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Abstract. A widespread approach to software service analysis uses ses-
sion types. Very different type theories for binary and multiparty proto-
cols have been developed; establishing precise connections between them
remains an open problem. We present the first formal relation between
two existing theories of binary and multiparty session types: a binary sys-
tem rooted in linear logic, and a multiparty system based on automata
theory. Our results enable the analysis of multiparty protocols using
a (much simpler) type theory for binary protocols, ensuring protocol
fidelity and deadlock-freedom. As an application, we offer the first the-
ory of multiparty session types with behavioral genericity. This theory
is natural and powerful; its analysis techniques reuse results for binary
session types.

1 Introduction

The purpose of this paper is to demonstrate, in a precise technical sense, how
an expressive and extensible theory of multiparty systems can be extracted from
a basic theory for binary sessions, thus developing the first formal connection
between multiparty and binary session types. Our approach relies on a theory of
binary session types rooted in linear logic and on medium processes that capture
the behavior of global types.

Relating the global behavior of a distributed system and the components
that implement it is a challenging problem in many scenarios. This problem
is also important in the analysis of software services, where the focus is on
message-passing programs with advanced forms of concurrency and distribu-
tion. Within language-based techniques, notable approaches include interface
contracts (cf. [8]) and behavioral types [15]. Our interest is in the latter: by
classifying behaviors (rather than values), behavioral types abstract structured
protocols and enforce disciplined communication exchanges.

Session types [13,14] are a much-studied class of behavioral types. They
organize multiparty protocols as sessions, basic units of structured conversations.
Several session typed frameworks have been developed (see [15] for an overview).
This diversity makes it hard to compare their associated techniques, and hinders
the much desirable transfer of techniques between different typed models.
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In this paper, we formally relate two distinct typed models for structured
communications. By relying on a type theory of binary sessions rooted in linear
logic [5], we establish natural bridges between typed models for binary and mul-
tiparty sessions [13,14]. Our results reveal logically motivated justifications for
key concepts in typed models of global/local behaviors, and enable the transfer
of reasoning techniques from binary to multiparty sessions. In fact, our approach
naturally enables us to define the first model of multiparty session types with
parametric polymorphism, which in our setting means behavioral genericity (i.e.,
passing first-class behavioral interfaces in messages), not just datatype generic-
ity. This new model is very powerful; we equip it with analysis techniques for
behavioral genericity by reusing results for binary session types [4].

Binary protocols [13] involve two partners, each abstracted by a behavioral
type; correct interactions rely on compatibility, i.e., when one partner performs
an action, the other performs a complementary one. Multiparty protocols may
involve more than two partners: there is a global specification to which all
of them, from their local perspectives, should adhere. In multiparty session
types [12,14], these visions are described by a global type and local types, respec-
tively; a projection function relates the two. Previous research shows that type
systems for multiparty protocols have a more involved theory than binary ones.
For instance, the analysis of deadlock-freedom in multiparty protocols is chal-
lenging [10], and certainly harder than for binary protocols.

The question is then: could multiparty session types be reduced into binary
ones? Defining such a reduction is far from trivial, as it should satisfy at least two
requirements. First, the resulting collection of binary interactions must preserve
crucial sequencing information among multiparty exchanges. Second, it should
avoid undesirable behaviors: synchronization errors, deadlocks, non-terminating
reductions.

This paper answers the above question in the affirmative. We tightly relate:
(i) a standard theory of multiparty session types [12,14], and (ii) the theory
of deadlock-free binary session types proposed in [5]. The key device in our
approach is the medium process of a multiparty protocol.

Given a global type G, its medium process M�G� is an entity that medi-
ates in all communications. Therefore, M�G� extracts the semantics of G, uni-
formly capturing its sequencing information. Process M�G� is meant to interact
with well-typed implementations for all participants declared in G. This way,
for instance, given the global type G = p � q:{li〈Ui〉.Gi}i∈I (i.e., a labeled,
directed exchange from p to q, indexed by I, which precedes execution of a pro-
tocol Gi), its medium M�G� first receives a label lj and message of type Uj sent
by p’s implementation (with j ∈ I); then, it forwards these two objects to q’s
implementation; lastly, it executes process M�Gj�.

