
Multiparty Protocols Tolerating Half Faulty Processors

Donald Beaver*

Aiken Computation Laboratory

Harvard University

Abstract

We show that a complete broadcast network of n processors can evaluate

any function f(zr,. . . , z,) at private inputs supplied by each processor,

revealing no information other than the result of the function, while

tolerating up to t maliciously faulty parties for 2t < n. Thii improves

the previous bound of 3t < n on the tolerable number of faults (BGW88,

CCD88]. We demonstrate a resilient method to multiply secretly shared

values without using unproven cryptographic assumptions. The crux

of our method is a new, non-cryptographic ser&nowledge technique

which extends verifiable secret sharing to allow proofs based on secretly

shared values. Under this method, a single party can secretly share

valuesur,..., u, along with another secret w = P(ur,v.,,), where P

is any polynomial size circuit; and she can prove to all other parties that

w = P(vr, . . . , v,,,), without revealing w or any other information. Our

protocols allow an exponentially small chance of error, but are provably

optimal in their resilience against Byzantine faults. Furthermore, our

solutions use operations over exponentially large fields, greatly reducing

the amount of interaction necessary for computing natural functions.

1 Introduction

For fault tolerance and security in a distributed system, it is desirable to be able to

execute secure multiparty protocols. Such protocols allow a system to evaluate a

function f at private inputs zl, . . . , z,, each supplied by a member of the system, and

to reveal the result to a designated recipient. Nothing about the private information

held by each participant is revealed, other than what could otherwise be computed

solely from the value of the function.

A secret ballot, for example, requires a tally of private votes, each of which must

be restricted to a O-l value. The system must produce the tally without revealing

any individual votes, and without allowing any misbehavior to affect the result.

‘Thin research was supported in part under NSF grant CCR870.4513.

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, PP. 560-572, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

56 1

In the case of a unanimous vote, for example, information about the inputs might

inevitably be revealed by the value of the output; but no additional information is

gained during the run of a protocol.

In [BGW88,CCD88] methods for secure, multiparty computations without using

any unproven cryptographic assumptions were given. Those methods allowed for up

to t Byzantine faults, where 3t < n. It can be shown that, for information-theoretic,

errorless security, those results were optimal. It was not clear, however, whether

2t < n could be achieved at the cost of allowing a negligible chance of error. For

larger numbers of faults, of course, the faulty players constitute a majority and it
becomes impossible merely to share a secret.

A natural question to ask, then, is whether multiparty computations can be

achieved when 2t < n 5 3t. Recently [Rab88] made initial progress in this direc-

tion by demonstrating a method for verifiable secret sharing for 2t < n, using a

broadcast network, and having a small probability of error. Earlier methods for

verifiable secret sharing with a faulty minority required cryptographic assumptions

[CGMA85]. The extension to performing computations for 2t < n, however, has
remained open until now.

We present new and efficient methods for performing multiparty computations

that tolerate 2t < n. Our techniques utilize verifiable secret sharing for 2t < n,

and allow the field used for secret sharing to be of exponential size. Because we

can simulate large-field arithmetic operations quickly and directly while alternative

methoda use bibsimulations or small-field arithmetic, our protocols have the prac-

tical advantage of using fewer rounds of communication for many natural functions.

Note that our methods are secure against adversaries with unbounded resources,

while at the same time requiring only polynomial time to execute.

Methods for multiparty protocols tolerating a faulty minority were indepen-

dently discovered by Ben-Or [BR89] and Kilian [Kill. Whereas [BRSS] use boolean

circuit simulation (and implicitly require that the field used for secret sharing be

polynomial size), our methods use a different and broader technique which allows

direct computations in fields of exponential size, and are superior in terms of effi-

ciency and flexibility.

In addition to proving that multiparty cornputations are possible when the hon-

est players hold the majority, we show how zero-knowledge proofs caa be hple-

mented using a distributed system. Our new method for zero-knowledge proofs
requires no Cryptographic assumptions and allows up to half the participants to be

faulty.

