
Multipartite RRTs for Rapid Replanning in

Dynamic Environments

Matt Zucker1 James Kuffner1 Michael Branicky2

1The Robotics Institute 2EECS Department

Carnegie Mellon University Case Western Reserve University

5000 Forbes Avenue 10900 Euclid Ave., Glennan 517B

Pittsburgh, PA, 15213, USA Cleveland, OH 44106-7221, USA

{mzucker,kuffner}@cs.cmu.edu mb@case.edu

Abstract— The Rapidly-exploring Random Tree (RRT) algo-
rithm has found widespread use in the field of robot motion
planning because it provides a single-shot, probabilistically
complete planning method which generalizes well to a variety
of problem domains. We present the Multipartite RRT (MP-
RRT), an RRT variant which supports planning in unknown
or dynamic environments. By purposefully biasing the sampling
distribution and re-using branches from previous planning iter-
ations, MP-RRT combines the strengths of existing adaptations
of RRT for dynamic motion planning. Experimental results
show MP-RRT to be very effective for planning in dynamic
environments with unknown moving obstacles, replanning in
high-dimensional configuration spaces, and replanning for sys-
tems with spacetime constraints.

I. INTRODUCTION

Motion planning in dynamic or uncertain environments

is an important problem in the fields of manipulation and

mobile robot navigation. Because of the need for highly

responsive algorithms, prior research on dynamic planning

has focused on re-using information from previous queries

across a series of planning iterations.

Dynamic programming based approaches such as D* [1]

and D*-Lite [2] are dynamic extensions of the A* algorithm

which perform minimal modifications to a previous search

tree in order to maintain an optimal path. However, these

algorithms are typically limited to low-dimensional search

spaces. Recently, probabilistic approaches have gained pop-

ularity due to their ability to trade optimality for fast runtimes

when searching high-dimensional configuration spaces. In

the context of dynamic environments, examples include

dynamic roadmap approaches [3], [4] that maintain a con-

nected graph in the free configuration space of the robot

(Cfree) which is pruned or validated against obstacle location

updates. Other examples include the RAMP algorithm [5]

which maintains sets of free paths using genetic algorithms,

and the decomposition-based strategy of [6] which uses

workspace based-heuristics to guide the search of Cfree.

Despite the broad array of approaches to dynamic motion

planning, there is still no generally applicable solution to the

problem. Drawbacks of current approaches include difficulty

planning in high-dimensional spaces, planning with nonholo-

nomic or differential constraints, planning among moving

(1) (2)

(3) (4)

Fig. 1. Re-planning for a translating point robot R among unknown
obstacles. 1) The previous plan. R is green circle, left, known obstacles
are solid blue, unknown (occluded) obstacles are gray outlines, goal region
is yellow circle, right. 2) R steps along path, observing a new obstacle.
MP-RRT removes invalid path segments, saving disconnected subtree for
later re-use (gray, right). 3) After a small amount of expansion, MP-RRT
re-uses the disconnected subtree from (2). 4) Tree produced by DRRT after
deleting both the invalid nodes and their descendents in (2).

obstacles, and efficiently handling changes to the initial and

goal states of a query.

In this paper, we present a variant of the Rapidly-exploring

Random Tree (RRT) algorithm [7], a probabilistic motion

planner which has found widespread use in the field of

robot motion planning. Our Multipartite RRT (MP-RRT)

algorithm leverages the strengths of several existing dy-

namic RRT variants, along with an opportunistic strategy

for reusing information from previous queries. We present

experimental results that show MP-RRT to be a responsive

planning algorithm which is well-suited for searching high-

dimensional configuration spaces among unknown or moving

obstacles, and which overcomes some drawbacks of previous

approaches.

