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Abstract

We introduce a new approach to multiparty computation (MPC) bas-
ing it on homomorphic threshold crypto-systems. We show that given
keys for any sufficiently efficient system of this type, general MPC pro-
tocols for n players can be devised which are secure against an active
adversary that corrupts any minority of the players. The total number of
bits sent is O(nk|C|), where k is the security parameter and |C| is the size
of a (Boolean) circuit computing the function to be securely evaluated.
An earlier proposal by Franklin and Haber with the same complexity was
only secure for passive adversaries, while all earlier protocols with active
security had complexity at least quadratic in n. We give two examples
of threshold cryptosystems that can support our construction and lead
to the claimed complexities.
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1 Introduction

The problem of multiparty computation (MPC) dates back to the papers by
Yao [18] and Goldreich et al. [12]. What was proved there was basically that a
collection of n players can efficiently compute the value of an n-input function,
such that everyone learns the correct result, but no other new information.
More precisely, these protocols can be proved secure against a polynomial time
bounded adversary who can corrupt a set of less than n/2 players initially, and
then make them behave as he likes, we say that the adversary is active. Even
so, the adversary should not be able to prevent the correct result from being
computed and should learn nothing more than the result and the inputs of
corrupted players. Because the set of corrupted players is fixed from the start,
such an adversary is called static or non-adaptive.

There are several different proposals on how to define formally the security
of such protocols [15, 2, 4], but common to them all is the idea that security
means that the adversary’s view can be simulated efficiently by a machine that
has access to only those data that the adversary is entitled to know.

Proving correctness of a simulation in the case of [12] requires a complex-
ity assumption, such as existence of trapdoor one-way permutations. This is
because the model of communication considered there is such that the adver-
sary may see every message sent between players, this is sometimes known as
the cryptographic model. Later, unconditionally secure MPC protocols were
proposed by Ben-Or et al. and Chaum et al.[3, 5], in the model where private
channels are assumed between every pair of players. In this paper, however,
we are only interested in the cryptographic model with an active and static
adversary.

Over the years, several protocols have been proposed which, under specific
computational assumptions, improve the efficiency of general MPC, see for
instance [7, 11]. Virtually all proposals have been based on some form of
verifiable secret sharing (VSS), i.e., a protocol allowing a dealer to securely
distribute a secret value s among the players, where the dealer and/or some
of the players may be cheating. The basic paradigm that has been used is to
ensure that all inputs and intermediate values in the computation are VSS’ed,
since this prevents the adversary from causing the protocol to terminate early
or with incorrect results. In all these earlier protocols, the total number of
bits sent was Ω(n2k|C|), where n is the number of players, k is a security
parameter, and |C| is the size of a circuit computing the desired function.
Here, C may be a Boolean circuit, or an arithmetic circuit over a finite field,
depending on the protocol. We note that all complexities mentioned here
and in the next section are for computing deterministic functions. Handling
probabilistic functions introduces some overhead for generating secure random
bits, but this will be the same for all protocols we mention here, and so does
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not affect any comparisons we make.
In [10] Franklin and Haber propose a protocol for passive adversaries which

achieves complexity O(nk|C|). This protocol is not based on VSS (there is no
need since the adversary is passive) but instead on a so called joint encryption
scheme, where a ciphertext can only be decrypted with the help of all players,
but still the length of an encryption is independent of the number of players.

2 Our Results

In this paper, we present a new approach to building multiparty computation
protocols with active security, namely we start from any secure threshold
encryption scheme with certain extra homomorphic properties. This allows us
to avoid the need to VSS all values handled in the computation, and therefore
leads to more efficient protocols, as detailed below.

The MPC protocols we construct here can be proved secure against an
active and static adversary who corrupts any minority of the players. Like
the protocol of [10], our construction requires once and for all an initial phase
where keys for the threshold cryptosystem are set up. This can be done by a
trusted party, or by any general purpose MPC. We stress, however, that unlike
some earlier proposals for preprocessing in MPC, the complexity of this phase
does not depend on the number or the size of computations to be done later.
It is even possible to do a computation only for some subset of the players that
participated in the first phase, provided the subset is large enough compared
to the threshold that the cryptosystem was set up to handle. Moreover, since
supplying input values to the computation consists essentially of just sending
encryptions of these values, we can easily handle scenarios where one (large)
group of players supply inputs, whereas a different (smaller) group of players
does the actual computation. This will be secure, even from the point of view
of the input suppliers since our protocol automatically ensures that correctness
of the computation is publicly verifiable.

In the following we therefore focus on the complexity of the actual compu-
tation. In our protocol the computation can be done only by broadcasting a
number of messages, no encryption is needed to set up private channels. The
complexities we state are therefore simply the number of bits broadcast. This
does not invalidate comparison with earlier protocols because first, the same
measure was used in [10] and second, the earlier protocols with active security
have complexity quadratic in n even if one only counts the bits broadcast. For
the most efficient version of our protocol which requires the random oracle
model to prove security, the complexity is O(nk|C|) bits. To the best of our
knowledge, this is the most message-efficient general MPC protocol proposed
to date for active adversaries.

The random oracle assumption can be removed at the cost of slightly larger
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complexity, in this case we can obtain O(n ·max(n, k)|C|). This is still better
than the Ω(n2k|C|) of earlier protocols, and moreover for most realistic values
of the parameters, we will have k ≥ n, in which case there is no difference
between the two models.

Here, C is an arithmetic circuit over a ring R determined by the crypto-
system used, e.g., R = Zn for an RSA modulus n. While such circuits can
simulate any Boolean circuit with a small constant factor overhead, this also
opens the possibility of building an ad-hoc circuit over R for the desired func-
tion, possibly exploiting the fact that with a large R, we can manipulate many
bits in one arithmetic operation.

The complexities given here assume existence of sufficiently efficient thresh-
old cryptosystems. We give two examples of such systems with the right prop-
erties. One is based on Paillier’s cryptosystem [16], the other one is a variant
of Franklin and Haber’s cryptosystem [10], which is secure assuming that
both the quadratic residuosity assumption and the decisional Diffie-Hellman
assumption are true (this is essentially the same assumption as the one made
in [10]). While the first example is known (from [8] and independently in [9]),
the second is new and may be of independent interest.

Franklin and Haber in [10] left as an open problem to study the com-
munication requirements for active adversaries. We can now say that under
the same assumption as theirs, protection against active adversaries comes
essentially for free.

2.1 Road map to the Paper

In the following, we first give a brief explanation of the main ideas in Section
3. Some notation and the model we use for proving security of protocols is
presented in Sections 4 and 5. Sections 6, 7 and 8 state more formally the
properties needed from the sub-protocols and the encryption scheme, and de-
scribe and prove the protocols we can build based on these properties. Finally
Section 9 give our examples of threshold encryption schemes that could be
used as basis of our construction.

For an overview of the basic ideas only, one can read Sections 3 and 9
separately from the rest of the paper.

3 An Informal Description

In this section, we give a completely informal introduction to some main ideas.
All the concepts introduced here will be treated more formally later in the pa-
per. We will assume that from the start, the following scenario has been
established: we have a semantically secure threshold public-key system given,
i.e., there is a public encryption key pk known by all players, while the match-
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ing private decryption key has been shared among the players, such that each
player holds a share of it.

The message space of the cryptosystem is assumed to be a ring R. In
practice R might be Zn for some RSA modulus n. For a plaintext a ∈ R, we
let ā denote an encryption of a. We then require certain homomorphic prop-
erties: from encryptions ā, b̄, anyone can easily compute (deterministically)
an encryption of a + b, which we denote ā � b̄. We also require that from an
encryption ā and a constant α ∈ R, it is easy to compute a random encryption
of αa.

Finally we assume that three secure (and sufficiently efficient) sub-protocols
are available:

Proving you know a plaintext If Pi has created an encryption ā, he can
give a zero-knowledge proof of knowledge that he knows a (or more
accurately, that he knows a and a witness to he fact that the plaintext
is a).

Proving multiplications correct Assume Pi is given an encryption ā, chooses
a constant α, computes a random encryption αa and broadcasts ᾱ, αa.
He can then give a zero-knowledge proof that indeed αa contains the
product of the values contained in ᾱ and ā.

Threshold decryption For the third sub-protocol, we have common input
pk and an encryption ā, in addition every player also uses his share of
the private key as input. The protocol computes securely a as output
for everyone.

We can then sketch how to perform securely a computation specified as a
circuit doing additions and multiplications in R. Note that this allows us to
simulate a Boolean circuit in a straightforward way using 0/1 values in R.

The MPC protocol would simply start by having each player publish en-
cryptions of his input values and give zero-knowledge proofs that he knows
these values and also, if need be, that the values are 0 or 1 if we are simulating
a Boolena circuit. Then any operation involving addition or multiplication
by constants can be performed with no interaction: if all players know en-
cryptions ā, b̄ of input values to an addition gate, all players can immediately
compute an encryption of the output a + b. This leaves only the following
problem:

Given encryptions ā, b̄ (where it may be the case that no players knows a
nor b), compute securely an encryption of c = ab. This can be done by the
following protocol:

1. Each player Pi chooses at random a value di ∈ R, broadcasts an encryp-
tion d̄i and proves that he knows di.
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2. Let d = d1 + . . . + dn. All players can now compute d̄1 � ... � d̄n, an
encryption of a + d. This ciphertext is decrypted using the third sub-
protocol, so all players know a + d.

3. Player P1 sets a1 = (a + d) − d1, all other players Pi set ai = −di.
Note that every player can compute an encryption of each ai, and that
a = a1 + . . . + an.

4. Each Pi broadcasts an encryption aib, and we invoke the second sub-
protocol with inputs b̄, āi and āib.

5. Let C be the set of players for which the previous step succeeded, and let
F be the complement of C. We now first decrypt the ciphertext �i∈F āi,
giving us the value aF =

∑
i∈F ai. This allows everyone to compute an

encryption aF b. From this, and {aib| i ∈ C}, all players can compute an
encryption (�i∈Caib) � aF b, which is indeed an encryption of ab.

This protocol is a somewhat more efficient version of a related idea from
[10], with protection against faults added in the final step.

At the final stage we know encryptions of the output values, which we
can just decrypt. Intuitively this is secure if the encryption is secure because,
other than the outputs, only random values and values already known to the
adversary are ever decrypted. We will give proofs of this intuition in the
following.

Note also that this by no means shows the complexities we claimed earlier.
This depends entirely on the efficiency of the encryption scheme and the sub-
protocols. We will substantiate this in the final sections.

