em-

ploys a different collision rule instead of Eq. �6�. In the

MPC-AT−a version of the algorithm �without angular-

momentum conservation, see Sec. II C below�, the new ve-

locities of point particles in the collision step are assigned

as
32

v j� = vc.m.,J + v j
ran − 	

k=1

NK
vk

ran

NK

. �10�

Here v j
ran is a velocity chosen from the Maxwell–Boltzmann

distribution and NK the number of particles within cell K.

Instead of energy conservation in MPC, the temperature is

kept constant in MPC-AT.

C. Angular-momentum conservation

The standard MPC algorithm as well as the Anderson

thermostat version do not conserve angular momentum. It

has been shown recently
34

that this lack of angular-

momentum conservation may lead to quantitative or even

qualitative incorrect results, such as nonphysical torques in

circular Couette flows. We therefore also consider the

angular-momentum conserving modification of MPC-AT,
32,34

denoted MPC-AT+a. Here, the velocities in the collision

step are calculated by

v j� = vc.m.,J + v j
ran − 	

k=1

NK
vk

ran

NK

+ �m�
−1	

k=1

NK

�rk − rc.m.,K��vk

− vk
ran�
 � �r j − rc.m.,J� , �11�

where � and rc.m.,J denote the moment-of-inertia tensor and

the center-of-mass of particles in the cell, respectively.

D. Wall potential

In the absence of shear flow, the monomer density pro-

file ��y� can be calculated from the interaction potentials V

of the dumbbells,

��y� =
1

Z
�

0

Ly

dy�e−�1/2��K/kBT��y − y��2

, �12�

��y�/�b =
1

2 �erf��K/2kBTy� + erf��K/2kBT�Ly − y��� ,

�13�

where �b is the bulk monomer density, Z the partition func-

tion, and erf the error function. Figure 1 shows the excellent

agreement of the theoretical prediction �13� with simulation

data. The particles are not equally distributed in the direction

normal to the wall; instead, at both walls, the density is only

half of the bulk density. In order to reduce possible slip ef-

fects, it seems desirable to make the particle distribution as

uniform as possible. Attractive potentials are therefore ap-

plied when the center-of-mass position of the dumbbells ap-

proaches one of the walls,

Vwall�yi1,yi2� = − c2 kBT
1 −
yi1 + yi2

2c1r0
�1� �

for
yi1 + yi2

2
� c1r0

�1�,

Vwall�yi1,yi2� = − c2 kBT
1 −
2Ly − yi1 − yi2

2c1r0
�1� �

for
yi1 + yi2

2
� Ly − c1r0

�1�, �14�

where r
0

�1�
=�kBT /K is the one-dimensional average exten-

sion of a dumbbell. The density profile is now given by

FIG. 1. �Color online� Monomer density profiles with �squares� and without

�circles� attractive wall potentials applied along the wall direction when

particles approach close to walls. The dashed and dotted lines are the theo-

retical prediction described in Eqs. �12� and �15�, respectively. The spring

constant of dumbbells and the collision time are K=0.2 and h=0.02, respec-

tively. Both simulations are in the absence of shear flow.
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��y� =
1

Z
�

0

Ly

dy�e−�1/2��K/kBT��y − y��2

e−2Vwall�y,y��. �15�

The advantages of the piecewise linear form �14� of the wall

potential are twofold. First and most important, it allows for

an analytical integration of the equations of motion during

the streaming step. Second, the density profile in the absence

of flow can again be calculated analytically �see Appendix

for details�.
The simulated density profile shows excellent agreement

with the analytical solution of Eqs. �14� and �15� �see Ap-

pendix�. The factors c1 and c2 are chosen to obtain a nearly

uniform density distribution. This is achieved for c1=1.3 and

c2=0.4. As shown in Fig. 1, the densities of point particles at

both wall boundaries deviate by less than 10% lower from

the bulk value, when the attractive wall potentials are ap-

plied. Simulations are also performed on systems of dumb-

bells with various spring constants, ranging from Ka0
2
/kBT

=0.1 to Ka0
2
/kBT=5.0, in the absence of shear flow. It is

found that for the given values of c1 and c2, the density

profiles are essentially independent of the spring constant of

the dumbbell in the range 0.1	Ka0
2
/kBT	1.0. In Fig. 2, we

plot the density profiles in shear flow. At lower shear rates,

i.e., �̇ /�0�0.112, nearly identical profiles are obtained as

without flow. When �̇ /�0�0.224, deviations of the density

profile from the equilibrium profile become significant.

However, these profiles are still more uniform than that when

no attractive wall potentials applied. Our investigations are

mainly focusing on relatively low shear rate range; we there-

fore neglect the nonuniformity of the density profile caused

by the strong shear effect.