II. BACKGROUND

The RRT algorithm attempts to find a continuous path

through Cfree from the initial state of the system qinit to

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeE11.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1603

some state qgoal ∈ G, a set of valid goal states. Paths indexed

by time will be referred to as trajectories. The original RRT

algorithm begins by initializing the search tree T to its root

qinit. Then the following steps are repeated until a valid path

is found, or the progress reaches another termination criterion

(e.g., a specified time or memory limit is exceeded or the

algorithm has reached a maximum number of iterations):

A configuration qnew ∈ C is selected at random. Then its

nearest neighbor in the tree qnearest is selected according to

a scalar metric ρ(q1, q2) 7→ ℜ defined on C. Next, an edge e
is generated which extends from qnearest towards qnew; if e
lies in Cfree, then the terminal point of the edge (often qnew

itself) is inserted into T as a child of qnearest.

Assuming uniform sampling of C, the RRT algorithm is

biased to quickly construct paths into unoccupied Voronoi

regions of the vertices of T leading to a rapid exploration of

Cfree [8]. One simple enhancement to this algorithm entails

adding a “goal bias” to the search by choosing some goal

configuration qgoal ∈ G as the sampled state qnew with small

probability pgoal for each iteration. In practice, this yields

much faster convergence than simply waiting for a random

sampler to select states in G.

A. The dynamic planning problem

Dynamic planning is similar to static motion planning,

with the modification that planning steps will be alternated

with system and world update steps. Applications for dy-

namic planning include navigation or manipulation planning

in a world with unknown or moving obstacles. Between plan-

ning iterations, several possible events may have occurred

simultaneously: 1) The robot may have moved, and in doing

so may have discovered new obstacles to avoid. 2) The goal

may have moved. 3) Previously sensed obstacles may have

moved independently of any action by the robot.

More formally, there will be multiple planning iterations

to find a path through Cfree from qinit to qgoal ∈ G; however

we do not require that the state qinit and the sets Cfree and

G remain fixed between iterations.

One way to approach the dynamic planning problem is to

simply re-run the original RRT algorithm for every planning

iteration; however, the world typically exhibits temporal

coherence which this naı̈ve approach fails to exploit. While

all the obstacles and the goal region may have moved, it

is quite possible that the changes are small enough that the

plan from the previous iteration is still valid. In this case, the

extra computation of constructing a new plan from scratch

is inefficient.

The intuition that information from previous planning

iterations should be preserved led to the development of three

modifications to the RRT algorithm: ERRT [9], DRRT [10],

and RRF [11]. In ERRT, when a successful plan is generated,

the states along the path from qinit to qgoal are inserted into a

waypoint cache which is then used to bias random selection

for the next planning iteration. At the start of the next

iteration, the previous RRT is discarded, but qnew will be

selected from the waypoint cache with probability pwaypoint.

In practice, ERRT performs much better than naı̈ve iterated

RRT in the face of small changes to Cfree and G because

states which were used in a previously successful plan are

likely to be good intermediate states in the current plan.

DRRT takes a different approach to exploiting temporal

coherence; whereas ERRT biases selection towards states

from the previous path, DRRT attempts to reuse branches of

the previous RRT which lie in Cfree and remain connected to

the root. The implementation of DRRT imposes a substantial

overhead at the start of planning: before the previous RRT

can be reused, it must be validated against any updates to

Cfree. In practice, though, time spent on validation (i.e.,

collision checking) enables the reuse of very large subtrees,

up to the size of the entire previous RRT.

Growing multiple trees backwards from a set of goal

configurations has been shown to be efficient in the con-

text of one-shot planning for redundant manipulators [12].

Reconfigurable Random Forests (RRF) build a forest of dis-

connected RRTs for the purposes of multiple-query planning,

with the aim of incrementally building a data structure that

eventually captures the entire topology of Cfree [11]. Our

MP-RRT algorithm also uses a forest of disconnected RRTs

for multiple-query planning. However, we decided to instead

focus the MP-RRT algorithm on a single start-goal pair, not

only because it yields a more responsive planner, but because

a tree structure that spans multiply-connected regions of

Cfree tends to yield significantly suboptimal paths which are

in general not homotopic to the optimal solution.

B. Point-to-point connections

Consider a scenario involving a mobile robot with a

limited sensing horizon, and in which G does not change

substantially between planning iterations. In this case, it

is advantageous for DRRT to plan in reverse, building a

tree rooted at qgoal ∈ G which connects to the current

configuration of the robot qcurrent. In such a scenario,

modifications to Cfree will typically take place in the vicinity

of the robot configuration; therefore, a tree rooted at the

goal state will be able to reuse much more information from

previous planning iterations than one rooted at the current

robot configuration.