1.1 Secret Sharing and Computation

In Shamir’s ~ ~ ~ t h o d for secret sharing [Sha79], a player Alice distributes a secret

value s fohws. k t p > n be prime and consider the field 2,. Alice chooses

t numbem Qi,. -. ,crt at random mod p, and sets g(z) = -t . -. ulz + 8. Then
she tells the ‘piece” g (i) to player i , where i is a nonzero identifier. (In its most

general form, secret sharing uses a unique evaluation point # o for each player,
but for clarity and simplicity we take aq‘ = i .) Clearly, t + 1 pieces are required to

562

reconstruct a secret, and t or fewer pieces provide no information about the secret.
The design of noncryptographic multiparty protocols is greatly facilitated by

dividing the goal into three stages. First, all private inputs to the protocol are

secretly shared. The second stage produces a new secretly shared value w which is

equal to f (z 1 , . . . , z,,). This stage is known as oblivious circuit evaluation or secret

cornputdon. Finally, w is reconstructed and revealed to the proper recipients.
This modularization ensures independence of the inputs (faulty players choose

their inputs independently of the inputs of nonfaulty players) and makes analysis of

privacy and correctness easier. It a h provides a meam to link various multiparty

protocols, using the secret outputs created by one protocol as inputs to the next
protocol.

Thus, given methods to share secrets and to verify that they have been shared
correctly, we can focus our attention on creating new secretly shared values based
on old ones.

1.2 Results

Two basic protocols form the basis for building protocols to evaluate arbitrary

arithmetic circuits. Secret addition provides each player with a piece of a new secret
whose value is the sum of earlier secrets. Similarly, secret multiplication creates a

new secret whose value is the product of earlier secrets. These two fundamental tools

provide the meam to construct a protocol to perform any secure and fault-tolerant
multiparty computation.

In the sequel, let E be a finite field of size 2O("), and consider a complete,
broadcast network with private channels.

Our main result is based on the following theorem, which reduces the problem

of secret multiplication to that of secret addition, even when 2t < n. By t-resilient

we mean a protocol that preserves correctness and privacy, in the face of up to t
Byzantine faults coordinated by a dynamic adversary.

Theorem 1 For 2t < n , if there czists a t-resilicnt protocol to add aecreta, then

there exa'sta a t-resilient protocol to multiply secrets.

The verifiable secret sharing methods of [Rab88,BR89] are not directly suitable
for secret addition unless the original secrets are shared by a single party. We extend

those methods, however, with some additional techniques that make it possible to
add secrets regardless of their origin.

Thua, the suppusition of Theorem 1 is satisfied, showing that multiplication is
indeed possible for 2t < n. As a direct consequence we have our primary result:

Theorem 2 [Main Result.) Let { C,,} be a uniform polynomial s i x circuit family

where each C,, computes a function f,, over a ficld E . For 2t < n, there eZi8ts a

t-resilient protocol to evduate fn(zl,. . . ,z,,), preserving the privacy of the inputs.

Theorem 1 and Theorem 2 are based on a new and powerful technique whereby

a single player shares secrets u, v, and w and can prove to the network that the value

563

of w is indeed the product of the values of u and u, without revealing any other

information. This non-cryptographic zero-knowledge technique generalizes to allow

a player to prove that a secret w holds the value P(vl , . . . , vm), for any function P
computed by a polynomial size circuit Cp, without revealing any additional infor-

mation about w or about any of the q. In particular, any player in the network can

give a zero-knowledge proof to any other player; the network simply reconstructs w

for the verifier. This result has value of its own right.

Theorem 3 (Zero-Knowledge.) Suppose that Alice knotos the values v1,. . . , v,,

which have been secretly shared. Let P & a publicly known function of m arguments

which is described b y a polynomial size circuit Cp. For 2t < n, there exists a t -

resilient protocol b y which Alice can share a secret w whose value is P(u1,. . . ,urn),

and b y which she can prove to all other players that w = P(ul, ..., urn), without

revealing w or any other information.

Lemma 4 Any Zangwge in IP is provable in zero-knowledge in the presence of u
network as described aboue, without using unproven cryptographic assumptions.

Our protocols are time and communication efficient. All of the protocols in this

paper require message sizes that are polynomial in the number n of players, the

size of the arithmetic circuit C, to be simulated, and a unary security parameter

k ensuring correctness and privacy with probability at least 1 - &. Let T be the

number of rounds needed for Verifiable Secret Sharing (see section 2.2). The number

of rounds of interaction is proportional to dT, where d is the depth of an algebraic

circuit Cf with polynomial fanin +-gates and bounded fanin x-gates over a field

of size UP to p("). The methods of [BBSS] can be applied to reduce the number of

rounds to o(dT/ log n), or even to O(T), the latter at a possible increase in message

size.
Furthermore, we use no unproven cryptographic assumptions.

