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1. INTRODUCTION

Fractal-like aggregates consist of multiple (primary) particles
that are connected by chemical (e.g., sintering) bonds. Such
aggregates form by natural and man-made processes, typically at
high temperatures, like fly ash from volcano eruption and coal
combustion as well as aerosol synthesis of pigmentary titania,
fumed silica, and carbon black by carefully designed combustion
of appropriate liquid or gaseous precursors. The structure of such
particles has important implications in their performance. In
materials synthesis, for example, structure plays a crucial role in
final product performance. In paints, TiO2 nonaggregated par-
ticles (agglomerates) are sought that can be easily dispersed and
remain in suspension in liquids. While for catalysts or lightguides,
open aggregates are preferred to facilitate gas transport in and out
of pellets or preforms. Furthermore, sinter necks are important
for the mechanical stability of nanoparticle layers,1 enhanced
electron transport and sensitivity of gas sensors2 especially when
made from narrowly distributed aggregates3 and electrical
conductivity.4 In design of nanoparticle synthesis by aerosol
processes the variation of Df during particle formation hardly
affects the primary particle diameter but is important in deter-
mining the collision diameter and in return the aggregate
diameter.5

Now it is reasonably well understood that such aggregates
form by gas and surface reaction, coagulation and partial coales-
cence (or sintering). As chemical reactions in high temperature

aerosol processes are completed much faster than particle
dynamics, the detailed structure of these aggregates is largely
determined by the interplay of particle collision and coalescence.
In the absence of such sintering between primary particles, agglo-
merates (rather than aggregates) are formed by collision and
mere cohesion with well-defined structure and fractal-dimension,
Df, depending only on the particle collision mechanism. For
example, agglomerates made by (a) diffusion limited agglomera-
tion (DLA)6 have Df = 2.5, (b) ballistic particle�cluster agglom-
eration Df = 3.0 (BPCA),7 and (c) diffusion limited cluster�
cluster agglomerationDf = 1.8 (DLCA).

8 Aggregates may under-
go further coagulation leading to formation of agglomerates
(physically bonded) thatmay undergo restructuring and break-up.9

Once coalescence or sintering starts between constituent
primary particles, sinter necks are formed between them converting
the agglomerates to aggregates. During sintering, the latter pro-
gressively densify until complete compact (e.g., Df = 3) structures
are formed at sufficiently long process times at high temperatures.
This has been experimentally demonstrated during silica formation
in hot-wall10 and laminar diffusion flame reactors by small-angle
X-ray diffraction.11 In reality, however, it is rather seldom to have
enough process time to complete particle coalescence. As a result,
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ABSTRACT: Multiparticle sintering is encountered in almost all high
temperature processes for material synthesis (titania, silica, and nickel)
and energy generation (e.g., fly ash formation) resulting in aggregates of
primary particles (hard- or sinter-bonded agglomerates). This mechan-
ism of particle growth is investigated quantitatively by mass and energy
balances during viscous sintering of amorphous aerosol materials (e.g.,
SiO2 and polymers) that typically have a distribution of sizes and
complex morphology. This model is validated at limited cases of
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of particles. The evolution of morphology, surface area and radii of
gyration of multiparticle aggregates are elucidated for various sizes and initial fractal dimension. For each of these structures that had
been generated by diffusion limited (DLA), cluster�cluster (DLCA), and ballistic particle�cluster agglomeration (BPCA) the
surface area evolution is monitored and found to scale differently than that of the radius of gyration (moment of inertia). Expressions
are proposed for the evolution of fractal dimension and the surface area of aggregates undergoing viscous sintering. These
expressions are important in design of aerosol processes with population balance equations (PBE) and/or fluid dynamic simulations
for material synthesis or minimization and even suppression of particle formation.
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aggregates are formed with Df in-between those predicted by
particle collision alone (as above) and those for compact particles
that underwent full coalescence as has been shown computationally
for 2-D structures12 and experimentally13 for nanosilica Df =
1.5�2.4.

The above studies clearly show the need to better understand
the variation ofDf during particle synthesis. Essentially one needs
to relate the evolution of Df to that of the characteristic time of
sintering. Artelt et al.5 had proposed a linear relationship between
Df to the characteristic time of sintering. There is however the
need to develop such a relation from first principles without
adjustable parameters following the detailed evolution of particle
structure during sintering. Several models have been proposed
for viscous sintering of equally sized pairs of particles.14�18Here
a new and rather simple model is introduced that describes
sintering of two differently sized particles and multiparticle
aggregates of amorphous spherical particles (e.g., silica) by mass
(or volume)19 and energy14 balances. This model reproduces the
neck growth and evolution of surface area for equally and
differently sized pairs and chains of particles and compared to
more detailed sinteringmodel solutions.20�25 So the evolution of
the detailed morphology, radius of gyration and effective fractal
dimension of ensembles of irregular particles of arbitrary initial
Df is presented as they asymptotically approach full compactness
by coalescence or sintering. Furthermore, simple-to-use expres-
sions for the evolution of these particle characteristics are
developed from first principles that are needed26 in design of
nanomaterial synthesis by coagulation and sintering.