For systems with momentum or nonholonomic constraints,

backward planning introduces an additional complication:

whereas ERRT and simple RRT only require that we generate

an edge from qnearest towards qnew, planning backwards

requires the ability to generate an edge exactly connecting

some node in the tree to qcurrent.

When planning under differential constraints (i.e., gener-

ating trajectories for a nonholonomic robot), point-to-point

connections may require solving a boundary value problem

to generate the correct controls for a trajectory segment

exactly interpolating the endpoints. If no inverse dynamics

model for the system can be computed, the aforementioned

algorithms are difficult to use; even if such a model can be

computed, doing so may impose significant overhead on the

planning model.

Like DRRT in the reverse planning scenario, our MP-

RRT algorithm requires the ability to make point-to-point

WeE11.1

1604

Static

Obstacle

Deterministic

Path

Bounded

Velocity

Bounded

Acceleration

y

x

t

Fig. 2. Obstacles as spacetime volumes

connections; however, unlike the algorithms above, we an-

ticipate that such connections may require significantly more

computation than normal RRT extensions, and therefore our

algorithm attempts to make point-to-point connections in

an opportunistic and principled fashion. We believe guiding

the planning process to be “choosy” about point-to-point

connections is a novel contribution that makes MP-RRT more

appropriate for certain classes of planning problems than

approaches such as probabilistic roadmaps (PRM) or RRF.

C. Moving obstacles

Consider the scenario in which the obstacles themselves

are moving through the workspace. One approach to solving

the planning problem is to generate paths in CT = C×[0,∞),
where the additional dimension indexes time [13]. Then, a

workspace collision checker can use the time component t ∈
T of a state to check against predetermined trajectories or

worst-case obstacle motion assumptions (see figure 2). This

effectively represents obstacles as spacetime volumes in the

workspace. In this formulation, updates between planning

iterations may alter not only estimates of the current position

of an obstacle, but estimates of its future trajectory as well.

Although convenient, the CT formulation places some

interesting restrictions on the class of planning algorithms

which can be used. In particular, multi-tree approaches such

as Bidirectional RRT [7] or augmentation via local RRTs [14]

may not be practical to implement because the precise time

to reach the goal may be undefined. In this case, G will

span a large (possibly infinite) interval on the t axis of CT .

Given that there is no single goal state, we are faced with

the difficult question of where to root a second tree. PRM

approaches typically cannot be applied in a straightforward

manner because the PRM spans C and not CT . Some

approaches [15] solve the problem with respect to static

obstacles in C only, before incorporating dynamic obstacle

constraints in CT . DRRT may suffer particularly in the CT
formulation because it cannot plan backwards from the goal.

If sensor updates happen in the vicinity of the robot, the valid

subtrees reused between subsequent plans will be relatively

small.

III. THE MP-RRT ALGORITHM

We present the MP-RRT algorithm, an RRT variant which

is well-suited for dynamic planning problems for mobile

robots and manipulators in environments with unknown or

dynamic obstacles. Conceptually, MP-RRT combines the

strengths of biasing the sampling distribution towards pre-

viously useful states as in ERRT and analytically computing

which segments of previous RRTs can be re-used as in

DRRT.

At the start of a given planning iteration, if there is

no tree T from a previous iteration, or if the intital state

or goal region have changed substantially, MP-RRT builds

an RRT from scratch. Otherwise, the MP-RRT runs the

PRUNEANDPREPEND procedure (see accompanying pseu-

docode for the MPRRTSEARCH and PRUNEANDPREPEND

procedures). During planning, MP-RRT maintains a for-

est F of disconnected subtrees which lie in Cfree, but

which are not connected to the root node qroot of T . In

PRUNEANDPREPEND, any nodes and edges of T and F
which are no longer valid are deleted, and any disconnected

subtrees which are created as a result are placed into F .

Procedure MPRRTSEARCH(qinit)

Performs the MP-RRT algorithm.