E. Stress tensor and shear viscosity

In the MPC model, the viscosity 
 consists of a kinetic

and collisional contribution.
35,36

At steady shear rates, with

flow along the x direction and gradient along the y direction,


 is calculated by measuring the xy component of the stress

tensor, �xy =�xy
kin+�xy

col, so that 
=�xy / �̇.

In the streaming step, �xy
kin is proportional to the flux of

the x momentum crossing a plane normal to the y direction.

Since the stress tensor is independent of the position of the

plane, we choose y=0 or y=Ly to measure the momentum

transfer. In two-dimensional simulations,

�xy
kin =

m

Lxh
	
i=1

N1

�vx,i� �tw� − vx,i�tw�� , �16�

where tw� �t , t+h� is the time at which particle i bounces

back from the wall, vx,i�tw� and vx,i� �tw� are the velocities just

before and after the collision with the wall, and N1 denotes

the number of particles which hit one of the walls in the time

interval �t , t+h�. In the collision step, particles close to the

wall will change their velocities due to the multi-particle

collisions with virtual wall particles with average velocity

vx= �
1

2
�̇Ly, so that

�xy
col =

m

Lxh
	
i=1

N2

�vx,i� �t + h� − vx,i�t + h�� . �17�

Here, N2 denotes the number of particles which have multi-

particle collisions with virtual particles, while vx,i�t+h� and

vx,i� �t+h� are the velocities of particle i before and after the

collision step, respectively. In our simulations, N2 is found to

be much larger than N1 for small collision times h, indicating

that the collisional part dominates the shear viscosity. Simu-

lations are first performed on a system of pure pointlike fluid

particles to verify the measurement of the zero-shear viscos-

ity from Eqs. �16� and �17�. We get perfect agreement with

the theoretical predictions
35–37

for 
.

The shear viscosity can also be measured from system

under Poiseuille flow
6,38

by


 =
�gLy

2

8vmax

, �18�

where g is the gravitation field and vmax the maximum flow

velocity.

F. Storage and loss moduli

In an oscillatory shear flow, the shear rate �̇�t� is time

dependent,

�̇�t� = �0� cos��t� , �19�

where �0 and � are the strain amplitude and the oscillation

frequency, respectively. Note that the frequency � in Eq.

�19� is independent of the angular frequency �0 of harmonic

dumbbells in Sec. II. In our simulations, we choose �0
1 in

order to investigate the linear viscoelastic regime. The stress

tensor is divided into two contributions, the viscous part ��

and the elastic part ��, so that
1,39

�xy�t� = �� sin��t� + �� cos��t�

= �0�G����sin��t� + G����cos��t�� , �20�

where G� is the storage modulus, which measures the in-

phase storage of the elastic energy, and G� is the loss modu-

lus, which measures the out-of-phase energy dissipation. For

a simple Maxwell fluid, G� and G� are given by
30

FIG. 2. �Color� Monomer density profiles at various dimensionless shear

rates �̇ /�0, ranging from �̇ /�0=0.0 to 0.447, when attractive wall potentials

are applied. The spring constant of dumbbells and the collision time are as

the same as those in Fig. 1. The small ripples in the profile at large �̇ /�0 are

due to inhomogeneities in the temperature profile, since velocity rescaling is

not sufficiently efficient at high shear rates. The ripples do not appear for

MPC-AT.
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G� = G*
��/�*�2

1 + ��/�*�2
, �21�

G� = G*
�/�*

1 + ��/�*�2
, �22�

where �* is a characteristic relaxation frequency, and G* is a

characteristic shear modulus. In the limit of �
�*, the loss

modulus is G�=
�, where 
 is the zero-shear viscosity.

G. Kinetic theory of dumbbells in solution

In order to estimate the rheological properties of our

model fluid, we modify the kinetic theory for dilute solutions

of elastic dumbbells.
40

For Hookean dumbbells in a solvent,

the viscosity 
0, the storage modulus G0�, and the loss modu-

lus G0� are given by
40


0 = 
s +
�

2

kBT

�s

, �23�

G0� =
�kBT

2

��/�s�
2

1 + ��/�s�
2

, �24�

G0� = 
s� +
�kBT

2

�/�s

1 + ��/�s�
2

, �25�

where

�s =
4K

�s

, �26�

with solvent viscosity 
s and friction coefficient �s of a

monomer. Moreover, the expectation value for the square of

the monomer separation, divided by its equilibrium value, is

given by
40

�r2�

�r2�eq

= 1 +
2

3
��̇/�s�

2. �27�

In Ref. 40, the friction coefficient is obtained from

Stokes’ law for a bead of radius r in the solvent, i.e., �s

=6�
sr. However, in the MPC dumbbell fluid, there exists

no explicit solvent and the monomers are point particles in-

stead of spheres. Nevertheless, the motion of the monomers

is governed by the friction caused by the surrounding mono-

mers which can be considered to take the role of the solvent.