Interestingly, our medium-based approach applies to global types with name
passing, delegation, and parallel composition. To fully characterize a global type
G, we determine the conditions under which M�G� may be well-typed using
binary session types, with respect to its local types. A key ingredient here is the
theory for binary session types introduced in [5]. Due to their logical foundations,
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typability in [5] entails: fidelity (protocols are respected), safety (absence of com-
munication errors), deadlock-freedom (processes do not get stuck), and termina-
tion (infinite internal behavior is ruled out). Most relevant for our approach is
deadlock-freedom, not directly ensured by alternative type systems.

Here we present an analysis of multiparty session types using a theory of
binary session types, ensuring fidelity and deadlock-freedom. Our technical con-
tributions are:

• Characterization results relating (a) a global type that is well-formed (correct
projectability) and (b) typability of its medium using binary session types
(Theorems 4 and 5).

• Operational correspondence results relating (a) the behavior of a global type
and (b) the behavior of its medium (instrumented in a natural way) com-
posed with well-typed implementations for each local type (Theorem 7). These
results confirm that our analysis does not introduce extra sequentiality in pro-
tocols.

• A proof that behavioral transformations of global types [6] can be justified
by typed equalities for binary sessions [19] expressed at the level of mediums
(Theorem 6). This result offers a deep semantic justification of structural
identities on global types, such as those capturing parallelism via interleaving
of causally independent exchanges.

• Transfer of techniques from binary to multiparty protocols. We define the
first theory of multiparty session types with behavioral genericity ; its analysis
techniques reuse the binary session type theory with parametric polymorphism
given in [4].

Our results define the first formal relation between multiparty and binary session
types. They highlight the fundamental character of the notions involved, since
they can be independently explained by communicating automata (cf. [12]) and
linear logic (cf. [5]).

Next, we collect definitions on multiparty sessions [12,14] and binary ses-
sions [5]. Our technical contributions are reported in Sect. 3. In Sect. 4 we illus-
trate these contributions by means of an example that features non-trivial forms
of replication and sharing. In Sect. 5 we introduce multiparty session types with
behavioral genericity, and in Sect. 6 we illustrate our approach in the analysis of
a multiparty protocol. Section 7 concludes and discusses related works.

2 Preliminaries: Binary and Multiparty Session Types

Binary Session Types. We build upon the theory of binary session types
of [5,21], based on an interpretation of session types as linear logic propositions.
We assume no background on linear logic from the reader; we refer to [5] for
further details.
The Process Model. We define a synchronous π-calculus [20] with forwarding and
n-ary labeled choice. We use l1, l2, . . . to range over labels. Given an infinite set
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(id) (νx)([x ↔y] | P )
τ−→ P{y/x} (n.out) x y.P

x y−−→ P (n.in) x(y).P
x(z)−−−→ P{z/y}

(s.out) l ; P
l−−→ P (s.in) {li : Pi}i∈I

lj−−−→ Pj (j ∈ I)

Fig. 1. LTS for processes (Excerpt).

Λ of names (x, y, z, u, v), the set of processes (P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x y.P | x(y).P | !x(y).P |
x �li;P | x �{li : Pi}i∈I | [x↔y]

Operators 0 (inaction), P | Q (parallel composition), and (νy)P (restriction) are
standard. We have x y.P (send y on x, proceed as P ), x(y).P (receive a z on x,
proceed as P with y replaced by z), and the replicated input !x(y).P . Operators
x � l ;P and x �{li:Pi}i∈I define labeled choice [13]. Forwarding [x↔ y] equates
x and y; it is a copycat process, similar to wires in [20]. Also, x(y) denotes the
bound output (νy)x y.

In restriction (νy)P and input x(y).P the occurrence of name y is binding,
with scope P . The set of free names of a process P is denoted fn(P ). In a
statement, a name is fresh if it is not among the names of the objects (processes,
actions, etc.) of the statement. A process is closed if it does not contain free
occurrences of names. We identify processes up to consistent renaming of bound
names. The capture-avoiding substitution of x for y in P is denoted P{x/y}.
Notation ˜k denotes a finite sequence of pairwise distinct names k1, k2, · · · . We
sometimes treat sequences of names as sets.