2. THEORY

Particle sintering leads to a reduction of free energy by, at least,
six distinct physical mechanisms:27 surface diffusion, bulk diffu-
sion from the surface, vapor transport, grain boundary diffusion,
bulk diffusion from the grain boundary, and plastic/viscous flow.
All six lead to bonding and neck growth between neighboring
particles but only the last three cause densification by approach-
ing particle centers. Viscous sintering is the dominant mechan-
ism for amorphous materials like polymers and glasses28 and can
be described by solving the flow field inside the particles with the
Stokes equation.29 Frenkel14 developed a geometric sintering
model for the initial stage of sintering of spheres by viscous flow.
This model has been extended by Eshelby15 to satisfy the
continuity equation and is referred to as the Frenkel�Eshelby
model. Here the energy balance of this model is combined with a
volume balance model for the initial sintering kinetics of a packed
bed of spherical particles.19 That way a model is developed for
two particles that is generalized to multiparticle clusters.

The driving force for sintering is a minimization of the free
energy resulting in a reduction of surface area. The energy gained
by surface reduction is dissipated by viscous flow, which sets the
time scale for sintering. The dissipated energy would increase the
particle temperature, which in practical processes is effectively
thermostatted or dissipated by the surrounding gas. The flow is
assumed to be extensional14 that results in approaching particle
centers so the spherical particles overlap (Figure 1). The over-
lapping volume is counted only once and in order to conserve
particle volume, the particle radius is increased.19 Moreover the
surface energy is assumed to be independent of the primary
particle radius, r. The Tolman equation30 accounts for such an
effect for liquid droplets including the ratio δ/r (δ is a constant of
the order of intermolecular distance,∼0.1 nm), which is typically

small. The present model is designed for amorphous nanopar-
ticles from a few nanometers in diameter up to the micro-
meter range.
2.1. Sintering of Two Particles of Arbitrary Size. 2.1.1.

Conservation of Volume. During particle sintering by viscous
flow, particle centers approach each other to reduce their surface
area conserving, however, their total volume V

dV

dt
¼ ∑

i

dVi

dt
¼ 0 ð1Þ

According to Kadushnikov et al.19 the volume conservation
can be written for each individual particle

dVi

dt
¼

DVi

Dri

dri
dt

þ
DVi

Dxi

dxi
dt

¼ 0 ð2Þ

with xi being the distance from the particle center to the neck
level and Vi being the spherical particle volume minus the cap
volume, Figure 1

Vi ¼
2

3
πri

3 þ πri
2xi �

1

3
πxi

3 ð3aÞ

with xi ¼ ðdij
2 � rj

2 þ ri
2Þ=ð2dijÞ ð3bÞ

and dij is the distance between the centers of particles i and j.
The volume balance consists of a loss term, (∂Vi/∂xi)(dxi/dt),

representing the change in volume due to the increasing overlap.
The ∂Vi/∂xi results in the cross-sectional neck area An

31

DVi

Dxi
¼ πðr2i � x2i Þ ¼ An ð4Þ

and from eq 3b dxi/dt is

dxi
dt

¼
ri
dij

dri
dt

�
rj
dij

drj
dt

þ 1�
xi
dij

 !

ddij
dt

ð5Þ

So the above loss term corresponds to the volume of a cylinder
with length dxi and area An. This volume is balanced by the gain
term (∂Vi/∂ri)(dri/dt), where ∂Vi/∂ri determines the free surface
area Ai of the sphere

DVi

Dri
¼ 2πðri

2 þ rixiÞ ¼ Ai ð6Þ

Each particle experiences a volume change by an approaching
neighboring particle, which is balanced by an increase in the
particle radius ri.

19 So the particle growth rate, dri/dt is

dri
dt

¼ �
DVi

Dxi

dxi
dt

� �

=
DVi

Dri
¼ �

An

Ai

dxi
dt

ð7Þ

Figure 1. Two-dimensional sketch of a pair of spherical particles during
sintering.
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which is written as a function of the independent variable dij

dri
dt

¼ �

An 1�
xi
dij

 !

� 1�
xj
dij

 !

3
Anrj=dij

Aj � Anrj=dij

 !