Using �=kBT /D, which follows from the Stokes–Einstein

relation, we can thus relate the friction to the diffusion con-

stant D of a MPC fluid of point particles with the same

monomer density. Similarly, we substitute the viscosity of

the solvent 
s by the corresponding viscosity 
MPC of a MPC

fluid of point particles. Theoretical expressions for 
MPC and

D for the different collision methods can be found in Refs.

34–36 and 41, and Refs. 37, 41, and 42, respectively. The

zero-shear viscosity then reads


 = 
MPC +
�

2

kBT

�H

, �28�

where we have introduced

�H =
4K

�
=

4DK

kBT
. �29�

Note that the limit K→� corresponds to a MPC fluid of

Np /2 point particles of mass mc. Here, the second term in Eq.

�28� vanishes, and since 
MPC�� /2,2m��
MPC�� ,m� for not

too small � and sufficiently small h �so that the collisional

part of the viscosity dominates�, the viscosity resulting from

this simple theory approaches the correct value in this limit.

Consequently, we use the same substitutions for the stor-

age and loss modulus, and for the average dumbbell exten-

sion, and obtain

G� =
�kBT

2

��/�H�2

1 + ��/�H�2
, �30�

G� = 
MPC� +
�kBT

2

�/�H

1 + ��/�H�2
, �31�

and

�r2�

�r2�eq

= 1 +
2

3 ��̇/�H�2. �32�

We emphasize that the above expressions only serve as a

semiquantitative description of the MPC dumbbell fluid. For

example, the employed expressions for the diffusion constant

neglect hydrodynamic interactions, which become important

for small time steps h.

III. RESULTS

A. Dimensionless variables and parameters

In the remainder of this article, we introduce dimension-

less quantities by measuring length in unit of the lattice con-

stant a0, mass in unit of the dumbbell mass mc, time in units

of a0
�mc

/kBT, velocity in units of �kBT /mc, monomer num-

ber density � in units of a0
−d, where d is the spatial dimen-

sion, and the spring constant K in units of kBT /a0
2. The shear

rate �̇ and all kinds of frequencies are measured in units of
�kBT /mca0

2. Finally, the viscosity 
 is in units of �mckBT /a0
2,

and the storage modulus G� and the loss modulus G� are in

units of kBT /a0
3. In these dimensionless units, the mean free

path � �in units of the lattice constant� becomes equivalent to

the time step h.

In our simulations, harmonic dumbbells with Np point

particles are initially placed in a two-or three-dimensional

rectangular box at random. We choose the average number

density of point particles �=20 and Lx=50 for all two-

dimensional simulations which results in Np=1000Ly. The

collision time ranges from h=0.01 to h=0.2, while the spring

constant ranges from K=0.1 to K=5.0. The rotational angle

is chosen �=90° and �=130° for two-or three-dimensional

simulations, respectively. We use small h and large � to ob-

tain large Schmidt numbers required for fluidlike

behavior.
37,43

Most of the results shown are obtained from

two-dimensional systems, except in a few cases where this is

explicitly mentioned.

In Table I, the theoretical values for the diffusion con-

stant D are given for h=0.1 for the different collision meth-
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ods and various monomer densities.
37,41

The corresponding

results for other time steps h can be obtained by employing

the linear relationship between D and h.

B. Steady shear flow

In Fig. 3, we present the snapshots for steady shear flow

with a simulation box containing 25 000 dumbbells. At lower

shear rates, i.e., �̇ /�H�0.6, see Figs. 3�a� and 3�b�, the av-

erage extension of the dumbbells is hardly distinguishable

from the equilibrium value. In these two cases, the shear

flow is not strong enough to align the dumbbells along the

flow direction, so that both systems are still isotropic. With

increasing �̇, shear forces overwhelm entropic forces. As a

result, dumbbells are largely stretched, at the same time re-

orientated along the flow direction, as presented in Figs. 3�c�
and 3�d�. Note that near both the walls, the average size

�r2�1/2 of the dumbbells in flow is larger than in the bulk.

Also, an alignment of the dumbbells is found near the walls,

both with and without shear flow, with peaks at y=0 and y

=Ly. This is an effect of the geometrical constraints imposed

on anisotropic particles by a hard wall. Furthermore, a maxi-

mum of the extension occurs at a finite distance from the

wall, which we attribute to the combined effect of the wall

and the flow conditions; dumbbells very close to the wall are

sterically oriented parallel to the wall and thus experience

only a very small shear force, while those a little further

away are close to the average inclination angle �see Fig. 4

below�, which corresponds to the largest stretching. The dis-

tance of the position of the maximum from the wall de-

creases with increasing shear rate and seems to approach the

size of the collision cells for large �̇. The relative peak height

increases with increasing shear rate. For example, we find

that the maximum extension �r2�1/2 near the wall is about

11% larger than the bulk extension for �̇ /�H=1.13, while it

is about 28% larger than in the bulk for �̇ /�H=2.83.