Reduction expresses the internal behavior of processes. Closed under struc-
tural congruence (noted ≡, see [5]), it is the binary relation on processes defined
by the rules:

x y.Q | x(z).P → Q | P{y/z} x y.Q | !x(z).P → Q | P{y/z} | !x(z).P
(νx)([x↔y] | P ) → P{y/x} Q → Q′ ⇒ P | Q → P | Q′

P → Q ⇒ (νy)P → (νy)Q x �lj ;P | x �{li : Qi}i∈I → P | Qj (j ∈ I)

The interaction of a process with its environment is defined by an early labeled
transition system (LTS) for the π-calculus [20], extended with labels and tran-
sition rules for choice and forwarding. Transition P

λ−→ Q says that P may
evolve to Q by performing the action represented by label λ, defined as:
λ ::= τ | x(y) | x � l | x y | x(y) | x � l. Actions are the input x(y), the offer
x � l, and their co-actions: the output x y and bound output x(y) actions, and
the selection x � l, resp. The bound output x(y) denotes extrusion of y along x.
Internal action is denoted τ . Figure 1 gives a selection of the rules that define
P

λ−→ Q. Weak transitions are as usual: =⇒ is the reflexive, transitive closure of
τ−→. Notation λ=⇒ stands for =⇒ λ−→=⇒ (given λ 	= τ) and τ=⇒ stands for =⇒.

Session Types as Linear Logic Propositions. The type theory of [5] connects
session types as linear logic propositions. Main properties derived from typing,
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(Tid)

Γ ;x:A [x↔z] :: z:A

(T1R)

Γ ; · 0 :: x:1

(Tcut)
Γ ;Δ P :: x:A Γ ;Δ , x:A Q :: z:C

Γ ;Δ, Δ (νx)(P | Q) :: z:C

(T L)
Γ ;Δ P :: y:A Γ ;Δ , x:B Q :: z:C

Γ ;Δ, Δ , x:A B x(y).(P | Q) :: z:C
(T⊗L)

Γ ;Δ, y:A, x:B P :: z:C

Γ ;Δ, x:A ⊗ B x(y).P :: z:C

(T⊕L)
Γ ;Δ, x:A1 P1 :: z:C · · · Γ ;Δ, x:Ak Pk :: z:C I = {1, . . . , k}

Γ ;Δ, x: ⊕{li : Ai}i∈I {li : Pi}i∈I :: z:C

(T R)
Γ ;Δ P1 :: x:A1 · · · Γ ;Δ Pk :: x:Ak I = {1, . . . , k}

Γ ;Δ x {li : Pi}i∈I :: x: {li : Ai}i∈I

(T L1)
Γ ;Δ, x:A P :: z:C

Γ ;Δ, x: {li : A}{i} li;P :: z:C

(T L2)
Γ ;Δ, x: {li:Ai}i∈I P :: z:C k I

Γ ;Δ, x: {lj :Aj}j∈I∪{k} P :: z:C

Fig. 2. The type system for binary sessions (Excerpt).

absent from other binary session type theories, are global progress (deadlock-
freedom) and termination [19]. The syntax of binary types is as follows:

Definition 1 (Binary Types). Types (A,B,C) are given by

A,B ::= 1 | !A | A ⊗ B | A� B | �{li : Ai}i∈I | ⊕{li : Ai}i∈I

We use A ⊗ B (resp. A� B) to type a name that performs an output (resp.
an input) to its partner, sending (resp. receiving) a name of type A, and then
behaves as type B. Thus, A ⊗ B and A� B represent the session types !A;B
and ?A;B introduced in [13]. We generalize [5] by considering n-ary offer � and
choice ⊕. Given a finite index set I, �{li:Ai}i∈I types a name that offers a choice
between an li. Dually, ⊕{li:Ai}i∈I types the selection of one of the li. Type !A
types a shared channel, used by a server to spawn an arbitrary number of new
sessions (possibly none), each one conforming to A. Type 1 is the terminated
session; names of type 1 may be passed around as opaque values.

A type environment collects type assignments of the form x:A, where x is a
name and A is a type, the names being pairwise disjoint. We consider two typing
environments, subject to different structural properties: a linear part Δ and an
unrestricted part Γ , where weakening and contraction principles hold for Γ but
not for Δ.