Ai �
Anri
dij

�
Anrj
dij

3
Anri=dij

Aj � Anrj=dij

 !

dri
dt

¼ Bi
ddij
dt

ð8Þ

where Bi represents the elaborate fraction for simplicity.
2.1.2. Conservation of Energy. The Frenkel�Eshelby model

was derived on the basis of an energy balance which equals the
energy gained by surface reduction to the energy dissipated by a
uniaxial extensional flow under the assumption of constant
particle radius and small angles, which is valid for the initial
sintering stage. Pokluda et al.18 extended the Frenkel�Eshelby
model to describe the complete sintering of two equally sized
spherical particles. Here this is extended to differently sized
particles by a more general derivation of the rate of change of
surface area, dAi/dt. This is important for aerosol particles that
have typically a distribution of sizes and complex morphology.
The change in surface energy equals the viscous dissipation with
the assumption of a constant strain rate ε

·

inside the whole
particle14

� γ
dAi

dt
¼

Z Z Z

3η _εi
2 dVi ¼ 3ηVi _εi

2 ð9Þ

whereγ is the surface energy andη the viscosity. The strain rate is
approximated as18

_εi ¼
1

ri

dxi
dt

ð10Þ

Similar to volume conservation (eq 2), the change in surface
area, dAi/dt, is split into a gain and loss term

dAi

dt
¼

DAi

Dri

dri
dt

þ
DAi

Dxi

dxi
dt

ð11Þ

The approaching neighboring particle reduces the surface
(loss term), which is counteracted by an increase in the particle
radius (gain term). The free surface area of a particle with one
contact is

Ai ¼ 4πri
2 � 2πriðri � xiÞ ¼ 2πðri

2 þ rixiÞ ð12Þ

The partial derivatives of Ai with respect to xi and ri are

DAi

Dxi
¼ 2πri and

DAi

Dri
¼ 4πri þ 2πxi ð13Þ

Combining eqs 5 and 8�13 results in a system of equations
that describes the full coalescence of two spherical particles of
arbitrary size ratio, the change in distance ddij/dt and the change
in particle radius dri/dt

ddij
dt

¼

�
4rirjdij

2ðri þ rjÞγ

ðri þ rj þ dijÞðri4 þ rj4 � 2ri2rj2 þ 4dijrirjðri þ rjÞ � dij
2ðri2 þ rj2ÞÞη

ð14aÞ

dri
dt

¼ Bi
ddij
dt

ð14bÞ

For two equally sized particles (ri = rj, dij = 2xi) the sintering
equations reduce to

ddij
dt

¼
4ridijγ

ð2ri þ dijÞðdij � 4riÞη
ð15aÞ

dri
dt

¼
ðdij � 2riÞdijγ

2ð2ri þ dijÞðdij � 4riÞη
ð15bÞ

Pokluda et al.18 already derived a viscous sintering equation for
two equally sized particles. Equation 15 can be compared to their
equation, if dij = 2ri sin(θ) is applied. The ddij/dt of eq 15a is
transformed to dθ/dt = γ2�5/3 cos(θ) sin(θ)(2 � cos(θ))1/3/
(a0η(1� cos(θ))(1þ cos(θ))1/3), which is the sintering equa-
tion of Pokluda et al.,18 Figure 2. The advantage of using the
distance dij as the independent variable instead of the angle θ is
that it can be used for unequally sized particles and multiparticle
sintering.
The present model is developed for viscous sintering of

amorphous particles. Sintering of crystalline materials can be

Figure 2. Evolution of (a) normalized surface area A0 and (b) dimen-
sionless neck radius R/R0 for two equally sized spheres undergoing
sintering. The model of Pokluda et al.18 gives identical results as the
present work (a and b) as both models are based on the energy equation
of the Frenkel-Eshelby model but use a different derivation and
representation of dA/dt. The work of Kirchhof et al.20 predicts at the
beginning of sintering a slower change in surface area than the present
work as well as with Koch and Friedlander,17 Pokluda et al.,18 and Yadha
and Helble.21 At the end of sintering, the change in surface area is faster
in the model of Yadha and Helble21 than the other, which are in
reasonable agreement with the present work. (b) Good agreement in the
predicted neck radius is found between the present work and both
simulations20 and experiments of polymer sintering.38
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simulated with the present model by replacing the energy balance
of eq 9 to account for the different physics. For example for grain
boundary diffusion, typically used to describe the sintering of
TiO2 particles,