Figure 4 presents the extensional and orientational dis-

tributions of the dumbbells for various shear rates. At lower

shear rates, �̇ /�H�1, the end-to-end vector of the dumbbells

is distributed on a circle, see Figs. 4�a� and 4�b�, indicating

an isotropic orientation. At a higher shear rate, �̇ /�H=2.83,

the orientational distribution becomes an elongated ellipse,

see Fig. 4�c�. With increasing shear rate, the distribution

elongates further. Simultaneously, dumbbells become more

aligned with the flow direction, as can be seen quantitatively

from the inclination angle � shown in Fig. 5. Here, the incli-

nation angle is defined as the angle between the average

orientation of the end-to-end vector of a dumbbell and the

flow direction. At lower shear rates, �̇ /�H�1, the inclina-

tion angle approaches �=45°, while it decays to zero for

large shear rates with a power law �̇−1.

In Fig. 6, we plot the shear viscosity 
 as a function of

dimensionless shear rate �̇ /�H for various wall separations

Ly ranging from 10 to 50. In each system, 
 remains constant

until the applied shear rate reaches a critical value �̇c /�H

�5. The shear viscosity then decays rapidly as �̇ further

increases, showing a typical “shear-thinning” behavior. Fig-

ure 6 also shows the average extension of dumbbells

�r2�1/2
/r

0

�2�
as a function of the shear rate.

Two comments are required here. First, in our MPC

model, an entanglement between dumbbells is not taken into

TABLE I. Diffusion constants D of point-particle fluids for the standard

MPC-SRD algorithm, as well as for MPC-AT−a and MPC-AT+a simula-

tions for various monomer densities, in two dimensions. All data are calcu-

lated for collision time h=0.1. Diffusion constants for other time steps h can

be obtained by employing the linear relationship between D and h. Note that

the values for MPC-AT−a are identical with those for MPC-SRD with

collision angle �=90°.

� D�SRD� D�AT−a� D�AT+a�

10 0.1222 0.1222 0.1353

20 0.1105 0.1105 0.1162

40 0.1051 0.1051 0.1078

FIG. 3. �Color� Snapshots of dumbbell configurations in steady shear flow.

The system size is Lx=Ly =50. Half of each dumbbell is colored red, and the

other half yellow for reason of visualization. In each frame only 2500 dumb-

bells are shown, so that the density is ten times as high as that appears from

the pictures. The spring constant and the collision time are K=0.2 and h

=0.02, respectively. From �A� to �D�, the applied shear rates are �̇ /�H

=0.0565, 0.565, 2.83, and 5.65.

FIG. 4. �Color online� Distribution of dumbbell configurations for the sys-

tem shown in Fig. 3. Each dot indicates the end-to-end vector of a dumbbell.
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account, so that they can freely cross each other. Also, the

absence of an excluded-volume interaction implies that there

is no benefit of a paranematic ordering in terms of an in-

creased sliding of parallel dumbbells along each other as in

solutions of rodlike colloids; instead, parallel dumbbells in-

teract very similarly to isotropically oriented dumbbells,

since in both cases the monomers collide with other mono-

mers in exactly the same fashion. Thus, our system is very

similar to a solution of noninteracting harmonic dumbbells,

for which—in the absence of a finite extensibility—neither

shear-thinning nor “shear-thickening” is expected,
3,40

see Eq.

�23�. Second, the size of the simulation box should have no

influence on the bulk viscosity at a given shear rate. How-

ever, the plateau value of the viscosity increases strongly

with the wall separation Ly. This indicates that boundary ef-

fects could be responsible for the observed shear-thinning

behavior.

We therefore examine the velocity profiles for systems

with various wall separations Ly. In Fig. 7, the average ve-

locities vx of the monomers along the flow direction are plot-

ted as function of Ly for a fixed shear rate of �̇ /�H=0.565.

The velocities at the boundaries deviate only very little from

the wall velocities, i.e., there is very little slip at the walls, as

expected. However, the velocity decays rapidly in a bound-

ary layer of thickness �, and then decays linearly to zero at

the middle plane. Obviously the applied shear rate �̇ is not

appropriate to calculate the shear viscosities from the stress

tensor �xy by 
=�xy / �̇. An effective shear rate �̇eff is there-

fore introduced instead, which characterizes the linear bulk

part of the velocity profile. At a given shear rate, the larger

the wall separation, the less the effective shear rate deviates

from �̇, since the finite-size effect is much stronger in

smaller systems. The ratio �̇ / �̇eff between the applied and the

effective shear rates is plotted in Fig. 8, as a function of

�̇ /�H. At lower shear rates, i.e., �̇	 �̇c, where �̇c is the criti-

cal shear rate, the ratio �̇ / �̇eff is independent of the shear

rate. When the applied shear rate becomes larger than this

critical value, the effective shear rate �̇eff increases more

slowly than �̇.