4 Preliminaries and Notation

Let A be a probabilistic polynomial time (PPT) algorithm, which on input
x ∈ {0, 1}∗ and random bits r ∈ {0, 1}p(|x|) for some polynomial p(·) outputs a
value y ∈ {0, 1}∗. We write y ← A(x)[r] to denote that y should be computed
by running A on input x and random bits r and write y = A(x)[r] to denote
that y equals a value computed like this. By y ← A(x) we mean that y
should be computed by running A on input x and random bits r, where r is
chosen uniformly random in {0, 1}p(|x|). By y ∈ A(x) we mean that y is among
the values, that A(x) might output with non-zero probability. I.e. there exists
r ∈ {0, 1}p(|x|) such that y = A(x)[r]. We use N to denote the set {1, 2, . . . , n}
and by Q for Q ⊂ N we denote the set N \Q.

A distribution ensemble is a sequence X = {X(k, a)}k∈N ,a∈D, where k is
the security parameter, D is some arbitrary domain, typically {0, 1}∗, and
X(k, a) is a random variable. We call D the index set.

We have three primary notions for comparisons of distribution ensembles.
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Definition 1 (Equality of ensembles) We say that two distribution en-
sembles X and Y indexed by D are equal if for all k and all a ∈ D we have
that X(k, a) and Y (k, a) are identically distributed. We write X

d= Y .

Definition 2 (Statistical indistinguishability of ensembles) Let δ : N →
[0, 1]. We say that two distribution ensembles X and Y indexed by D have
statistical distance at most δ if there exists k0 such that for every k > k0 and
all a ∈ D we have that

1
2

∑

y∈{0,1}∗
|Pr[X(k, a) = y]− Pr[Y (k, a) = y]| < δ(k)

If X and Y have statistical distance at most δ for some negligible δ then we
say that X and Y are statistically indistinguishable and write X

s≈ Y .

Definition 3 (Computational indistinguishability of ensembles [13, 19])
Let δ : N → [0, 1]. Let D be any TM which is PPT in its first input, let k ∈N ,
a ∈ D, and let w ∈ {0, 1}∗ be some arbitrary auxiliary input. By the advantage
of D on these inputs we mean

advD(k, a,w) = |Pr[D(1k, a, w,X(k, a)) = 1]− Pr[D(1k, a, w, Y (k, a)) = 1]|

where the probabilities are taken over the random variables X(k, a) and Y (k, a)
and the random choices of D.

We say that two distribution ensembles X and Y indexed by D have computational
distance at most δ if for every adversary D, there exists kD such that for every
k > kD, all a ∈ D, w ∈ {0, 1}∗ we have that

advD(k, a,w) < δ(k)

If X and Y have computational distance at most δ for some negligible δ then
we say that X and Y are computationally indistinguishable and write X

c≈ Y .

5 The MPC Model

We use the MPC model from [4] which we refer to for a more complete de-
scription of the model. Here we only mention the setting in which we use it,
our notational conventions, and some small extensions to the model.

The Real-Life Model Let π be a n-party protocol. We look at the sit-
uation, where the protocol is executed on an open broadcast network with
rushing in the presence of an active static adversary A. As a small extension
to the model in [4] we allow each party Pi to receive a secret input xs

i and a
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public input xp
i and return a secret output ys

i and a public output yp
i . The

adversary receives the public input and output of all parties.
Let ~x = (xs

1, x
p
1, . . . , xs

n, xp
n) be the parties’ input, let ~r = (r1, . . . , rn, rA)

be the parties’ and the adversary’s random input, let C ⊂ N be the corrupted
parties, and let a ∈ {0, 1}∗ be the adversary’s auxiliary input.

By ADVRπ,A(k, ~x,C, a,~r) and EXECπ,A(k, ~x,C, a,~r)i we denote the out-
put of the adversary A resp. the output of party Pi after A attacking a real-life
execution of the protocol π with the given input. Let

EXECπ,A(k, ~x,C, a,~r) = ( ADVRπ,A(k, ~x,C, a,~r),
EXECπ,A(k, ~x,C, a,~r)1,
. . . ,

EXECπ,A(k, ~x,C, a,~r)n)

and denote by EXECπ,A(k, ~x,C, a) the random variable EXECπ,A(k, ~x,C, a,~r),
where ~r is chosen uniformly random.

Let Γ be a monotone adversary structure and define a distribution ensemble
with security parameter k and index (~x,C, a) by

EXECπ,A = {EXECπ,A(k, ~x,C, a)}k∈N ,~x∈({0,1}∗)2n,C∈Γ,a∈{0,1}∗ .

The Ideal Model Let f : N × ({0, 1}∗)2n × {0, 1}∗ → ({0, 1}∗)2n be a
probabilistic n-party function computable in PPT. We name the inputs and
outputs as follows (ys

1, y
p
1 , . . . , ys

n, yp
n) ← f(k, xs

1, x
p
1, . . . , xs

n, xp
n, r), where k is

the security parameter and r is the random input. In the ideal model the
parties send their inputs to a incorruptible trusted party T which draws r
uniformly random, computes f on the inputs and returns to the party Pi its
output share (ys

i , y
p
i ). The execution takes place in the presence of an active

static ideal-model adversary S. Again the adversary sees the values xp
i and yp

i

for all parties — we imagine that xp
i and yp

i are send over an open point-to-
point channel whereas xs

i and ys
i are send over a secure point-to-point channel.

We let

IDEALf,S(k, ~x,C, a,~r) = ( ADVRf,S(k, ~x,C, a,~r),
IDEALf,S(k, ~x,C, a,~r)1,
. . . ,

IDEALf,S(k, ~x,C, a,~r)n)

denote the collective output distribution of the parties and the adversary and
define a distribution ensemble by

IDEALf,S = {IDEALf,S(k, ~x,C, a)}k∈N ,~x∈({0,1}∗)2n,C∈Γ,a∈{0,1}∗ .
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The Hybrid Model In the (g1, . . . , gl)-hybrid model the execution of a
protocol π proceeds as in the real-life model, except that the parties have
access to a trusted party T for evaluating the n-party functions g1, . . . , gl.
These ideal evaluations proceeds as in the ideal-model1. We define as for the
other models a distribution ensemble

EXECg1,... ,gl
π,A = {EXECg1,... ,gl

π,A (k, ~x,C, a)}k∈N ,~x∈({0,1}∗)2n,C∈Γ,a∈{0,1}∗ .

Security We now define security by requiring, that a real-life execution or
(g1, . . . , gl)-hybrid execution of a protocol π for computing a function f should
reveal no more information to an adversary than do the ideal evaluation of f .
To unify terminology let us denote the real-life model by the ()-hybrid model.

Definition 4 Let f be a n-party function, let π be a n-party protocol, and let
Γ be a monotone adversary structure for n parties. We say, that π Γ-securely
evaluates f in the (g1, . . . , gl)-hybrid model if for any active static (g1, . . . , gl)-
hybrid adversary A, which corrupts only subsets C ∈ Γ, there exists a static
active ideal-model adversary S such that IDEALf,S

c≈ EXECg1,... ,gl
π,A .

Security Preserving Modular Composition In [4] a modular composi-
tion operation was defined and it was proven that it is security preserving.
What this basicly means is the following. Assume that π Γ-securely evalu-
ates f in the (g1, . . . , gl)-hybrid model and πgi Γ-securely evaluates gi in the
(g1, . . . , gi−1, gi+1, . . . , gl)-hybrid model. Then the protocol π′, which is π
with oracle calls to gi replaced by executions of the protocol πgi , Γ-securely
evaluates f in the (g1, . . . , gi−1, gi+1, . . . , gl)-hybrid model. In this way oracle
calls can by replaced be protocol executions to construct a protocol for f in
the real-life model.

For a detailed description of the model see [4]. We describe some extensions
to the model.

The Random Oracle Model In the random oracle model the parties have
access to a trusted party, RO, which on any input x ∈ {0, 1}∗ returns a
uniformly random bitstring from some domain, say {0, 1}k , where k is the
security parameter. If the oracle is queried on the same string again it answers
with the same output. The queries and answers are communicated over secure
point-to-point channels.

It can be verified that the modular composition operation in the MPC
model in [4] is still security preserving in the random oracle model. The only
difference is that the involved distributions are now taken also over the random
choices of the oracle.

1The ideal-model is in fact just the f -hybrid model, where the parties make just one
oracle call with their protocol inputs and return the result of the oracle call.
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Restricted Input Domains The definition in [4] refers to functions where
the input domain of the parties is ({0, 1}∗)2n. Often we can only implement
a protocol securely on a restricted domain. In [4] it is noted that if we prove
the protocol secure on a restricted domain D ⊂ ({0, 1}∗)2n and can prove that
the protocol is always called with inputs from that domain, then the security
preserving composition theorem still holds.

We will in the specification use the terms common input and common output
to denote a public input resp. public output that all honest parties agree on.
We cannot specify that a protocol expects a common input using a restriction
of the form D ⊂ ({0, 1}∗)2n. We can only express that e.g. a majority input the
same value. This majority could however consist mostly of corrupted parties
allowing all honest parties to disagree on the common input. We therefore
allow restrictions of the form D ⊂ Γ × ({0, 1}∗)2n to allow to say that e.g.
all honest parties’ input the same value to the protocol. We then restrict the
distribution ensembles IDEALf,S and EXECg1,... ,gl

π,A to be over indexes (~x,C, a),
where (C, ~x) ∈ D. If we prove the protocol secure in contexts where (C, ~x) ∈ D,
and make sure it is only called in such contexts, then it is fairly straight forward
to check that the modular composition operation is still security preserving.

6 Σ-Protocols

In this section, we look at two-party zero-knowledge protocols of a particular
form. The auxiliary protocols for proving plaintext knowledge and multipli-
cation correctness will be assumed to be of this form. Assume we have a
binary relation R consisting of pairs (x,w), where we think of x as a (public)
instance of a problem and w as a witness, a solution to the instance. Assume
also that we have a 3-move proof of knowledge for R, where the verifier sends
a random challenge as the second message. More precisely, this protocol gets
a string x as common input for prover and verifier, whereas the prover gets
as private input w such that (x,w) ∈ R. Conversations in the protocol are
of form (a, e, z), where the prover chooses a, z. There is a security parameter
k, such that the length of both x and e are linear in k. We will only look at
protocols where also the length of a and z are linear in k. Such a protocol is
said to be a Σ-protocol if we have the following:

• The protocol is complete: if the prover gets a correct w as input, the
verifier always accepts.