In section 2 we introduce some definitions and discuss protocol properties. Sec-

tion 3 describes the overall design for multiparty protocols. In section 4 we discuss

how secrets can be added, and in section 5 we give the novel result that if secrets can

be added then secrets can be multiplied (Theorem 1). Using our methods for secret

addition, secret multiplication, and zerc-knowledge proofs, we show the main theo-

rem in section 6. Finally, non-cryptographic zero-knowledge proofs of properties of

secrets (Theorem 3) are discussed in section 7.

An earlier version of this paper appeared as [Bea88b].

2 Preliminaries

In this section we kit some definitions, including desired properties of verifiable

secret sharing and of protocols to compute functiom. For purposes of this extended

abstract, however, Proofs of the formal properties listed here will not be given in
detail.

2.1 Protocol Properties

Definition 1 A protocol is a set of n interactive Turing machines { Mi} with inputs

{ (x i , l k) } , communication tapes { t i ,) , brcmdcost t a p { b i) , and outputs { yi),

where k is a security pammetcr exprcsscd in unary.

Our protocols will be resilient against Byzantine faults coordated by a dynamic
adversary. That is, we allow an adversary to choose to substitute Mi! for an ar-

bitrary Mi at any time, based on information held by processors whose programs

have already been corrupted. The adversary is restricted to t corruptions, where
2t < n.

In order to consider the correctness and other properties of the protocol, we
let P, denote the probability distribution according to which 2; is selected. Let

f : PI X PZ x ... x P,, -+ {0,1} be the function we want to compute. If T is a

coalition of at most t processors, w = fT(zl, ..., z,,) denotes the correct value of the

function, where fT is the function obtained from f by substituting default inputs
for the processors in T who are disqualified during the Input stage.

Let VIEWi be a random variable describing a transcript of everything written
on the input, output, and communication tapes that are readable or writable by
processor i. For a coalition T, let VIEWT be the set of views of all processors in T.

1. (Independence of Inputs) During the Input stage, faulty processors share an

input value zj which is independent of those shared by the good processors.

2. (Privacy) For any coalition T of at most t faulty processors, no additional

information is obtained from the protocol. More formally, for any input values

Zr held by the coalition and for any output w , there is a machine which
(probabilistically) generates a string V, whose distribution is nearly identical
with that on VIEWT :

1
C

VIEW,
IPr (~ (6 , w) = VIEWTI - Pr [VIEW= I &]I < 9.

3. (Fairness) All good players can compute the correct output whenever the
faulty players can:

Pr [yj = w I j is faulty] 5 Pr [yi = w I i is non-faulty] .

4. (Correctness) All good players compute the correct output with high prob*
bility:

1
Pr [yi = to I i is non-faulty] 2 1 - -

2 k *

565

2.2 vss
Verifiable secret sharing (cf. [CGMA85]) is a fundamental tool for our protocols.

In secret sharing, one player holds a secret value, which he distributes among the

other players, giving each player a quantum of information called a ”piece.” TWO

properties must be satisfied:

1. (Privacy) The pieces held by any coalition of fewer than t + 1 players are

independent of the secret.

2. (Reconstructability) Any coalition containing tz - t honest players can recon-

struct the secret in full from their information.

In this paper we shall explicitly require the following property as well:

3. (Verifiability)

0 If the secret is not shared correctly and uniquely reconstructible, all

0 If the secret is uniquely reconstructible, all honest players agree on its

1 honest players output CHEATING, with probability at least 1 - 5.

validity.

We shall utilize the solution to VSS for 2t < n given by [Rab88]. Briefly, it
uses Shamir’s method for sharing a secret, and requires that each piece be reshared

using a weak form of sharing. The weaker form of sharing includes information

called “check vectora8,n which allow verihation of the pieces. We refer the reader

to [Rab88,BR89] for details.