Consequently, the effective shear viscosity can be calcu-

lated by

FIG. 5. �Color online� The inclination angle � as a function of dimension-

less shear rate �̇ /�H for the system of Fig. 3, with spring constant K=0.2,

collision time h=0.02, and system size Lx=Ly =50.

FIG. 6. �Color online� Shear viscosity 
 and scaled average dumbbell length

�r2�1/2
/r

0

�2�
as a function of dimensionless shear rate �̇ /�H. Systems with the

wall separation Ly =10, 20, 30, and 50 are investigated. The spring constant

is K=0.2 and the collision time h=0.02.

FIG. 7. �Color� Velocity profiles for wall separations Ly =10, 20, 30, and 50.

Data are obtained for spring constant K=0.2, collision time h=0.02, and

shear rate �̇ /�H=0.565. The dashed line corresponds to the applied shear

rate. The solid lines represent fits to the bulk part of the velocity profiles,

and their slopes yield the effective shear rates �̇eff.

FIG. 8. �Color online� Ratios between the applied shear rates �̇ and the

effective shear rates �̇eff as a function of �̇ /�H for the same systems as in

Fig. 6.
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eff =
�xy

�̇eff

. �33�

In Fig. 9, 
eff is shown against �̇eff /�H for various wall sepa-

rations Ly. The data for different system sizes now all fall

onto a single master curve, which describes the bulk shear

viscosity. Now, instead of shear thinning shown in Fig. 6, a

very weak shear thickening behavior is observed when

�̇eff /�H�1. Three-dimensional simulations are also carried

out for systems of 20�20�10 boxes along the x, y, and z

directions. For the same parameters K=0.2 and h=0.02,

weak shear thickening behavior is also observed, as shown in

the inset of Fig. 9, when �̇eff /�H reaches the critical value,

�̇c,eff /�H�2. The value of the critical shear rates is found to

be very similar in two and three dimensions.

Figure 9 shows that the effective shear viscosity 
eff is

nearly independent of the shear rate for �̇eff /�H� �̇c,eff /�H

�2. This critical shear rate corresponds to the onset of the

apparent shear thinning observed in Fig. 6, as well as the

deviation of �̇ / �̇eff from its low-shear-rate value in Fig. 8. It

should be noticed that the value of �̇c,eff /�H�2 implies

�̇c /�H is in the range �3,6.4� for system sizes Ly� �10,50�,
see Fig. 8. However, it is important to note that there is

already a pronounced alignment and stretching of the dumb-

bells for smaller shear rates; Fig. 5 shows that the inclination

angle � has decreased from �=45° in the absence of shear

flow to ��15° at �̇ /�H=3, while Fig. 6 indicates that

�r2�1/2
/r

0

�2��2 at �̇ /�H=3.

The spring constant K of the dumbbells is of great im-

portance, since it controls the elasticity of the fluid. We have

therefore examined velocity profiles of systems of dumbbells

with various spring constants. In Fig. 10, the simulation re-

sults are plotted for a fixed applied shear rate �̇=0.01. The

effect of the boundary layer becomes more pronounced with

decreasing spring constant. By fitting the linear parts of the

velocity profiles, we find that, for the same shear rate �̇
=0.01, the effective shear rate �̇eff for dumbbells with K

=0.1 is about ten times lower than that with the highest

spring constant studied here, K=4.0. The thickness of the

boundary layer is proportional to the equilibrium average

extension r
0

�2�
=�2kBT /K, as shown in the inset of Fig. 10.

The zero-shear viscosity 
eff is found to depend linearly

on 1 /K, see Fig. 11. As K increases, the effective viscosity


eff approaches the expected value of system of point par-

ticles with mass of mc and density � /2. The same linear

relationship between 
eff and 1 /K is also obtained in three-

dimensional systems, as shown in Fig. 11. Not only the linear

dependence of 
eff on 1 /K but also the prefactors are in very

good agreement with the theoretical predictions �28�.
The scaled mean free path �, which determines how far

a point particle travels between collisions, is another impor-

tant parameter which affects the shear viscosity. We always

employ small mean free paths,
37,43

so that the collisional vis-

cosity is dominant compared to the kinetic viscosity. The

FIG. 9. �Color online� Master curve of the viscosity 
eff as a function of the

effective shear rate �̇eff on a semilogarithmic scale. The symbols are the

same as in Fig. 6 and Fig. 8. For strong shear flow, i.e., �̇eff /�H�2, the

viscosity increases �shear thickening�. The dashed line is fitted to the data

with wall separations Ly �20. In the inset, 
eff is plotted as a function of

�̇eff /�H for three-dimensional systems. A 20�20�10 simulation box is

chosen, while the spring constant K, the collision time h, and the average

number density � are the same as in the two-dimensional systems.

FIG. 10. �Color� Velocity profiles for various spring constants, ranging from

K=0.1 to K=4.0. The wall separation in each case is Ly =10. The dashed

line corresponds to the applied shear rate �̇=0.01, while the solid lines are

the fitted effective velocity profiles. The inset shows the thickness of the

boundary layer � as a function of equilibrium extension r
0

�2�
=�2kBT /K. The

dashed line is a linear fit.