• The protocol is special honest verifier zero-knowledge: from a challenge
value e, one can efficiently generate a correctly distributed conversation
(a, e, z).

• A cheating prover can answer only one of the possible challenges: more
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precisely, from the common input x and any pair of accepting conversa-
tions (a, e, z), (a, e′ , z′) where e 6= e′, one can compute efficiently w such
that (x,w) ∈ R.

It is easy to see that the definition of Σ-protocols is closed under parallel
composition. One can also prove that any Σ-protocol satisfies the standard
definition of knowledge soundness with knowledge error 2−t where t is the
challenge length, but we will not use this explicitly in the following.

We now explain how we can use Σ-protocols in our multiparty setting,
both in the random oracle model, and in the real-life model.

6.1 The Random oracle model

In the random oracle model, we use a variant of the Fiat-Shamir heuristic,
where the challenge is computed as an output from the oracle H.

More precisely, in our global protocol there are a number of proof phases.
In each such phase, each player in some subset is supposed to give a proof of
knowledge where Pi uses as public an xi which is known to all players at this
point. We then do the following:

1. Each Pi computes and broadcasts the first message ai in his proof. If Pi

is not doing a proof in this phase, he broadcasts a random value for ai.
We let A be the concatenation of all the ai’s.

2. Each Pi who does a proof in this phase computes a challenge ei =
H(ID(Pi), A), where ID(Pi) is the (unique) identity of Pi, and broad-
casts the answer zi to challenge ei

3. Every player can check every proof given by recomputing ei and verifying
that ai, ei, zi is accepting in the original Σ-protocol.

It is clear that such a proof phase has communication complexity no larger
than n times the complexity of a single Σ-protocol, i.e. O(nk) bits. We now
describe a procedure SΣ that will be used as subrutine in the simulation of our
overall protocol. It interacts with an adversary against the overall protocol,
starting from the xi’s and a state for the adversary.

It will apparent later that for every Σ-protocol we use, the first message is
uniformly distributed in a domain of size 2Ω(k). Also, we can assume without
loss of generality that the length of a challenge is k bits. Assuming this, SΣ

will have the following properties:

• SΣ runs in expected polynomial time and outputs a view for the adver-
sary of a proof phase that is statistically indistinguishable from a view
in a real execution.
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• Except with negligible probability, the following holds: for every corrupt
player Pi, when the output view contains a correct proof from Pi, SΣ

also outputs a valid witness wi with respect to xi.

The algorithm of SΣ is as follows:

1. For each Pi: if Pi is honest, run the honest verifier simulator to make
a conversation (ai, ei, zi), if Pi is corrupt, receive ai from the adversary.
Note that, except with negligible probability, the simulator has defined
none of the values H(ID(Pi), A) earlier, so it is free to do so in the
following. We stop and give up if this is not the case.

2. For each Pi do:

if Pi is honest, define the output of H on input ID(Pi), A to be ei, send
zi on behalf of this player and go on to next Pi.

If Pi is corrupt, define a random value ei as H(ID(Pi), A). Receive zi

from the adversary. If (ai,H(ID(Pi), A), zi) is not an accepting con-
versation, go on to next Pi. Otherwise, save the current state of the
adversary and execute the following loop (to try to extract a witness for
xi). After the loop is finished, restore the state of the adversary and go
on to next Pi.

(a) Rewind the adversary to the point just before it asked for the value
of H(ID(Pi), A). This point is with overwhelming probability after
A was produced and before zi is sent. If this is not the case, we
give up and stop.

(b) Define a new random value e′i as H(ID(Pi), A), and receive z′i from
the adversary.

(c) If e′i 6= ei and (ai, e
′
i, z

′
i) is accepting, compute a witness for xi by

the special soundness property and exit the loop. If the loop has
now done 2k iterations, also exit. Otherwise go to 2a.

It is clear by inspection that whenever we do not give up, we produce a
correctly distributed view for the adversary. So the simulation is statistically
good since we give up with negligible probability.

For the running time, assume Pi is corrupt and let ε be the probability
that the adversary outputs a correct zi given some fixed but arbitrary value
of the adversary’s view up to the quiry for H(ID(Pi), A). Observe that the
contribution from the loop to the running time is ε times the expected number
of times the loop is executed before terminating. For any ε > 0, it can be seen
that the expected number of times around the loop is O(1/ε) (note that the
minimal value of ε is 2−k), so the overall expected running time is polynomial.
As for the probability of computing correct witnesses, observe that we do
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not have to worry about cases where ε is small, say ε < 2−k/2. However,
is ε ≥ 2−k/2, the probability that the loop runs 2k times without finding a
witness is negligible, by Markov’s inequality.

The n-party version constructed this way from the Σ-protocol for proof of
plaintext knowledge will be called the POPK protocol and the n-party version
of the proof of correct multiplication will be called the POCM protocol. The
corresponding versions of our general simulation rutine SΣ for these protocols
will be called SPOPK, SPOCM.

6.1.1 Doing without a Random Oracle

If we only care about soundness, it is clear that we can do without the random
oracle, if for each proof to be given, we let the prover do the original Σ-protocol
independently with each of the other players, but this corresponds to giving n
times a proof of the same statement and costs O(nk) bits of communication.
This will mean that the overall protocol will have complexity quadratic in n.
Can we do better? It may seem tempting to make a mutually trusted random
challenge by having each player broadcast an encryption and decrypt the sum
of all these. But this would lead to circularity because secure and efficient
decryption already requires zero-knowledge proofs of the kind we are trying
to construct. So here is one simple way of doing better: let m = 3max(n, k).
We can assume without loss of generality that the basic Σ-protocol allows
challenges of length m bits (if not, just repeat it in parallel a number of
times). Write m as m = tn + r. Then, we create an m bit challenge by letting
each player choose t bits, except P1 who chooses t + r bits, and concatenate
all these strings. It is easy to see that with this construction, at least k bits
of a challenge are chosen by honest players and are therefore random, since a
majority of players are assumed to be honest. In fact, this this is completely
equivalent to doing a Σ-protocol where the challenge length is the number of
bits chosen by honest players. The cost of doing such a proof is O(max(n, k))
bits.

The modified protocol we just described is sound, but not zero-knowledge.
One way to make a zero-knowledge protocol without severe extra cost is to use
a standard trick which in our context works as follows. We can assume that
the KD sub-protocol returns as public output (pk, u), where u is a random
encryption of a uniformly random element u from Rpk. This guarantees that
u is unknown to all parties. Alternatively we could generate u after the key
generation phase using an interactive protocol among the players. A possibility
for the latter case is to have each player publish an encryption ūi and give a
zero-knowledge proof that he knows ui. To avoid circularity here, this must
be done using rewindable zero-knowledge with short challenges. This does not
hurt efficiency since it only needs to be done once and for all. We could then
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compute u as ū1 � . . . � ūn.
Later when a prover claims some statement, we ask him to show (using a

witness indistinguishable proof) that his statement is true, or that he knows
u. Since we already assume that we have a Σ-protocol for proof of plaintext
knowledge, this can be done efficiently by techniques from [6] and costs only a
constant factor in efficiency. It will preserve soundness, since the prover needs
to break the encryption to ”prove” a false statement. For zero-knowledge
observe that a simulator can choose to learn u. With the knowledge of u,
simulation of the subsequent proofs becomes trivial. If u is supplied by the
KD protocol, the simulator can simulate the KD by generating correct keys
and an encryption u, where u is known to the simulator. If u is computed as
ū1 � . . . � ūn it is shown in Section 8.1.2 how the simulator learns u.

In the following we describe the protocols in the random oracle model
and prove security in the random oracle model. Using the construction of
n-party zero-knowledge protocols from Σ-protocols describe here, the results
carry over to the real-life model, as follows: Along the lines we just sketched it
is straightforward to build a simulation subrutine for the real-life construction
with essentially the same functionality as SΣ had in the random oracle model.
Using this subrutine in our simulator for the global protocol in stead of SΣ

directly produces a simulator for the real life model. It can be proved to work
by the same arguments as for the random oracle model.

7 Homomorphic Threshold Encryption

Definition 5 (Threshold Encryption Scheme) A tuple (K,KD, R,E,Decrypt)
is called a threshold encryption scheme with access structure Π 2 and security
parameter k if the following holds.

Key Generation The keyspace K = {Kk}k∈N is a sequence of finite sets
of keys of the form (pk, sk1, . . . , skn). We call pk the public key and
call ski a private key share. KD is a Π-secure protocol, which on security
parameter k as input computes as common output pk and as secret output
ski for party Pi, where (pk, sk1, . . . , skn) is uniform over Kk.

We call Q ⊂ N a qualified set of indices if Q ∈ Π and call it a non-qualified
set of indices otherwise. By skC for C ⊂ N we denote the set {ski}i∈C .

Message Sampling There exists a PPT algorithm R, which on input pk (a
public key) outputs a uniformly random element from a set Rpk. We
write m← Rpk.

2An access structure is a subset Π ⊂ 2N of all subset of the parties which is closed under
superset, i.e. if C ∈ Γ and C ⊂ C′ ⊂ N , then C′ ∈ Γ. The complement (in 2N ) of Π is
named Π and is of course closed under subset and is therefore an adversary structure for n
parties.
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Encryption There exists a PPT algorithm E, which on input pk and m ∈
Rpk outputs an encryption m ← Epk(m) of m. By Cpk we denote the
set of possible encryptions for the public key pk.

Decryption There exists a Π-secure protocol Decrypt which on common in-
put (m,pk) and secret input ski for the honest party Pi, where ski is the
secret key share of the public key pk and m is any encryption under the
public key pk, returns the common output m.

Threshold semantic security Let A be any PPT algorithm, which on input
1k, C ∈ Π, public key pk, and corresponding private keys skC outputs
two messages m0,m1 ∈ Rpk and some arbitrary value s ∈ {0, 1}∗. Let
Xi(k,C) denote the distribution of (s, ci), where (pk, sk1, . . . , skn) is
uniformly random over Kk, (m0,m1, s) ← A(1k, C, pk, skC), and ci ←
Epk(mi). Then Xi = {Xi(k,C)}k∈N ,C∈Π for i = 0, 1 are distribution

ensembles over the index set Π. We require that X0
c≈ X1.

In addition to the threshold properties we need the following properties:

Message ring For all public keys pk, the message space Rpk is a ring in which
we can compute efficiently using the public key only. We denote the ring
(Rpk, ·pk,+pk, 0pk, 1pk).

