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MULTIPARTY COMMUNICATION COMPLEXITY AND
THRESHOLD CIRCUIT SIZE OF AC0∗

PAUL BEAME† AND TRINH HUYNH†

Abstract. We prove an nΩ(1)/4k lower bound on the randomized k-party communication
complexity of depth 4 AC0 functions in the number-on-forehead (NOF) model for up to Θ(log n)
players. These are the first nontrivial lower bounds for general NOF multiparty communication
complexity for any AC0 function for ω(log logn) players. For nonconstant k the bounds are larger
than all previous lower bounds for any AC0 function even for simultaneous communication complexity.
Our lower bounds imply the first superpolynomial lower bounds for the simulation of AC0 by MAJ ◦
SYM ◦ AND circuits, showing that the well-known quasi-polynomial simulations of AC0 by such
circuits due to Allender (1989) and Yao (1990) are qualitatively optimal, even for formulas of small
constant depth. We also exhibit a depth 5 formula in NPcc

k − BPPcc
k for k up to Θ(log n) and

derive Ω(2
√

log n/
√

k) lower bound on the randomized k-party NOF communication complexity of set

disjointness for up to Θ(log1/3 n) players, which is significantly larger than the O(log logn) players
allowed in the best previous lower bounds for multiparty set disjointness. We prove other strong
results for depth 3 and 4 AC0 functions.
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1. Introduction. The complexity class AC0 of functions computable by families
of polynomial-size constant-depth circuits of ∧, ∨, and ¬ gates is well known for its
limitations, that is, its inability to compute some simple functions such as the parity
or majority functions [17, 1, 42, 18]. But how much simpler than majority, say, are
functions computed by AC0 circuits?

One way to compare the power of AC0 circuits to that of majority was considered
by Allender [2], who showed that any function computed by an AC0 circuit can be
computed by a quasi-polynomial-size depth 3 circuit of majority gates. With consid-
erable extra work,Yao [43] showed that MAJ◦SYM◦AND circuits of quasi-polynomial
size, consisting of a majority gate receiving inputs from symmetric gates at the next
level that each receive a polylog conjunction of input literals, can actually compute
any function in ACC0, the analogue of AC0 for circuits which also allow unbounded
fan-in modular counting gates for arbitrary fixed moduli. This simulation was fur-
ther improved by Beigel and Tarui [9] to quasi-polynomial-size SYM ◦ AND circuits,
consisting of a single symmetric gate whose inputs are polylogarithmic AND gates,
which can be simulated by depth 3 circuits of majority gates. It is a very natural
question to ask whether such a simulation can be made polynomial.

Razborov and Wigderson [30] have shown that quasi-polynomial size is indeed
required to simulate these more powerful ACC0 circuits by MAJ ◦ SYM ◦ AND cir-
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cuits, but the question of whether the simulation for AC0 circuits can be improved to
polynomial has remained open.

An important approach to understanding the complexity of MAJ ◦ SYM ◦ AND
circuits (and hence ACC0 circuits) has been through number-on-forehead (NOF) mul-
tiparty communication complexity. In this model, many players cooperate to compute
some function of their joint inputs and every input value can be seen by all but one
of the players (hence the notion that the input values that a player cannot see are
written on that player’s forehead). H̊astad and Goldmann [20] showed that any AC0

or ACC0 function has at most polylogarithmic randomized multiparty NOF communi-
cation complexity when its input bits are divided arbitrarily among a polylogarithmic
number of players. NOF multiparty communication complexity is of considerable in-
terest in its own right as it has also been used to derive time-space tradeoff lower
bounds and proof complexity lower bounds.

H̊astad and Goldman’s result was based on the above simulations of AC0 and
ACC0 by MAJ ◦ SYM ◦ AND circuits with polylog fan-in at the inputs and, using the
stronger results of [9], implies the same upper bound for deterministic algorithms.
These protocols may even be simultaneous NOF protocols, in which the players in
parallel send their information to a referee who computes the answer [3]. The quasi-
polynomial lower bound of Razborov and Wigderson for simulating ACC0 follows from
a lower bound on NOF multiparty communication complexity due to Babai, Nisan,
and Szegedy [5]. They introduced the discrepancy method for cylinder intersections
and showed, among other things, that the generalized inner product, a function in
ACC0 computable by a depth 2 circuit consisting of a single parity gate whose inputs
are n AND gates with fan-in k, requires k-party NOF communication complexity
Ω(n/4k) which is polynomial in n for k up to Θ(logn). This function, like all the
functions to which they applied their discrepancy method, cannot be computed in AC0.

The largest lower bounds on the NOF multiparty complexity of AC0 functions
have been in models with restricted interaction. For the communication complexity
of the set disjointness function with k players (which is given by a polynomial-size
disjunctive normal form (DNF) formula and hence is in AC0) there are lower bounds of
the form Ω(n1/(k−1)/(k−1)) in the simultaneous NOF [39, 8] and nΩ(1/k)/kO(k) in the
one-way NOF model [41]. These are subpolynomial lower bounds for all nonconstant
values of k and, at best, polylogarithmic when k is Ω(log n/ log logn).

Until recently, the general NOF multiparty communication complexity of AC0

functions was completely open. One reason for interest in obtaining such a lower
bound was a reduction by Beame, Pitassi, and Segerlind [7], which showed that
polynomial lower bounds for the NOF communication complexity of the k-player
set disjointness function would yield exponential lower bounds for small rank proofs
involving degree (k−1) polynomials, but no superlogarithmic lower bounds for general
NOF protocols were known for AC0 functions, even for three players. That changed
with lower bounds for a depth 3 AC0 function by Chattopadhyay [13] and for set
disjointness by Lee and Shraibman [25] and Chattopadhyay and Ada [14] but no
lower bounds apply for ω(log logn) players. As for circuit simulations of AC0, the
result of Chattopadhyay [13] implies that AC0 cannot be simulated by polynomial-
size MAJ ◦ SYM ◦ ANY circuits with o(log logn) input fan-in at every bottom gate.
However, there have been no nontrivial-size lower bounds for the simulation of AC0

by MAJ ◦ MAJ ◦ AND or even SYM ◦ AND circuits with ω(log logn) bottom fan-in.
As shown by Viola [40], sufficiently strong lower bounds for AC0 in the multiparty
NOF communication model, even for sublogarithmic numbers of players, can yield
quasi-polynomial circuit size lower bounds.
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We indeed produce such strong lower bounds. We show that there is an explicit
linear-size fixed-depth AC0 function that requires randomized k-party NOF commu-
nication complexity of nΩ(1)/4k even for protocols with error exponentially close to
1/2 (as a function of the input size). For ω(1) players this bound is larger than all
previous multiparty NOF communication complexity lower bounds for AC0 functions,
even those in the weaker simultaneous model. The bound is nontrivial for up to
Θ(logn) players and is sufficient to produce fixed-depth AC0 functions that require
MAJ ◦ SYM ◦ AND circuits of nΩ(logn) size, showing that quasi-polynomial size is
necessary for the simulation of AC0.

The function above for which we derive randomized communication complexity
lower bounds for error exponentially close to 1/2 is computable in depth 6 AC0. The
remainder of our lower bounds apply to bounded-error randomized protocols—those
with error at most some fixed constant ε < 1/2. For such protocols, we exhibit a hard
function computable by simple depth 4 formulas. We further show that the same
lower bound applies to a function having depth 5 formulas that also has O(log2 n)
nondeterministic communication complexity which shows that AC0 contains functions

in NPcc
k −BPPcc

k for k up to Θ(logn). We obtain an Ω(2
√
logn/

√
k−k) lower bound on the

randomized k-party NOF communication complexity of the set disjointness function,
a bound that is nontrivial for up to Θ(log1/3 n) players. The best previous lower
bounds for set disjointness, due to Lee and Shraibman [25] and Chattopadhyay and
Ada [14], only apply for k ≤ log logn− o(log logn) players (though these bounds are
stronger than ours for o(log logn) players).

We also show somewhat weaker randomized lower bounds of nΩ(1)/kO(k), which is
polynomial in n for up to k = Θ(logn/ log logn) players, for another function in depth
4 AC0 that has O(log3 n) nondeterministic communication complexity and another
function in depth 3 AC0 that has nΩ(1/k)/2O(k) randomized k-party communication
complexity for k = Ω(

√
logn) players.

Results such as ours which prove lower bounds for simple functions that were pre-
viously known only for more complex functions can substantially broaden the applica-
bility of such bounds. Alternatively, as in the case of our extension of the lower bound
in [30], they can be seen as showing that our understanding of the hardness of the
more complex functions is less based on that complexity than we might have thought.

Methods and related work. Building upon the generalized discrepancy method
introduced by Klauck [22] and Razborov [31], Sherstov [33, 35] and Shi and Zhu [37]
introduced general methods to use analytic properties of Boolean functions to derive
communication lower bounds for related Boolean functions. These related functions
are obtained by disjointly applying simple operations to select each bit to be passed
on to the original functions. (Krause and Pudlák [23] and Raz and McKenzie [29] also
employed simple selection operations to extend functions in order to strengthen the
models for which lower bounds could be shown. However, they did not base their ar-
guments on the analytic properties of the original functions as in these new methods.)

These new methods have been successfully applied to yield strong lower bounds
for two-party randomized and quantum communication complexity. Sherstov called
his method the pattern matrix method. Later, Chattopadhyay [13] generalized the
ideas in this method for k ≥ 2 players to yield the first lower bounds for the general
NOF multiparty communication complexity of any AC0 function for k ≥ 3, implying
exponential lower bounds for computation of AC0 functions by MAJ ◦ SYM ◦ ANY
circuits with o(log logn) input fan-in at every bottom gate—our results extend this
to fan-in Ω(logn). Then Lee and Schraibman [25] and Chattopadhyay and Ada [14]
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further generalized the pattern matrix method to yield the first lower bounds for
the general NOF multiparty communication complexity of set disjointness for k > 2
players, improving on a long line of research on the problem [4, 39, 8, 41, 21, 10]

and obtaining a lower bound of Ω(n
1
k+1 )/22

O(k)

. This yields a separation between
randomized and nondeterministic k-party models for k = o(log logn), which David,
Pitassi, and Viola [16] improved to Ω(log n) players for other functions based on
pseudorandom generators. They asked whether there was a separation for Ω(logn)
players for AC0 functions since their functions are only in AC0 for k = O(log logn), a
problem which our results resolve.

The high-level idea of the k-party version of the pattern matrix method as de-
scribed in [14, 34] is as follows. To prove k-party lower bounds for a function F , we
find two other functions f and ψ such that F computes the composition f ◦ ψ as a
subfunction, and then we prove the communication lower bound for this composition.
The function f is chosen so that it has large approximate degree. Using linear pro-
gramming (LP) duality (or duality of norms) it follows that for such an f there exist
another function g and a distribution μ on inputs such that with respect to μ, g is
both highly correlated with f and orthogonal to all low-degree polynomials.1 The
function ψ is also chosen to be some suitable selector function, which will be defined
later, so that the correlation of f ◦ ψ and g ◦ ψ (under a suitable distribution) is the
same as that of f and g and thus is also high. Thus it suffices to lower bound the
communication complexity of g ◦ ψ. By using the discrepancy method of [5] we then
proceed to prove a communication lower bound for g ◦ψ. Given a well-chosen selector
function ψ, thanks to the orthogonality of g to all low-degree polynomials, g ◦ ψ has
low discrepancy and this is shown using the bound in [5, 15, 28] which is derived via
iterated application of the Cauchy–Schwartz inequality.

As an example, the bound for set disjointness Disjk,n(x) = ∨ni=1 ∧kj=1 xhi, which
more properly should be called set intersection, corresponds to the so-called pattern
tensor selector function ψ and f = Or which has approximate degree Ω(

√
n).

Our key technical contribution to the above method is that we identify a stronger
requirement on f , rather than just large approximate degree, that if satisfied produces
much stronger communication lower bounds than previously possible. We show that
for any function f for which even approximating f within ε on only a subset S
of inputs requires large degree, there exist another function g and a distribution μ
that satisfy the same conditions as above and moreover, μ is “max-smooth”—the
probability of subsets defined by partial assignments is never much larger than under
the uniform distribution.2 The smoothness quality and the properties of the subset
S are determined by a function α, so we call the degree bound the (ε, α)-approximate
degree. This notion is defined precisely to that we can derive the smoothness bound
we want via LP duality. We then show that for any function this degree bound is
large if there is a diverse collection of partial assignments ρ such that each subfunction
f |ρ of f requires large approximate degree. This property is somewhat delicate and
does not hold for Or, but we are able to exhibit simple AC0 functions with large
(ε, α)-approximate degree, including a variant of the Tribesp,q(x) = ∨qi=1 ∧pj=1 xi,j
function defined (though not named) by Ben-Or and Linial [11].

1We note that this duality between approximability and orthogonality was also used in the work
of Shi and Zhu [37], who also introduced another general method to relate analytic properties to
communication lower bounds of Boolean functions.

2In the two-party case, Sherstov [36] and Razborov and Sherstov [32] extended the pattern matrix
method to yield sign-rank lower bounds for some simple functions. A key idea for their arguments
is the existence of orthogonalizing distributions μ for their functions that are “min-smooth” in that
they assign at least some fixed positive probability to any x such that f(x) = 1.
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Organization. In section 2 we review the relevant properties of correlation and
its connection to multiparty communication complexity. We also describe a general
form of the method of [35, 14, 16] based on pattern tensor selector functions and or-
thogonalizing distributions for functions of large ε-approximate degree, and we briefly
discuss its limitations.

In section 3 we introduce our new definition of (ε, α)-approximate degree and de-
rive the additional “max-smoothness” property of the orthogonalizing distributions for
functions of large (ε, α)-approximate degree. Using this additional max-smoothness
property we derive our main technical theorem giving communication complexity
lower bounds based on (ε, α)-degree lower bounds, and the properties of the selector
function used.

In section 4 we give a method for producing functions of large (ε, α)-approximate
degree based on certain kinds of functions of large ε-approximate degree. In particular
we apply our construction to the Orq function to yield the function Tribesp,q(x) with
large (ε, α)-approximate degree for ε = 5/6 for suitable values of p and q. We use
f = Tribesp,q in our lower bounds for 1/3-error protocols. We also prove that the
construction applied to a different function given by an AND ◦ OR circuit has large
(ε, α)-approximate degree for every ε < 1. We use this function in our lower bounds
for protocols having exponentially small advantage.