2.3 Disqualification

We consider a processor disqualified if t + 1 or more players have broadcast impeach-

ments of it. When player i is disqualified, the remaining players run a recovery

protocol to reshare all the secrets using polynomials of smaller degree (since there

are fewer faulty players left to participate). This protocol involves synthabing and

broadcasting one new piece of each secret, in order to reduce the degree of the

secret polynomial by one; we omit it from this atmtract. (During the Input stage,

however, a faulty player’s information is replaced by a default value.) Thereafter

the good playera ignore player i and continue to evaluate the circuit Cf, using a

new t / = t - 1 as the resiliency parameter.

3 Compiling Multiparty Protocols

Given a function f(z1,. . . ,zn) and a polynomial size circuit for it, C,, we wish to

construct a protocol to compute f.
The three-stage paradigm [GMW87,BGW88,CCD88] will serve as our model for

protocols. In the Input stage, the inputs zi are verifiably shared. In the Evaluation

566

stage, the circuit C, is evaluated, producing a new secret w = f(zl,. . . , zn). In the

Output stage, the secret w is reconstructed and revealed.

The Input and Output stages are easy to describe. During the Input stage, each

player i uses VSS to share his input q. Any honest player who detects misbehavior

impeaches the misbehaving player by broadcasting a vote against him. If a player

is disqualified, substitute a default value. (As an aside, we may require that the

default value be secret and selected according to some samplable distribution. In
that case, use a circuit C; which has additional, random inputs supplied by each

player, which are used to compute the desired default value.)

The Output stage operates exactly like the reconstruction stage of a VSS prcl-

tocol; following the Evaluation stage, the players hold a set of information about

w exactly as though it were shared using VSS. The reconstruction of w involves a

broadcast of pieces and “check vectors” to verify the pieca before interpolating.

The Evaluation stage forms the crux of our protocols, and contains our new

methods for multiparty computations. We follow the outline of [BGW88, CCD881,

in which we simulate the computation of a circuit gate by gate using algebraic

operations over the field used for secret sharing. Our protocols work for larger
numbers of faults, however.

4 Addition of Secrets

It is possible though not trivial to extend [Rab881 to a method for linearly combining

secrets.

Lemma 5 Let u and v be secretly shared ualuee, and let a, b and c be publicly known

f idd elemenfa. Then for 2t < n, there edsts a t-resilient protocol w + ou + bv + c

to provide each player with a piece of a new secret w whose value is au + bv + C ,

without revealing any informution about u , u, or w .

Each player i uses a f (i) + bg(i) + c as his piece of h(z) = af(z) + bg(z) + c , the

desired new polynomial which represents the secret w .

In order that w be a verifiable secret according to the VSS protocol, each h(i)

must be reshared in a weak fashion. This involves the use of check vectors for

the pieces of h (i) . In the full paper we describe in detail how to generate new

check vectors €or h(i); because the method involves examinii in detail the methods

used by [Rab88], in this abstract we only sketch the idea. If f(z) and g (z) were

generated by different sources, the check vectors associated with them will not be

compatible for checking that h(i) = af (i) + bg(i) + c. On the other hand, player i

c a n create new check vectors for f (i) and g (i) that will be compatible for checkiig

linear combinations; and there is a protocol revealing nothing about / (i) and g (i)

that ensures that player i creates new check vectors which are consistent with the

previous check vectors.

567

5 Multiplication of Secrets

We come now to one of two important results.

Theorem 6 Let u and v be secretly shared values. Then for 2t < n, there e & b a

t-resilient protocol to provide each player with a piece of a new secret w whose value

is uv, without reveuling any information about u,v, or uv.

By Lemma 5 it suffices to show Theorem 1. We prove Theorem l.by describing

Our solution follows a few brief steps (cf. (BGWM]). Let u be shared using

the protocol.

f(z) and o be shared using g (z) .

Step 1.

Each player i secretly shares the value f (i)g (i) and Uproves” that he has in

fact shared this value (see section 5.1). If his proof fails, he is disqualified (see
section 2.3).

Step 2.

From the collection of secret products, the polynomial f (z)g(z) , of degree 2t

and free term uv, is determined. Using a protocol to truncate the polynomial to

degree t (see section 5.2), and then to add a random polynomial of degree t and free

term 0, each player i is supplied with the value h(i) for the resulting polynomial
h(z) of degree t and free term uu.

0 .