A type judgment Γ ;Δ � P :: z:C asserts that P provides behavior C at chan-
nel z, building on “services” declared in Γ ;Δ. This way, e.g., a client Q that relies
on external services and does not provide any is typed as Γ ;Δ � Q :: z:1. The
domains of Γ,Δ and z:C are required to be pairwise disjoint. We write dom(Γ )
(resp. dom(Δ)) to denote the domain of Γ (resp. Δ), a sequence of names.
Empty environments are denoted ‘ · ’. As π-calculus terms are considered up to
structural congruence, typability is closed under ≡ by definition. We sometimes
abbreviate Γ ;Δ � P :: z:1 as Γ ;Δ � P .
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Figure 2 presents selected typing rules; see [5] for a full account. We have
right and left rules: they say how to implement and use a session of a given
type, respectively. We briefly comment on some of the rules. Rule (Tid) defines
identity in terms of forwarding. Rule (Tcut) define typed composition via parallel
composition and restriction. Implementing a session type �{li:Ai}i∈I amounts to
offering a choice between n sessions with type Ai (Rule (T�R)); its use on name
x entails selecting an alternative, using prefix x � lj (Rules T�L1 and (T�L2)).
Type ⊕{li : Ai}i∈I has a dual interpretation.

We now recall some main results for well-typed processes. For any P , define
live(P ) iff P ≡ (νñ)(π.Q | R), for some names ñ, a process R, and a non-
replicated guarded process π.Q. Also, we write P ⇓, if there is no infinite reduc-
tion path from process P .

Theorem 1 (Properties of Well-Typed Processes).

1. Subject Reduction [5]: If Γ ;Δ � P :: x:A and P → Q then Γ ;Δ � Q::x:A.
2. Global Progress [5]: If ·; · � P ::z:1 and live(P ) then exists a Q such that

P → Q.
3. Termination/Strong Normalization [19]: If Γ ;Δ � P :: x:A then P ⇓.

Theorem 1 (2), key in our work, implies that our type discipline ensures dead-
lock freedom. Further properties of well-typed processes concern proof conver-
sions and typed behavioral equivalences. The correspondence in [5] is realized by
relating proof conversions in linear logic with appropriate process equivalences.
There is a group of commuting conversions that induces a behavioral congru-
ence on typed processes, noted �c. Process equalities justified by �c include,
e.g., (see [19] for details):

Γ ;Δ, y:A ⊗ B � (νx)(P | y(z).Q) �c y(z).(νx)(P | Q)::z:C
Γ ;Δ, y:A� B � (νx)(P | y(z).(Q | R)) �c y(z).(Q | (νx)(P | R))::T

Γ ;Δ, y: �{li:Ai}i∈I � (νx)(P | y �li;Q) �c y � li; (νx)(P | Q)::T

These equalities reflect a behavioral equivalence over session-typed processes,
called context bisimilarity (noted ≈) [19]. Roughly, typed processes Γ ;Δ �
P :: x:A and Γ ;Δ � Q::x:A are context bisimilar if, once composed with
their requirements (described by Γ,Δ), they perform the same actions on x
(as described by A). Context bisimilarity is a congruence relation on well-typed
processes. We have:

Theorem 2 ([19]). If Γ ;Δ � P �c Q :: z:C then Γ ;Δ � P ≈ Q :: z:C.

Multiparty Session Types. Our syntax of global types includes constructs
from [12,14]. With respect to [12], we consider value passing in branching (cf. U
below), fully supporting delegation and add parallel composition. Below, par-
ticipants are ranged over by p, q, r, . . .; labels are ranged over by l1, l2, . . .. To
streamline the presentation, we consider standard global types without recur-
sion. Our approach extends to global types with recursion, exploiting the exten-
sion of [5] with co-recursion [21]. Results for global types with recursion can be
found in an online technical report [3].
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Definition 2 (Global/Local Types). Define global types (G) and local types
(T ) as

G ::= end | p�q:{li〈Ui〉.Gi}i∈I | G1 | G2 U ::=bool | nat | str | . . . | T

T ::= end | p?{li〈Ui〉.Ti}i∈I | p!{li〈Ui〉.Ti}i∈I

G denotes the above set of global types. Given a finite I and pairwise different
labels, p�q:{li〈Ui〉.Gi}i∈I specifies that by choosing label li, participant p may
send a message of type Ui to participant q, and then continue as Gi. We decree
p 	= q, so reflexive interactions are disallowed. The global type G1 | G2 allows
the concurrent execution of G1 and G2. We write end to denote the completed
global type. The local type p?{li〈Ui〉.Ti}i∈I denotes an offer of a set of labeled
alternatives; the local type p!{li〈Ui〉.Ti}i∈I denotes a behavior that chooses one
of such alternatives. The terminated local type is end. Following [14], there is no
local type for parallel.