32 the change in volume with respect to approach-
ing particle centers equals the diffusion of atoms from the grain
boundary to the neck:
2.2. Multiparticle Sintering.The above two-particle model is

extended to multiparticle sintering of chains and irregular
structures. Each particle can have now several neighbors. The
volume displaced by the reduction of particle distance equals the
volume gained by increasing the radius:

dVi

dt
¼

DVi

Dri

dri
dt

þ ∑
j

DVi

Dxi, j

dxi, j
dt

¼ 0 ð16Þ

where the sum is taken over all j neighbors of particle i. For
multiple particle overlaps the neck area is no longer circular.
Therefore the particle surface area, volume, neck areas, and
neighbors are calculated with the Vorlume software.33 It is an
exact method which decomposes the volume of the union of
spheres into convex regions, namely the restrictions of the spheres.
The calculation of a restriction volume is based on Gauss’ diver-
gence theorem.34

Kirchhof et al.20 found that the single sintering necks are
independent from each other by solving the flow field inside the
particles with a fractional volume of fluid method. The new
particle positions are obtained by a SHAKE algorithm35 to fulfill
the constraints of the relative distances to the neighbor particles
up to a tolerance of 0.1% or 1000 iterations. The SHAKEmethod
reduces the particle distances according to eq 14a. This allows
simulating the restructuring of the whole aggregate. For example,
the motion of an edge in a chain is the sum of all displacements of
the intermediate particles. This is accounted for by the iterative
solution of the new particle positions.
In reality, aggregates are highly irregular consisting usually of

several (up to hundreds) of primary particles.13 The effective
fractal dimension Df is used to describe the morphology of
irregularly shaped aggregates36

N ¼ kf
Rg

r0

� �Df

ð17Þ

where N is the number of primary particles in the aggregate, kf a
prefactor, and Rg the radius of gyration

37

Rg
2 ¼

Z

FðrÞr2 dr
Z

FðrÞ dr
ð18Þ

where F(r) is the radial density distribution function.

3. RESULTS AND DISCUSSION

3.1. Validation. 3.1.1. Two-Particle Sintering: Equally-Sized
Particles. First, the two-particle sintering model of eq 15 is
validated with simulations17,18,20,21 and experiments.38 Figure 2
shows the evolution of the normalized surface area (a) and
dimensionless neck radius (b). The present results for equally
sized particles (solid line) are identical to those (broken line) of
Pokluda et al.18 as both models use the energy equation of
Frenkel14 but a different solution representation. Initially the
change in surface area is very rapid and almost linear, as the

classic model of Frenkel-Eshelby predicts. At the beginning, the
difference in curvatures in the neck region and therefore the
pressure toward a reduction of the surface area are highest.
There, the present model (eq 15, solid line) is closer to that of
Yadha and Helble21 (dotted line) and Koch and Friedlander17

(double-dot broken line) than those of Kirchhof et al.20 (dash-
dot line). Koch and Friedlander17 proposed (KF model):

dA

dt
¼ �

1

τA
ðA� Af Þ ð19Þ

where τA is the characteristic fusion time, A the aggregate surface
area, and Af its final value upon complete coalescence. Koch and
Friedlander17 used a phenomenological fusion time of τA =
ηrmono/γ for two equally sized particles, with rmono = 3V/A being
the equivalent radius of monodisperse spherical primary particles
at each time step.39 Equation 19 can be solved analytically, A(t) =
Af/(1� (1� (Af/A0)) exp(�((γAf)/(3ηV)t))), with the initial
condition A(t = 0) = A0. The present work is in good agreement
with the KFmodel for two equally sized particles (Figure 2). The
dA/dt differ at the beginning of sintering by about 20% and
converge both to zero for Af Af (Appendix). If the character-
istic fusion time is constant (τA = ηr0/γ), the normalized surface
area decreases exponentially

A0 ¼ ðA� Af Þ=ðA0 � Af Þ ¼ expð�t=τAÞ ð20Þ

Figure 2b shows the evolution of the dimensionless neck
radius R/R0 with dimensionless time t/τ0. The neck radius
increases rapidly at the initial sintering stage and levels off slowly
at later times since the whole sintering process slows down as its
driving force (particle curvature) decreases. Experimental data of
Bellehumeur et al.38 (symbols) for sintering of irregular and
cylindrically shaped polyethylene particles with a size distribu-
tion between 250 to 600 μm match well with the present model
as well to that by Pokluda et al.18 (dotted line). The large
deviations at the late stage of the experiments come from the
loss of 3-D structure as particles spread on the observation
surface.18 An even better match is obtained by Kirchhof et al.20

(dash-dot line) indicating further that viscous sintering is the
dominant mechanism in these experiments. Nonetheless the
volume of fluid method needs a high discretization of the particle
volume and is computationally demanding.20