In section 5 we introduce a new selector function and combine it with the functions
from section 4 to produce lower bounds on k-party randomized NOF communication
complexity for AC0 functions and the depth 5 separating functions between NPcc

k and
BPPcc

k for k = O(log n). We also use these results to derive communication complexity
lower bounds for set disjointness.

In section 6 we derive the size lower bounds for MAJ ◦ SYM ◦ AND circuits com-
puting AC0 functions.

In the appendix we derive lower bounds for somewhat simpler functions con-
structed from other selector functions, though the bounds are not as large as those
in section 5. In Appendix A.1 we apply the lower bound from section 3 for con-
structions using the pattern tensor selector function to produce k-party NOF com-
munication complexity lower bounds for depth 3 functions for k = O(

√
logn). As

part of this we also review earlier methods in more detail and demonstrate the ad-
vantage of using (ε, α)-approximate degree instead of ε-approximate degree. In Ap-
pendix A.2 we analyze a selector function that is a small parity of pattern tensor
selector functions and use it to obtain depth 4 separating functions in NPcc

k − BPPcc
k

for k = O(log n/ log logn).

2. Preliminaries and the pattern matrix method. We will assume that
Boolean functions on m bits are maps f : {0, 1}m �→ {0, 1}, where 1 stands for “true.”
For the convenience of notation, especially in the Fourier analysis parts in this paper,
we will sometimes adopt the output range {1,−1} for Boolean functions, where 1
stands for “true.” Which output range is to be used will be explicitly stated or be
clear from the context.

We write vectors as boldface small letters, e.g., x, with entries written as xi. We
denote by |x| the Hamming weight of a vector x ∈ {0, 1}∗. For x ∈ {0, 1}m and
S = {i1, . . . , is} ⊆ [m], we write xS = (xi1 , . . . , xis).

Circuit complexity. Let AND denote the class of all unbounded fan-in ∧ func-
tions (of literals), SYM denote the class of all Boolean symmetric functions (i.e.,
f ∈ SYM iff f(x) depends only on |x| for every input x), and MAJ ⊂ SYM denote the
class of all majority functions (i.e., MAJ(x) output 1 iff |x| is at least half of the input
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bits). AC0 is the class of functions f : {0, 1}∗ �→ {0, 1} computed by polynomial-size
circuits (or formulas) of constant depth having ¬ gates and unbounded fan-in ∧ and
∨ gates. A formula is a Σ1 formula if it is a clause and a Π1 formula if it is a term.
For i ≥ 1, a Σi+1 formula is an unbounded fan-in ∨ of Πi formulas and a Πi+1 formula
is an unbounded fan-in ∧ of Σi formulas.

We assume that the layout of circuits has the output gate at the top and the
inputs at the bottom. Given classes of functions C1,C2, . . .Cd, we let C1 ◦C2 ◦ · · · ◦Cd

be the class of all circuits of depth d whose inputs are given by variables and their
negations and whose gates at the ith level from the top are from Ci.

Norms and correlation. Given a real-valued function f on {0, 1}m, for p ≥ 1,
define ||f ||p = (

∑
x∈{0,1}m |f(x)|p)1/p and ||f ||∞ = max{|f(x)| : x ∈ {0, 1}m}. Let μ

be a probability distribution on {0, 1}m, i.e., a nonnegative function with ||μ||1 = 1.
The correlation between two real-valued functions f and g on {0, 1}m under μ is
defined as Corμ(f, g) := Ex∼μ[f(x)g(x)]. If G is a class of functions, the correlation
between f and G under μ is defined as Corμ(f,G) := maxg∈G Corμ(f, g).

Communication complexity. For k ≥ 2 we consider the usual NOF model of
k-party communication complexity. In this model, a function f is associated with
a fixed k-partition of its inputs, and player i has access to all inputs except those
in block i of the partition. (We can view block i as assigned to the forehead of
player i in order to be read only by the other players.) The players communicate by
broadcasting bits to the other players, which can be viewed as writing the bits on a
common board, switching turns based on the content of the board, and the last bit
written is the output of the protocol. LetDk(f), Rkε (f), andN

k(f) denote the k-party
deterministic, randomized with two-sided error ε, and nondeterministic, respectively,
communication complexity of f—the minimum total number of bits communicated
by the players when the protocol is of the given type.

Let Πck be the class of all functions computable by deterministic k-party commu-
nication protocols of cost at most c. The following fact provides a means to prove
randomized communication lower bounds.

Fact 2.1 (cf. [24]). If there exists a distribution μ such that Corμ(f,Π
c
k) ≤ ε,

then Rk1/2−ε/2(f) ≥ c.
Because of the following property of multiparty communication complexity, hence-

forth we find it convenient to designate the input to player 0 as x and the inputs to
players 1 through k − 1 as y1, . . . ,yk−1.

Lemma 2.2 (see [5, 15, 28]). Let X ×Y be the input space, where Y = Y1× · · ·×
Yk−1, of a function f : X×Y �→ R and let U be the uniform distribution over X×Y .
If player 0 receives an input from X and player i > 0 receives an input from Yi, then

CorU(f,Πck)
2k−1 ≤ 2c·2

k−1 · Ey0,y1∈Y

⎡
⎣
∣∣∣∣∣∣Ex∈X

⎡
⎣ ∏
u∈{0,1}k−1

f(x,yu)

⎤
⎦
∣∣∣∣∣∣
⎤
⎦ ,

where yu = (yu1
1 , . . . ,y

uk−1

k−1 ) for u ∈ {0, 1}k−1.

Approximate and threshold degree. Given 0 ≤ ε < 1, the ε-approximate
degree of a function f : X → R, degε(f), is the smallest d for which ||f − p||∞ ≤ ε for
some real-valued multivariate polynomial p of degree d. Following [27] we have the
following property of the approximate degree of OR.

Proposition 2.3. Let Orm : {0, 1}m �→ {1,−1}. For 0 ≤ ε < 1, degε(Orm) ≥√
(1− ε)m/2.
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The threshold degree of a function f : X → {1,−1}, deg±(f), is the smallest d for
which there exists a real-valued multivariate polynomial p of degree d such that f(x) =
sign(p(x)), where p(x) = 0 for all x. Hence it follows that deg±(f) = minε<1 degε(f).
For this reason, we write deg±(f) = deg<1(f).

The pattern matrix (and pattern tensor) method. Define the inner prod-
uct on the space of functions {0, 1}m �→ R by 〈f, g〉 = Ex∈{0,1}m [f(x) · g(x)], which is
CorU (f, g) for the uniform distribution U on {0, 1}m. For S ⊆ [m], let χS : {0, 1}m �→
{−1, 1} be the function χS(x) =

∏
i∈S(−1)xi . The χS ’s for S ⊆ [m] form an or-

thonormal basis of this space.
The following orthogonality-approximation lemma is the key to lower bounds

using the pattern matrix (and pattern tensor) method. It is easily proved by duality
of �1 and �∞ norms or by LP duality.

Lemma 2.4 (see [35, 37]). If f : {0, 1}m �→ {−1, 1} has degε(f) ≥ d, then there
exists a function g : {0, 1}m �→ {−1, 1} and a distribution μ on {0, 1}m such that

1. Corμ(g, f) > ε; and
2. for every S ⊆ [m] with |S| < d and every function p : {0, 1}|S| �→ R,

Ex∼μ[g(x) · p(xS)] = 0.
Proof. Let Φd be the space of multivariate polynomials of degree less than d.

By definition, degε(f) ≥ d iff minp∈Φd ||f − p||∞ > ε. By duality of norms we have
minp∈Φd ||f − p||∞ = 2m ·maxq∈Φ⊥

d , ||q||1=1〈f, q〉. Let h ∈ Φ⊥
d with ||h||1 = 1 achieve

this maximum value of 〈f, h〉. Define μ(x) = |h(x)|. The condition ||h||1 = 1 implies
that μ is a probability distribution. Letting g(x) = h(x)/μ(x) for μ(x) = 0 and
g(x) = 1 for μ(x) = 0, we have h(x) = μ(x)g(x). Therefore

ε < 2m〈f, h〉 = 2mE[f · h] = 2mE[f · g · μ] = Ex∼μ[f(x)g(x)] = Corμ(f, g).

Moreover, since h ∈ Φ⊥
d , we have 0 = 〈χS , h〉 = Ex∼μ[χS(x)g(x)]. Now for p :

{0, 1}|S| �→ R for |S| ≤ d, p(xS) can be expressed as a degree |S| multivariate poly-
nomial and by linearity Ex∼μ[g(x) · p(xS)] = 0.

We will extend this lemma in section 3 using more general LP duality.
The second major component of the pattern matrix/tensor method is the use of

particular selector functions to provide inputs to functions f with large ε-approximate
degree.

Definition 2.5. Any function ψ : {0, 1}k×s �→ {0, 1} with the following property
is a selector function:

• There exist sets Dψ,1, . . . , Dψ,(k−1) ⊆ {0, 1}s such that for any y = (y1, . . . ,
yk−1) ∈ Dψ := Dψ,1 × · · · × Dψ,(k−1), Prx∈{0,1}s [ψ(x,y) = 0] = Prx∈{0,1}s
[ψ(x,y) = 1] = 1/2.

Now we define the general form of k-party NOF communication problems studied

in this paper. Let D
(m)
ψ := Dm

ψ,1×· · ·×Dm
ψ,(k−1), where each D

m
ψ,i is the cross-product

of m disjoint copies of Dψ,i. For any function f : {0, 1}m �→ {1,−1} and any selector
function ψ : {0, 1}k×s �→ {0, 1}, we define a new function f ◦ ψ on {0, 1}k×m×s bits

as follows: on every x ∈ {0, 1}m×s and y = (y1, . . . ,yk−1) ∈ D
(m)
ψ ,

(f ◦ ψ)(x,y) = (f ◦ ψ)(x,y1, . . . ,yk−1) = f(ψ(x1,y∗1), . . . , ψ(xm,y∗m)),

where y∗i = (y1i, . . . ,y(k−1)i) for i ∈ [m]. We will write zi = ψ(xi,y∗i) for i ∈ [m]
and z = (z1, . . . , zm) for the input to f in the above expression. In the k-party NOF
communication problem computing f ◦ψ, on every input x,y1, . . . ,yk−1 ∈ {0, 1}m×s,
player 0 has x on his forehead (and can see all the yi but not x), each other player
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i ∈ [k − 1] has yi on his forehead (and can only see x and those yj for j = i), and
they need to compute f ◦ ψ(x,y1, . . . ,yk−1).

One example of a selector function ψ is the pattern tensor function ψk,� used
in [14, 25] which generalizes the pattern matrix function. In this example, s = �k−1

and the s bits are arranged in a (k − 1)-dimensional array indexed by [�]k−1. Dψk,�,j

consists of the � vectors yj ∈ {0, 1}�k−1

that are 1 in all entries in one of the � slices
along the jth dimension of this array and are 0 in every other entry. For x ∈ {0, 1}s
and such a y = (y1, . . . ,yk−1) ∈ {0, 1}(k−1)s the array ∧k−1

i=1 yi contains precisely one
1 which selects the bit of x to pass to f . This function is expressible by a small two-
level ∨ of ∧s. As described in [16] the generalized discrepancy/correlation arguments
work for any selector function that uses the inputs for players 1 to k−1 to select which
bits from player 0’s input to pass on to f , but we need our more general formulation
for some examples we consider in Appendix A.2.

We give a brief overview of the remainder of the argument in [14, 16], which
extends ideas of [33, 35] from two-party to k-party communication complexity:

• Start with a function f : {0, 1}m �→ {1,−1} having large (1− δ)-approximate
degree d.

• Apply the orthogonality/approximation lemma to f to obtain a g that is
(1− δ)-correlated with f and a distribution μ under which g is not correlated
with any low-degree multivariate polynomial.

• Observe that from μ one can define a natural λ under which g ◦ ψ and f ◦ ψ
have the same high correlation as g and f , therefore in order to prove that
f ◦ ψ is uncorrelated with low communication protocols, it suffices to prove
this for g ◦ ψ and apply the triangle inequality.

• The BNS-Chung bound/Gowers’ norm used in Lemma 2.2 is based on the
expectation of a function’s correlation with itself on randomly chosen hyper-
cubes of points. Use the orthogonality of g under μ to all multivariate poly-
nomials of degree < d to show that all low-degree self-correlations of g ◦ ψ
under λ disappear. The remaining high-degree self-correlations are bounded
by analyzing overlaps in the choices of bits in different inputs among the
hypercube of inputs. The argument repeatedly bounds the probability mass
that μ assigns to small subcubes of the input by 1.

• The final lower bound is limited both by the upper bound on correlation
in the high-degree case and by the number of input bits required for each
selector function.

Our argument follows this basic outline but improves it in two different ways. We
first address the weakness of the upper bound on the high-degree self-correlations,
which is implied by how little can be assumed about the orthogonalizing distribution
μ given by Lemma 2.4. In particular, the arguments in [35, 14, 25] all allow that
μ may assign all its probability mass to small subcubes of points defined by partial
assignments. Indeed, for the function Orm, this is not far from tight. However, we
will show that for other very simple functions one can choose the orthogonalizing
distribution μ so that it does not assign too much weight on such small sets of points;
that is, μ is “max-smooth.” To guarantee this property of μ we need to strengthen
Lemma 2.4 by considering a new measure that strengthens (1−δ)-approximate degree.
We also show that some simple functions require large values for our strengthened
measure (which turns out to be fairly nontrivial to prove).

We also address the inefficiency of the pattern tensor selector function by defin-
ing a new selector function that requires significantly fewer bits. David, Pitassi, and
Viola [16] already tackled some of this inefficiency by using 2k-wise independent dis-
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tributions which yield selector functions that are unfortunately outside of AC0 for
k = ω(log logn). We use our more general notion of selector functions to design effi-
cient selector functions that are in AC0 and produce nΩ(1) lower bounds for k up to
Θ(logn) players.

In the body of the paper we include our results containing both of these improve-
ments. In Appendix A.1 we discuss certain other results that rely on the pattern
tensor selector rather than our more efficient selector functions. This allows us to
discuss more precisely how the addition of the max-smoothness property of the or-
thogonalizing distribution μ on its own already yields improved lower bounds without
any change to the selector function.