Data: T : the previous search tree, if any

F : the previous forest of disconnected

subtrees

qinit: the initial state

Result: a boolean value indicating plan success

if EMPTY(T) then
qroot = qinit;

INSERT(qroot, T);
else

PRUNEANDPREPEND(T, F, qinit);

if TREEHASGOAL(T) then
return true ;

end

end

while search time/space remaining do
qnew = SELECTSAMPLE(F);

qnearest = NEARESTNEIGHBOR(qnew, T);

if qnew ∈ F then
bconnect = CONNECT(qnearest, qnew);

if bconnect and TREEHASGOAL(T) then
return true ;

end

else
bextend = EXTEND(qnearest, qnew);

if bextend and ISGOAL(qnew) then
return true ;

end

end

end

return false ;

Unlike DRRT, MP-RRT anticipates significant updates to

both the initial robot configuration and goal region G. After

pruning, if the initial state qinit of the search is no longer the

root of the tree T , the REROOT procedure attempts to make a

point-to-point connection between the new qinit and the old

tree T . If such an attempt fails, the old tree is placed into F

WeE11.1

1605

Procedure PRUNEANDPREPEND(T, F, qinit)

Used at start of MP-RRT search query.

Data: T : the original search tree

F : the forest of disconnected subtrees

qinit: the new initial state

Result: The search tree T is valid and the forest F
contains any surviving subtrees of the

original search tree.

for each node q ∈ T, F do

if not NODEVALID(q) then
KILLNODE (q);

else if not ACTIONVALID(q) then
SPLITEDGE (q);

end

end

if not EMPTY(T) and qroot 6= qinit then

if not REROOT(T, qinit) then
place old T in F ;

initialize T to have qroot = qinit ;
end

end

Procedure SELECTSAMPLE(F)

Used to generate samples for MP-RRT.

Data: F : the forest of disconnected subtrees

Result: qnew: the selected sample state

p = RANDOM(0, 1);

if p < pgoal then
qnew = qgoal ∈ G;

else if p < (pgoal + pforest) and not EMPTY(F)

then
qnew = q ∈ SUBTREEROOTS(F) ;

else
qnew = RANDOMSTATE() ;

end

return qnew ;

and T is re-initialized to contain the single node qinit. After

pruning the tree and prepending the new root, pre-processing

for MP-RRT is complete. At this point, T may contain some

node in G, in which case the MPRRTSEARCH function will

return successfully.

If T does not contain a goal state after pre-processing,

the inner search loop is run similarly to the original RRT

algorithm, but with one key modification: the SELECTSAM-

PLE function is implemented to return the root of some

disconnected subtree in F with some probability pforest.

If qnew lies in F , then the MP-RRT algorithm attempts

to make a point-to-point connection between qnew and its

nearest neighbor qnearest; otherwise it extends an edge from

qnearest towards qnew as in the original RRT algorithm.

With a few key changes, the MP-RRT algorithm can

be transformed into existing algorithms. If disconnected

subtrees are simply deleted instead of being inserted into F ,

MP-RRT algorithm becomes DRRT. MP-RRT can be turned

into ERRT by invalidating all edges in T at the start of each

planning iteration, invalidating all nodes except those on a

previously successful path, and changing the CONNECT to

an EXTEND. Finally, the main difference between MP-RRT

and RRF is that RRF attempts to CONNECT a newly inserted

node qnew ∈ T to every disconnected component of F after

each successful EXTEND.

A. Parameter selection

The MP-RRT introduces a forest bias pforest which bal-

ances the tradeoff between the high cost of collision checking

and the performance benefit of integrating disconnected

subtrees. The forest bias essentially controls the number of

new nodes to be generated in between connection attempts.

Increasing the forest bias too much results in a large number

of failed connections (each one representing a NN query

and an edge collision check), whereas decreasing it too

much results in a failure to exploit the potential connections

to subtrees. For tuning the forest bias, one useful statistic

to watch is the ratio of failed connections to successful

connections. In our test cases we observed ratios between

2:1 and 3:1 still yielding significant performance gains over

DRRT.