In section 5.1 we describe the method by which player i can share f (i) g (i) and
prove with respect to the secrets f (i) and g (i) that he has in fact shared the correct

secret product. The protocol for reducing the degree of the polynomial is based on

linear combinations of secrets, and is presented in section 5.2.

5.1 Verifiable Multiplication

In order to accomplish Step 1, the verifiable sharing of f (i)g (i) and zero-knowledge

proof of its correctness, let us first define and solve a more general problem, which
form the basis for the results of this paper.

The ABC problem. Let Alice know the values of secrets a and b . Alice must
share a new secret c and prove to the other players that the secret value of c is
indeed ab. No other information about a,b, or c must be revealed (unless Alice is
faulty).

Given a protocol for the ABC problem, Alice will be able to prove to the network

that a new secret which she shares is indeed f (i) g (i) .

Lemma 7 (ABC Lemma.) If there ezists a t-resilient protocol for linear combina-

tiom Of secrets, then there exists a t-resilient protocol to solve the ABC pr~blcm.

568

We prove the ABC lemma by exhibiting the protocol. First, an overview: In
the first phase, Alice shares several triples of secrets (2, S, P) satisfying a simple

equation (of the form D = (a + R) (b + S)) , which will be used to ensure that Alice

does not misbehave. In the second phase, the players select and reveal combinations

of some of these triples in order to confirm that every triple satisfies the simple

equation. Finally, each unrevealed triple of secrets gives rise to a simple h e a r

combination of secrets that should equal the desired product ub. The third phase

checks that the linear combinations are consistent.

Protocol ABC.

Phase 1.

Let a and b be verifiably secret shared. Alice verifiably shares a third value c =
ab. Then Alice chooses and shares several random secrets r1,. . . , r2k and s1,. . . , s 2 k

chosen uniformly from the field used for sharing. (The chance of incorrectness will

be bounded by &.) For simplicity we take k > ra and k a power of two. Alice also

shares secrets d l , . . . , d2L: having (secret) values d j = (u + r ,) (b + s j) .

Phase 2.

Next, the system confirms that in fact each d j = (a + r j) (b + s j) . The system

selects and announces a set Y = {jl, . . . , jk} of k random indices. (Selecting indices

at random can be achieved by the following method: each player selects a random

secret in the field G F (k) and shares it over GF(k) ; together, they secretly compute

the sum; and finally, the s u m is revealed.) For each j E Y, the system secretly

computes the sums (a + rj) and (b + s j) , then reconstructs each of them, along with

the value of dj . Every processor checks that the product of the s u m matches the

value of d j ; if not, Alice is disqualified.

Phase 3.

If Alice passes the test in Phase 2, then the system recopstructs and reveals the

values of rj and sj for every index j @ Y. For each index j Y, the system then

secretly computes (but does not reveal) the linear combination cj = d j - rib - S j a -

r j s j . (This is a linear combination since r j and sj are now public.) If Alice has

behaved properly, then in fact each secret cj will contain the value ab.

The system now computes and reveals the differences (c - c j) for every j 4 Y.
If any difference is nonzero, Alice is disqualified. Otherwise, if Alice has passed all

the tests, then the system accepts Alice’s sharing. 0 .

In Phase 2 , the s u m s (a + r j) and (b + s j) are independent of a and b, respectively,

since r j and a j are uniformly random field elements. Their product dj is also
independent of a and b. Therefore, revealing the sums and d j values for j E Y
reveals nothing about a and b. If Alice has behaved, then regardless of the values of

a and 6 , the secrets (c - c j) computed in Phase 3 will all be zero, 90 that revealing

them will give no information about a or b.

How may Alice cheat without being detected? We shall show that she must

behave properly on exactly those indices chosen in Phase 2 and she must misbehave

569

on all the others. Let X be the set of indices j for which Alice shares d, correctly,

that is, for which Alice shares d j having the value (a + rj)(b + s j) . In Phase 2,

the set Y of indices chosen by the system must be a subset of X, or else Alice’s

misbehavior is detected. In Phase 3, the remaining indices j 4 Y must all satisfy

c = dj - rjb - Sja - rjs j or else Alice is caught. If c # ab (Alice is cheating), no

index j $? Y is in X. Hence X = Y, and since Y is chosen randomly after Alice has

shared all her secrets, the probability that Alice c a n cheat without beiig detected
is no more than &.