Example 1. Consider a global type GBS, a variant of the the two-buyer protocol
in [14], in which two buyers (B1 and B2) coordinate to buy an item from a
seller (S):

GBS = B1�S:
{

send〈str〉.S�B1:{rep〈int〉.S�B2:{rep〈int〉.
B1�B2:{shr〈int〉.B2�S:{ok〈1〉.end , quit〈1〉.end}}}}}

Intuitively, B1 requests the price of an item to S, who replies to B1 and B2. Then
B1 communicates to B2 her contribution in the transaction; finally, B2 either
confirms the purchase to S or closes the transaction.

We now define projection for global types. Following [12], projection relies on
a merge operator on local types, which in our case considers messages U .

Definition 3 (Merge). We define � as the commutative partial operator on
base and local types such that: 1. bool�bool = bool (and similarly for other base
types); 2. end�end = end; 3. p!{li〈Ui〉.Ti}i∈I�p!{li〈Ui〉.Ti}i∈I = p!{li〈Ui〉.Ti}i∈I ;
and

4. p?{lk〈Uk〉.Tk}k∈K � p?{l ′j〈U ′
j〉.T ′

j}j∈J =
p?

({lk〈Uk〉.Tk}k∈K\J ∪{l ′j〈U ′
j〉.T ′

j}j∈J\K ∪{ll〈Ul �U ′
l 〉.(Tl �T ′

l )}l∈K∩J

)

and is undefined otherwise.

Therefore, for U1�U2 to be defined there are two options: (a) U1 and U2 are iden-
tical base, terminated or selection types; (b) U1 and U2 are branching types, but
not necessarily identical: they may offer different options but with the condition
that the behavior in labels occurring in both U1 and U2 must be mergeable. The
set of participants of G (part(G)) is defined as: part(end) = ∅, part(G1 | G2) =
part(G1) ∪ part(G2), part(p�q:{li〈Ui〉.Gi}i∈I) = {p, q} ∪ ⋃

i∈I part(Gi).

Definition 4 (Projection [12]). Let G be a global type. The projection of G
under participant r, denoted G�r, is defined as: end�r = end and
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(SW1)
{p1, q1}#{p2, q2}

p1 q1: li Ui .p2 q2:{lj Uj .Gij}j∈J i∈I

sw

p2 q2: lj Uj .p1 q1:{li Ui .Gij}i∈I j∈J

(SW2)
{p, q}#part(G1) ∀i, j ∈ I.G1

i = G1
j

p q:{li Ui .(G1
i | G2

i )}i∈I

sw

G1
1 | p q: li Ui .G2

i }i∈I

Fig. 3. Swapping relation on global types (Definition 6). A#B denotes that sets A, B
are disjoint.

• p�q:{li〈Ui〉.Gi}i∈I�r =

⎧
⎪⎪⎨

⎪⎪⎩

p!{li〈Ui〉.Gi�r}i∈I if r = p

p?{li〈Ui〉.Gi�r}i∈I if r = q

�i∈I Gi�r otherwise (� as in Definition 3)

• (G1 | G2)�r =

{

Gi�r if r ∈ part(Gi) and r 	∈ part(Gj), i 	= j ∈ {1, 2}
end if r 	∈ part(G1) and r 	∈ part(G2)

When a side condition does not hold, the map is undefined.

Definition 5 (Well-Formed Global Types [12]). Global type G ∈ G is well-
formed (WF) if for all r ∈ part(G), the projection G�r is defined.

The last notion required in our characterization of multiparty session types
as binary sessions is a swapping relation over global types [6], which enables
transformations among causally independent communications. Such transfor-
mations may represent optimizations that increase parallelism while preserving
the intended global behavior.

Definition 6 (Global Swapping). The swapping relation �sw is the smallest
congruence on G which satisfies the rules in Fig. 3. (The symmetric of ( sw2) is
omitted.)

3 Relating Multiparty and Binary Session Type Theories

Our analysis of multiparty protocols as binary sessions relies on the medium
process of a global type. Mediums offer a simple device for analyzing global types
using the binary session types of [5]. Mediums uniformly capture the sequencing
behavior in a global type, for they take part in all message exchanges between
local participants.