3.1.2. Two-Particle Sintering: Differently-Sized Particles.
Figure 3a shows the evolution of the dimensionless surface area
A/A0 for various particle radii ratios (r1,0/r2,0 = 1�6) by the
present model (lines) and that of Yadha and Helble21 (symbols).
Similar to the sintering of equally sized particles (Figure 2a),
Yadha and Helble21 predict faster sintering. They found that the
coalescence times of unequally sized particles did not scale
linearly with the radii ratio, nor with the total volume of the
two particles and concluded that sintering time depends primar-
ily on the size of the smaller particle. Here, a scaling is identified
which collapses the normalized surface area evolution by parti-
cles of various size ratios nearly onto a single curve, if the
dimensionless time is scaled with the time dependent radius of
the smaller particle r(t), Figure 3b. Additionally good agreement
is found between the present work (eq 14) and the KF model
(eq 19), if the radius in the fusion time, τA = ηr(t)/γ, is chosen as
the smaller particle’s radius. The smaller particle dominates the
sintering process consistent with FEM,40 CFD,20,21 and MD41

simulations.
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3.1.3. Multiparticle Sintering of Particle Chains. Figure 4
shows the sintering of chain aggregates consisting of 2�10
monodisperse primary particles as simulated by the present
multiparticle sinter model (eq 14 and 16, lines) and compared
to that (symbols) of Kirchhof et al.20The chain aggregate shrinks
and forms an oval shape by further densification and becomes
finally spherical.25 Figure 4a shows the evolution of the total
surface area A normalized by the initial surface area A0. Longer
chains take more time to sinter as expected. The present model
predicts slightly faster sintering (10�15%) than Kirchhof et al.20

as already seen in Figure 2b, but properly converges to the
asymptotic result. Kirchhof et al.20 suggested to scale the time
with the equivalent radius of the fully coalesced sphere, rf =
N1/3r0, to collapse the normalized surface areas onto one single
curve. Figure 4b shows that the evolution of normalized surface
area from 2 to 10 particle chains by the present model scales
slightly better than the data of Kirchhof et al.20 (symbols). Again
the initial sintering stage is almost linear but can be described
reasonably well by the KFmodel (eq 19, double-dot broken line)
where instead of the primary particle radius, (N/2)1/3r0 is used
for the characteristic fusion time τA. The various symmetric
structures consisting of ten particles each investigated by Kirch-
hof et al.20 have been studied as well with similar results as above
(not shown here). The fastest sintering occurred for the most
compact structure.
3.2. Aggregate Dynamics. 3.2.1. Multiparticle Sintering of

Irregular Aggregates. All results shown until here have been

deterministic. For irregular particle structures the results are
averaged over 50 different aggregates for each structure specifica-
tion. The morphology of flame-generated silica or titania aggre-
gates range typically from Df = 1.5 to 2.4.13,42 A Df of around 1.8
corresponds to open structured aggregates generated by diffu-
sion-limited cluster�cluster agglomeration (DLCA).8 The Df

larger than 1.8 can be attributed to aggregate sintering.11

Although the dominant aggregation mechanism for particles
produced in flames is DLCA, the influence of different initial
aggregate morphologies is studied here as well. The evolution of
the dimensionless and normalized surface area, the radius of
gyration and the effective fractal dimension is presented and the
influence of the number of particles and initial aggregate
structure is investigated here.
Agglomerates of 16�512 primary particles are produced by

diffusion-limited hierarchical cluster�cluster (DLCA),43 diffu-
sion limited (DLA),6 and ballistic particle�cluster (BPCA)7

agglomeration. The DLA and BPCA agglomerates are only
created to investigate here the effect of the initial morphology.
An estimate of the initial Df is obtained by ensemble averaging
over 50 aggregates of each size using the radius of gyration and
eq 17 to validate agglomerate generation and compare to the
estimated values known from literature. The aggregates studied
here might be too small to obtain a strict scaling over several
orders of magnitude and therefore the fitted Df has to be

Figure 3. Temporal evolution of (a) dimensionless A/A0 and (b)
normalized surface area A0 by the present work (lines) and by Yadha
and Helble21 (symbols) for pairs of particles with size ratios r1,0/r2,0 =
1�6. If the time is scaled with the radius of the small particle r(t), the
evolution of A0 collapses around a single line described well by an
exponential model (double-dot broken line) with the proposed fusion
time τA = ηr(t)/γ. The colors of the inset particles correspond to their
large (blue) and small (red) curvature (= 1/radius).