3. Beyond approximate degree: A new sufficient criterion for strong
communication complexity bounds. We introduce (ε, α)-approximate degree and
show how it implies our main technical theorem on the general correlation method.

A restriction is a ρ ∈ {0, 1, ∗}m, and we define |ρ| = |{i : ρi = ∗}|. Two re-
strictions π and ρ are compatible, denoted as π ‖ ρ, iff every coordinate i with both
πi, ρi = ∗ satisfies πi = ρi. Define Cρ = {x ∈ {0, 1}m : x ‖ ρ}.

Definition 3.1. Let α : {0, . . . ,m} �→ R. Given a probability distribution λ
on the set of restrictions {0, 1, ∗}m, we say that x ∈ {0, 1}m is α-light for λ iff∑

ρ‖x 2
|ρ|−α(|ρ|)λ(ρ) ≤ 1. Note that when α is the identity function, every point is

α-light for every distribution λ.3

Definition 3.2. Let α : {0, . . . ,m} �→ R and f : {0, 1}m �→ R. The (ε, α)-
approximate degree4 of f , denoted as degε,α(f), is defined to be the minimum integer
d ≥ 0 such that there is some multivariate polynomial q of degree d and some prob-
ability distribution λ on restrictions such that for every x ∈ {0, 1}m if x is α-light
for λ, then |f(x) − q(x)| ≤ ε. Note that this reduces to degε(f) if α(r) ≥ r for
all r. Also define deg<ε,α(f) = infε′<ε degε′,α(f). For f : {0, 1}m → {1,−1} we
write deg±(f) = deg<1(f) and we will usually say “α-threshold degree” for (< 1, α)-
approximate degree.

This definition is obviously a relaxation of the usual �∞ approximation of f since
the nonlight points can be ignored in the approximation. We will use this definition
to prove our main technical theorem. That theorem relies essentially on the following
lemma, which generalizes Lemma 2.4 and is the first key to our substantially improved
lower bounds. The proof of this lemma is based on LP duality and, indeed, our def-
inition of (ε, α)-approximate degree was derived by expressing the desired additional
smoothness property over Lemma 2.4 in terms of a stronger linear program and then
determining what extension of ε-approximate degree of f would be necessary to bound
that linear program.

Lemma 3.3 (max-smooth orthogonality-approximation lemma). Let 0 < ε < 1
and α : {0, . . . ,m} �→ R. If f : {0, 1}m �→ {−1, 1} has deg<ε,α(f) ≥ d, then there
exists a function g : {0, 1}m �→ {−1, 1} and a distribution μ on {0, 1}m such that

1. Corμ(g, f) ≥ ε;
2. for every S ⊆ [m] with |S| < d and every function p : {0, 1}|S| �→ R,

Ex∼μ[g(x) · p(xS)] = 0; and
3. for any restriction ρ, μ(Cρ) ≤ 2α(|ρ|)−|ρ|/ε.

3We will be mostly interested when α(r) ≤ rα0 for every large enough r and fixed 1 > α0 > 0.
4We use the same notation for a somewhat different and more general definition than that in

earlier versions of this paper. First, α previously was a constant analogous to logr α(r), though this
was not defined for all r. Second, the old definition was closer to that of a related quantity that we
now call deg∗ε,α and define later.



MULTIPARTY COMMUNICATION COMPLEXITY OF AC0 493

Proof. We write the requirements as a linear program and study its dual. The
lemma is implied by proving that the following linear program P has optimal value
≤ 1:

Minimize η subject to

yS :
∑

x∈{0,1}m
h(x)χS(x) = 0 : |S| < d,

β :
∑

x∈{0,1}m
h(x)f(x) ≥ ε,

vx : μ(x) − h(x) ≥ 0 : x ∈ {0, 1}m,
wx : μ(x) + h(x) ≥ 0 : x ∈ {0, 1}m,

λρ : η − 2|ρ|−α(|ρ|)
∑
x∈Cρ

μ(x) ≥ 0 : ρ ∈ {0, 1, ∗}m,

γ :
∑

x∈{0,1}m
μ(x) = 1.

Suppose that we have optimum η ≤ 1. In this LP formulation, inequalities vx
and wx ensure that μ(x) ≥ |h(x)| and so together with inequality γ, this ensures
that μ is a probability distribution, and ||h||1 ≤ 1. If ||h||1 = 1, then we must have
μ(x) = |h(x)| and we can write h(x) = μ(x)g(x) as in the proof of Lemma 2.4 and
then the inequalities yS will ensure that Corμ(g, χS) = 0 for |S| < d and inequality β
will ensure that Corμ(f, g) ≥ ε as required. Finally, each inequality λρ ensures that
μ(Cρ) ≤ 2−|ρ|+α(ρ|), which is actually a little stronger than our claim.

The only issue is that an optimal solution might have ||h||1 < 1. However, in this
case inequality β ensures that ||h||1 ≥ ε. Therefore, for any solution of the above LP
with function h, we can define another function h′(x) = h(x)/||h||1 with ||h′||1 = 1
and a new probability distribution μ′ by μ′(x) = |h′(x)| ≤ μ(x)/||h||1 ≤ μ(x)/ε. This
new h′ and μ′ still satisfy all the inequalities as before except possibly inequality λρ
but in this case if we increase η by a 1/||h||1 factor it will also be satisfied. Therefore,
μ′(Cρ) ≤ 2−|ρ|+α(|ρ|)/ε.

Here is the dual LP:

Maximize β · ε+ γ subject to

η :
∑

ρ∈{0,1,∗}m
λρ = 1,

μ(x) : vx + wx + γ −
∑
ρ‖x

2|ρ|−α(|ρ|)λρ = 0 : x ∈ {0, 1}m,(3.1)

h(x) : βf(x) +
∑
|S|<d

ySχS(x) + wx − vx = 0 : x ∈ {0, 1}m,(3.2)

β, vx, wx, λρ ≥ 0 : x ∈ {0, 1}.m

Since yS are arbitrary we can replace
∑

|S|<d ySχS(x) by pd(x), where pd is an

arbitrary polynomial of degree < d and rewrite (3.2) as

h(x) : βf(x) + pd(x) + wx − vx = 0 : x ∈ {0, 1}m.(3.3)
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Equations (3.1) and (3.3) for x ∈ {0, 1}m together are equivalent to

2wx + βf(x) + pd(x) + γ −
∑
ρ‖x

2|ρ|−α(|ρ|)λρ = 0 and

2vx − βf(x)− pd(x) + γ −
∑
ρ‖x

2|ρ|−α(|ρ|)λρ = 0.

Since these are the only constraints on vx and wx, respectively, other than nonnega-
tivity, these can be satisfied by any solution to

βf(x) + pd(x) + γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ and

−βf(x)− pd(x) + γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ,

which together are equivalent to

|βf(x) + pd(x)|+ γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ.

Since pd(x) is an arbitrary polynomial function of degree less than d, we can write
pd = −βqd, where qd is another arbitrary polynomial function of degree less than d
and we can replace the terms |βf(x) + pd(x)| by β|f(x)− qd(x)|.

Therefore the dual program D is equivalent to maximizing β · ε+ γ subject to

β|f(x)− qd(x)| + γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ

for all x ∈ {0, 1}m, where λ is a probability distribution on the set of restrictions and
qd is a real-valued function of degree < d.

Now, let B be the set of points x ∈ {0, 1}m at which |f(x)− qd(x)| ≥ ε. For any
x ∈ B, the value of the objective function of D, which is β · ε+ γ, is not more than

β|f(x) − qd(x)|+ γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ.(3.4)

Let R(x) denote the right-hand side of inequality (3.4). It suffices to prove that
R(x) ≤ 1 for some x ∈ B. This, in turn, is equivalent to proving that

min
x∈B

R(x) ≤ 1

for any distribution λ. Since deg<ε,α(f) is larger than the degree of qd, there must exist
x ∈ {0, 1}m that is both α-light for λ and |f(x)− qd(x)| ≥ ε. Since |f(x)− qd(x)| ≥ ε
we have x ∈ B and since x is α-light for λ we have R(x) ≤ 1, which is what we need
to prove.

Although the upper bound on μ(Cρ) in Lemma 3.3 can be much larger than the
2−|ρ| probability under the uniform distribution, we can use it to obtain an exponential
improvement in the dependence of communication complexity lower bounds on k if
α(r) is bounded above by rα0 for r ≥ d and α0 < 1.

We now see how to apply Lemma 3.3 to obtain communication lower bounds. By
Fact 2.1, it suffices to upper bound the discrepancy with low-cost communication pro-
tocols. We will do this by using Lemma 2.2, which intuitively bounds the discrepancy
of a function by the expectation of the function’s correlation with itself on randomly
chosen hypercubes of points. Since our function is of the form g ◦ ψ, we will look at
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how the output bits of ψ, which are then given to g, relate to each other. This is the
purpose of the next technical definition, which is motivated by Lemma 2.2.

Definition 3.4. Let ψ be a selector function with Dψ = Dψ,1 × · · · ×Dψ,(k−1).

For fixed y0,y1 ∈ D
(m)
ψ , i ∈ [m] and uniformly random xi, we call i good for (y0,y1)

if the set of 2k−1 random variables zui = ψ(xi,y
u
∗i) for u ∈ {0, 1}k−1 are mutually

independent, where yu is defined as in Lemma 2.2; otherwise we call i bad for (y0,y1).
Let Rψ(y

0,y1) be the set of i ∈ [m] that are bad for (y0,y1) and let rψ(y
0,y1) =

|Rψ(y0,y1)|.
Given the above definition and using Lemma 2.2, we will show that on every y0

and y1, the expectation (over x) of the correlation of g◦ψ with itself on the hypercube
{yu}u∈{0,1}k−1 will be bounded by the correlation of g with a polynomial defined only
on the bad coordinates of y0 and y1. We will also show that for some selectors ψ,
the number of bad coordinates is small for random y0 and y1, and if this is the case,
then the correlation is zero by the orthogonality of g to small-degree polynomials.

Now we are ready to state the main technical consequence of the max-smooth
orthogonality-approximation lemma. A similar version with α(r) = r follows from
earlier work but the ability to have α(r) < rα0 for large r yields exponentially better
lower bounds than in previous work.

Theorem 3.5. Let α : {0, . . . ,m} �→ R. If a function f : {0, 1}m �→ {1,−1}
has deg1−ε,α(f) ≥ d and ψ is a selector function on {0, 1}ks with Dψ = Dψ,1 × · · · ×
Dψ,(k−1), then

Rk1/2−ε(f◦ψ) ≥ log2(ε(1−ε))−
1

2k−1
log2

(
m∑
r=d

2(2
k−1−1)α(r) · Pr

y0,y1∈D(m)
ψ

[rψ(y
0,y1) = r]

)
.

Proof. The pattern of the argument follows the outline from section 2. We first
apply Lemma 3.3 to f to produce function g and distribution μ. By construction
Corμ(f, g) ≥ 1− ε.

Given μ, we define a distribution λ on {0, 1}k×m×s such that Corλ(f ◦ψ, g ◦ψ) =
Corμ(f, g) as follows: for any x ∈ {0, 1}m×s and y ∈ D

(m)
ψ and zi = ψ(xi,y∗,i) for

every i ∈ [m],

λ(x,y) =
μ(z1, . . . , zm)

2ms−m|Dψ|m ,

and λ(x,y) = 0 if y ∈ D
(m)
ψ . That is, λ gives equal weight to every input that

produces the same (z1, . . . , zm). Thus

Corλ(f ◦ ψ, g ◦ ψ) =
∑

(x,y)∈{0,1}m×s×D(m)
ψ

f ◦ ψ(x,y)g ◦ ψ(x,y)λ(x,y)

=
∑

x∈{0,1}m×s,y∈D(m)
ψ

f(z)g(z)λ(x,y),

where z is defined as above,

=
∑

z∈{0,1}m

∑
x∈{0,1}m×s,y∈D(m)

ψ :

∀ i∈[m],zi=ψ(xi,y∗,i)

f(z)g(z)
μ(z1, . . . , zm)

2ms−m|Dψ|m

=
∑

z∈{0,1}m
f(z)g(z)μ(z1, . . . , zm) = Corμ(f, g) ≤ 1− ε,
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where the last line follows because, by definition of the selector, for each fixed y∗,i ∈
Dψ, each zi = ψ(xi,y∗,i) is a uniformly random bit given uniformly random xi ∈
{0, 1}s.

To prove a lower bound c on Rk1/2−ε(f ◦ ψ) we show that Corλ(f ◦ ψ,Πck) ≤ 2ε.

Since Corλ(f ◦ψ, g ◦ψ) ≥ 1− ε, by the triangle inequality of correlation, it suffices to
show that Corλ(g ◦ ψ,Πck) ≤ ε.

By Lemma 2.2, if we let U be the uniform distribution on the set of (x,y) ∈
{0, 1}ms ×D

(m)
ψ and zi = ψ(xi,y∗i) we have

Corλ(g ◦ ψ,Πck)2
k−1

= 2m2k−1

CorU(μ(z1, . . . , zm)g(z1, . . . , zm),Πck)
2k−1

≤ 2(c+m)·2k−1 · E
y0,y1∈D(m)

ψ

H(y0, y1),

where H(y0, y1) is the self-correlation of g under μ in the hypercube defined by y0

and y1:

H(y0,y1) :=

∣∣∣∣∣∣Ex

⎡
⎣ ∏
u∈{0,1}k−1

μ(zu1 , . . . , z
u
m)g(zu1 , . . . , z

u
m)

⎤
⎦
∣∣∣∣∣∣ ,

where zui = ψ(xi,y
u
∗i). We now state two bounds on the self-correlation H(y0,y1)

that depend on the value of r = rψ(y
0,y1). The first bound is a slightly more general

version of a bound from [14] and was a key to the original method.
Proposition 3.6. If r = rψ(y

0,y1) < d, then H(y0,y1) = 0.
The following bound is the key to our exponentially better results than in previous

work. A weaker version given in [14] corresponds to the case that α(r) = r (but does

not have the (1− ε)2
k−1−1 in the denominator).

Lemma 3.7. H(y0,y1) ≤ 2(2
k−1−1)α(r)

22k−1m(1−ε)2k−1−1
.