FIG. 11. �Color online� The zero-shear viscosity 
eff as a function of spring

constant K in both two-dimensional �circles� and three-dimensional

�squares� systems. The solid lines are linear fits, and the dashed lines indi-

cate the theoretical predictions �28�. In all simulations, the collision time is

h=0.02. Two-dimensional simulations are performed in systems of 50�10

boxes, while three-dimensional simulations are in 30�30�20 boxes along

the x, y, and z directions, respectively. The average number density in three-

dimensional systems is �=10, which is half of value in two-dimensional

systems.
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data of Fig. 12�a� demonstrate that the zero-shear viscosity

increases linearly with 1 /�, for all spring constants K studied

here, as it does for a system of point particles.
35–37

However,

the slope decreases with increasing K, in good agreement

with the analytical results obtained from Eq. �28�, as shown

in the inset of Fig. 12�a�.
The weak shear-thickening behavior is observed for all

mean free paths investigated here, see Fig. 12. Thus, this

weak shear-thickening behavior is intrinsic to the MPC algo-

rithm and cannot be avoided by a variation of the collision

time. Figure 12�a� indicates that the critical shear rate

�̇c,eff /�0 depends only very weakly on the mean free path �.

Therefore, we present the simulation data in Fig. 12 as a

function of �̇eff /�0, since �0= �2K /m�1/2 is independent of �,

while �H decreases linearly with �. The shear-thickening be-

havior becomes more pronounced and slowly shifts to

smaller values of �̇eff /�0 for system of dumbbells with

smaller spring constants, see Fig. 12�b�. In the range of in-

vestigated spring constants and mean free paths, the shear

thickening occurs roughly at �̇c,eff /�0�0.1. It is important to

note that the viscosity of the standard point-particle MPC

fluid is also not independent of the shear rate but shows a

weak shear-thinning behavior at high shear rates.
35

For our

model parameters and in two dimensions, this shear-thinning

behavior sets in at a shear rate �̇c�1. Thus, with increasing

K, shear thickening occurs at a slowly increasing �̇c,eff /�0

for K�1; for larger spring constants K�5, shear thinning is

observed instead, and �̇c,eff /�0 decreases again �since �̇c,eff

→1 and �0→� for K→��.

C. Small-amplitude oscillatory shear flow

Another way to explore the viscoelastic properties of a

fluid is to apply a small-amplitude oscillatory shear flow. We

use here the strain amplitudes �0= �̇ /� in the range of 0.1–

0.5 to mimic a small-amplitude shearing. The frequencies �

ranges from 10−4 to 10−1 in our simulations, which provides

a wide range of shear rate from 10−5 to 5�10−2.

The storage and loss moduli as a function of oscillation

frequency are plotted in Fig. 13. Similar to the simulations of

steady shear flow, effective shear rates are measured from the

bulk velocity profiles at times when cos��t�= �1. By doing

so, all the simulation data fall onto master curves at various

wall separations from Ly =10–50. As can been seen from

Fig. 13�a�, the storage modulus G� is well fitted by Eq. �21�,

FIG. 12. �Color online� The effective shear viscosity 
eff as a function of the

dimensionless effective shear rate �̇eff /�0, on a double-logarithmic scale. �a�
For fixed spring constant K=0.2 and various mean free paths �=0.01, 0.02,

0.05, 0.1, and 0.2. �b� For fixed mean free path �=0.02 and various spring

constants K=0.2, 0.5, 1.0, and 5.0. In both cases, the wall separation is Ly

=10. The inset in �a� shows the zero-shear viscosity 
eff as a function of

1 /�. The solid line indicates the theoretical result for K→�, while the other

lines show the predictions �28� for K=0.2, 0.5, and 5.0.

FIG. 13. �Color� �a� Storage G� and �b� loss modulus G�, as a function of

oscillation frequency � on a double-logarithmic scale, for systems with

various wall separations ranging from Ly =10 to 50. The spring constant and

the collision time are K=0.2 and h=0.02, respectively. The dashed line in

�a� is fitted by the Maxwell model, Eq. �21�, on the basis of all simulation

data, while the one shown in �b� is based on data for oscillation frequencies

�	0.02.
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indicating that the dumbbell system exhibits a typical behav-

ior of a Maxwell fluid. The relaxation frequency �* obtained

from the fit of the storage modulus G� against � is then used

in Eq. �22� to fit the loss modulus G�. In Fig. 13�b�, at low

frequencies, ��0.02, the simulation data follow the ex-

pected linear � dependence very well. In this linear regime,

the shear viscosity is then calculated by 
=G���� /�, which

yields 
=565, in excellent agreement with the result in

steady shear flow, see Fig. 9. Note that the fitted values for

the amplitude G* in Eqs. �21� and �22� differ by about a

factor 2. This indicates that the system investigated here does

not behave exactly like a simple Maxwell fluid.