+pk-homomorphic There exists a PPT algorithm, which given public key pk
and encryptions m1 ∈ Epk(m1) and m2 ∈ Epk(m2) outputs a uniquely
determined encryption m ∈ Epk(m1 +pk m2). We write m← m1 �pk m2.
Further more there exists a similar algorithm for subtraction: m1 �pk

m2 ∈ Epk(m1 −m2).

Multiplication by constant There exists a PPT algorithm, which on input
pk, m1 ∈ Rpk and m2 ∈ Epk(m2) outputs a random encryption m ←
Epk(m1 ·pk m2). We assume that we can multiply a constant from both
left and right. We write m ← m1 �pk m2 ∈ Epk(m1 ·pk m2) and m ←
m1 �pk m2 ∈ Epk(m1 ·pk m2).

Thus m1�pk m2 is not determined from m1 and m2. We let m1�pk m2[r]
denote the unique encryption produced by using r as random coins in
the multiplication-by-constant algorithm.

Addition by constant There exists a PPT algorithm, which on input pk,
m1 ∈ Rpk and m2 ∈ Epk(m2) outputs a uniquely determined encryption
m ∈ Epk(m1 +pk m2). We write m← m1 �pk m2.

Blindable There exists a PPT algorithm Blind, which on input pk, m ∈
Epk(m) outputs an encryption m′ ∈ Epk(m) such that m′ d= Epk(m)[r],
where r is chosen uniformly random.
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Check of ciphertextness Given y ∈ {0, 1}∗ and pk where pk is a public key
it is easy to check whether y ∈ Cpk

3.

Proof of plaintext knowledge Let L1 = {(pk, y)|pk is a public key ∧ y ∈
Cpk}. There exists a Σ-protocol for proving the relation over L1 ×
({0, 1}∗)2 given by (pk, y) ∼ (x, r)⇔ x ∈ Rpk ∧ y = Epk(x)[r] .

Proof of correct multiplication Let L2 = {(pk, x, y, z)|pk is a public key∧
x, y, z ∈ Cpk}. There exists a Σ-protocol for proving the relation over
L2 × ({0, 1}∗)3 given by (pk, x, y, z) ∼ (d, r1, r2)⇔ y = Epk(d)[r1] ∧ z =
(d �pk x)[r2] .

We will usually drop the pk index when the key is given by the context or
when stating something, that is true for all keys.

Remark 1 The existence of the algorithm for addition with a constant is
given by the additive homomorphism. Simply let m1 � m2 = E(m1)[r] � m2

for some fixed random string r.

Remark 2 If 1pk spans all of the additive group of Rpk and we can easily find
n ∈ Z such that n1pk = m for m ∈ Rpk, then the algorithm for multiplying by
a constant can be implemented using a double and add algorithm combined
with the blinding algorithm.

8 General MPC from Threshold Homomorphic En-
cryption

Assume that we have a threshold homomorphic encryption schema as de-
scribed in Section 7. In this section we describe the FuncEvalf protocol which
securely computes any PPT computable n-party f using an arithmetic circuit
over the rings Rpk by computing on encrypted values. We focus on functions
(y1, . . . , yn)← f(x1, . . . , xn, r) with private inputs and outputs only and un-
restricted domains.

We will describe and prove the protocols in the hybrid model where an
ideal implementation (oracle) for decryption is given. By the composition
theorem, this can be replaced by the secure implementation of decryption we
have assumed.

3This check can be either directly or using a Σ-protocol: we will always use the test in a
context, where a party publishes an encryption and then the recipients either check locally
that y ∈ Cpk or the publisher proves it using a Σ-protocol. In the following sections we
adopt the terminology to the case, where the recipients can perform the test locally. Details
for the case where a Σ-protocol is used is easy extractable.
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Since our encryption scheme is only +-homomorphic we will be needing a
sub-protocol Mult for computing an encryption from E(m1m2) given encryp-
tions from E(m1) and E(m2). We start by constructing the Mult sub-protocol.

Besides the Mult sub-protocol we will need a sub-protocol called Private-
Decrypt which is used to decrypt an encryption a in a way that only one
specific party learns a.

After describing these sub-protocols and proving some results about their
security, the remaining protocol and its security follows fairly directly.

In all sub-protocols we give as common input a set N ′ ⊂ N . This is
the subset of parties that is still participating in the computation. The set
X = N \ N ′ is called the excluded parties. Parties are excluded if they
are caught deviating from the protocol. It is always the case that X ⊂ C,
where C is the corrupted parties. At the start and termination of all sub-
protocols all honest parties agree on the set N ′ of participating parties. This
is ensured by the protocols. We will not mention N ′ explicitly as input to all
sub-protocols. Neither will we at all points where a party can deviate from
the protocol mention that any party deviating should be excluded. E.g. will
obvious syntactic errors in the broadcasted data automatically exclude a party
from the remaining computation.

8.1 Some Sub-Protocols

8.1.1 The ASS (Additive Secret Sharing) Protocol

The first and crucial observation is that given a threshold homomorphic en-
cryption scheme n parties can efficiently additively secret share an unknown
value a ∈ Rpk given an encryption a ∈ Epk(a). We call the protocol for doing
this ASS.

Description The participating parties N ′ know a public encryption a ∈
Epk(a) for some possible unknown a ∈ Rpk. For i ∈ N ′ the party Pi is to
receive a secret share ai ∈ Rpk such that a =

∑
i∈N ′ ai. However, some of

the parties in N ′ might try to cheat. We define N (3) to be N ′ without those
parties caught cheating and require that a is shared between the parties in
N (3). Further more all parties output a common value A = {ai}i∈N(3) , where
ai is an encryption of the share ai.

Implementation

1. Pi, for i ∈ N ′ chooses a value di uniformly at random in Rpk, computes
an encryption di ← E(di) and broadcasts it.

2. Let X be the subset of parties failing to broadcast a value from Cpk and
set N ′′ ← N ′ \X.
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3. For i ∈ N ′′ the participating parties run POPK to check that indeed
each Pi knows r ∈ {0, 1}p(k) and d ∈ Rpk such that di = Epk(d)[r].

4. Let X ′ be the subset failing the proof of knowledge and set N (3) ←
N ′′ \X ′.

5. Let d denote the sum
∑

i∈N(3) di. All parties compute d = �i∈N(3)di and
e = a � d.

6. The parties in N (3) call Decrypt to compute the value a + d from e.

7. The party in N (3) with smallest index sets ai ← e�di and ai ← a+d−di.
The other parties in N (3) set ai ← �di and ai ← −di.

The ASS protocol secret shares a between all participating parties. Sharing
it between fewer parties is also possible. To share between a subset S of
the parties simply let Pi for i ∈ S generate the di values and run the above
protocol with the remaining parties participating only as verifiers in the proofs
of knowledge and when decrypting e. A subrutine for simulating the ASS
protocol follows later.

In the special case, where S = {i} is just one party the protocol just
opens a while revealing a only to some specific party Pi. We call this the
PrivateDecrypt protocol and review the construction for completeness.

8.1.2 The PrivateDecrypt Protocol

Description The participating parties N ′ know a public encryption a ∈
Epk(a) for some possible unknown a ∈ Rpk. The parties agree on a party Pi

who is to receive a secretly.

Implementation

1. Pi chooses a value d uniformly at random in Rpk, computes an encryption
d← E(d) and broadcasts it.

2. If d is not an encryption from Cpk the parties terminate the protocol.

3. Now the participating parties run POPK where only Pi proves knowledge
of r ∈ {0, 1}p(k) and d ∈ Rpk such that d = Epk(d)[r].

4. If Pi fails to prove this the parties terminate the protocol.

5. All participating parties compute e = a � d.

6. The participating parties call Decrypt to get the value e = a+ d from e.

7. Pi computes a = e− d.
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The PrivateDecrypt Sub-Simulator

0. We are given as input (pk, a, b) for some unknown a ∈ Rpk and known
b ∈ Epk. We want to simulate a private decryption, where we make it
look as if Epk(a) contains b.

1. If Pi is corrupt, then receive from the adversary d. If Pi is honest then
generate d according to the protocol.

2. If Pi is corrupt, then check that d ∈ Cpk and terminate if not.

3. Run SPOPK. If Pi is corrupt, then with overwhelming probability, this
will either give us d or terminate because Pi failed the proof.

4. There is no need to compute e = a � d.

5. Receive inputs for the Decrypt protocol from the adversary.

6. Give e = b + d to the adversary.

Denote by Private-DecryptA(pk, sk, a) the view of the adversary A of an
execution of the PrivateDecrypt protocol opening an encryption of a in the hy-
brid model with ideal evaluation of Decrypt. Denote by Private-DecryptA(pk, a, b)
the view of the adversary A of a simulation of an opening of a faked to look
as if it opened to b.

Theorem 1 For all a ∈ Rpk and a ∈ Epk(a) the random variables Private-
DecryptA(pk, sk, a) and PrivateDecryptSimA(pk, a, a) are statistically indis-
tinguishable.

Proof: This is trivial by inspection of the protocol and the simulator. 2

Surprisingly the proof of security of the global protocol that uses the
PrivateDecrypt protocol does not need any properties about the PrivateDecrypt
protocol, when a 6= b. This situation will therefore not be analysed.

8.1.3 The Mult Protocol

Description Each party Pi knows common values a ∈ E(a) and b ∈ E(b)
and wants to compute a common value c ∈ E(ab).

Implementation

1. First all participating parties additively secret share the value of a using
the ASS protocol. Let N (3) be the parties still participating after this.
For i ∈ N (3) let ai and ai be the share resp. the public encryption of the
share of Pi.
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2. Each party Pi for i ∈ N (3) computes f i ← ai � b and broadcasts it.

3. Each party Pi for i ∈ N (3) proves that f i by running POCM.

4. Let X ′′ be the subset failing the proof and let N (4) ← N (3) \X ′′.

5. The parties compute aX′′ = �i∈X′′ai and decrypt it using Decrypt to
obtain aX′′ = +i∈X′′ai.

6. All parties compute c← (�i∈N(4)f i) � (aX′′ � b) ∈ Epk(ab).

A Sub-Simulator for the Mult Protocol We construct a sub-simulator
for the Mult Protocol. It receives as input a public key pk and encryptions a,
b, and an encryption of c = ab, denoted c′. It then simulates the multiplication
protocol as if it was run on input a and b.