Figure 4. (a) Evolution of the dimensionless surface area A/A0 of chain
aggregates by the present work (lines) and by Kirchhof et al.20

(symbols). The characteristic size in the dimensionless time is the
primary particle radius r0. The present work predicts faster sintering than
Kirchhof et al.,20 which comes from the difference in two-particle
sintering. Nevertheless the scaling proposed by Kirchhof et al.20 is also
valid here collapsing the change in surface area around a single curve
(b) if the time is scaled by the characteristic fusion time τA=ηr0(N/2)

1/3/γ.
Additionally the Koch and Friedlander17 model (eq 19, double-dot
broken line) describes the surface area evolution well compared to the
present work.
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considered as an estimate or an effective, strictly speaking. The
experimentally investigated SiO2 particles/aggregates produced
in flames consist of a similar size (1�1000 primary particles)
depending on process conditions.10,11,13 The DLCA clusters
made here have a Df = 1.79 ( 0.03 and kf = 1.39 ( 0.06, con-
sistent with Sorensen and Roberts.44 The obtained error bars
correspond to the standard error of regression (standard devia-
tion divided by square root of number of aggregates). The fractal
dimension and prefactor of clusters generated by DLA are Df =
2.25 ( 0.03 and kf = 0.82 ( 0.05 and of BPCA are Df = 2.73 (
0.03 and kf = 0.538( 0.05, respectively. These Df are lower than
their asymptotic values of 2.5 and 3 for DLA and BPCA
agglomeration, respectively, as the Df of small clusters is lower
than their asymptotic.45

Figure 5 shows the viscous sintering of aggregates originally
made by DLCA, DLA, and BPCAwith initialDf of 1.79, 2.25, and
2.73, respectively, consisting of 256 primary particles each. At the
beginning of sintering, the aggregate branches straighten and
broaden (dimensionless time t/τ0 = 1) resulting in more open
structures, as discussed below with the evolution of Df. This
is contradictory to the general notion that sintering leads
automatically to compaction. This is consistent, however, with

Akhtar et al.,12 who observed in 2-dimensional Monte Carlo
simulations of gas phase coagulation and sintering of TiO2

aerosol that the densification on a localized scale of the branches
in the aggregates leads to a reduction inDf. This is consistent also
with Camenzind et al.,11 who experimentally observed a reduc-
tion of Df of silica particle formation in diffusion flame aerosol
reactors. At the more densely populated parts of the aggregates, a
single compact primary particle is formed (t/τ0 = 1�2), resulting
in more open structures. The branches sinter and the chain
diameter increases until an oval shape is reached (t/τ0 = 12,
DLCA) which finally evolves to a spherical particle.
The shape evolution of the DLA aggregate is comparable

to that of the DLCA aggregate. After chains have straightened
(t/τ0 = 1), the DLA aggregate forms an elongated shape (t/τ0 =
2�6), yet more compact than the DLCA aggregate. The BPCA
aggregate behaves differently after chains have straightened
(t/τ0 = 1). Rapidly a dense center is formed in the aggregate
into which the branches sinter (t/τ0 = 2�5). At the end of
sintering (t/τ0 > 6) the surface is smoothened similar to the
DLCA aggregate. The influence of the initial structure on the
evolution of surface area and radii of gyration are quantitatively
studied below.
3.2.2. Effect of the Number of Primary Particles per Agglom-

erate on its Sintering. Figure 6a shows the temporal evolution of
the dimensionless surface area A/A0 for DLCA aggregates
consisting of 16�512 primary particles. The highlighted area
represents the range of the standard deviation averaged over the
50 aggregates. At the beginning, the change is very rapid and
almost independent of the number of particles in the aggregate.
This change in surface area corresponds to the initial neck
formation, which comes along with a great reduction in surface
area and is much faster than at the end of sintering. The reason is
the large difference in curvatures in the neck as seen for two-
particle sintering (Figure 2). The normalized surface areas
collapse around a single line up to A0 = 0.2 (Figure 6b), if the
time is scaled with

τA ¼
ηr0
γ

N

2

� �ð1=2 � Df=6Þ

ð21Þ

which corresponds to the characteristic fusion time for the KF
model (eq 19). This time can be used in population balance
equations (PBE) to predict the evolution of the particle surface
area as a function of particle number and initial effective fractal
dimension.
The evolution of the radius of gyration is presented in

Figure 6c. At the beginning of sintering, each branch in the
aggregate straightens by shrinking and smoothens the surface
area, which does not change the radius of gyration and develops
cylinder-like branches (Figure 5). Then the branches shrink like
the chains studied above. The temporal evolution of the radius of
gyration scales best with N(0.7�0.18Df), (Figure 6d). Figure 6,
panels a and c, shows that the change in surface area takes place
faster than the change in radius of gyration. At t/τ0 = 10, the
surface area for N = 512 particles (pink line) was reduced to
around 90% of the difference between the initial surface and the
fully coalesced sphere, while the Rg has changed to about 70%.
Note that the surface area scales differently than the radius of

gyration. The scaling for the radius of gyration (or moment of
inertia as often measured in MD simulations) insufficiently
describes the surface area evolution and both evolutions need
to be considered separately in calculating the collision frequency
of aggregate particles undergoing coagulation.