Before we explain the intuition for the above two bounds and prove them, we
assume them and plug them in to finish the proof:

Corλ(g ◦ ψ,Πck)2
k−1 ≤ 2(c+m)2k−1

m∑
r=d

2(2
k−1−1)α(r)

22k−1m(1− ε)2k−1−1
Pr

y0,y1∈D(m)
ψ

[rψ(y
0,y1) = r]

<

(
2c

1− ε

)2k−1

·
m∑
r=d

2(2
k−1−1)α(r) Pr

y0,y1∈D(m)
ψ

[rψ(y
0,y1) = r].

Taking 2k−1th roots and using Fact 2.1 we obtain that Rk1/2−ε(f ◦ ψ) ≥ c if

ε ≥ 2c

1− ε
·
(

m∑
r=d

2(2
k−1−1)α(r) Pr

y0,y1∈D(m)
ψ

[rψ(y
0,y1) = r]

)1/2k−1

.

Rewriting and taking logarithms yields the claimed bound of Theorem 3.5.
It remains to prove Propositions 3.6 and Lemma 3.7. Intuitively, we will divide

the product inside the self-correlation H(y0,y1) into two terms, where one term is
μ(zu1 , . . . , z

u
m)g(zu1 , . . . , z

u
m) for some point u ∈ {0, 1}k−1, and the other consists of all

μ(zu1 , . . . , z
u
m)g(zu1 , . . . , z

u
m) for all the other u’s. Then by Definition 3.4, for random x,

the input bits zu1 , . . . , z
u
m given to the first term and the input bits given to the second

term only depend on each other in the bad coordinates. Given this, Proposition 3.6
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translates the self-correlation H(y0,y1) into a correlation of g with a polynomial of
degree at most rψ(y

0,y1) < d and hence this correlation is zero. Also, given this
bound r = rψ(y

0,y1) on the number of dependent coordinates, Lemma 3.7 bounds
each μ(·)g(·) by μ(·) and uses the fact that μ is a max-smooth probability distribution
to obtain a bound on the self-correlation as a function of r.

We derive an expansion for H(y0,y1) that we will use to prove both bounds. For

fixed y0,y1 ∈ D
(m)
ψ and uniformly random x ∈ {0, 1}m×s, let Z = Z0...0Z0...1 · · ·Z1...1

be the joint distribution induced on {zu}u∈{0,1}k−1, where zui = ψ(xi,y
u
∗,i) for every

u ∈ {0, 1}k−1 and i ∈ [m]. By construction, zu is uniformly distributed in {0, 1}m for
any u ∈ {0, 1}k−1 so each Zu is a uniform distribution. Also from Definition 3.4, for
any index i at which (y0,y1) is good, the set of 2k−1 random variables {zui }u∈{0,1}k−1

are mutually independent. Since Rψ(y
0,y1) consists of those i ∈ [m] that are bad for

(y0,y1), conditioned on each fixed value of xRψ(y0,y1) = (xi)i∈Rψ(y0,y1), the random
variables {zu}u∈{0,1}k−1 are mutually independent. Then, by taking the bad indices
out of the expectations, we have

H(y0,y1) =

∣∣∣∣∣∣ExRψ(y0,y1)
Ez0...0...z1...1∼(Z|xRψ(y0,y1))

⎡
⎣ ∏
u∈{0,1}k−1

μ(zu)g(zu)

⎤
⎦
∣∣∣∣∣∣

=

∣∣∣∣∣ExRψ(y0,y1)

∏
u∈{0,1}k−1

Ezu∼(Zu|xRψ(y0,y1))
[μ(zu)g(zu)]

∣∣∣∣∣
=

∣∣∣∣∣ExRψ(y0,y1)
Ez0...0∼(Z0...0|xRψ(y0,y1))

[μ(z0...0)g(z0...0)]

×
∏

u�=0...0

Ezu∼(Zu|xRψ(y0,y1))
[μ(zu)g(zu)]

∣∣∣∣∣.(3.5)

Proof of Proposition 3.6. Since (y0,y1) will be fixed, for simplicity write R =
Rψ(y

0,y1) and define γxR = γxRψ(y0,y1)
=
∏

u �=0...0 Ezu∼(Zu|xRψ(y0,y1))
[μ(zu)g(zu)].

We can then rewrite (3.5) as

H(y0,y1) =
∣∣∣ExR γxREz0...0∼(Z0...0|xR)[μ(z

0...0)g(z0...0)]
∣∣∣.

We also write ψ(xR) as shorthand for the length-r vector (ψ(xi,y
0...0
∗,i ))i∈R. The de-

pendence of Z0...0 on xR is given entirely by Z0...0
R so we group the terms based on the

value of z0...0R = ψ(xR). For each choice of z0...0R , let Pr[z0...0R ] =
∑

xR,ψ(xR)=z0...0R
Pr[xR],

and define

h(z0...0R ) = (1/Pr[z0...0R ])
∑

xR,ψ(xR)=z0...0R

Pr[xR]γxR .

We now obtain

H(y0,y1) =

∣∣∣∣∣
∑
z0...0R

Pr[z0...0R ]h(z0...0R )Ez0...0∼(Z0...0|xR)[μ(z
0...0)g(z0...0)]

=

∣∣∣∣∣
∑
z0...0R

Pr[z0...0R ]h(z0...0R )Ez0...0∼(Z0...0|z0...0R )[μ(z
0...0)g(z0...0)]

∣∣∣∣∣
=
∣∣Ez0...0∼Z0...0 [μ(z0...0)g(z0...0)h(z0...0R )]

∣∣.
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Since Z0...0 is the uniform distribution and h(·) is a polynomial that depends only on
r = |R| < d coordinates, by the orthogonality property g under μ with low-degree
polynomials, H(y0,y1) = 0.

Proof of Lemma 3.7. For convenience of notation we assume without loss of
generality that R = Rψ(y

0,y1) = {1, . . . , r}. Since g is ±1-valued, we simplify (3.5)
to yield

H(y0,y1) =

∣∣∣∣∣ExREz0...0∼(Z0...0|xR)[μ(z
0...0)g(z0...0)]

×
∏

u �=0...0

Ezu∼(Zu|xR)[μ(z
u)g(zu)]

∣∣∣∣∣
≤
∣∣∣∣∣ExREz0...0∼(Z0...0|xR)[μ(z

0...0)g(z0...0)]

∣∣∣∣∣
×max

xR

∣∣∣∣∣
∏

u �=0...0

Ezu∼(Zu|xR)[μ(z
u)g(zu)]

∣∣∣∣∣
=
∣∣∣Ex[μ(z

0...0)g(z0...0)]
∣∣∣

× max
x1,...,xr

∣∣∣∣∣
∏

u �=0...0

Exr+1,...,xm [μ(z
u)g(zu)]

∣∣∣∣∣
now since g is ±1-valued,

≤ Ex[μ(z
0...0)](3.6)

× max
x1,...,xr

∏
u �=0...0

Exr+1...xm

[
μ(zu)

]
,(3.7)

where zui = ψ(xi,y
u
∗,i) for all i ∈ [m].

We first consider line (3.6). For x chosen uniformly from {0, 1}ms, by assumption
on ψ, for any u ∈ {0, 1}k−1 the random variable zu is uniform in {0, 1}m. In particular,
Ex[μ(z

0...0)] = Ez∈{0,1}m [μ(z)]. Further, since μ is a distribution, Ez∈{0,1}m [μ(z)] =
2−m.

We now bound the remaining terms using the max-smoothness property of the
distribution μ. (This is the one place where we use this property.) First we have

max
x1,...,xr

∏
u �=0...0

Exr+1...xm

[
μ(zu)

] ≤ ∏
u �=0...0

max
x1,...,xr

Exr+1...xm

[
μ(zu)

]
.

Fixing x1, . . . ,xr fixes the values of zu1 , . . . , z
u
r and by our assumption on ψ, for

uniformly random xr+1, . . . ,xm the values of zur+1, . . . , z
u
m are uniformly random.

Therefore line (3.7) is upper bounded by∏
u �=0...0

max
zu1 ,...,z

u
r

Ezur+1...z
u
m

[
μ(zu)

]
=
(

max
z1,...,zr

Ezr+1...zm

[
μ(z)

])2k−1−1
.

By the property of μ implied by Lemma 3.3,

max
z1,...,zr

∑
zr+1,...,zm

μ(z) ≤ 2α(r)−r/(1− ε)

and therefore line (3.7) is at most (2α(r)−m/(1− ε))2
k−1−1. The lemma follows imme-

diately by combining the bounds for lines (3.6) and (3.7).
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We have completed the proof of Theorem 3.5.

4. AC0 functions with large (ε, α)-approximate degree. Given ε < 1
and α, it is not obvious that any function, let alone a function in AC0, has large
(ε, α)-approximate degree. This section shows that AC0 does contain functions with
large (5/6, α)-approximate degree and functions with large α-threshold degree, where
α(z) ≤ zα0 for α0 < 1 and all large z.

We first reduce this new notion of approximate degree to a more tractable notion,
which is large only if many widely spread restrictions of the function also require large
approximate degree. Given a function f on {0, 1}m and a restriction ρ, we define f |ρ
on {0, 1}m−|ρ| in the natural way. We also define Rr

m := {ρ ∈ {0, 1, ∗}m : |ρ| = m−r}.
To motivate the name “α-spread” in the following definition, the reader can think

of the function α as having α(z) ≤ zα0 for all large enough z and fixed constant α0,
and thus the probability bound below intuitively says that ν behaves like a uniform
distribution on {0, 1}m. Thus, the support of ν is very spread out.

Definition 4.1. Given α : {0, . . . ,m} �→ R, we say that a probability distribution
ν on {0, 1, ∗}m is α-spread iff for every restriction ρ ∈ {0, 1, ∗}m,

Pr
π∼ν[π ‖ ρ] ≤ 2α(|ρ|)−|ρ|.

Let deg∗ε,α(f) be the minimum d such that for any α-spread distribution ν on {0, 1, ∗}m,
there is some π with ν(π) > 0 and degε(f |π) ≤ d. Note that for α(r) ≥ r, degε(f) =
deg∗ε,α(f) since in this case every distribution on restrictions is α-spread. We define
deg∗<ε,α(f) = minε′<ε deg

∗
ε′,α(f).

Given the following lemma, to show that degε,α(f) is large, it suffices to show
that deg∗ε,α(f) is large.

Lemma 4.2. Let f : {0, 1}m �→ {−1, 1} and α : {0, . . . ,m} �→ R. For 0 < ε ≤ 1,
degε,α(f) ≥ deg∗ε,α(f).

Proof. Suppose, by contradiction, that for some d, (i) deg∗ε,α(f) > d, and (ii)
degε,α(f) = d. Then, by definition, (i′) there exists an α-spread distribution ν on
{0, 1, ∗}m such that degε(f |π) > d for every π with ν(π) > 0, and (ii′) there exists
a polynomial q of degree ≤ d and a distribution λ on {0, 1, ∗}m such that R(x) =∑

ρ‖x 2
|ρ|−α(|ρ|)λρ > 1 whenever |f(x)− q(x)| > ε.

Sampling π ∼ ν, we define the random variable

Iπ :=
∑
ρ‖π

2|ρ|−α(|ρ|)λρ.

Then, since ν is α-spread,

Eπ∼ν(Iπ) = Eπ∼ν
∑
ρ‖π

2|ρ|−α(|ρ|)λρ

= Eπ∼ν
∑
ρ

�ρ‖π · 2|ρ|−α(|ρ|)λρ

=
∑
ρ

(Eπ∼ν�ρ‖π)2|ρ|−α(|ρ|)λρ

=
∑
ρ

Pr
π∼ν[ρ ‖ π] · 2|ρ|−α(|ρ|)λρ

≤
∑
ρ

2α(|ρ|)−|ρ| · 2|ρ|−α(|ρ|)λρ ≤ 1.
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Therefore there exists a restriction π in the support of ν for which Iπ ≤ 1. If there
exists an input x such that |f(x)− q(x)| > ε and x ∈ Cπ, then since

R(x) =
∑
ρ‖x

2|ρ|−α(|ρ|)λρ > 1,

we would have Iπ > 1. Thus, |f(x) − q(x)| ≤ ε for every x ∈ Cπ . But since the
degree of q is ≤ d this violates our assumption that degε(f |π) > d. Hence the lemma
follows.

For the rest of this section, we always take α(z) ≤ zα0 for some α0 < 1 for large
enough z and α(z) = z otherwise. By definition, to show that deg∗ε,α(f) is large,
we need to exhibit an α-spread distribution ν such that for any restriction ρ with
ν(ρ) > 0, degε(f |ρ) is large. An obvious choice for such ν is the uniform distribution
on Rr

m, where r ≈ mα0 . Indeed, it is not hard to show with this distribution that the
parity function has large (ε, α)-approximate degree. However, this simple ν cannot be
used for AC0 circuits since these circuits shrink rapidly under such restrictions. Thus
in the following lemma, we define a more involved α-spread family of restrictions.

Lemma 4.3. Let q, r, p, and w be integers with q > r > p ≥ 2 and let 1 >
α0 > β > 0 be such that qβ ≥ rp, 2p−1 − 1 ≥ q1−β, qα0 ≥ 6

ln 22
pr, and wα0−β ≥

3p/ ln 2. Fix any partition of a set of m = pq bits into q blocks of p bits each.
Define distribution ν on Rpr

m as follows: choose a subset of q − r blocks uniformly
at random; then assign values to the variables in each of these blocks uniformly at
random from {0, 1}p − {0p, 1p}. Then for any ρ ∈ {0, 1, ∗}m with |ρ| ≥ w, we have
Pr
π∼ν[ρ ‖ π] ≤ 2|ρ|

α0−|ρ|.
The proof of Lemma 4.3 is surprisingly involved and requires quite precise tail

bounds. We defer the proof to section 7. Intuitively, we need the parameter choices
given here because the conclusion requires that, in an amortized sense, each bit as-
signed by ρ contributes not much more than 1/2 to the probability of being consistent
with a random π ∼ ν. Hence, in our amortized sense the p bits in any one of the q
terms should not contribute much more than a 2−p factor to the probability of being
consistent. However, ρ and π are consistent in any term that is not selected by π
which happens for any fixed term with probability r/q. It is therefore necessary in
our argument that r/q not be much larger than 2−p.