1. First we simulate the ASS sub-protocol.

(a) Let s be the smallest index of an honest player, and let H be the
set of remaining honest players. Generate di and di correctly for
i ∈ H, and define ds to be d′s− a for uniformly randomly chosen d′s
and set ds ← Epk(d′s) � a. Hand these value to the adversary and
receive from the adversary {(i, di)}i∈N ′ .

(b) Define N ′′ as in the ASS protocol.

(c) Run SPOPK, thus obtaining (with large probability) all di’s from
corrupt players that continue to participate.

(d) Define N (3) as in the ASS protocol.

(e) Compute e = a+d. This is possible as
∑

i∈N(3) di = (
∑

i∈N(3)\{s} di)+
d′s − a, so e = (

∑
i∈N(3)\{s} di) + d′s.

(f) Compute d and e as specified by the protocol. Observe that d and
e are indeed encryptions of d =

∑
i∈N(3) di resp. e = a + d.

(g) We now need to simulate the Decrypt to A. This is easy as we
know the plaintext of e. We simply hand e to the adversary.

2. For i ∈ H compute the f i values correctly as ai � b. For s we must
compute as � b = (d′s − a) � b ∈ Epk(d′sb − ab). We do this as fs ←
Blind((d′s � b) � c′). Hand these values to the adversary and receive the
f i values for the corrupted parties that are still participating.

3. Run SPOCM

4. Let X ′′ be the subset failing the proof and let N (4) be as in the protocol.
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5. For i ∈ X ′′ we know ai and can easily simulate the Decrypt protocol by
handing aX′′ = +i∈N ′′ai to the adversary.

6. The final step in the protocol is non-interactive, so the simulator does
not need to produce anything. But note that the result following from
the simulation is c← (�i∈N(4)f i) � (aX′′ � b) ∈ Epk(ab).

Theorem 2 The view presented to A during the simulation of a multiplication
of a and b is distributed statistically indistinguishable from the view presented
to A during a Decrypt-hybrid-model execution of the Mult protocol on input
a and b.

Proof: Observe that except for ds, fs, and the two simulated zero-knowledge
proofs for ds and fs the simulation of the Mult protocol just follows the proto-
col and is thus distributed exactly as in the Decrypt-hybrid-model execution.

In the Decrypt-hybrid-model execution the value of ds is a random en-
cryption of a uniformly random element from Rpk. In the simulation d′s is
uniformly random from Rpk, so d′s − a is uniformly random and thus ds is an
encryption of a uniformly random element from Rpk. We generate Epk(d′s)
randomly and by assumption we therefore have that Epk(d′s)�a is distributed
as a random encryption of d′s− a. All in all ds is distributed identically in the
simulation and the Decrypt-hybrid-model execution.

In the Decrypt-hybrid-model execution the value of fs is by assumption
distributed as a random encryption of asb. Because of the use of Blind this is
the case in the simulation too.

We now have that except for two simulated zero-knowledge proofs the
simulation is distributed exactly as in the Decrypt-hybrid-model execution.

The theorem now follows from the properties we have shown earlier for
SPOPK and SPOCM. 2

8.2 The FuncEvalf Protocol (Deterministic f)

We are set up to present the FuncEvalf protocol for deterministic f . The
protocol evaluates any deterministic n-party function f : N × ({0, 1}∗)n →
({0, 1}∗)n over the rings Rpk using a uniform polynomially sized family of
arithmetic circuits. One way of doing this is to write f as a boolean circuit
with only ∧ and ¬-gates and then evaluate this circuit using the standard
arithmetisation identifying 0 and 1 with 0pk resp. 1pk and identifying ∧ and
¬ with (x, y) 7→ x ·pk y resp. x 7→ 1−pk x. Depending on the rings Rpk and f
much more efficient embeddings might be possible. We therefore make minimal
assumptions about the way the computation of the function f is embedded
into the rings Rpk.

We assume that we are given three PPT algorithms: the input encoder I,
the circuit generator H, and the output decoder O.
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The Input Encoder On input pk, i ∈ N , and xi ∈ {0, 1}∗ the input encoder
I outputs an encoding ξi ∈ (Rpk)li(k) for some polynomial li(k). We call the
value ξi the legal circuit input of Pi. Let Ξpk,i ⊂ (Rpk)li denote the codomain
of I(pk, i, ·). We require that I is PPT invertible in xi, i.e. there exists a
PPT algorithm I−1 which on input pk, i, and ξi ∈ Ξpk,i computes xi such that
I(pk, i, xi) = ξi. By Ξpk,i ⊂ (Cpk)li(k) we denote the set

{(ξ1, . . . , ξli(k)) ∈ (Cpk)li(k)|(ξ1, . . . , ξli(k)) ∈ Ξpk,i}

of legal encrypted circuit inputs.
We require that we have a Σ-protocol allowing a party that knows xi ∈

{0, 1}∗, has computed (ξ1, . . . , ξli(k)) ← I(pk, i, xi), and published (ξ1, . . . ,

ξli(k)) ∈ Ξpk,i to prove that the published value is indeed an encrypted circuit
input. For the simulation of Boolean circuits mentioned above, such protocols
are easily constructed in our example cryptosystems shown later.

The Circuit Generator On input 1k and pk H outputs an arithmetic
circuit Hpk over Rpk using inputs and constants from Rpk, and addition, sub-
traction, and multiplication over Rpk. The circuit Hpk is given as a list of gates
(H1

pk, . . . ,H l
pk) and n lists O1, . . . , On of output gates Oi = (Oi,1, . . . , Oi,oi).

We require that no gate Hj
pk depends on a gate Hj′

pk where j′ ≥ j and that
1 ≥ Oi,j ≤ l for i = 1, . . . , n, j = 1, . . . , oi. The gates is on one of the following
forms.

• Hj
pk = (input, i, j1), where 1 ≤ i ≤ n and 1 ≤ j1 ≤ li(k).

• Hj
pk = (constant, v), where v ∈ Rpk.

• Hj
pk = (+, j1, j2), where 1 ≥ j1, j2 < j.

• Hj
pk = (−, j1, j2), where 1 ≥ j1, j2 < j.

• Hj
pk = (·, j1, j2), where 1 ≥ j1, j2 < j.

We call (h1, . . . , hl) ∈ (Rpk)l a plaintext evaluation of Hpk on circuit input
(ξ1, . . . , ξn) if the following holds. If Hj

pk = (input, i, j1), then hj = ξi,j1; if
Hj

pk = (constant, v), then hj = v; if Hj
pk = (+, j1, j2), then hj = hj1 +pk hj2;

if Hj
pk = (−, j1, j2), then hj = hj1 −pk hj2; and if Hj

pk = (·, j1, j2), then
hj = hj1 ·pk hj2 .

We call (h1
, . . . , h

l) ∈ (Cpk)Hpk a ciphertext evaluation of Hpk on input
(ξ1, . . . , ξn) if (h1, . . . , hl), where hj is the plaintext of h

j , is a plaintext eval-
uation of Hpk on input (ξ1, . . . , ξn).
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For function input (x1, . . . , xn) ∈ ({0, 1}∗)n the circuit input (ξ1, . . . , ξn) ∈
Ξ is uniquely given and thereby the plaintext evaluation is uniquely given. Of
course many ciphertext evaluations exists. Let (h1, . . . , hl) be the plaintext
evaluation on circuit input (ξ1, . . . , ξn) (function input (x1, . . . , xn)). We call
(hOi,1 , hOi,2 , . . . , hOi,li ) the circuit output of Pi on circuit input (ξ1, . . . , ξn)
(function input (x1, . . . , xn)).

The Output Decoder For all function inputs (x1, . . . , xn) and correspond-
ing circuit output (hOi,1 , hOi,2 , . . . , hOi,li ) of party Pi the output decoder O
outputs yi ∈ {0, 1}∗ such that yi = f(x1, . . . , xn)i. We require that O is
invertible in the circuit output and that O−1(pk, i, yi) is computable in PPT.

The FuncEvalf Algorithm (Deterministic f) The protocol runs in the
(RO,KD,Decrypt)-hybrid model and proceeds as follows.

1. The parties make an oracle call to the KD oracle.

2. The party Pi obtains pk as public output and ski as secret output.

3. Each party generates (Hpk, Opk,1, . . . , Opk,n)← H(pk).

4. Each party Pi computes ξi = (ξi,1, . . . , ξi,li)← I(pk, i, xi).

5. For i = 1 to n, j = 1 to li do the following

• Party Pi computes an encryption ξ̄i,j ← Epk(ξi,j)[ri,j] for uniformly
random ri,j and broadcasts it.

The parties run the POPK protocol to check that each Pi does in fact
know the plaintext of ξi,j.

6. All parties Pi not failing the above proofs of plaintext knowledge prove
in zero-knowledge that ξi = (ξi,1, . . . , ξi,li) ∈ Ξi.

Let X be the set of parties failing either a proof of plaintext knowledge
or a proof that ξi is a legal encrypted circuit input. For i ∈ X all
other parties take xi to be ε and compute ξi ← I(pk, i, xi) and ξi,j ←
Epk(ξi,j)[ri,j] for some fixed agreed upon string ri,j = r ∈ {0, 1}p(k), say
r = 0p(k).

In this way all parties get to know legal encrypted circuit inputs for all
parties.

7. For j = 1 to l do the following.

(a) If Hj
pk = (input, i, j1) then all parties set h

j to ξi,j1.

22



(b) If Hj
pk = (constant, v) then all parties set h

j to v = Epk(v)[r] for
some fixed agreed upon string r ∈ {0, 1}p(k).

(c) If Hj
pk = (+, j1, j2) then all parties set h

j to h
j1 � h

j2.

(d) If Hj
pk = (−, j1, j2) then all parties set h

j to h
j1 � h

j2.

(e) If Hj
pk = (·, j1, j2) then the parties execute the Mult protocol on

the encryptions h
j1 and h

j2 and set h
j to be the result of the Mult

protocol.

8. For each party Pi still participating and j = 1, . . . , oi the parties execute
the PrivateDecrypt protocol and reveals hOi,j to Pi.

9. Each party Pi computes yi ← O(pk, i, (hOi,1 , hOi,2 , . . . , hOi,oi )).

The Simulator for the FuncEvalf Protocol (Deterministic f) LetA be
any (RO,KD,Decrypt)-hybrid-model adversary. We construct a correspond-
ing ideal-model adversary I(A). The inputs for the adversary I(A) is a set of
corrupted parties C, their secret inputs {xi}i∈C , an auxiliary string a, and a
random input rS .