B. Heuristics and implementation details

One useful heuristic in any RRT implemention is to always

select a goal state as the first random sample. An intuitive

next step for MP-RRT is to select as the second random

sample the root of a disconnected subtree which contains

a goal state (if such a subtree exists). As in [7], we use

the RRT-Connect heuristic to repeat extensions towards the

randomly sampled state qnew. When extending an edge from

qnearest towards qnew, we repeat the call to EXTEND as long

as the terminal state of the new edge decreases the metric to

qnew. This provides the ability to grow very long branches of

the tree while still allowing intermediate points to be selected

as nearest neighbors for expansion.

Keeping track of failed extensions while connecting to

disconnected subtrees can also increase performance. When

the RRT algorithm randomly selects some node q ∈ F ,

the NEARESTNEIGHBOR function should return the nearest

neighbor from which an extension has not previously failed.

In practice, we observed that this can modestly increase

performance of MP-RRT.

It is also useful to enforce an upper bound on the size of F ,

because given a large number of forest nodes, simply validat-

ing the RRT from the previous planning iteration may take

far longer than constructing a brand-new plan from scratch.

A useful strategy for bounding the number of forest nodes is

to tag each node in F with the number of planning iterations

during which it has been disconnected from the main RRT. If

the age of the node is greater than some threshold, the node

should be pruned. A more agressive bound is implemented

by simply deleting all subtrees in F immediately before the

PRUNEANDPREPEND step. In this case, F contains only

WeE11.1

1606

those subtrees which were disconnected due to pruning at

the start of the current iteration.

IV. EXPERIMENTS

A. Experimental setup

Experiments were conducted comparing MP-RRT against

three other RRT variants in configuration spaces of two,

three, and four dimensions. In each case, the workspace was

a 2D plane populated with circular obstacles of varying sizes.

For the two- and three-dimensional experimental setups, the

simulated robot was given limited sensing capabilities—

any obstacles which were not visible to the robot based

on a simple occlusion model were not considered by the

collision checker until the robot was subsequently able to

observe them. The robot was modeled as a disc-shaped

translating robot moving in (x, y) ∈ ℜ2 for the 2D case,

and a rectangular robot whose configuration is given by

(x, y, θ) ∈ SE(2) for the 3D case.

The final experimental setup was a space-time planner

where the state of the robot is given by (x, y, θ, t) ∈
SE(2) × ℜ, with t indexing time. As opposed to the 2D

and 3D C-space examples, the 4D example used a global

sensing model where the number of obstacles, their positions,

and velocities were known, but the obstacles themselves

moved unpredictibly. In between each planning interval,

the obstacles moved at constant speeds, but could perturb

the direction of their 2D velocities according to a roughly

Gaussian distribution. The robot was constrained to have

limited velocity in the (x, y) and θ directions, but unlimited

acceleration.

In all experimental setups, (x, y) sampling was performed

uniformly in a bounding rectangle outside of which the robot

was not allowed to travel. In the three- and four-dimensional

setups, θ sampling was uniform in the interval [0, 2π), and

for the space-time experimental setup, we used an adaptive

approach to sampling in t which sampled uniformly in the

interval [t0, 2tmin(x, y, θ)], where t0 is the time of the initial

state for the planer, and tmin(x, y, θ) computes the minimum

possible time to reach the randomly sampled (x, y, θ) line

in CT from the initial state, given the velocity bounds,

and neglecting obstacles. The CT formulation of the final

experimental setup facilitates two natural criteria for pruning

not present in the 2D and 3D setups: if the t component of a

configuration in T or F precedes the time of qinit, or if the

configuration cannot be reached from qinit without violating

the speed constraints, then the node is deleted.

The goal region was chosen as any states whose (x, y)
components were inside a circle of given radius centered

on a fixed (xgoal, ygoal) location in the workspace. In the

2D setup the goal region is a simple circle; in the 3D

version, a cylinder swept along the θ axis; and in the 4D

version, a hypercylinder swept along the θ and t axes. For

each experiment and for each algorithm tested, a single trial

proceeded as follows:

1) Generate a random distribution of obstacles and seed

the initial and goal locations randomly on opposite

sides of the bounding rectangle.