In Fig. 14, we examine the storage and loss moduli of

system of dumbbells with various spring constants. As in

Fig. 13, the simulation results are all well fitted by the Max-

well equations �21� and �22�, except for somewhat different

amplitudes G*. The relaxation frequency �* is found to

agree very well with �H, as shown in the inset of Fig. 14. At

lower oscillation frequency in Fig. 14�b�, the viscosities cal-

culated from G���� /� are 
=565, 253, and 144 for systems

with K=0.2, 0.5, and 1.0, respectively. These values are

again in excellent agreement with those calculated from Eq.

�33� in steady shear flow. For all spring constants K, the

fitted amplitudes G* for the storage moduli G� are about half

of those calculated for the loss moduli G�. This indicates that

even for a system of dumbbell with high spring constant, a

simple Maxwell model is not appropriate for a quantitative

description.

D. Angular-momentum conservation

The viscosity of a simple MPC-AT+a fluid �with

angular-momentum conservation� is about a factor 1 /2

smaller than of a MPC-AT−a fluid.
34,41

We thus expect the

viscosity of the dumbbell fluid to be affected by angular-

momentum conservation as well. The simulation results for

both MPC-AT−a and MPC-AT+a methods are compared in

Fig. 15. We find that the effective zero-shear viscosity 
eff

increases linearly with the monomer density � for ��5. The

corresponding theoretical results �28� are in good agreement

with the simulation results for both investigated spring con-

stants. Minor deviations from the linear relationship of 
eff

with � originate from the variation of the diffusion constant

at low densities, which approaches a constant value for high

�. The viscosity of MPC-AT+a is lower than for MPC-AT

−a, although this effect is less pronounced than for pure

point-particle MPC fluids, since the main contribution to the

viscosity originates from the spring tension.

In Fig. 16, we present the average squared dumbbell

extension, determined in the bulk as a function of the effec-

tive shear rate, along with the theoretical results �32�, for

both the MPC-AT−a and MPC-AT+a methods. Note that

the diffusion constant D in Eq. �32� is different for angular-

momentum conserving and nonconserving methods. The

angular-momentum conservation has only little effect on the

spring extension; for a given effective shear rate, the exten-

sion is slightly lower for the angular-momentum conserving

method. The agreement of the simulation data with the the-

oretical result �32� is again remarkably good.

IV. DISCUSSION

As a further test for the correct calculation of the effec-

tive viscosity by the procedure described in Secs. II E and

FIG. 14. �Color online� �a� The storage G� and �b� the loss moduli G�, as

function of oscillation frequency � on a double-logarithmic scale, for sys-

tems of dumbbells with various spring constants ranging from K=0.2 to K

=1.0. The wall separation and the collision time are Ly =10 and h=0.02,

respectively. The inset shows the fitted relaxation frequencies �* as a func-

tion of the frequency �H predicted by Eq. �29�. The dashed line shows the

identity �*=�H.

FIG. 15. �Color online� Effective shear viscosities 
eff as a function of the

density � for MPC-AT−a and MPC-AT+a, each for spring constants K

=0.2 and K=0.4. The lines represent the theoretical results obtained from

Eq. �28�. The wall separation and the collision time are Ly =20 and h

=0.014, respectively.
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III B, we have also determined the viscosity from Poiseuille

flow. As in Ref. 33, we apply a gravitational force of strength

g parallel to the walls, with g in the range from g=0.0001 to

g=0.01 �in units of kBT /a0�. We fit the central part of the

velocity profile to a parabolic flow curve. The value of this

curve at the wall positions determines the effective wall slip.

When this slip velocity is subtracted, Eq. �18� in Sec. II E is

employed to determine the viscosity.
44

We have used this

method for a system of dumbbells with K=0.2 in a 30�30

box. Excellent agreement between the two methods to calcu-

late the zero-shear viscosity is obtained.

Our results for the dependence of the inclination angle �

on the shear rate can be compared with the decay of the

inclination angle of flexible and semiflexible polymers. For

dilute polymer solutions in the asymptotic regime of high

shear rates �where the finite extensibility is important�, � has

been predicted from Brownian dynamics simulations
45

and

theory
46

to decay with a power law �̇−0.3 and �̇−1/3, respec-

tively. For extensible dumbbells, the theory of Ref. 46

predicts
47 �� �̇−1, in excellent agreement with our simula-

tion results.