0. Initialise the hybrid adversary A with C, {xi, ri}i∈C , a, and rA, where
ri and rA are uniformly random.

1. Simulate the oracle call to KD: for the honest parties use the correct
input and receive from A the inputs from the corrupted parties.

2. Generate a key (pk, sk1, . . . , skn) and give {(i, (ski, pk))}i∈C to A. The
simulator will not use ski for i ∈ C.

3. Generate (Hpk, Opk,1, Opk,n).

4. Generate the circuit inputs (ξi,1, . . . , ξi,li) for the honest parties using
xi = ε.

5. For i = 1 to n, j = 1 to li do the following

• If Pi is honest then compute ξi,j = Epk(ξi,j)[ri,j ] as in the protocol.
Otherwise receive the encryption ξi,j from A.

Run SPOPK, in particular we obtain from this ξi,j for those corrupted Pi

that continue to participate.

6. Following the algorithm of SΣ, simulate the proof phase with proofs that
ξi ∈ Ξpk,i. In particular, extract ξi,j for corrupted parties continuing to
participate.
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If any corrupted party fails the above proofs then handle this as in the
protocol. Since the plaintexts ξi,j of all corrupted parties completing the
above proofs were extracted the simulator now knows a legal plaintext
circuit input for all parties. From these compute the corresponding plain-
text evaluation (h1, . . . , hl) and an ciphertext evaluation (h̃1, . . . , h̃l).

From the legal plaintext circuit inputs of the corrupted parties com-
pute the corresponding function input xi = I−1(pk, i, (ξi,1, . . . , ξi,li)).
Use these function inputs as the corrupted parties inputs in the ideal-
evaluation. From the ideal evaluation we obtain yi for all corrupted
parties and compute the plaintext circuit output (hOi,1 , . . . , hOi,oi ) =
O−1(pk, i, yi) of all corrupted parties.

7. For j = 1 to l do the following.

(a) If Hj
pk = (input, i, j1) then set h

j = ξi,j1.

(b) If Hj
pk = (constant, v) then set h

j = Epk(v)[r].

(c) If Hj
pk = (+, j1, j2) then set h

j = h
j1 � h

j2 .

(d) If Hj
pk = (−, j1, j2) then set h

j = h
j1 � h

j2 .

(e) If Hj
pk = (·, j1, j2) then let h̃j be the encryption computed in Step

6 and run the Mult-simulator on the inputs (hj1
, h

j2
, h̃j). Set h

j to
be the result of the simulation.

8. For each party Pi still participating and j = 1, . . . , oi do the following. If
Pi is corrupted, then run the PrivateDecrypt sub-simulator on the input
(hOi,j , hOi,j ), where hOi,j is the value computed in Step 6. If Pi is honest
we do not know what we should decrypt to, and it does not matter, so
run the sub-simulator PrivateDecrypt on say (hOi,j , 1pk).

9. Now for all corrupted parties Pi we have that yi = O(pk, i, (hOi,1 , hOi,2 , . . . ,
hOi,oi ) as should be, where yi is the secret output of Pi from the ideal-
evaluation in Step 6.

It is clear from the description that this simulation runs in expected poly-
nomial time. In order to argue that the output distribution is correct, we need
to define an ”intermediary” distribution:

Yet Another Distribution We describe two distributions over the indices
(k, ~x,C, a). The idea is to define them by one procedure taking an encryption
of a bit b̄ as input. The two distributions result from b = 0, respectively b = 1.
The procedure will be constructed such that if b = 1, it produces something

24



close to the adversary’s view of a real execution, whereas b = 0 results in
something close to a simulation. Our result then follows from semantic security
of the encryption.

LetA be any (RO,KD,Decrypt)-hybrid-model adversary, let pk be a public
key, and let b ∈ Epk(b) be an encryption, where b is either 0pk or 1pk. For
v0, v1 ∈ Rpk let d(v0, v1, b) = Blind((v1 � b) � (v0 � (1pk � b))). Observe that
d(v0, v1, b) is a random encryption of v0 if b = 0pk and a random encryption
of v1 if b = 1pk.

By YADpk,skC,b
A (k, ~x,C, a) we denote the distribution produced as follows.

0. Initialise the hybrid adversary A with C, {xi, ri}i∈C , a, and rA, where
ri and rA are uniformly random

1. Simulate the oracle call to KD: for the honest parties use the correct
input, show these to A, and receive from A the inputs from the corrupted
parties.

2. Now we use the public key pk and secret key shares skC . We give
{(i, (ski, pk))}i∈C to A.

3. Generate (Hpk, Opk,1, . . . , Opk,n).

4. For the honest parties we use as plaintext input to the circuit either the
values ξ1

i = I(pk, i, xi), where xi is given in the index of the distribu-
tion YAD or ξ0

i = I(pk, i, ε) as in the simulator. We make the choice
conditioned on b using the method described above.

5. For i = 1 to n, j = 1, . . . , li do the following

• If Pi is honest then compute ξi,j as d(ξ0
i,j , ξ

1
i,j, b) and broadcast.

Otherwise receive the encryption ξi,j from A.

Run SPOPK, in particular obtain ξi,j for those corrupt Pi that still par-
ticipate.

6. Following the algorithm of SΣ, simulate the proof phase with proofs that
ξi ∈ Ξpk,i. In particular, extract ξi,j for corrupted parties continuing to
participate.

If any corrupted party fails the proofs, then handle this as in the protocol.
Since the plaintext circuit inputs of all corrupted parties completing
the proofs were extracted we now know plaintext circuit inputs for all
corrupted parties. We don’t know the plaintext values for the honest
parties’ input lines as these depend on the value of b.

Let (h0
1, h

0
2, . . . , h0

n) be the plaintext evaluation corresponding to func-
tion input xi for the honest parties (b = 1), let (h1

1, h
1
2, . . . , h1

n) be the
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plaintext evaluation corresponding to function input ε for the honest
parties (b = 0), and let h̃j ← b(hj

0, h
j
1, b) for j = 0, . . . , l. Then obvi-

ously (h̃1, . . . , h̃l) is ciphertext evaluation of Hpk on the ciphertext input
published in Step 5.

From the legal plaintext circuit inputs of the corrupted parties compute
the corresponding function input xi = I−1(pk, i, (ξi,1, . . . , ξi,li)). Use
these function inputs as the corrupted parties’ function inputs, use xi as
given in the index of YAD as the honest parties’ function inputs, and
compute (y1, . . . , yn) ← f(x1, . . . , xn). We then compute the plaintext
circuit output (hOi,1 , . . . , hOi,oi ) = O−1(pk, i, yi) of all corrupted parties.

7. For i = 1 to n, j = 1 to li do the following

(a) If Hj
pk = (input, i, j1) then set h

j = ξi,j1.

(b) If Hj
pk = (constant, v) then set h

j = Epk(v)[r].

(c) If Hj
pk = (+, j1, j2) then set h

j = h
j1 � h

j2 .

(d) If Hj
pk = (−, j1, j2) then set h

j = h
j1 � h

j2 .

(e) If Hj
pk = (·, j1, j2) then let h̃j be the encryption computed in Step

6 and run the Mult-simulator on the inputs (hj1
, h

j2
, h̃j). Set h

j to
be the result of the simulation.

8. For each party Pi still participating and j = 1, . . . , oi do the following. If
Pi is corrupted, then run the PrivateDecrypt sub-simulator on the input
(hOi,j , hOi,j ), where hOi,j is the value computed in Step 6. If Pi is honest
we do not know what we should decrypt to, and it does not matter, so
run the sub-simulator PrivateDecrypt on (hOi,j , 1pk).

9. Now for all honest parties Pi take the output to be yi as computed in Step
6 and for the corrupted parties let the output be yi = ⊥. Receive the
final output z from A and set YADpk,skC ,b

A (k, ~x,C, a) = (y1, . . . , yn, z).

For b ∈ {0, 1} let YADb
A(k, ~x,C, a) be YADpk,skC ,b

A (k, ~x,C, a) where the
keys are uniformly random over Kk and b is a random encryption of bpk. Let
YADb

A denote the distribution ensemble

{YADb
A(k, ~x,C, a)}k∈N ,~x∈({0,1}∗)n,a∈{0,1}∗ .

Lemma 1

EXECRO,KD,Decrypt
FuncEvalf ,I(A)

s≈ YAD1
A
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Proof: We simply look at how the distributions EXECRO,KD,Decrypt
FuncEvalf ,I(A) (k, ~x,C, a)

and YAD1
A(k, ~x,C, a) are defined an observe that they maintain statistically

indistinguishability for each step.

0. In both distributions the adversary is initialised with k, C, {(i, xi)}i∈C ,
a, and uniformly random input rA.

1. Then the oracle call to KeyGeneration is performed identically in both
distributions.

2. Then in both distributions A receives {(i, (ski, pk))}i∈C for keys chosen
uniformly random in Kk.

3. Then all parties locally generate (Hpk, Opk,1, . . . , Opk,li).

4. The function inputs xi used by the honest parties are the same in the
two distributions as they are a part of the index.

5. Then the inputs are distributed

(a) In the real-life execution the honest parties broadcast a random en-
cryption of ξi,j and in the YAD1 distribution the value b(ξ0

i,j, ξ
1
i,j , b)

is distributed as random encryption of ξ1
i,j = ξi,j.

(b) In the real-life execution the honest parties all run the POPK pro-
tocol correctly. In the YAD1 distribution the protocol is simulated.
However in the random oracle model this simulation is statistically
indistinguishable from a real execution. The knowledge extraction
in the YAD1 distribution which does of course not occur in the
real-life execution is not detectable by the adversary as the adver-
sary is rewound first and will afterwards continue execution as if
the extraction never took place.

6. In the YAD1 distribution the honest parties simulate the proof that ξi ∈
Ξi, but again this is statistically indistinguishable from a real execution
of the zero-knowledge protocol.

Obviously the values h̃j preprocessed in the YAD1 distribution for gate
j will contain exactly the same plaintext as the encryption h

j computed
for that gate in the (RO,KD,Decrypt)-hybrid-model execution.

7. Now the gates are evaluated in both distributions.

(a-d) Inputting, constant assignment, addition, and subtraction are lo-
cal computations and are performed exactly the same way in both
distributions.