Fig. 3. Effect of incremental path smoothing in 3D C-space experiment.
Left: without greedy smoothing heuristic Right: with smoothing.

2) Plan a path from the start to the goal given current

knowledge about the environment (with no more than

100 samples per planning iteration and no more than

5000 nodes total in the final RRT).

3) Step the robot (if possible) along the unique path in

the RRT which ends at the node which is closest to

the goal region.

4) Repeat steps 2-3 above until the robot has reached the

goal region, the robot has collided with an obstacle

(spacetime setup only), or the tree is full and no path

to the goal region has been found.

The approach of limiting the number of samples per iteration

to a relatively small number while allowing a relatively

large maxiumum tree size is an example of receding horizon

control, as seen applied to dynamic planning in [16]. The

motivation for this approach is that at the start of any given

planning iteration, the robot typically does not have perfect

knowledge of the world, so if it cannot find a solution after

some small number of samples, it should step the robot in

the direction of the goal and plan again after getting more

information.

The four algorithms used in each experimental setup were

MP-RRT, DRRT, ERRT, and a naı̈ve iterated RRT. For all

algorithms, the RRT goal bias was set at 0.05, meaning that

on average, one out of every 20 samples chosen was selected

from inside the goal region. The ERRT waypoint bias was

set to 0.5, the MP-RRT forest bias was set to 0.1, and the

maximum number of ERRT waypoints was set to 50. For any

given set of trials, the initial locations of the robot, obstacles

and goal remained the same regardless of which algorithm

was being tested.

B. Smoothing

All experimental setups (2D, 3D, and 4D) and all algo-

rithms were run both with and without a greedy smoothing

heuristic enabled (pseudocode below). The heuristic attempts

to incrementally generate shorter paths by skipping interme-

diate nodes, similar to the strategy described in [9]. At the

end of each planning iteration in which a successful RRT

is generated, the smoothing algorithm iterates back from the

goal state to try to find a “shortcut” which connects directly

to the initial state.

Unlike more sophisticated path smoothing approaches

which can explicitly optimize for safety [17], the smoothing

method described here tends to produce paths that pass closer

WeE11.1

1607

Procedure SMOOTHPATH(P)

Used to smooth paths to eliminate unnecessary de-

tours

Data: P : path (q0, . . . , qN) computed by the RRT

Result: P ′: shortened path containing elements of P

for each node qi ∈ qN , . . . , q1 do

if CONNECT(q0, qi) then
break;

end

end

P ′ = (q0, qi, qi+1, . . . , qN) ;

return P ′;

to obstacles than the original path, due to the greedy shortcut

approach. See figure 3 for an example of smoothed vs.

unsmoothed paths.

C. Experimental results

We ran 100 randomized trials of the 2D and 3D C-space

setups, and 1000 randomized trials of the more difficult 4D

setup, which exhibited more variance in per-trial scores. For

each trial, we recorded: 1) whether the robot successfully

reached the goal region, 2) the number of samples generated

by the SELECTSAMPLE procedure, 3) the number of colli-

sion checks against edges in the RRT and 4) the number of

planning iterations.

In all experimental setups, the MP-RRT algorithm gener-

ated fewer samples than the other algorithms (see Table I).

With the exception of small differences in the 3D case,

MP-RRT scored as well or better than the other algorithms

in terms of number of successful trials and total planning

duration. In the 2D and 3D cases, enabling smoothing did

not significantly alter the scores of the DRRT and MP-

RRT algorithms. However, the iterated RRT and ERRT

approaches, benefited significantly from the ability to take

shortcuts to the goal state, although neither performed as

well as MP-RRT or DRRT.

The most interesting results we observed were in the 4D

setup. The plots in figure 4 show sorted performance curves

for sample count, edge collision check count, and planning

duration for all successful trials. The x-axis of the plots

index individual trials, sorted by score, and the y-axis is the

score at that rank. The curves are different lengths on the

x-axis because each algorithm yielded a different number of

successful trials.