The wall slip in polymer melts has been studied exten-

sively. In this case, molecular dynamics simulations of poly-

mer fluids with Lennard–Jones interactions between mono-

mers give a wall slip with a boundary layer thickness, which

is on the order of the monomer diameter � or less.
44,48

Our

model could be compared more easily with results for poly-

mer solutions, because our model does not include excluded-

volume interactions. However, there is little knowledge

about semidilute polymer solutions near a wall under flow

conditions. Nevertheless, some comparisons with polymer

melts with moderate chain lengths are possible, where en-

tanglement effects are absent. For example, the molecular

dynamics simulations of Zhang et al.
44

show a maximum of

mean squared radius of gyration at a finite distance �m from

the wall, which shifts from �m�1.5� for chains with four

monomers to �m�2.2� for ten monomers.

V. SUMMARY AND CONCLUSIONS

An MPC dynamics algorithm has been developed to in-

vestigate the viscoelastic properties of harmonic-dumbbell

fluid in shear flow. The method is based on alternating

streaming and collision steps, just as the original MPC

method for Newtonian fluids. The only modification is to

replace the ballistic motion of fluid point particles by har-

monic oscillations during the streaming step. In this model,

the entanglement between dumbbells is neglected. Moreover,

the storage and loss moduli are calculated by introducing a

small-amplitude oscillatory shear flow.

Our results can be summarized as follows: First, under

steady shear flow, the dumbbells keep their isotropic distri-

bution at low shear rates but get highly stretched and orien-

tated along the flow direction at high shear rates. The veloc-

ity profile is not uniform along the gradient direction but

boundary layers of high shear develop near the walls. The

thickness of these boundary layers is found to scale with the

size of the dumbbells in the absence of flow. The effective

shear viscosity, calculated from the ratio between the off-

diagonal component of the stress tenor �xy and the effective

shear rate �̇eff, expresses a very weak shear-thickening be-

havior at high shear rates.

Second, the dependence of the viscosity on two param-

eters, the spring constant K of the dumbbells and the colli-

sion time h, has been investigated. These two parameters are

of central importance, since the former controls the elastic

energy of the system, while the latter determines the mean

free path �, which measures the fraction of the cell size that

a fluid particle travels on average between collisions. We find

that the shear viscosity of the dumbbell fluid increases lin-

early with 1 /K and with h.

Third, the storage and loss moduli of our viscoelastic

solvent are studied by imposing an oscillatory velocity on the

two solid walls. The storage modulus G� is found to be pro-

portional to �2 at low frequencies and to level off at �*

=�H. Its behavior over the whole frequency range studied

here is well described by a Maxwell fluid. The loss modulus

G� increases linearly with � for low frequencies. The shear

viscosities obtained from the ratio G� /� at low shear rates

agree very well with those obtained from simulations with

steady shear. On the other hand, for ���H, we find that the

data approach a plateau value, while for a Maxwell fluid G�

would decrease again for higher frequencies.

Our numerical results are quantitatively in good agree-

ment with a simple theory, based on the kinetic theory of

dilute solutions of dumbbells, where the transport coeffi-

cients of the standard MPC point-particle fluid are employed

for the viscosity and the diffusion constant of the solvent.

In our MPC algorithm of harmonic dumbbells, both elas-

tic and viscous behaviors of solvent particles can be modeled

properly, while hydrodynamic interactions are efficiently

taken into account. These are valuable assets to guide future

simulations on investigating rheological properties of sus-

pensions of spherical, rodlike, or polymeric solute molecules

in viscoelastic fluids.

FIG. 16. �Color online� Scaled average of the dumbbell extension,

�r2� / �r2�eq−1, as a function of the effective shear rate �̇eff /�H for angular-

momentum conserving and nonconserving methods. The spring constant and

collision time are K=0.2 and time step h=0.014, respectively, the density is

�=10, and the wall separation is Ly =20. The dashed line represents the

theoretical result �32�.
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APPENDIX: ANALYTICAL SOLUTION OF THE
DENSITY PROFILE WITH ATTRACTIVE WALL
POTENTIALS

Combining Eqs. �14� and �15�, the density profile, when

attractive wall potentials are introduced, can be solved ana-

lytically. Considering the symmetry of the density profile,

��y�=��Ly −y�, only the initial half part need to be taken into

account. For 0	y	2c1r
0

�1�
, we then arrive at

��y� =
1

Z
��

0

Ly

dy�e−K�y − y��2
/2kBT + �

0

2c1r0
�1�

−y

dy�

�e−K�y − y��2
/2kBT�e2c2kBT�1−�y+y��/2c1r0

�1�� − 1�
 ,

which implies

��y� =
1

Z
�erf��K/2kBT�Ly − y��

+ erf��K/2kBT�2y − 2c1r0
�1���

+ exp� �c2kBTr0
�1��2 + 4c2kBT�c1r0

�1� − y�

2c1r0
�1� �

��erf
− c2kBT + c1r0
�1�yK/kBT

c1r0
�1��2K/kBT

�
+ erf
 c2kBT + 2�c1r0

�1� − y�c1r0
�1�K/kBT

c1r0
�1��2K/kBT

��
 ,

while for 2c1r
0

�1�
	y	Ly /2, the density profile is given by

Eq. �13�.
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