Figure 5. Snapshots of aggregates undergoing viscous sintering and
consisting of initially 256 monodisperse primary particles generated by
diffusion limited cluster�cluster (DLCA, Df = 1.79), diffusion limited
(DLA, Df = 2.25), and ballistic particle-cluster (BPCA, Df = 2.73)
agglomeration. Clearly compact aggregates sinter faster than more open
structures. The dimensionless time, t/τ0 = tγ/ηr0, is listed next to the
aggregate. The colors correspond to the aggregate curvature (= 1/
radius): large = blue, small = red.
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Figure 6. Evolution of dimensionless and normalized surface area (a,b) and radius of gyration Rg (c,d) of DLCA aggregates (initialDf = 1.79) consisting
of 16�512 monodisperse primary particles. The results are averaged over 50 different aggregates of each size and the highlighted areas in (a) and (c)
represent the range of the standard deviation. The more primary particles an aggregate has, the longer it takes until the particles fully coalesce. If the time
is scaled with τA = ηr0(N/2)

(0.5-Df/6)/γ, the normalized surface area evolution collapses around a single line up toA0 = 0.2 (b) and is described well by the
KFmodel (eq 19). (d) The evolution of the normalized radius of gyration scales best withN(0.7�0.18Df). The surface area evolution scales differently than
that of the radius of gyration (or moment of inertia).

Figure 7. Evolution of dimensionless and normalized surface area (a,b) and radius of gyration (c,d) for DLCA (Df = 1.79), DLA (Df = 2.25), and BPCA
(Df = 2.73) agglomerates consisting initially of 256 primary particles. The results are averaged over 50 different aggregates of each structure and
the highlighted areas in (c) represent the range of the standard deviation. If the time is scaled with τA = ηr0(N/2)

(0.5-Df/6)/γ, the normalized surface area
evolution collapses around a single line (b) and is described well (within 10%) by the KFmodel (eq 19). (d) The evolution of the radius of gyration scales
best with N(0.7�0.18Df). The surface area evolution scales differently than that of the radius of gyration (or moment of inertia).
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3.2.3. Effect of Initial Morphology or Structure on Aggregate
Sintering. Figure 7 shows the influence of initial aggregate
morphology or structure on the surface area evolution and radius
of gyration. Initial effective fractal dimensions of 1.79 (DLCA),
2.25 (DLA), and 2.73 (BPCA) are investigated for aggregates
consisting of 256 primary particles. The clear trend that more
compact aggregates sinter faster can be seen in both the surface
area and radius of gyration (Figure 7, panels a and c). Figure 7b
shows the change in surface area normalized by the characteristic
fusion time introduced above. All evolutions of A0 collapse
around a single line. The KFmodel (eq 19) with this τA describes
the surface area evolution well (within 10%) compared to present
simulations using the proposed characteristic fusion time here
(eq 21).
The radius of gyration scaling is again different than that of the

surface area for various initial morphologies (Figure 7d). For
PBE accounting for coagulation and sintering, the evolution of
the surface area and collision radius play a crucial role to calculate
collision frequencies and of course to predict the surface area of
the final product powder and the average particle size.
3.2.4. Evolution of Effective Fractal Dimension, Df. The Df is

estimated with the sandbox method36 assuming that a power law

between mass and size exists, at least within certain length scales,
and serves as a quantitative measure of aggregate structure. The
Df is calculated for each individual aggregate separately and the
error bars correspond to the standard deviation from averaging
over 50 aggregates. Figure 8a shows the temporal evolution of the
effective fractal dimension Df for DLCA aggregates. For clarity,
error bars are shown only for the largest (512 particles) and
smallest (64 particles) aggregates. At the beginning of sintering
(Figure 5, at t/τ0 = 1) the highly ramified aggregate branches
straighten when primary particles approach each other (reduc-
tion of center-to-center distance). This internal restructuring
practically unfolds the aggregate and Df is reduced. However the
branches continue shrinking while conserving mass. Further
downstream Df increased as aggregates compacted by sinter-
ing-coalescence consistent with in situ measurements by small-
angle X-ray scattering (SAXS)11 as discussed with Figure 5 where
individual chains in an aggregate straighten and its structure
becomes initially more open or at least does not change
significantly.
Equation 22 is proposed to describe the temporal evolution of

Df that properly converges to Df = 3 exponentially and goes
through a minimum at tmin = �C2ηr0/γ and Df = 3 � C1. The
reduction and increase in Df is fairly symmetric and each curve
has a characteristic width (C3). The variables C1, C2, and C3 are
determined by fitting to each curve of Figure 8 and are finally
linearly interpolated

Df ðtÞ ¼ 3� C1 exp �
tγ

ηr0
þ C2

� �

=C3

� �2
 !