With the family of restrictions in Lemma 4.3, we will use the following approach
in the rest of this section to obtain functions with large (ε, α)-approximate degree.
Let q > r > 0, where r is polynomial in q, and G be any circuit on q bits such
that any projection of G on any r input bits has large ε-approximate degree, where
a projection of G on a set S of input bits, denoted by GS , is a new circuit obtained
from G by keeping only those gates on paths from the inputs in S to the output gate.
For some p = O(log q), we will produce another circuit H on pq bits such that for any
restriction π in the family of restrictions in Lemma 4.3, the circuit H |π contains as
a subcircuit a projection of G on some r bits. Thus H has large (ε, α)-approximate
degree. Next we give a simple demonstration of this construction.

For ε = 5/6, a simple candidate for G is G = Orq. With this G, the next lemma
constructs H = Tribesp,q, which has large (5/6, α)-approximate degree. Recall that
Tribesp,q(x) = ∨qi=1 ∧pj=1 xi,j .

Lemma 4.4. Given any constants 0 < ε, α0, β < 1 with β > 1−ε and α0−β ≥ 0.1.
Let q > p ≥ 2 be integers such that 2�q1−β� < 2p ≤ 1

6q
α0+ε−1 ln 2. Define α(z) = zα0

for zα0−β ≥ 3p/ ln 2 and α(z) = z otherwise. Then for large enough q, we have
deg5/6,α(Tribesp,q) ≥

√
q1−ε/12.
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Proof. Define the distribution ν as in the statement of Lemma 4.3, where a p-
block corresponds to a p-term in Tribesp,q, by applying this lemma with r := �q1−ε�
and w = (3p/ ln 2)1/(α0−β). For q large enough,

qβ/r ≥ qβ+ε−1 > log q > p and wα0−β ≥ 3p/ ln 2.

For any π with ν(π) > 0,Orr is a subfunction ofTribesp,q|π so deg5/6(Tribesp,q|π) ≥
deg5/6(Orr) ≥ √

r/12. Thus, deg5/6,α(Tribesp,q) ≥ deg∗5/6,α(Tribesp,q) ≥√
r/12.
In particular, with ε = 0.4, β = 0.8, α0 = 0.9, we get the following corollary.
Corollary 4.5. For sufficiently large p and q = 24p, if α : {0, . . . ,m} �→ R satis-

fies α(z) = z0.9 for z ≥ (3p ln 2)10 and α(z) = z otherwise, then deg5/6,α(Tribesp,q) ≥
q3/10/

√
12 = 26p/5/

√
12.

Corollary 4.5 suffices for most of our communication complexity lower bounds.
However, our results for threshold circuit size require a function in AC0 having large
α-threshold degree. In the rest of this section we show such a function whose con-
struction involves more complex G and H .

We first construct, in Lemma 4.7, a circuit G that has large threshold degree when
projected on any sufficiently large set of input bits. The lemma uses the following
property of the threshold degree of (the dual of) the Minsky–Papert function [26].

Proposition 4.6. Let MPq,q′ : {0, 1}q·q′ �→ {−1, 1} be defined by MPq,q′ (x) :=

∧qi=1 ∨q
′
j=1 xij . Then for any d > 0, deg±(MPd,4d2) ≥ d.

Lemma 4.7. Let r, d, s, and t be positive integers such that st ≥ r ≥ 2ds and
s/(4d) ≥ t. Then there is an explicit read-once AND ◦ OR formula G on st bits such
that for any set S of r input bits, the function computed by GS has threshold degree
at least d.

Proof. Let G be the AND ◦OR formula with fan-in t at the top ∧ gate and fan-in
s at each of the ∨ gates. Let S be any subset of input bits with |S| = r.

Let A be the set of ∨ gates in G that contain at least 4d2 elements of S. Then
we can easily bound the size of S by r ≤ s|A|+ 4d2(t− |A|), and hence

|A| ≥ r − 4d2t

s− 4d2
>
r − 4d2t

s
≥ d

since r ≥ 2ds and 4d2t ≤ ds. Hence GS contains at least d ∨-gates, each having
at least 4d2 inputs. This implies that GS computes MPd,4d2 as a subfunction. By
Proposition 4.6, deg±(GS) ≥ deg±(MPd,4d2) ≥ d.

Using the AND ◦ OR formula G on q = st bits given by Lemma 4.7, we now
construct the circuit H of large α-threshold degree. Let H ′ = G ◦ (Andp) be the
circuit obtained from G by replacing each input bit with an And gate on p bits for
some p > 0. For the choice of G from Lemma 4.7, H ′ is a AND ◦ OR ◦ ANDp circuit
on pq bits. We then obtain the circuit H by applying the following steps to each Or

gate ϕ of H ′:
1. Let s be the number of Andp gates fed into ϕ. For every i ∈ [s],

• let the input bits to the ith Andp gate be zi,1, . . . , zi,p, then create two
new Or gates Bi = ∨pj=1zi,j and B′

i = ∨pj=1(¬zi,j).
2. Create a new And gate Aϕ =

∧s
i=1(Bi ∧B′

i).
3. Finally, add a new edge feeding the output of Aϕ to ϕ.

The following lemma justifies the construction.
Lemma 4.8. Let G be any AND ◦ OR circuit on q bits. For some integer p > 0,

let H be the circuit constructed from G as described above. Then the following hold:
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• H has pq input bits divided into q blocks of p bits each, where each block
corresponds to an input bit in G.

• H is a depth 4 AND ◦ OR ◦ AND ◦ OR circuit of size at most four times the
size of G.

• Let π be any restriction that chooses a subset S′ of the blocks of inputs to
H, and hence the corresponding set S of input bits to G, to leave unset and
assigns values from {0, 1}p−{0p, 1p} to each other block. Then H |π contains
GS as a subcircuit.

Proof. A subcircuit of depth 2 with three gates is added for each last level Or in
G so the first two parts are immediate.

For the last part, note that for any block not in S′, the associated Andp gate in
H is forced to 0, and the associated B and B′ gates (in step 1 in the construction) are
forced to 1. Let ϕ be any Or gate in G which becomes an Or gate ϕH in H . Then,

• if ϕ does not have any input bit in S, then all the B and B′ gates under Aϕ
output 1, and hence Aϕ outputs 1 and hence ϕH outputs 1 (to the top And

gate);
• if ϕ has an input bit in S, then setting the values of the corresponding block
in S′ to 0p or 1p will force one of the associated B or B′ gate to 0 and hence
force Aϕ to output 0.

It follows that we can use H |π to compute GS by assigning 0p in place of 0 and 1p in
place of 1 for each block in S′.

Finally we show that with suitable parameters, H has high α-threshold degree.
Lemma 4.9. For any p sufficiently large multiple of 15 and q = 24p, if α :

{0, . . . ,m} �→ R is defined as α(z) = z0.9 for z ≥ (3p ln 2)10 and α(z) = z otherwise,
then there is an explicit depth 4 AC0 function on pq bits that has α-threshold degree
at least q1/15.

Proof. Let d = q1/15, s = 2q8/15, t = q7/15/2, and r = 4q3/5. Observe that by our
choice of p and q, all these are integral and they satisfy the conditions of Lemma 4.7.
We can apply that lemma to derive an AND ◦OR circuit G with the property that for
every S with |S| = r, deg±(GS) ≥ d.

Define the distribution ν as in the statement of Lemma 4.3 given the value of r
and w = �log20 pq�. We can then apply Lemma 4.8 to G to derive the Π4 circuit H
based on G with the property that for every π in the support of ν, H |π computes as
a subfunction the function GS for some subset S of inputs with |S| = r and therefore
deg±(H |π) ≥ deg±(GS) ≥ d.

Note that for α0 = 0.9 and β = 0.8, all the conditions of Lemma 4.3 are satisfied.
In particular, for p sufficiently large, qβ = q0.8 ≥ q3/5 log2 q = rp, 2p−1− 1 = q1/4/2−
1 ≥ q0.2 = q1−β , qα0 = q0.9 ≥ 24

ln 2q
17/20 = 6

ln 22
pr, and wα0−β ≥ log2 q ≥ 3p/ ln 2.

It follows that H has α-threshold degree at least d as required.

5. Multiparty communication complexity lower bounds for AC0. To-
gether with the functions from the previous section, Theorem 3.5 is sufficient to im-
prove the lower bounds for AC0 functions based on pattern tensor selectors from
O(log logn) players to Ω(

√
logn) players. These results, which show the power of our

introduction of (ε, α)-approximate degree on its own, are described in Appendix A.1.
We need one more ingredient to obtain our strongest lower bounds, namely, a new
selector function ψ, which we denote by Index⊕ak−1

where a > 0 is an integer. This

function has s = 2a and D
Index⊕a

k−1
,j = {0, 1}s for all j. For x ∈ {0, 1}s and

y ∈ {0, 1}(k−1)s define

Index⊕a
k−1

(x,y) = x(y1⊕...⊕yk−1)[a] ,
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where the bits in x are indexed by a-bit vectors and y[a] denotes the vector of the
first a bits of y. This function clearly satisfies the selector function requirement that
the output be unbiased for each fixed value of y.

Although the definition of Index⊕ak−1
uses the parity function, in applications

we will choose the number of players k that will be O(log n) and hence these parity
functions will be computable in AC0. We can express the parity of k−1 items in DNF
as an ∨ of 2k−2 conjunctions each of length k − 1. Thus for any w ∈ {0, 1}a, we can
check whether (y1 ⊕ . . . ⊕ yk−1)|[a] = w by a Π3 formula where the gates are, from

top to bottom, ∧ with fan-in a, ∨ with fan-in 2k−2, and ∧ with fan-in k−1. If we add
xw as an additional input to the top ∧ gate, we can make this formula output xw if
the check returns true. Therefore we can write Index⊕a

k−1
as a Σ4 formula where the

fan-ins are, from top to bottom, 2a, a+ 1, 2k−2, and k − 1. The top ∨ gate is to do
the check for every possible value of w ∈ {0, 1}a. Alternatively, we could dually write
parity using conjunctive normal form (CNF) and express Index⊕ak−1

as a Σ3 formula

where the fan-ins are, from top to bottom, 2a, a2k−2 +1, and k− 1, where the inputs
to each of the (a2k−2 + 1)-fan-in ∧ gates are the one bit of x and a2k−2 ∨ gates with
fan-in k − 1.

With ψ = Index⊕a
k−1

, the variables zui = Index⊕a
k−1

(xi,y
u
∗i) for u ∈ {0, 1}k−1

are independent iff for every u = v, yu
∗i and yv

∗i select different bits of xi.
Lemma 5.1. If ψ = Index⊕a

k−1
, then

Pr
y0,y1∈D(m)

ψ

[rψ(y
0,y1) = r] ≤

(
m

r

)
2(2k−a−3)r ≤

(
em22k−a−3

r

)r
.

Proof. In this case D
(m)
ψ is simply {0, 1}(k−1)ms. For each fixed i ∈ [m] and

each fixed pair of u = v ∈ {0, 1}k−1, the probability that yu
∗i and yv

∗i select the
same bit of xi is the probability that (yu1

∗i ⊕ · · · ⊕ y
uk−1

∗i )[a] = (yv1∗i ⊕ · · ·yvk−1

∗i )[a].
Since u = v, this is a homogeneous full rank system of a equations over F2 which is

satisfied with probability precisely 2−a. By a union bound over all the
(
2k−1

2

)
< 22k−3

pairs u,v ∈ {0, 1}k−1, it follows that the probability that i is bad for (y0,y1) is at
most 22k−32−a = 22k−a−3. The bound follows by the independence of the choices of
(y0,y1) for different values of i ∈ [m].

We are ready to prove the main theorem for functions composed using this new
selector function.

Theorem 5.2. Let α : {0, . . . ,m} �→ R, 1 > α0 > 0, d > 0, such that α(r) ≤ rα0

for all r ≥ d. For any function f : {0, 1}m �→ {1,−1} with deg1−ε,α(f) ≥ d, the
function f ◦ Index⊕a

k−1
defined on kn bits, where n = ms and s = 2a ≥ e22k−1m/d,

requires that Rk1/2−ε(f ◦ Index⊕a
k−1

) ≥ d/2k + log2(ε(1− ε)) for k ≤ (1− α0) log2 d.
Proof. For ψ = Index⊕a

k−1
, by Lemma 5.1,

(5.1)
m∑
r=d

2(2
k−1−1)α(r) · Pr

y0,y1∈D(m)
ψ

[rψ(y
0,y1) = r] ≤

m∑
r=d

2(2
k−1−1)α(r) ·

(
em22k−a−3

r

)r

Since k ≤ (1 − α0) log2 d, we have (2k−1 − 1)α(r) < d1−α0α(r) ≤ r for r ≥ d so (5.1)
is

≤
m∑
r=d

(
em22k−a−2

r

)r
≤

m∑
r=d

2−r < 2−(d−1) for 2a ≥ e22k−1m/d.
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Plugging this into Theorem 3.5 we obtain that

Rk1/2−ε(f ◦ ψ) ≥ log2(ε(1− ε))− 1

2k−1
log2 2

−(d−1) > d/2k + log2(ε(1− ε))

as required.
Let Tribes

′
p,q be the dual of the Tribesp,q function on m = pq bits. Obviously

the (ε, α)-degree of Tribes
′
p,q is the same as that of Tribesp,q for any ε and α. By

applying the above theorem for f = Tribesp,q and f = Tribes
′
p,q, we obtain the

following result.
Theorem 5.3. Let p be a sufficiently large integer and q = 24p, k ≤ p/10,

s = 2p+2k, and m = pq. Let F = Tribesp,q ◦ Index⊕(p+2k)
k−1

and F ′ = Tribes
′
p,q ◦

Index⊕(p+2k)
k−1

. Let n = pqs = p25p+2k be the number of input bits given to each

player in computing F or F ′. Then Rk1/3(F ) and R
k
1/3(F

′) are both Ω(q0.3/2k) which

is nΩ(1)/4k. Furthermore, F has polynomial-size depth 5 AC0 formulas and F ′ has
polynomial-size depth 4 AC0 formulas.

Proof. Let ε = 0.4, α0 = 0.9, and β = 0.8 and a = p + 2k. Observe that with
these values and sufficiently large p, the conditions on the relationship between p and
q are met for sufficiently large values of p as is the bound on a and the upper bound
on k.

As noted above, Index⊕a
k−1

has Σ3 formulas with fan-in, top to bottom, of 2a =

2p+2k, a2k−2 + 1 = (p + 2k)2k−2 + 1, and k − 1. Since Tribesp,q is given by a Σ2

formula, Tribesp,q ◦ Index⊕(p+2k)
k−1

is computable by a Σ5 formula with fan-in top to

bottom of q, p, 2p+2k, (p + 2k)2k−2 + 1, and k − 1. The total formula size of F is
n(p+ 2k + 1)(k − 1)2k−2 which is less than n2.