27



(e) In the (RO,KD,Decrypt)-hybrid-model execution multiplications
are carried out using the Mult protocol to compute h

j . In the YAD1

distribution they are carried out using the Mult sub-simulator on
the inputs (hj1

, h
j2

, h̃j). But the inputs h
j1 and h

j2 are as noted
distributed statistically indistinguishable in the two distributions
and as noted in Step 6 the encryptions h̃j and h

j contain the same
plaintext. It then follows from Theorem 2 that indeed h

j is statis-
tically indistinguishable in the two distributions.

8. Using Theorem 1 and the fact that I−1 computes the correct plaintext
output of the circuit, we get that the adversary’s view of the decryptions
in the two views are computationally indistinguishable.

9. Now in both distributions the output of honest party Pi is yi, where yi =
O(pk, i, (hOi,1 , hOi,2 , . . . , hOi,oi ) in the execution and yi = O(pk, i, (hOi,1 ,
hOi,2 , . . . , hOi,oi ) in YAD1 as the the values hOi,j are statistically indis-
tinguishable in the two distributions. In both distributions yi = ⊥ for
the corrupted parties. Since the views presented to the adversary in
the two distributions are computationally indistinguishable, so is z, the
final output of the adversary. All in all the value (y1, . . . , yn, z) is sta-
tistically indistinguishable in the two distributions, and so are then the
distributions.

2

Lemma 2

IDEALf,A
d= YAD0

A

Proof: This is a simple comparison of the definitions of the distributions as
done in the proof of Lemma 1. 2

Lemma 3

YAD0
A

c≈ YAD1
A

Proof:
Assume that we have a hybrid adversary A and a distinguisher D for the

distributions YAD0
A and YAD1

A that does better than negligible. That means
that for any negligible function δ and any k ∈N there exists (~xδ,k, Cδ,k, aδ,k) ∈
({0, 1}∗)n ×Π× {0, 1}∗ and wδ,k ∈ {0, 1}∗ such that
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|Pr[D(k, ~xδ,k, Cδ,k, aδ,k, wδ,k,YAD0
A(k, ~xδ,k, Cδ,k, aδ,k)) = 1]−

Pr[D(k, ~xδ,k, Cδ,k, aδ,k, wδ,k,YAD1
A(k, ~xδ,k, Cδ,k, aδ,k)) = 1]|

≥ δ(k)

From D we build a distinguisher D′ for the distributions (C, pk, skC , 0pk)
and (C, pk, skC , 1pk) as follows. On input (k,C, pk, skC , b, w′), where w′ ∈
{0, 1}∗ is an auxiliary input, interpret a prefix of w′ as an input ~x = (x1, . . . , xn)
for the function f and an auxiliary input a for A. Denote the remaining
part of w′ by w. Then compute a value YAD according to the distribution
YADpk,skC ,b

A (k, ~x,C, a). Observe that since the keys are chosen uniformly ran-
dom YAD is drawn from the distribution YADb

A(k, ~x,C, a). Now run D on the
input (k, ~x,C, a,w,YAD) and output the same as D.

Now for any negligible function δ and any k let C ′
δ,k = Cδ,k and let w′

δ,k =
~xδ,k, aδ,k, wδ,k. Then

|Pr[D′(k,C ′
δ,k, pk, skC , 0pk, w

′
δ,k) = 1]− Pr[D′(k,C ′

δ,k, pk, skC , 1pk, w
′
δ,k) = 1]| =

|Pr[D(k, ~xδ,k, Cδ,k, aδ,k, wδ,k,YAD0
A(k, ~xδ,k, Cδ,k, aδ,k)) = 1]−

Pr[D(k, ~xδ,k, Cδ,k, aδ,k, wδ,k,YAD1
A(k, ~xδ,k, Cδ,k, aδ,k)) = 1]|

≥ δ(k)

This is in contradiction with the threshold semantic security assumption,
which guarantees that the distributions (pk,C, skC , 0pk) and (pk,C, skC , 1pk)
are computationally indistinguishable for C 6∈ Π and uniformly random key
(pk, sk1, . . . , skn). 2

We note that the threshold homomorphic encryption schemes we present
in Section 9 are all secure against the minority threshold adversary struc-
ture, where the adversary can corrupt any minority of the parties. When
we remove the random oracle assumption by doing the zero-knowledge proofs
as described in Section 6.1.1 we can only prove security against essentially
the minority threshold adversaries anyway (as k bits of the challenge must
be random). We therefore formulate the following theorems for the minority
threshold adversaries.

Theorem 3 Let f be any deterministic n-party function. The FuncEvalf pro-
tocol as described above, but with oracle calls replaced by real-life executions of
the KD and Decrypt protocols of an encryption scheme with the assumed prop-
erties and the majority threshold access structure securely evaluates f in the
presence of active static minority threshold adversaries in the random oracle
model.
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The communication complexity of the protocol is O((nk+d)|f |) bits, where
|f | denotes the size of the circuit for evaluating f4 and d denotes the commu-
nication complexity of a decryption.

Proof: The security claim follows directly from Lemmas 1, 2, and 3 and the
modular composition theorem of the MPC model[4].

The communication complexity follows by inspection. The gates that give
rise to communication is the input, multiplication, and output gates. The
communication used to handle these gates is in the order of n encryptions
(O(nk) bits), n zero-knowledge proofs (O(nk) bits as we have assumed that the
Σ-protocols have communication complexity O(k)) and 1 decryption (O(d) bits
by definition). The total communication complexity therefore is O((nk+d)|f |)
as claimed.

Observe that this communication complexity holds even when parties are
caught deviating from the protocol. The only place, where correcting faulty
behaviour has a significant cost is in Step 5 in the Mult protocol, where an
execution of the Decrypt protocol is necessary. The Mult protocol does how-
ever already use an execution of the Decrypt protocol, so the fault handling
only costs a constant factor. 2

The threshold homomorphic encryption schemes we present in Section 9
both have d = O(kn). It follows that for deterministic f the FuncEvalf pro-
tocol based on any of these schemes has communication complexity O(nk|f |)
bits in the random oracle model.

In the scheme based on Paillier’s cryptosystem [16] the expansion factor of
the encryption is constant and the plaintext space is Zn for a RSA modulus
n. If the function f is over Z it might therefore very well be possible to
embed its computation into Zn in a way, where each encryption in a ciphertext
evaluation represents O(k) bits of an arithmetic circuit for computing f . In
this case the communication complexity would be O(nT (f)), where T (f) is
the circuit complexity of f over Z.

Theorem 4 Let f be any deterministic n-party function. The FuncEvalf
protocol as described above, but doing the zero-knowledge proofs as described
in Section 6.1.1 and with oracle calls replaced by real-life executions of the KD
and Decrypt protocols of an encryption scheme with the assumed properties
and the majority access structure securely evaluates f in the presence of active
static minority threshold adversaries in the real-life model.

The communication complexity of the protocol is O((n max(k, n) + d)|f |)
bits.

4If this size depends for the public key one can adopt either a worstcase or expect com-
plexity measure.
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Proof: The security claim follows from the discussion in Section 6.1.1. From
the proof of Theorem 3 we see that the factor k in the term nk is the com-
munication complexity of the zero-knowledge proofs. This factor becomes
max(k, n) in the real-life model and the claimed communication complexity
follows directly. 2

Using the threshold homomorphic encryption schemes we present in Sec-
tion 9 the communication complexity becomes O(n max(k, n)|f |) as they both
have d = O(n max(k, n)) in the real-life model.

8.3 The FuncEvalf Protocol (Probabilistic f)

Assume now that f takes a random input r. We can simply regard r as the
input of a (n+1)th party and let the n parties in corporation choose a random
input for that party. Our MPC model obviously requires that the parties does
not learn the random input. How to choose the random input depends on
the input encoding. Assume that we simply represent r ∈ {0, 1}p(k) in the
trivial way over {0pk, 1pk}p(k). The parties then need to be able to choose an
encryption b of a uniformly random value b ∈ {0, 1}.

One way to do this is to let the parties each choose at random a bit xi

and then use the FuncEval protocol to compute the function ⊕(x1, . . . , xn) =
x1 ⊕ · · · ⊕ xn as if the result was for a (n + 1)th party, i.e. up to, but not
including the execution of PrivateDecrypt on the final result x1 ⊕ · · · ⊕ xn.
As the result was computed as if b was to be revealed only to the n+1th party,
the value b is unknown to the n actual parties. Using that a⊕ b = a + b− 2ab
we can compute ⊕(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn using n− 1 invocations of the
Mult protocol.

8.4 Generalisations

First of all, the same key can be used for evaluating several circuits. It is easy
to see that this is indeed secure. Whether the circuits are evaluated one at
a time or we consider them one circuit and evaluate them at the same time
really doesn’t matter.

The second generalisation is to allow only a subset of parties that partici-
pated in the key generation to participate in the actual computation. This is
in particular interesting in a setting, where the same key is used for several
evaluations. The protocol is already set up to handle this using the variable
N ′ of participating parties. The adversary structure on the participating par-
ties is given by the restriction that the union of the corrupted parties and the
non-participating set N \N ′ is not a qualified set.

Above we imagine that only parties which do not input to a evaluation
retract from the actual computation. Another possibility is the a party first
publishes its encrypted circuit input and then retract from the computation.
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In this case the remaining participating parties will then do the ciphertext
evaluation. There are several possibilities for key distribution in this setting.
Typically we would have that secret key distributed only among the computing
parties (we can imagine them being a distributed trusted party doing compu-
tation for some clients). We would then use a variant of the PrivateDecrypt,
where the client, which is to receive the output, adds in d and therefore is the
only one to learn the actual output.

9 Examples of Threshold Homomorphic Cryptosys-

tems

In this section, we describe some concrete examples of threshold systems meet-
ing our requirements, including Σ-protocols for proving knowledge of plain-
texts, correctness of multiplications and validity of decryptions.

Both our examples involve choosing as part of the public key a k-bit RSA
modulus N = pq, where p, q are chosen such that p = 2p′ + 1, q = 2q′ + 1 for
primes p′, q′ and both p and q have k/2 bits. For convenience in the proofs
to follow, we will assume that the length of the challenges in all the proofs is
k/2− 1.

9.1 Basing it on Paillier’s Cryptosystem

In [16], Paillier proposes a probabilistic public-key cryptosystem where the
public key is a k-bit RSA modulus N and an element g ∈ Z∗

n2 of order divisible
by N . The plaintext space for this system in ZN , and to encrypt a ∈ ZN , one
chooses r ∈ Z∗

N2 at random and computes the ciphertext as

ā = garN mod N2

The private key is the factorisation of N , i.e., φ(N) or equivalent information.
Under an appropriate complexity assumption given in [16], this system is

semantically secure, and it is trivially homomorphic over Zn as we require
here: we can set

ā � b̄ = ā · b̄ mod N2.