5.2 Degree Reduction

Lemma 8 Let p (z) be a polynomial of degree 2t with hidden coefiients, having

c = p(0) 08 its free term, and suppose each player i b u r s the secret udue p (i) . Let

each value p(i) itself be uerifiably shard among the players. Assuming a protocol

for lineor combinations of secrets, there is a protocol to uerifibly share c = p(0)

using a random polynomial q(z) of degree t .

One method for interpolating polynomials, given a l i t of n values p (l) , . . . ,p (n) ,

is to use LaGrange polynomials:

If we denote by f (z) the truncated polynomial f(z) mod zftl, then

n

F(4 = Cz;(.)P(i) .
i=l

The polynomials Li(z), and hence G(z), are publicly known; they depend only

on the fixed, known interpolation points (which we have taken to be 1,. . . , n for
simplicity.)

We shall provide each player rn with the value ~(rn) + r(rn), where r(x) is a

random polynomial of degree t and free term 0. The reason for including r(z)

is to ensure that coefficients of the new polynomial q(z) are indeed random. (The
generation of r(z), along with the providing of r (m) to player m , is left as an exercise
to the reader.)

Define q(z) = F(z) + t (x) . Recall that each value p(i) is a secret known only to

player i , and can itself be shared. For each rn, the value q(m) can be written as a

linear combination of secrets p (1), . . . , p(n):

4(m) = (F + r)(m) = r (m) + C Z (m) p (i) .
i

(Recall that each K(m) is publicly known, and serves as a weight for the secrets.)
By performing this linear combination of secrets and revealing the result to player

rn, it is possible to provide each player m with the value q(rn), solving the problem
at hand.

570

5.3 Proving the Multiplication Theorem

As in [BGW88,CCD88], given the power to reduce the degree of the product p01p0-

mial f(z)g(z) and to prove (in zero-knowledge) that the new pieces are correct, we

have completed the proof of Theorem 6, that there exists a t-resilient multiplication

protocol.

6 Multiparty Protocols

Addition and multiplication protocols (Lemmas 5, 7, and 8) make the Evaluation

stage possible. In order to evaluate Cz, the protocol simulates the circuit layer by

layer, producing a new set of secrets each time.

The overall protocol consists of verifiably secret-sharing the input values

z1,. . . , z,, evaluating a circuit C, on those values to produce a new secret w , and

finally reconstructing w . This completes the proof of our main result, Theorem 2.

7 Zero-Knowledge Proofs

For definitions and background concerning interactive proof systems and zero-

knowledge proofs, we refer the reader to [GMR89]. In the full paper we formally

define and extend these concepts to the network setting.

The method of section 5.1 for proving that a secret contains the product of two

others extends immediately to proving that a secret w contains the value of some

polynomial size arithmetic circuit C p applied to secrets ul,. . . , w,. Alice secretly

shares the output of each gate g1 when Cp is applied to wl,. . . , wm. The network must

verify that the output of each gl is correct with respect to its two inputs. Let wi be

the output of gate 91, and u1 and w1 represent its inputs. If gl is a h e a r combination

gate, the network secretly computes the linear combination wl - (uul + bwl + c) and

reveals it to verify that it is zero. If gl is a multiplication gate, Alice usea the ABC

protocol to prove that W I = ulvl.

Theorem 3, which states that zero-knowledge proofs are possible in the presence

of a partly-corrupt network, follows from these observations. Notice that this tech-

nique for zero-knowledge proofs of predicates on secretly shared values usea only

a constant number of rounds and a message complexity proportional to the size of

the circuit Cp.

In order to show Lemma 4, stating that any language which has an interactive

proof system is also provable in zereknowledge in the presence of a network, we must

demonstrate how such a zerc+knowledge proof runs. Let L E IF' and let <P, V > be a

proof system for L. Without loss of generality assume V runs for exactly p(n) steps

on all inputs of length n, where p() is a polynomial. The verifier is a deterministic

machine, given its random tape. The trick to showing the Lemma is to note that

the network can generate secret random bits for V, and then simulate the operation

of V, ensuring not only that the state of V and its tapes is never revealed, but

also that the final output of the simulation is a correct assessment of what a true

57 1

verifer would answer. Alice takes the position of the prover, sharing her messages

to V among the network, while the network simulates a message from V to P by

reconstructing it only for Alice.