The proof for F ′ goes similarly, except that since the second layer of Tribes
′
p,q

can be merged with the top layer of Index⊕(p+2k)
k−1

, it has a polynomial-size depth 4

AC0 formulas.
Lemma 5.4. Nk(Tribesp,q ◦ Index⊕ak−1

) is O(log q + pa).
Proof. Using the Σ3 formula for Index⊕ak−1

we see that Tribesp,q ◦ Index⊕ak−1

can be expressed as a Σ5 formula where the fan-ins from top to bottom are q, p, 2a,
a2k−2+1, and k−1. The players use this formula to evaluate Tribesp,q ◦ Index⊕ak−1

.

Observe that the fan-ins of the ∧ gates are p and a2k−2+1, and the input to each
of the (a2k−2+1)-fan-in ∧ gates are one bit of x and a2k−2 ∨ gates with fan-in k− 1.
Moreover, the 0th player (who holds x) can evaluate each of these ∨ gates since it can
see all the input to these gates.

Player 0 guesses the top part of an accepting subtree by guessing a child of the
root and, for each of the p children of that node, guesses which of the 2a bits is selected
and broadcasts this information. This costs log2 q + pa bits to send. Thus now there
are p ∧ gates with fan-in a2k−2 + 1 that need to be evaluated. For each of these p
gates, player 0 broadcasts a bit which is 1 iff all of the a2k−2 feeding ∨ gates that
depend only on y1, . . . ,yk−1 evaluate to true. Given this information, player 1, who
sees x, can then evaluate all p ∧ gates.

Corollary 5.5. There is a read-once function G in depth 5 AC0 on n bits such
that G is in NPcc

k − BPPcc
k for k ≤ a′ logn for some constant a′ > 0.

Proof. Observe that by Lemma 5.4, F = Tribesp,q ◦ Index⊕(p+2k)
k−1

with the

parameters from Theorem 5.3 has Nk(F ) that is O(log2 n) and thus satisfies all the
conditions except for being read-once. To obtain the read-once property note that F
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is a restriction of the function G

q∨
u=1

p∧
v=1

2p+2k∨
w=1

(
z0,u,v,w ∧

(p+2k)2k−2∧
�=1

k−1∨
j=1

zj,u,v,w,�
)

and that the same O(log2 n) upper bound from Lemma 5.4 applies equally well to
G.

Applying distributive law to the depth 5 function f = Tribesp,q◦Index⊕(p+2k)
k−1

we

derive the following exponential improvement in the number of players for which non-
trivial lower bounds can be shown for Disjk,n. (The same lower bound for disjointness
can be derived even more simply using the above technique for the simpler function
Tribesp,q ◦ ψk,� using the pattern tensor selector analyzed in Appendix A.1.)

Theorem 5.6. Rk1/3(Disjn,k) is Ω(2
√

log2 n/
√
k) for k ≤ 1

5 log
1/3
2 n.

Proof. Recall thatDisjk,n(x) = ∨ni=1∧k−1
j=0 xj,i. As in Corollary 5.5 start with F =

Tribesp,q◦Index⊕(p+2k)
k−1

with the parameters from Theorem 5.3. Unlike Corollary 5.5,

however, we use the Σ4 circuit for Index⊕(p+2k)
k−1

and reduce F to a Σ6 formula G with

n = qp2a(a+ 1)2k−2k variables, where a = 2k + p given by

G(z) =

q∨
i=1

p∧
u=1

2a∨
v=1

a+1∧
w=1

2k−2∨
�=1

k−1∧
j=0

zj,i,u,v,w,�.

Distributing the ∧ gates through the ∨ gates, we have

G(z) =

q∨
i=1

∨
I∈[2a]p

p∧
u=1

a+1∧
w=1

2k−2∨
�=1

k−1∧
j=0

zj,i,u,I(u),w,�

by distributing over the second ∨, where I(u) is the uth index of I. This in turn
equals

q∨
i=1

∨
I∈[2a]p

∨
J∈[2k−2]p(a+1)

p∧
u=1

a+1∧
w=1

k−1∧
j=0

zj,i,u,I(u),w,J(u,w)

by distributing over the third ∨, where J(u,w) is the entry of J indexed by (u,w).
This in turn equals

q∨
i=1

∨
I∈[2a]p

∨
J∈[2k−2]p(a+1)

k−1∧
j=0

p∧
u=1

a+1∧
w=1

zj,i,u,I(u),w,J(u,w)

=

q∨
i=1

∨
I∈[2a]p

∨
J∈[2k−2]p(a+1)

k−1∧
j=0

yj,i,I,J

= Disjn,k(y),

where the bits of vector y ∈ {0, 1}nk for n = q2ap+(k−2)p(a+1) are indexed by j ∈
{0, . . . , k − 1}, i ∈ [q], I ∈ [2a]p and J ∈ [2k−2]p(a+1) are given by

yj,i,I,J =

p∧
u=1

a+1∧
w=1

zj,i,u,I(u),w,J(u,w).
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Observe that for any two players j = j′, player j′ can compute any value yj,i,I,J . Thus
the k players can compute Tribesp,q ◦ Index⊕(p+2k)

k−1

by executing a NOF randomized

communication protocol for Disjn,k on y of length nk, where n = q2ap+(k−2)p(a+1) =
q2ap(k−1)+k−2. Plugging in q = 24p and a = 2k + p for k ≤ p/10 we have that
Rk1/3(Disjn,k) is Ω(2

6p/5−k). Now for these values of k and a, we have ap ≥ k−2+4p

and hence we have that n ≤ 2apk ≤ 26p
2k/5. Therefore we have p ≥ √5 log2 n/

√
6k.

It follows that Rk1/3(Disjn,k) is Ω(2
√

log2 n/
√
k) provided that k ≤ 1

10

√
5 log2 n/

√
6k

which holds if k ≤ 1
5 log

1/3
2 n.

Although our bound for Disjn,k applies to exponentially more players than do
the bounds in [25, 14], the previous bounds are stronger for k ≤ log logn−o(log logn)
players.

Corollary 5.7. There is a depth 2 AC0 formula in NPcc
k − BPPcc

k for k up to

Θ(log1/3 n).

It is open whether one can prove stronger lower bounds for k = ω(log1/3 n) players
for Disjk,n or any other depth 2 AC0 function. The difficulty of extending our lower
bound methods is our inability to apply Lemma 3.3 to Or since the constant function
1 approximates Or on all but one point.

To prove lower bounds for MAJ ◦ SYM ◦ AND circuits we need lower bounds on
protocols that succeed with probability barely better than that of random guessing.
Using the function with large α-threshold degree given by Lemma 4.9 in place of
Tribesp,q we obtain the following theorem.

Theorem 5.8. There exist explicit constants c, c′ > 0 and a depth 6 AC0 function
H such that for 1/2 > ε > 0, Rk1/2−ε(Hn) is Ω(nc + log ε) for any k ≤ c′ log2 n.

Proof. Let f ′ be the Π4 function on m = pq bits with 0.9-threshold degree
at least m1/15/ log2m as given by Lemma 4.9. We use the dual function f to f ′

which is therefore a Σ4 function of the same approximate degree. Since f has 0.9-
threshold degree at least m1/15/ log2m, it has (1− ε, 0.9)-approximate degree at least
d = �m1/15/ log2m� for any ε > 0. For k ≤ 0.1 log2 d, let a = �log2(e22k−1m/d)�, and
s = 2a. By Theorem 5.2, the function Hn = f ◦ Index⊕ak−1

defined on n = msk bits
requires that

Rk1/2−ε(Hn) ≥ d/2k + log2(ε(1− ε)).

Since d is mΩ(1) and k ≤ 0.1 log2 d, n = msk = m2ak is dO(1) and since ε < 1/2
the lower bound on Rk1/2−ε(Hn) is Ω(nc + log ε) for some explicit constant c > 0.
Combining the Π3 circuit for Index⊕a

k−1
with that for f yields depth 6.

6. Threshold circuit lower bounds for AC0. Following the approach of
Viola [40], which extends the ideas of Razborov and Wigderson [30], we show quasi-
polynomial lower bounds on the simulation of AC0 functions by unrestricted MAJ ◦
SYM ◦ AND circuits.

Theorem 6.1. For N sufficiently large, there is a Boolean function GN on N
bits in AC0 such that GN requires MAJ ◦ SYM ◦ AND circuit size NΩ(logN).

In the rest of this section we prove the above theorem.5 An important ingredient
in our construction is the following function Fmt , first defined by Sipser [38], with
parameters as modified by H̊astad [19].

5This theorem is a stronger version of the one proved in earlier versions of this paper, which only
gave a size lower bound of NΩ(log logN).
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Definition 6.2. For t ≥ 2, the Sipser function Fmt is defined by a depth t
read-once circuit. The root of this circuit is an Or gate with fan-in 1

2 (m logm)1/4.
Below are alternating levels of And and Or gates with fan-in m. The bottom level

has fan-in
√

1
2 tm logm. Therefore for t constant and large enough m, Fmt is an AC0

function on O(mt) inputs.
The circuit defining Fmt partitions the input into B = {Bi}ri=1 for some r, where

each block Bi consists of all variables that are fed to the same bottom gate. If R is a
distribution of restrictions of the variables in the same block, we define RB := (R)r ,
which is a distribution of restrictions of all variables. H̊astad showed that there exists
a distribution with the following useful property.6

Proposition 6.3 (see [19]). Let 0 ≤ q ≤ 1 be a real number, F be some function,
and B = {Bi} be any partition of the input of F to equal-size blocks. There exists a
distribution Rq of restrictions in each block Bi such that the following hold:

• If F is a CNF with clause size at most w, and s > 0, then with probability at
least 1− (6qw)s over the choice of ρ ∼ RB

q , F |ρ can be written as a DNF with
term size at most s, and moreover, any input assignment satisfies at most
one of these terms.7

• For any odd constant t ≥ 3 and large enough m, if F = Fmt , q = (2tm logm)1/2,
and B is the partition of the input to Fmt as mentioned above, then with
probability at least 2/3 over the choice of ρ ∼ RB

q , F |ρ contains Fmt−1 as a
subfunction.

The proof of our theorem also relies on the following connection between multi-
party communication complexity and threshold circuit complexity given by H̊astad
and Goldmann.

Proposition 6.4 (see [20]).
(a) If f is computed by a SYM◦ANDk−1 circuit of size S, then D

k(f) is O(k log S).
(b) If f is computed by a MAJ◦SYM◦ANDk−1 circuit of size S, then R

k
1/2−1/(2S)(f)

is O(k logS).
We are now ready to prove our theorem.
Proof of Theorem 6.1. We first give a brief overview of the proof. We use the

functionHn from Theorem 5.8 and replace each input by a⊕ of Θ(logn) disjoint copies
of Fn3 to obtain an AC0 function G on N = O(n4 logn) inputs. If G is computed by a
MAJ ◦ SYM ◦AND circuit C of size No(logN), then using suitable random restrictions
as described in Proposition 6.3, we can ensure that all bottom-level And gates of
C are reduced to fan-in at most δ log2N and at the same time that every ⊕ block
of inputs in G is still nontrivial. Applying Proposition 6.4 yields a contradiction to
Theorem 5.8.

More precisely, let c, c′ be the constants and Hn be the function given by Theo-
rem 5.8. Let k = �c′ log2 n�, r = �log3 2n�, and m′ < n3 be the input size of Fn3 , and
N = nrm′. We construct our hard circuit GN on N bit by replacing each bit in Hn

with a xorification of r disjoint copies of Fn3 . That is, for any Z = Z1 · · ·Zn, where
each Zi ∈ {0, 1}r×m′

,

GN (Z) := Hn

(
A1, . . . , An), where each Ai :=

r⊕
j=1

Fn3 (Zi,j).

6The distribution of restrictions in Proposition 6.3 is not the usual uniform distribution on
restrictions setting a fixed number of variables but is suitable for the Sipser functions.

7The property that any input assignment satisfies at most one of the terms is implicit in [19].
The observation that this property holds is made explicit by Berg and Ulfberg [12].
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Suppose by contradiction that for some sufficiently small constant δ > 0, there is a
MAJ◦SYM◦AND circuit C of size N δ logN that computes GN . Let B be the partition
of the input of GN that is the union of all the input partition of the Fn3 functions.
Let q = (6 logn

n )1/2 and RB
q be the distribution as described in Proposition 6.3. Let

ρ ∼ RB
q . Consider the following two events:
• Event E1: C|ρ is computed by a MAJ ◦ SYM ◦ AND circuit of size at most
|C| · (2N)k where the fan-in of each AND-gate is strictly less than k.

• Event E2: the subcircuit computing Ai in GN |ρ contains Fn2 as a subfunction
for all 1 ≤ i ≤ n.

First, we show that Pr[¬E1] < 1/2 for sufficiently small δ > 0. Fix any AND-gate
ϕ in C. By Proposition 6.3, the probability over ρ that ϕ|ρ cannot be written as a
DNF with term size less than k is at most

(6q)k <

(
216 logn

n

)k/2
.

This quantity is N−Ω(logN). Thus by a union bound over all AND-gates in C and
for sufficiently small δ, with probability strictly less than 1/2, every And gate in C|ρ
can be written as a DNF with term size less than k. Any such DNF has size at most
(2N)k. Also by Proposition 6.3, in any such DNF, no two terms can be satisfied at the
same time. Thus we can merge each of these terms into the next-level symmetric gate
and conclude that the function computed by C|ρ is computed by a MAJ ◦SYM ◦AND
circuit of size at most |C| · (2N)k, where the fan-in of each And gate is strictly less
than k.

Next, we show that Pr[¬E2] < 1/2. By Proposition 6.3, with probability at least
1− (1/3)r > 1− 1/(2n), each Ai contains F

n
2 as a subfunction. By union bound over

all i ∈ [n], we conclude that Pr[¬E2] < 1/2.
Hence there exists a restriction ρ such that both E1 and E2 hold. By Proposi-

tion 6.4, the fact that E1 holds implies that for any partition of the input to k players
and ε = 1/(2|C| · (2N)k),

Rk1/2−ε(C|ρ) = O(k log(|C| · (2N)k)) = O(log3N) = O(log3 n).