ð22Þ

withC1 = 2.5�0.64Df,0,C2 = 1.1Df,0� 0.0044N� 2.77, andC3 =
0.015N � 6.3Df,0 þ 14.16.
Different initial Df are investigated for 256 primary particle

aggregates in Figure 8b. Initially more compact aggregates reach
the minimum in Df and full coalescence faster. Moreover with
eq 22 the effective fractal dimension can be determined at any
time during the sintering process of irregular aggregates with
initially monodisperse primary particles.

4. CONCLUSIONS

Sintering of fractal-like aggregates of primary particles is
simulated by a model conserving energy and particle mass. The
change in surface energy equals the energy dissipated by the
viscous flow. Aggregate densification is driven by the reduction of
surface area. The two-particle version of this model is in good
agreement with more elaborate simulations and experiments for
particle pairs. It is shown that the assumption of an exponential
reduction in surface area17 fits well for both equally and
differently sized particles. With the complete model multiparticle
sintering is simulated and validated against fractional volume of
fluid simulations for chain aggregates. The evolution of the
normalized surface area, radius of gyration and effective fractal
dimension during sintering is presented for aggregates of initial
Df = 1.79�2.73 made by various collision mechanisms. A new
characteristic fusion time is proposed which can be applied to the
Koch and Friedlander17 model for aggregate surface area evolu-
tion. At limiting cases this reduces nicely to sintering of two
particles (N = 2) and chain agglomerates (Df = 1). Furthermore
the evolution of radius of gyration (or moment of inertia) scales
differently than the surface area evolution. Finally from the
present detailed simulations, an equation is developed describing

Figure 8. (a) Evolution of the effective fractal dimension is shown for
DLCA aggregates undergoing sintering and consisting of 64�512
primary particles. Initially, all aggregates are becoming more open as
the branches straighten. (b) Temporal evolution of the effective fractal
dimension Df for initially DLCA (Df = 1.79), DLA (Df = 2.25), and
BPCA (Df = 2.73) agglomerates consisting of 256 primary particles. The
DLCA aggregates are more elongated and take more time to reach both
the minimum in Df and full coalescence. Equation 22 describes the
structural changes during viscous sintering independent of the number
of particlesN (a) or the initial Df (b). The results (a and b) are averaged
over 50 different aggregates of each size/structure and the error bars
represent the range of the standard deviation.
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the evolution of the effective fractal dimension Df during viscous
sintering or coalescence that is consistent with experimental
observations.

7. APPENDIX

7.1. Analytical Comparison between the Koch and
Friedlander17 Model and This Work. Equation 15 is trans-
formed to dA/dt to facilitate comparison to the KF17 model

dA

dt
¼

πγ

η

dij
2

dij � 4ri
ðA1Þ

with ri being the analytical formula for the radius at dij to conserve
mass for two equally sized particles

ri ¼
1

4
ð64r0

3 þ dij
3 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64r06 þ 2r03dij
3

q

Þ1=3

þ
1

4

dij
2

ð64r03 þ dij
3 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64r06 þ 2r03dij
3

q

Þ1=3
�
1

4
dij ðA2Þ

The KF model is written for a constant fusion time τ0 = ηr0/γ
as a function of the independent variables dij and r0 with ri
replacing the elaborate analytical term

dA

dt
¼ �

1

τf
ðA� Af Þ

¼ �
4πγ

ηr0
ri
2 þ

1

2
ridij � 22=3r0

2

� �

ðA3Þ

or with the time dependent fusion time τA = 3ηV/γA

dA

dt
¼ �

16πγrið�2ri2 � ridij þ 25=3r02Þ

ηðdij
2 � 2ridij � 8ri2Þ

ðA4Þ

Although the dependencies in eq A1, A3, and A4 of dA/dt on
dij and r0 differ, the numerical values are initially within 20% and
converge both to zero at the end of sintering. Equation A3 with
a constant sinter time compares better to this work, not
shown here.
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’NOMENCLATURE
A area, m2

B auxiliary variable for eq 8
C1/2/3 fitting variables for eq 22
Df effective fractal dimension
d distance between particle centers, m
kf prefactor of fractal scaling law
N number of primary particles
R neck radius, m
Rg radius of gyration, m

r radius, m
t time, s
V volume, m3

x particle center to neck distance, m

Greek Letters

γ surface energy, kg s�2

ε strain rate, s�1

η viscosity, kg m�1 s�1

F density, kg m�3

τ characteristic time, s

’SUBSCRIPTS
0 initial
A surface area
f final
i particle index
j neighbor index
min minimum
mono monodisperse
n neck
Rg radius of gyration
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