While MP-RRT modestly outperforms DRRT and ERRT

in the no-smoothing condition, the performance gap is much

larger in the smoothed condition. One interpretation of this

result is that MP-RRT is able to construct much more

robust plans in the face of dynamic obstacle motion than

the other algorithms particularly when the robot moves in

close proximity to obstacles. Figure 5 plots the number of

planning iterations per successful trial in the 4D setup, both

smoothed and unsmoothed. We observe that as the difficulty

of the planning problem increases, MP-RRT requires fewer

TABLE I

EXPERIMENTAL RESULTS

Setup Algorithim Successful Samples Edge CC Duration

2D

Iter. RRT 92 / 100 202,134 283,242 20.77s

ERRT 96 / 100 113,548 163,682 12.03s

DRRT 99 / 100 31,821 120,107 5.90s

MP-RRT 99 / 100 25,346 100,278 4.81s

3D

Iter. RRT 62 / 100 546,363 667,554 69.52s

ERRT 71 / 100 437,689 527,165 53.65s

DRRT 88 / 100 223,207 400,639 37.48s

MP-RRT 82 / 100 238,026 416,548 39.23s

4D

Iter. RRT 706 / 1000 1,668,316 2,319,569 298.66s

ERRT 712 / 1000 1,487,460 2,041,470 260.25s

DRRT 783 / 1000 1,705,502 3,079,187 366.54s

MP-RRT 825 / 1000 1,401,247 2,815,880 326.72s

4D∗

Iter. RRT 35 / 1000 2,115,648 3,226,302 419.15s

ERRT 38 / 1000 1,936,447 2,953,861 380.23s

DRRT 180 / 1000 2,132,522 3,940,813 478.56s

MP-RRT 509 / 1000 1,680,962 4,101,404 480.65s

∗The second set of 4D results use the greedy smoothing technique described
in section IV-A.

0 200 400 600 800 1000 1200 1400
10

20

30

40

50

60

70

80

90

100

#
 I

te
ra

ti
o
n
s

Successful trials

Fig. 5. Sorted performance graph for number of planning iterations per
successful trial in 4D setup (both with and without smoothing heuristic).
Black dash/dot line is DRRT, blue dashed line is ERRT, solid red line is
MP-RRT.

iterations than DRRT or ERRT to make comparable progress.

V. SUMMARY AND FUTURE WORK

We have presented the MP-RRT algorithm, an RRT variant

which is well-suited for dynamic planning for mobile robots

and manipulators due to its novel combination of sampling

distribution bias, single-query-focused tree construction, and

subtree re-use. The MP-RRT overcomes some limitations

of existing sampling-based dynamic planning approaches,

particularly planning among moving obstacles and efficiently

handling changes to both the initial and goal points of a

search. Our experiments show that MP-RRT outperforms

prior approaches to adapting the RRT algorithm for dynamic

planning in two key areas which are directly applicable to

mobile robot navigation and manipulation planning: planning

among unknown or occluded obstacles, and planning around

moving obstacles with unknown future trajectories.

There are a number of interesting research questions that

WeE11.1

1608

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

7000
#

 S
a

m
p

le
s

No smoothing, successful trials

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

12000

14000

#
 E

d
g

e
 C

C

No smoothing, successful trials

0 200 400 600 800 1000
0

0.5

1

1.5

2

T
im

e
 (

s
)

No smoothing, successful trials

0 100 200 300 400 500 600
0

2000

4000

6000

8000

10000

#
 S

a
m

p
le

s

Smoothing, successful trials

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

#
 E

d
g

e
 C

C

Smoothing, successful trials

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

T
im

e
 (

s
)

Smoothing, successful trials

Fig. 4. Sorted performance graphs for ERRT (black dash/dot line), DRRT (blue dashed line), and MP-RRT (red line) on the 4D experimental setup. Only
the successful trials from a 1000-trial run are shown. Top row: statistics for trials with “greedy” smoothing turned off. Bottom row: statistics for trials with
smoothing turned on. Left: total number of samples generated during an experimental trial. Center: number of edge validation steps performed during a
trial. Right: total planning duration in wall clock time.

remain, which form the basis of our future work. We are

currently exploring deferred validation of tree and forest

nodes, as in [18]. We would also like to investigate the

potential benefit of splitting the tree connection problem

among multiple CPUs, as in [19]. Another area of future

work will be the experimental verification that MP-RRT

produces more robust plans given greedy heuristics than prior

approaches. Intuitively, this is supported by the notion that

the forest F of disconnected subtrees serves as a store of

“contingency plans” analogous to the emergency stopping

paths of [20].