On the other hand, the fact that E2 holds implies that C|ρ computes Hn as a subfunc-
tion. By Theorem 5.8, there is an assignment of the input bits of Hn, and therefore
of C|ρ, to k players such that Rk1/2−ε(C|ρ) ≥ Rk1/2−ε(Hn) which is Ω(nc+log ε). Since

− log2 ε is O(log
2N) = O(log2 n), Ω(nc + log ε) is Ω(nc) for sufficiently large N (and

hence n), we arrive at a contradiction.
Remark. Although the proof for Theorem 6.1 uses the second part of Proposi-

tion 6.4 and the function given by Theorem 5.8, the same proof that instead uses the
first part of the proposition and the simpler function given by Theorem 5.3 would
yield a simpler AC0 function that requires quasipolynomial size to be simulated by
SYM ◦ AND circuits.

7. Proof of Lemma 4.3. Fix any restriction ρ of size i = |ρ| ≥ w. We have

Pr
π∼ν[ρ ‖ π] = 1(

q
q−r
) ∑

S⊂[q],|S|=q−r

∏
j∈S

pj,

where pj is the probability that π and ρ agree on the variables in the jth block. Write
i = i1 + · · · + iq, where ij is the number of assignments ρ makes to variables in the
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jth block. Then

pj ≤ 2p−ij

2p − 2
= 2−ij

(
1 +

1

2p−1 − 1

)
.

Let iS =
∑
j∈S ij be the number of assignments ρ makes to variables in blocks in S

and kS = |{j ∈ S : ij > 0}| be the number of blocks in S in which ρ assigns at least
one value. Hence,

Pr
π∼ν[ρ ‖ π] < 1(

q
q−r
) ∑

S⊂[q],|S|=q−r
2−iS

(
1 +

1

2p−1 − 1

)kS
.(7.1)

Let k = |{j : ij > 0}| be the total number of blocks in which ρ assigns at least
one value. There are two cases: (I) k ≥ q/2 and (II) k < q/2.

Now consider case (I). Thus i ≥ q/2. In (7.1), we have kS ≤ q for every S. Thus,

Pr
π∼ν[ρ ‖ π] ≤ 1(

q
q−r
) ∑

S⊂[q],|S|=q−r
2−iS

(
1 +

1

2p−1 − 1

)q
.

It is easy to see that iS ≥ i− pr for every such S. Hence we get

1(
q
q−r
) ∑

S⊂[q],|S|=q−r
2−iS ≤ 2pr−i ≤ 2(2i)

β−i,

since pr ≤ qβ ≤ (2i)β in this case. Thus,

Pr
π∼ν[ρ ‖ π] ≤ 2(2i)

β−i
(
1 +

1

2p−1 − 1

)q
≤ 2(2i)

β−ieq
β ≤ 22

β(1+1/ ln 2)iβ−i,

since q1−β ≤ 2p−1 − 1 and i ≥ q/2. We upper bound the term 2β(1 + 1/ ln 2) iβ by
iα0 as follows. Since i ≥ w,

iα0−β ≥ wα0−β ≥ 3p/ ln 2(7.2)

by our assumption in the statement of the lemma. Since p ≥ 2, we have iα0−β > 6 >
2β(1+1/ ln 2), which is all that we need to derive that Prπ∼ν [ρ ‖ π] < 2i

α0−i in case I.
Next, we consider case (II). We must have k ≤ p1−β(2p−1 − 1) iβ , because other-

wise

i ≥ k > p1−β(2p−1 − 1)iβ ≥ p1−βq1−βiβ,

which implies i1−β > (pq)1−β and hence i > pq = m, which is impossible. Therefore

(
1 +

1

2p−1 − 1

)kS
≤ e

kS
2p−1−1 ≤ e

k

2p−1−1 ≤ ep
1−β iβ .

So,

Pr
π∼ν[ρ ‖ π] < ep

1−βiβS, where S =
1(
q
q−r
) ∑
S⊂[q],|S|=q−r

2−iS = ES∼U [2−iS ],

and U is the uniform distribution on subsets of [q] of size q − r.
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Now we continue by upper bounding S. For the moment let us assume that i is
divisible by p. If we view the blocks as the bins and the assigned coordinates in ρ
as balls placed in corresponding bins, then we observe that S can increase only if we
move one ball from a bin A of x > 0 balls to another bin B of y ≥ x balls. This is
because only those iS with S containing exactly one of these two bins are affected by
this move. Then, we can write the contribution of these S’s to S before the move as

S ′ =
∑

S⊂[q], |S|=q−r, S∩{A,B}=1

2−iS =
∑

S′⊂[q]−{A,B}, |S′|=q−r−1

2−iS′ (2−x + 2−y)

and after the move as

S ′′ =
∑

S′⊂[q]−{A,B}, |S′|=q−r−1

2−iS′ (2−x+1 + 2−y−1).

Since y ≥ x, S ′′ > S ′.
Hence without loss of generality and with the assumption that p divides i, we can

assume that the balls are distributed such that every bin is either full (containing p
balls) or empty. Hence k = i/p and for any 1 ≤ j ≤ q, either ij = 0 or ij = p.

Claim 7.1. If i is divisible by p, then S ≤ 2−i e2
p+1rk/q.

We first see how the claim suffices to prove the lemma. If i is not divisible by
p, then we note that S is a decreasing function of i and apply the claim for the first
i′ = p�i/p� > i−p positions set by ρ to obtain an upper bound of S < 2p−ie2

p+1ri/(pq)

that applies for all choices of i. The overall bound we obtain in this case is then

Pr
π∼ν[ρ ‖ π] < ep

1−βiβ2pe2
p+1ri/(pq)2−i = 2i

βp1−β/ ln 2+p+2p+1ri/(pq ln 2)2−i.

We now consider the exponent iβp1−β/ ln 2+p+2p+1ri/(pq ln 2) and show that it is at
most iα0 . For the first term observe that by (7.2), iα0−β ≥ 3p/ ln 2 so iβp1−β/ ln 2 ≤
iα0/3. For the second term again by (7.2) we have p ≤ iα0−β/3 ≤ iα0/3. For the last
term, since qα0 ≥ 6

ln 22
pr, we have

2p+1ri

pq ln 2
≤ qα0i

3pq
≤ i(pq)α0−1/3 ≤ iα0/3,

since i ≤ pq. Therefore in case (II) we have Prπ∼ν [ρ ‖ π] < 2i
α0−i as required. It only

remains to prove the claim.
Proof of Claim 7.1. Let T = {t | it = p} be the subset of k blocks assigned by ρ.

Therefore iS = |S ∩ T |p, where S is a random set of size q − r and T is a fixed set of
size k and both are in [q]. We have two subcases: (IIa) when k ≤ r and (IIb) when
q/2 ≥ k > r.

If k ≤ r, then we analyze S based on the number j of elements of S contained in
T . There are

(
k
j

)
choices of elements of T to choose from and q − r − j elements to

select from the q − k elements of T . Therefore

S =

∑k
j=0

(
r
j

)(
q−k
q−r−j

)
2−jp(

q
q−r
) .

Now since(
q−k
q−r−j

)
(
q
q−r
) =

(q − k)!(q − r)!r!

q!(q − r − j)!(r − (k − j))!
<

(q − r)jrk−j

(q − k)k
=
( r

q − k

)k(q − r

r

)j
,
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we can upper bound S by

( r

q − k

)k k∑
j=0

(
k

j

)
2−pj

(q − r

r

)j
=
( r

q − k

)k(
1 +

q − r

2pr

)k

= 2−pk
( r

q − k

)k(2pr + (q − r)

r

)k
= 2−i

(q + (2p − 1)r

q − k

)k
= 2−i

(
1 +

(2p − 1)r + k

q − k

)k
≤ 2−i

(
1 +

2pr

q − k

)k
≤ 2−i e2

prk/(q−k)

≤ 2−i e2
p+1rk/q,

since k ≤ q/2.
In the case that r ≤ k ≤ q/2 we observe that by symmetry we can equivalently

view the expectation S as the result of an experiment in which the set S of size q− r
is chosen first and the set T of size k is chosen uniformly at random. We analyze this
case based on the number j of elements of S contained in T . There are

(
r
j

)
choices of

elements of S to choose from and k − j elements to select from the q − r ≥ q/2 ≥ k
elements of S. Therefore

S =

∑r
j=0

(
r
j

)(
q−r
k−j
)
2−(k−j)p(

q
k

) .

Using the fact that(
q−r
k−j
)

(
q
k

) =
(q − r)!(q − k)!k!

q!(k − j)!(q − r − k + j)!
<

(q − k)r−jkj

(q − r)r
=
(q − k

q − r

)r( k

q − k

)j
,

we upper bound S by

2−pk
(q − k

q − r

)r r∑
j=0

(
r

j

)( 2pk

q − k

)j
= 2−pk

(q − k

q − r

)r(
1 +

2pk

(q − k)

)r

= 2−i
(q − k

q − r

)r(q + (2p − 1)k

q − k

)r
= 2−i

(q + (2p − 1)k

q − r

)r
= 2−i

(
1 +

(2p − 1)k + r

q − r

)r
≤ 2−i

(
1 +

2pk

q − r

)r
≤ 2−ie2

prk/(q−r)

≤ 2−ie2
p+1rk/q

since r ≤ q/2.
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8. Discussion. In this work we have proved the first communication complexity
lower bounds for AC0 functions for up to Θ(logn) players. For protocols of constant
error, functions computed by polynomial-size depth 4 circuits suffice, and for protocols
of error exponentially close to 1/2, functions computed by polynomial-size depth 6
circuits suffice. It is interesting to reduce the circuit depth required for these lower
bounds.

A particularly important function for further investigation is the depth 2 function
set intersection. Our new randomized lower bound for the set-intersection function
is nontrivial only for up to Θ(log1/3 n) players and is subpolynomial. It is consistent
with our current knowledge that the set-intersection function requires randomized
polynomial communication complexity even for Ω(logn) players. The difficulty of
extending our lower bound methods to prove stronger bounds for this function is our
inability to apply the “max-smooth” Lemma 3.3 to f =Or since the constant function
1 approximates Or on all but one point, and hence Or has zero (ε, α)-approximate
degree for any interesting α.

Appendix A. Other communication complexity bounds for AC0 circuits.
In section 5 we exhibit a depth 4 AC0 function that has nontrivial communication lower
bounds for up to Θ(logn) players and depth 2 and depth 5 AC0 functions that are in

NPcc
k − BPPcc

k for k up to Θ(log1/3 n) and Θ(logn), respectively. In this section we
prove a number of related results, namely, a depth 3 AC0 function that has nontrivial
communication lower bounds for up to Θ(

√
log n) players and a depth 4 AC0 function

that is in NPcc
k − BPPcc

k for k up to Θ(logn/ log logn).

A.1. Lower bounds for depth 3 AC0 functions for O(
√
logn) players.

Using the pattern selector function ψk,� the results of this section will let us obtain
results for simpler functions than with the other selector functions we consider. This
also allows us to review the details of the methods from prior work and highlight the
consequences of (ε, α)-approximate degree alone.

We first review the independence properties of the pattern tensor selection func-
tion ψk,� as captured using the definition of rψ from section 3.

Proposition A.1 (see [14, 25]). If ψ = ψk,�, then

Pr
y0,y1∈D(m)

ψ

[rψ(y
0,y1) = r] ≤

(
e(k − 1)m

r�

)r
.

Proof. In the case, D
(m)
ψ = D

(m)
ψk,�

is [�]m(k−1)s. zui = ψ(xi,y
u
∗i) for u ∈ {0, 1}k−1

will be independent iff yu
∗i and yv

∗i select different bits of xi for every u = v. This
will be true for u and v iff there is some j ∈ [k − 1] such that yuji = yvji. However,
since this must hold for every u and v, in particular those that agree everywhere
except for a single bit, it is necessary and sufficient for independence that y0ji = y1ji
for every j ∈ [k − 1]. Therefore rψk,�(y

0,y1) is the number of i ∈ [m] such that
y0ji = y1ji for some j ∈ [k − 1]. There are � elements in Dψk,�,j for each j so the

probability that y0ji = y1ji is 1/�. Therefore the probability that y0ji = y1ji for some
j ∈ [k − 1] is at most (k − 1)/�. By the independence of the choices for different

i ∈ [m] Pr
y0,y1∈D(m)

ψ

[rψ(y
0,y1) = r] ≤ (mr )(k−1

� )r ≤ ( em(k−1)
r� )r.

Remark. The lower bounds in [14, 25] use the above property of ψ = ψk,� and
follow the same general outline as in Theorem 3.5 but instead of being able to use
Lemma 3.7, they use the following bound. This is weaker because it only relies on
the assumption of large approximate degree of the function f .
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Proposition A.2 (see [14, 25]). If r = rψ(y
0,y1), then H(y0,y1) ≤ 2(2

k−1−1)r

22k−1m
.

In [14, 25], to prove the lower bound for Disjk,n, the function f is set to Orm

and ψ is ψk,�. By Proposition 2.3, d = deg5/6(Orm) ≥√m/12. Plugging the bound
in Proposition A.1 together with the bounds from Proposition 3.6 for r < d and from
Proposition A.2 when r ≥ d into the correlation inequality, it is not hard to show that

Rk1/3(f ◦ ψ) ≥ d/2k − O(1) for � > 22
k
kem
d . Hence for suitable k = O(log logn) they

derive lower bounds on Rk1/3(Disjk,n).
The key limitation of the above technique is the required lower bound on � which

follows from the weakness of the upper bound in Proposition A.2 and from the inef-
ficiency of the selector function ψk,�.

The following theorem yields the stronger results that follow from using the pat-
tern tensor selector and a function of large (5/6, α)-approximate degree rather than
simply large 5/6-approximate degree.

Theorem A.3. Let α : {0, . . . ,m} �→ R, 1 > α0 > 0, d > 0, such that α(r) ≤ rα0

for all r ≥ d. For any function f : {0, 1}m �→ {1,−1} with deg5/6,α(f) ≥ d, the

function f ◦ ψk,� defined on kn bits, where n = ms for s ≥ � 4e(k−1)m
d �k−1, requires

Rk1/3(f ◦ ψk,�) > d/2k − 3 for k ≤ (1− α0) log2 d.