Furthermore, from α and an encryption ā, a random encryption of αa can be
obtained by multiplying āα mod N2 by a random encryption of 0.

9.1.1 Threshold decryption

In [8] and independently in [9], threshold versions of this system have been
proposed, based on a variant of Shoup’s [17] technique for threshold RSA. We
do not need to go into the details here, it is enough to note that the threshold
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decryption protocols for these systems have been proved secure in exactly the
sense we need here, and that the efficiency of these protocols is such that
to decrypt a ciphertext, each player broadcasts one message and does a Σ-
protocol proving that this was correctly computed. The total number of bits
broadcast is therefore O(kn).

9.1.2 Proving multiplications correct

We now describe a Σ-protocol for securely multiplying an encrypted value
by a constant. So we have as input encryptions Ca = garN mod N2, Cα =
gαsN mod N2,D = Cα

a γN mod N2 and a player Pi knows in addition α, s, γ.
What we need is a proof that D encrypts αa mod N5. We proceed as follows:

1. Pi chooses x ∈ ZN and v, u ∈ Z∗
N2 at random, computes and sends

A = Cx
avN mod N2, B = gxuN mod N2

2. The verifier sends a random challenge e.

3. Pi computes and sends

w = x + eα mod N, z = usegt mod N2, y = vCt
aγ

e mod N2

where t is defined by x + eα = w + tN .

4. The verifier checks that

gwzN = BCe
α mod N2, Cw

a yN = ADe mod N2

and accepts if and only if this is the case.

Lemma 4 The above protocol is a Σ-protocol proving knowledge of α, s and
γ such that Cα = gαsN mod N2 and D = Cα

a γN mod N2.

Proof With respect to zero-knowledge, it is straightforward to make a correctly
distributed conversation given any challenge e: one just chooses the values
w, y, z at random in their respective domains and computes matching values
A,B using the equations gwzN = BCe

α mod N2, Cw
a yN = ADe mod N2.

Completeness is straightforward to check. For soundness, if we assume
that Pi could for the some value of A,B answer correctly two distinct values
e, e′, we would have values satisfying equations

gwzN = BCe
α mod N2, Cw

a yN = ADe mod N2

5A multiplication protocol was also given in [8], but it requires that the prover knows all
involved factors and so cannot be used here
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gw′
z′N = BCe′

α mod N2, Cw′
a y′N = AD

′e mod N2

which immediately implies that

gw−w′
(z/z′)N = Ce−e′

α mod N2, Cw−w′
a (y/y′)N = De−e′ mod N2

The gcd of e− e′ and N must be 1 because e− e′ is numerically smaller than
p, q. So let β be such that β(e−e′) = 1+mN for some m. Then by raising both
equations to power β and straightforward manipulations, we get expressions
that ”open” both Cα and D:

g(w−w′)β((z/z′)βC−m
α )N = Cα mod N2, C(w−w′)β

a ((y/y′)βD−m)N = D mod N2

From this we can conclude that α = (w − w′)β mod N , s = (z/z′)βC−m
α mod

N2 and that hence D indeed encrypts a value that is αa modulo N . 2

9.1.3 Proving you know a plaintext

Finally, we need that after having created an encryption ᾱ player Pi can do
a Σ-protocol proving that he knows α. But this is already implicit in the
above protocol: if Pi sends only B in the first step and responds to e by
the values w, z, we have a Σ-protocol proving knowledge of α, s such that
Cα = gαsN mod N2.

9.2 Basing it on QRA and DDH

In this section, we describe a cryptosystem which is a simplified variant of
Franklin and Haber’s system [10], a somewhat similar (but non-threshold)
variant was suggested by one the authors of this paper and appears in [10].

For this system, we choose an RSA modulus N = pq, where p, q are chosen
such that p = 2p′ + 1, q = 2q′ + 1 for primes p′, q′. We also choose a random
generator g of SQ(N), the subgroup of quadratic residues modulo N (which
here has order p′q′). We finally choose x at random modulo p′q′ and let
h = gx mod N . The public key is now N, g, h while x is the secret key.

The plaintext space of this system is Z2. We set ∆ = n! (recall that n
is the number of players). Then to encrypt a bit b, one chooses at random r
modulo N2 and a bit c and computes the ciphertext

((−1)cgr mod N, (−1)bh4∆2r mod N)

The purpose of choosing r modulo N2 is to make sure that gr will be close to
uniform in the group generated by g even though the order of g is not public.
It is clear that a ciphertext can be decrypted if one knows x. The purpose of
having h4∆2r (and not hr) in the ciphertext will be explained below.
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The system clearly has the required homomorphic properties, we can set:

(α, β) � (γ, δ) = (αγ mod N,βδ mod N)

Finally, from an encryption (α, β) of a value a and a known b, one can obtain
a random encryption of value ba mod 2 by first setting (γ, δ) to be a random
encryption of 0 and then outputting (αbγ mod N,βbδ mod N).

We no argue that under the Quadratic Residuosity Assumption (QRA) and
the Decisional Diffie Hellman Assumption (DDH), the system is semantically
secure. Recall that DDH says that the distributions (g, h, gr mod p, hr mod p)
and (g, h, gr mod p, hs mod p) are indistinguishable, where g, h both generate
the subgroup of order p′ in Z∗

p and r, s are independent and random in Zp′ .
By the Chinese remainder theorem, this is easily seen to imply that also the
distributions (g, h, gr mod N,hr mod N) and (g, h, gr mod N,hs mod N) are
indistinguishable, where g, h both generate SQ(N) and r, s are independent
and random in Zp′q′ . Omitting some tedious details, we can then conclude
that the distributions

(g, h, (−1)cgr mod N,h4∆2r mod N)

(g, h, (−1)cgr mod N,h4∆2s mod N)

(g, h, (−1)cgr mod N,−h4∆2s mod N)

(g, h, (−1)cgr mod N,−h4∆2r mod N)

are indistinguishable, using (in that order) DDH, QRA and DDH.

9.2.1 Threshold decryption

Shoup’s method for threshold RSA [17] can be directly applied here: he shows
that if one secret-shares x among the players using a polynomial computed
modulo p′q′ and publishes some extra verification information, then the players
can jointly and securely raise an input number to the power 4∆2x. This is
clearly sufficient to decrypt a ciphertext as defined here: to decrypt the pair
(a, b), compute ba−4∆2x mod N . We do not describe the details here, as the
protocol from [17] can be used with no change at all. We only note that
decryption can be done by having each player broadcast a single message and
prove by a Σ-protocol that it is correct. The communication complexity of
this is O(nk) bits.

9.2.2 Proving you know a plaintext

We will need an efficient way for a player to prove in zero-knowledge that a
pair (α, β) he created is a legal ciphertext, and that he knows the correspond-
ing plaintext. A pair is valid if and only if α, β both have Jacobi symbol 1
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(which can be checked easily) and if for some r we have (g2)r = α2 mod N
and (h8∆2

)r = β2 mod N . This last pair of statements can be proved non-
interactively and efficiently by a standard equality of discrete log proof ap-
pearing in [17]. Note that the squarings of α, β ensure that we are working in
SQ(N), which is necessary to ensure soundness.

This protocol has the standard 3-move form of a Σ-protocol. It proves that
an r fitting with α, β exists. But it does not prove that the prover knows such
an r (and hence knows the plaintext), unless we are willing to also assume
the strong RSA assumption6. With this assumption, on the other hand, the
equality of discrete log proof is indeed a proof of knowledge.

However, it is possible to do without this extra assumption: observe that if
β was correctly constructed, then the prover knows a square root of β (namely
h2∆2r mod N) iff b = 0 and he knows a root of −β otherwise. One way to
exploit this observation is if we have a commitment scheme available that
allows committing to elements in ZN . Then Pi can commit to his root α,
and prove in zero-knowledge that he knows α and that α4 = β2 mod N . This
would be sufficient since it then follows that α2 is β or −β.

Here is a commitment scheme (already well known) for which this can be
done efficiently: choose a prime P , such that N divides P − 1 and choose
elements G,H of order n modulo P , but where no player knows the discrete
logarithm of H base G. This can all be set up initially (recall that we already
assume that keys are set up once and for all). Then a commitment to α has
form (Gr mod P,GαHr mod P ), and is opened by revealing α, r. It is easy to
see that this scheme is unconditionally binding, and is hiding under the DDH
assumption (which we already assumed). Let [α] denote a commitment to α
and let [α][β] mod P be the commitment you obtain in the natural way by
componentwise multiplication modulo P . It is then clear that [α][β] mod P is
a commitment to α + β mod N .

It will be sufficient for our purposes to make aΣ-protocol that takes as
input commitments [α], [β], [γ], shows that the prover knows α and shows that
αβ = γ mod N . Here follows such a protocol:

1. Inputs are commitments [α], [β], [γ] where Pi claims that αβ = γ mod N .
Pi chooses a random δ and makes commitments [δ], [δβ].

2. The verifier send a random e.

3. Pi opens the commitments [α]e[δ] mod P to reveal a value e1. Pi opens
the commitment [β]e1 [δβ]−1[γ]−e mod P to reveal 0.

4. The verifier accepts if an only if the commitments are correctly opened
as required.

6that is, assume that it is hard to invert the RSA encryption function, even if the adversary
is allowed to choose the public exponent
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By arguments similar to those for Lemma 4, it is straightforward to show
that this protocol is a Σ-protocol.

9.2.3 Proving multiplications correct

Finally, we need to consider the scenario where player Pi has been given an
encryption Ca of a, has chosen a constant b, and has published encryptions
Cb,D, of values b, ba, and where D has been constructed Pi as we described
above. It follows from this construction that if b = 1, then D = Ca � E where
E is a random encryption of 0. Assuming b = 1, E can be easily reconstructed
from D and Ca.

Now we want a Σ-protocol that Pi can use to prove that D contains the
correct value. Observe that this is equivalent to the statement

((Cb encrypts 0) AND (D encrypts 0)) OR

((Cb encrypts 1) AND (E encrypts 0))

We have already seen how to prove by a Σ-protocol that an encryption (α, β)
contains a value b, by proving that you know a square root of (−1)bβ. Now,
standard techniques from [6] can be applied to building a new Σ-protocol
proving a monotone logical combination of statements such as we have here.
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