REFERENCES

[1] A. Stentz, “The focussed D* algorithm for real-time replanning,”
Proceedings of the International Joint Conference on Artificial In-

telligence, pp. 1652–1659, 1995.

[2] S. Koenig and M. Likhachev, “D* Lite,” in Proceedings of the National

Conference on Artificial Intelligence (AAAI), 2002.

[3] P. Leven and S. Hutchinson, “Toward real-time path planning in chang-
ing environments,” Algorithmic and Computational Robotics: New

Directions: The Fourth International Workshop on the Algorithmic

Foundations of Robotics, pp. 363–376, 2000.

[4] M. Kallman and M. Mataric, “Motion planning using dynamic
roadmaps,” Robotics and Automation, 2004. Proceedings. ICRA’04.

2004 IEEE International Conference on, vol. 5, 2004.

[5] J. Vannoy and J. Xiao, “Real-time adaptive and trajectory-optimized
manipulator motion planning,” in Proc. IEEE/RSJ Int’l Conf. on

Intelligent Robots and Systems, Sendai, Japan, September 2004.

[6] O. Brock and L. Kavraki, “Decomposition-based motion planning: a
framework for real-time motion planning in high-dimensional configu-
ration spaces,” in Proc. IEEE Int’l Conf. on Robotics and Automation,
vol. 2, 2001.

[7] J. Kuffner and S. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in Proc. IEEE Int’l Conf. on Robotics

and Automation, San Francisco, CA, Apr. 2000, pp. 995–1001.

[8] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[9] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in Proceedings of IROS-2002, Switzerland, October
2002, an earlier version of this paper appears in the Proceedings of
the RoboCup-2002 Symposium.

[10] D. Ferguson, N. Kalra, and A. T. Stentz, “Replanning with RRTs,” in
Proc. IEEE Int’l Conf. on Robotics and Automation, May 2006.

[11] T. Li and Y. Shie, “An incremental learning approach to motion
planning with roadmap management,” Proc. IEEE Int’l Conf. on

Robotics and Automation, vol. 4, 2002.
[12] Y. Hirano, K. Kitahama, and S. Yoshizawa, “Image-based object recog-

nition and dexterous hand/arm motion planning using rrts for grasping
in cluttered scene,” in Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots

and Systems, 2005, pp. 3981–3986.
[13] J. C. Latombe, Robot Motion Planning. Boston, MA: Kluwer

Academic Publishers, 1991.
[14] M. Strandberg, “Robot path planning: an object-oriented approach,”

Ph.D. dissertation, Automatic Control, Dept. of Signals, Sensors and
Systems, Royal Institute of Technology (KTH), 2004.

[15] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in Proc. IEEE Int’l Conf.

on Robotics and Automation, 2006, pp. 2366–2371.
[16] E. Frazzoli, “Robust Hybrid Control for Autonomous Vehicle Motion

Planning,” Proceedings of the 39th IEEE Conference on Decision and

Control, vol. 1, pp. 821–826, 2000.
[17] S. Quinlan, “Real-time modification of collision-free paths,” Ph.D.

dissertation, Stanford University, 1994.
[18] R. Bohlin and L. Kavraki, “Path planning using lazy PRM,” in Proc.

IEEE Int’l Conf. on Robotics and Automation, vol. 1, 2000.
[19] M. Akinc, K. Bekris, B. Chen, A. Ladd, E. Plakue, and L. Kavraki,

“Probabilistic roadmaps of trees for parallel computation of multiple
query roadmaps,” The Eleventh International Symposium on Robotics

Research, 2003.
[20] V. Lumelsky and A. Shkel, “Incorporating body dynamics into the

sensor-based motion planning paradigm: The maximum turn strategy,”
in Proc. IEEE Int’l Conf. on Robotics and Automation, vol. 2, 1995.

WeE11.1

1609