Proof. By Proposition A.1, Pr
y0,y1∈D(m)

ψk,�

[rψk,�(y
0,y1) = r] ≤ ( e(k−1)m

r� )r so

m∑
r=d

2(2
k−1−1)α(r) Pr

y0,y1∈D(m)
ψk,�

[rψk,�(y
0,y1) = r] ≤

m∑
r=d

2(2
k−1−1)α(r) ·

(
e(k − 1)m

r�

)r
.

Since k ≤ (1−α0) log2 d, we have (2
k−1− 1)α(r) < d1−α0rα0 ≤ r for r ≥ d so the last

quantity is

≤
m∑
r=d

(
2e(k − 1)m

r�

)r

≤
m∑
r=d

2−r

< 2−(d−1) for � ≥ 4e(k−1)m
d .

Plugging this in to Theorem 3.5 we obtain that

Rk1/3(f ◦ ψ) ≥ log2(5/36)−
1

2k−1
log2 2

−(d−1) > d/2k − 3

as required.
Here we apply the (ε, α) degree bound for the Tribes function with Theorem A.3

for the pattern tensor selector function ψk,�. Note that

Tribesp,q ◦ ψk,�(x) = ∨i∈[q] ∧u∈[p] ∨u∈[s] ∧j∈[k] xj,u,v,i

is a depth 4 formula. Recall that Tribes
′
p,q is the dual of the Tribesp,q function

on m = pq bits and has the same (ε, α)-degree of Tribes
′
p,q is the same as that of

Tribesp,q for any ε and α. Observe also that

Tribes
′
p,q◦, ψk,�(x) = ∧i∈[q] ∨u∈[p], u∈[s] ∧j∈[k]xj,u,v,i
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is a depth 3 formula since the bottom layer of ∨ gates in Tribes
′
p,q can be combined

with the top layer of ψk,�.
Lemma A.4. Given any constants 0 < ε, α0, β < 1 with β > 1−ε and α0−β ≥ 0.1.

Let q > p ≥ 2 be integers such that 2�q1−β� < 2p ≤ 1
6q
α0+ε−1 ln 2. Let s = �8√3e(k−

1)pq(1+ε)/2�k−1 and n = pqs. Then Rk1/3(Tribesp,q ◦ψk,�) and Rk1/3(Tribes
′
p,q ◦ψk,�)

are both Ω(q(1−ε)/2/2k), which is Ω(n1/(4k)/2k) for k2 ≤ a log2 n for some constant
a > 0 depending only on α0, ε.

In particular, for any δ > 0, one can choose an ε > 0 and other parameters as
above to obtain a lower bound on Rk1/3(Tribesp,q ◦ ψk,�) and Rk1/3(Tribes

′
p,q ◦ ψk,�)

of Ω(n(1−δ)/(k+1)/(2k logn)).
Proof. We state the proof for Tribesp,q ◦ ψk,�. The same proof applies for

Tribes
′
p,q ◦ ψk,�.

By Lemma 4.4, for q sufficiently large Tribesp,q has (5/6, α)-approximate degree
d at least q(1−ε)/2/

√
12, where α(r) = rα0 for r ≥ d. Letting m = pq we observe that

4e(k − 1)m/d ≤ 8
√
3e(k − 1)m/q(1−ε)/2 and hence s ≥ �4e(k − 1)m/d�k−1. Then we

can apply Theorem A.3 to derive that Rk1/3(Tribesp,q ◦ψk,�) is Ω(q(1−ε)/2/2k), when
k ≤ b log2 q, for some constant b > 0 depending only on α0, ε.

We now bound the value of q as a function of n, k, and ε. Since ε > 0, n >
qs > q(k+1)/2 so q ≤ n2/(k+1). Therefore p < log2 q ≤ 2

k+1 log2 n. We now have

n = pqs ≤ (ck)k−1pkq1+(1+ε)(k−1)/2 for some constant c > 0 and thus

n ≤ q(k+1)/2+ε(k−1)/2(c′ log2 n)
k(A.1)

for some constant c′ > 0. Since ε < 1 it follows that qk ≥ n/(c′ log2 n)
k and there-

fore q ≥ n1/k/(c′ log2 n) so log2 q >
1
k log2 n − log2 log2 n − c′′ for some constant c′′.

Therefore there is an a depending on c′′ and b such that for q sufficiently large (which
implies that n is) the assumption k2 ≤ a log2 n implies that k ≤ b log2 q as required.

It remains to derive an expression for the complexity lower bound as a function
of n. By (A.1), q(1−ε)/2 is at least

n
1−ε

k+1+ε(k−1) /(c log2 n)
k(1−ε)

k+1+ε(k−1) ,

which is Ω(n1/(3k+1)/(logn)1/3) for ε < 1/2 and thus Ω(n1/(4k)) since k2 ≤ a log2 n
and n is sufficiently large. Moreover, since 1−ε

k+1+ε(k−1) is of the form 1/(k + 1) −
2εk/(k+ 1)2 +O(ε2/(k + 1)) we obtain the claimed asymptotic complexity bound as
ε approaches 0.

Choosing ε = 0.4, α0 = 0.9, and β = 0.8 in the above lemma we obtain the
following less cluttered lower bound statement.

Corollary A.5. Let p be a sufficiently large integer, q = 24p, and m = pq.
Let k ≥ 2 be an integer, s = �8√3e(k − 1)pq0.7�k−1, and n = ms = pqs. Then
Rk1/3(Tribesp,q ◦ψk,�) and Rk1/3(Tribes

′
p,q ◦ψk,�) are both Ω(q0.3/2k) for k2 ≤ b log2 n

for some constant b > 0 which is Ω(n1/(4k)/2k) when k is at most O(
√
logn).

A.2. A depth 4 AC0 functions in NPcc
k −BPPcc

k for k = Θ(logn/ log logn).

In this section we use a different selector function ψ, which we denote by ψ⊕b
k,�. This

function has s = b�k−1 and is the ⊕ of b independent copies of the pattern tensor
ψk,�. Therefore Dψ⊕b

k,�,j
is simply Db

ψ⊕b
k,�
,j
, the set of b-tuples of vectors in the domain
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for the pattern tensor. In particular for x ∈ {0, 1}s and y ∈ {0, 1}(k−1)s

ψ⊕b
k,�(x,y) =

b⊕
b′=1

�k−1∨
s′=1

⎛
⎝xb′s′ ∧ k−1∧

j=1

yjb′s′

⎞
⎠ .

This function clearly satisfies the selector function requirement that the output be
unbiased for each fixed value of y.

Although the definition of ψ⊕b
k,� uses the parity function, in applications we will

choose values of b that will be O(log n) and hence these parity functions will be
computable in AC0. We can express the parity of b items in a DNF formula as
an ∨ of 2b−1 conjunctions each of length b. In ψ⊕b

k,� the b inputs to these terms are

pattern tensors of the form ψk,b′ (x,y) =
∨�k−1

s′=1(xb′s′∧
∧k−1
j=1 yjb′s′) and their negations.

Because of the special form of the promise for the inputs to each of these pattern

tensors, we see that the negation of a pattern tensor is ψk,b′(x,y) =
∨�k−1

s′=1(xb′s′ ∧∧k−1
j=1 yjb′s′).

Therefore we can write ψ⊕b
k,� as a Σ4 formula where the fan-ins are, from top to

bottom, 2b−1, b, �k−1, and k. We could dually write parity using CNF form and
express ψ⊕b

k,� as a Π3 formula where the fan-ins are, from top to bottom, 2b−1, b�k−1,
and k.

When ψ is ψ⊕b
k,�, the variables ψ⊕b

k,�(xi,y
u
∗i) for u ∈ {0, 1}k−1 will be independent

if and only if for every u = v there is some b′ ∈ [b] such that yu
∗ib′ and yv

∗ib′ select
different bits of xib′ . (This follows since random variables ⊕b′∈[b]wb′ and ⊕b′∈[b]w

′
b′

are independent if there is some b′ such that wb′ and w
′
b′ are independent.) It follows

that in this case rψ⊕b
k,�

(y0,y1) is the number of i ∈ [m] such that for every b′ ∈ [b],

y0jib′ = y1jib′ for some j ∈ [k − 1].

The key to the improvement possible with ψ⊕b
k,� is that we can prove a sharper

analogue of Proposition A.1.
Lemma A.6. If ψ = ψ⊕b

k,�, then Pr
y0,y1∈D(m)

ψ

[rψ(y
0,y1) = r] ≤ (

m
r

)
(k−1

� )br ≤
( em(k−1)b

r�b
)r.

Proof. In this case rψ⊕b
k,�

(y0,y1) is the number of i ∈ [m] such that for every

b′ ∈ [b], y0jib′ = y1jib′ for some j ∈ [k − 1]. As in the case of Proposition A.1, for each

fixed i and b′ the probability that y0jib′ = y1jib′ for some j ∈ [k − 1] is bounded above

by (k−1)/�. Since the values of (y0,y1) are independently chosen for different values
of b′ ∈ [b] the probability for each fixed i that this holds for all b′ ∈ [b] is at most
(k−1

� )b. The bound follows by the independence of the choices of (y0,y1) for different
values of i ∈ [m].

Now we are ready to prove the main theorem for functions composed using this
selector function.

Theorem A.7. Let α : {0, . . . ,m} �→ R, 1 > α0 > 0, d > 0, such that α(r) ≤ rα0

for all r ≥ d. For any function f : {0, 1}m �→ {1,−1} with deg5/6,α(f) ≥ d, the

function f ◦ψ⊕b
k,� defined on kn bits, where n = ms and s = b�(k− 1)(4em/d)1/b�k−1,

requires that Rk1/3(f ◦ ψ⊕b
k,�) ≥ d/2k − 3 for k ≤ (1− α0) log2 d.

Proof. For ψ = ψ⊕b
k,�, by Lemma A.6,

m∑
r=d

2(2
k−1−1)α(r) Pr

y0,y1∈D(m)
ψ

[rψ(y
0,y1) = r] ≤

m∑
r=d

2(2
k−1−1)α(r)

(
em(k − 1)b

r�b

)r
.(A.2)
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Since k ≤ (1 − α0) log2 d, we have (2k−1 − 1)α(r) < d1−α0α(r) ≤ r for r ≥ d so
(A.2) is

≤
m∑
r=d

(
2em(k − 1)b

r�b

)r

≤
m∑
r=d

2−r

< 2−(d−1) for � ≥ (k − 1)(4em/d)1/b.

Plugging this into Theorem 3.5 we obtain that

Rk1/3(f ◦ ψ) ≥ log2(5/36)−
1

2k−1
log2 2

−(d−1) > d/2k − 3

as required since s = b�k−1.
We first directly apply Theorem A.7 to Tribesp,q ◦ ψ⊕b

k,� for suitable values of b.
Lemma A.8. Given any constants 0 < ε, α0, β < 1 with β > 1 − ε and α0 − β ≥

0.1. Let q > p ≥ 2 be integers such that 2�q1−β� < 2p ≤ 1
6q
α0+ε−1 ln 2. Let b ≥

�log2(16epq(1+ε)/2)� and s = b(2k)k−1. Then for q sufficiently large, Rk1/3(Tribesp,q ◦
ψ⊕b
k,�) is Ω(q(1−ε)/2/2k) for n = pqs and k ≤ 1

2 (1− α0)(1 − ε) log2 q − 2.
Proof. Let m = pq. By Lemma 4.4, for q sufficiently large, the (5/6, α)-

approximate degree d of Tribesp,q is at least q(1−ε)/2/
√
12, where α(r) = rα0 for

r ≥ d. Thus 4em/d ≤ 16epq(1+ε)/2, so by the choice of b we have (4em/d)1/b ≤ 2.
Therefore s = b(2k)k−1 ≥ b�(k−1)(4em/d)1/b�k−1. Also k ≤ 1

2 (1−α0)(1−ε) log2 q−2
implies that k ≤ (1−α0) log2 d. Applying Theorem A.7, we see that Rk1/3(Tribesp,q ◦
ψ⊕b
k,�) is Ω(q

(1−ε)/2/2k).
In particular we obtain the following.
Corollary A.9. Let p be a sufficiently large integer, q = 24p, k ≤ p/40, and

s = p(2k)k−1. Let n = pqs = p224p(2k)k−1 be the number of input bits given to each
player in computing F = Tribesp,q ◦ψ⊕b

k,�. Then R
k
1/3(F ) is Ω(q

0.3/2k) = Ω(26p/5/2k)

which is nΩ(1)/kO(k). Further, F has polynomial-size depth 4 AC0 formulas.
Proof. We apply Corollary 4.5 instead of Lemma 4.4. As noted above, ψ⊕b

k,� has Π3

formulas with fan-in, top to bottom, of 2b−1 = 2p−1, bs = ps, and k. Since Tribesp,q

is given by a Σ2 formula, Tribesp,q ◦ ψ⊕b
k,� is computable by a Σ4 formula with fan-in

top to bottom of q, p2p−1, ps, and k. The total formula size of F is np2p−1, which is
less than n5/4 log2 n.

Lemma A.10. Nk(Tribesp,q ◦ ψ⊕b
k,�) is O(log q + pb log s).

Proof. Using the Σ4 formula for ψ⊕b
k,� we see that Tribesp,q ◦ψ⊕b

k,� can be expressed

as a Σ6 formula, where the fan-ins from top to bottom are q, p, 2b−1, b, s, and k.
Observe that the fan-ins of the ∧ gates are p, b, and k, respectively. The players use
this formula to evaluate Tribesp,q ◦ ψ⊕b

k,�.
The 0th player (who holds x), guesses an accepting subtree of this formula and

sends both the description of the subtree and the values of the bits of x at the leaves
of this subtree. Player 1 can then evaluate the subtree and sends 1 if and only
if it evaluates to true. The total number of bits needed to specify the subtree is
log2 q + p[log2 2

b−1 + b log2 s] ≤ log2 q + pb(log2 s+ 1) and the number of bits of x at
the leaves is pb.

Corollary A.11. There is a function G in depth 4 AC0 such that G is in
NPcc

k − BPPcc
k for k log k ≤ a logn for some constant a > 0.
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Proof. Observe that F = Tribesp,q ◦ψ⊕b
k,� with the parameters from Corollary A.9

by Lemma A.10 has Nk(F ) that is O(log3 n log log n) and thus satisfies all the condi-
tions except for being read-once. To obtain the read-once property note that F is a
projection of the function G

q∨
u=1

p2p−1∧
v=1

ps∨
w=1

k∧
j=1

zj,u,v,w

and that the same O(log3 n) upper bound from Lemma A.10 applies equally well
to G.
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