8 Conclusion

We have shown the new and powerful result that multiparty computations can be

performed securely and secretly despite Byzantine faults by up to half the parties.

No unproven assumptions are needed. Furthermore, our techniques require only a

small polynomial number of message bits and a smal l constant number of rounds

of interaction per basic operation (multiplication, addition, logical %nd," logical

"or") .
We have also shown how a member of a network can share two secrets along

with their product, proving to the network that the secret product is correct. More

generally, we have demonstrated that a player can prove anything "provable" (in the

sense of interactive proofs) about a set of secrets which she knows, without revealing

anything else about the values of the secrets. She can also prove any IP-statement

about known values without revealing anything other than that the statement holds.

This new method for zero-knowledge proofs in the presence of a network of pro-

cessors requires no unproven assumptions and is correct with exponentially small

chance of error.

In comparison to other solutions, the methods in this paper are more practical

and efficient. They allow field operations over an exponentially large field, which

permits direct secret computations of many naturally occurring operations, such as

arithmetic. This a great advantage over the requirements and inefficiencies of
bit-simulations, on which all other methods rely.

Each of OUT results allows an exponentially small chance of error, but it is easily

proven that for 3t 1 n no protocol can tolerate t Byzantine faults without error.

Since it is impossible even to share a secret when more than half the parties are

faulty, our results are optimal.

References

[BB88] D. Beaver, J. Bar-Ilan. "Non-Cryptographic Fault-Tolerant Computing

in a C o n s k t Expected Number of Rounds of Interaction." Proc. of 21"
STOC (1989), 201-209.

[Bedgb] D. Beaver. Usecure Multiparty Protocols Tolerating Half Faulty Proces-

S O m " Technical Report TR-lS88 (September, 1988), Harvard University.

[BGW88] M- a n - o r , s. Goldwasser, A. Wigderson. 'LCompleteness Theorems for

N0n-C-t W a p h k Fault-Tolerant Distributed Computation." Proc. of
20"'STOC (1988), 1-10.

572

[BlaSl] G. R. Blakley, "Security Proofs for Information Protection Systems." Pro-
ceedings of the 1980 Symposium on Security and Privacy, IEEE Computer
Society Press, NY (1981), 79-88.

M. Ben-Or, T. Rabin. "Verifiable Secret Sharing and Multiparty Protocols
with Honest Majority ." 21'* STOC (1989), 73-85.

Protocols." Proc. of 20th STOC (1988), 11-19.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, B. Awerbuch. "Verifiable Secret Shar-

ing and Achieving Simultaneity in the Presence of Faults." Proc. of 17'h

STOC (1985), 383-395.

[BR89]

[CCDSS] D. C h a m , C. Cripeau, I. Damghd. "Multiparty Unconditionally Secure

[GMRSS] S. Goldwasser, S. Micali, C. Rackoff. "The Knowledge Complexity of In-
teractive Proof Systems." SIAM Journal on Computing 18, no. 1 (1989),

186-208.

[GMW87] Goldreich, O., Micali, S., A. Wigderson. "How to Play Any Mental Game,

or A Completeness Theorem for Protocols with Honest Majority." Proc. of

19"'STOC (1987), 218-229.

[Kill J. Kilian, personal communication.

[Kilt381 J. Kilian. "Founding Cryptography on Oblivious Transfer." Proc. of 20*h
STOC (1988), 20-29.

[Rab88] T. Rabin. "Robust Sharing of Secrets When the Dealer is Honest or Cheat-
ing." Masters Thesis, Hebrew University, 1988.

A. Shamir. 'How to Share a Secret." CACM 22 (1979), 612-613.

A. Yao. "How to Generate and Exchange Secrets." Proc. of 27th FOCS
(1986), 162-167.

[Sha79]

YyaoSS]

	Multiparty Protocols Tolerating Half Faulty Processors
	Introduction
	Secret Sharing and Computation
	Results

	Preliminaries
	Protocol Properties
	vss
	Disqualification

	Compiling Multiparty Protocols
	Addition of Secrets
	Multiplication of Secrets
	Verifiable Multiplication
	Degree Reduction
	Proving the Multiplication Theorem

	Multiparty Protocols
	Zero-Knowledge Proofs
	Conclusion
	References