After defining mediums (Definition 7), we establish their characterization
results (Theorems 4 and 5). We then present a process characterization of global
swapping (Definition 6) in terms of context bisimilarity (Theorem 6). Subse-
quently, we state operational correspondence results (Theorem 7), exploiting
the auxiliary notions of instrumented mediums (Definition 10) and multiparty
systems (Definition 11). We use the following conventions.
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Convention 3 (Indexed/Annotated Names). We consider names indexed
by participants p, q, . . ., noted cp, cq, . . . and names annotated by participants,
noted kp, kq, . . .. Given p 	= q, indexed names cp and cq denote two different
objects; in contrast, annotated names kp and kq denote the same name k with
different annotations. Given a G with part(G) = {p1, . . . , pn}, we will write
npart(G) to denote the set that contains a unique name cpj for every participant
pj of G. We will occasionally use npart(G) as an unordered sequence of names.

Definition 7 (Mediums). The medium of G ∈ G, denoted M�G�, is defined
as follows:

• M�end� = 0
• M�G1 | G2� = M�G1� | M�G2�
• M�p�q:{li〈Ui〉.Gi}i∈I� = cp �

{

li : cp(u).cq �li; cq(v).([u↔v] | M�Gi�)
}

i∈I

The key case is M�p�q:{li〈Ui〉.Gi}i∈I�: note how the medium uses two prefixes
(on name cp) to mediate with p, followed by two prefixes (on name cq) to mediate
with q. We illustrate mediums by means of an example:

Example 2. The medium process for global type GBS in Example 1 is:

M�GBS� = cB1 �
{

send : cB1(v).cS �send ; cS(w).([w↔v] |
cS �{rep : cS(v).cB1 �rep; cB1(w).([w↔v] |

cS �{rep : cS(v).cB2 �rep; cB2(w).([w↔v] |
cB1 �{shr : cB1(v).cB2 �shr ; cB2(w).([w↔v] |

cB2 �{ ok : cB2(v).cS �ok ; cS(w).([w↔v] | 0) ,
quit : cB2(v).cS �quit ; cS(w).([w↔v] | 0)})})})})

}

Intuitively, we expect that (well-typed) process implementations for B1, B2, and
S should interact with M�GBS� through channels cB1, cB2, and cS, respectively. ��
We now move on to state our characterization results. We require two auxiliary
notions, given next. Below, we sometimes write Γ ;Δ � M�G� instead of Γ ;Δ �
M�G� :: z:1, when z 	∈ fn(M�G�).

Definition 8 (Compositional Typing). We say Γ ;Δ � M�G�::z:C is a com-
positional typing if: (i) it is a valid typing derivation; (ii) npart(G) ⊆ dom(Δ);
and (iii) C = 1.

A compositional typing says that M�G� depends on behaviors associated to each
participant of G; it also specifies that M�G� does not offer any behaviors of
its own. We relate binary session types and local types: the main difference is
that the former do not mention participants. Below, B ranges over base types
(bool, nat, . . .) in Definition 2.

Definition 9 (Local Types → Binary Types). Mapping 〈〈·〉〉 from local
types T (Definition 2) into binary types A (Definition 1) is inductively defined
as 〈〈end〉〉 = 〈〈B〉〉 = 1 and

〈〈p!{li〈Ui〉.Ti}i∈I〉〉 = ⊕{li : 〈〈Ui〉〉 ⊗ 〈〈Ti〉〉}i∈I

〈〈p?{li〈Ui〉.Ti}i∈I〉〉 = �{li : 〈〈Ui〉〉� 〈〈Ti〉〉}i∈I .
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3.1 Characterization Results

Our characterization results relate process M�G� (well-typed with a composi-
tional typing) and 〈〈G�p1〉〉, . . . , 〈〈G�pn〉〉 (i.e., the local types of G transformed
into binary session types via Definition 9). Our characterization results are in
two directions, given by Theorems 4 and 5. The first direction says that well-
formedness of global types (Definition 5) ensures compositional typings for medi-
ums with (logic based) binary session types:

Theorem 4 (Global Types → Typed Mediums). Let G ∈ G. If G is WF
with part(G) = {p1, . . . , pn} then Γ ; cp1 :〈〈G� p1〉〉, . . . , cpn :〈〈G� pn〉〉 � M�G� is a
compositional typing, for some Γ .

The second direction of the characterization is the converse of Theorem 4: com-
positional typings for mediums induce global types which are WF. Given local
types T1, T2, below we write T1 �� T2 if there exists a local type T ′ such that
T1 � T ′ = T2 (cf. Definition 3). This notation allows us to handle the labeled
alternatives silently introduced by rule (T�L2).

Theorem 5 (Well-Typed Mediums → Global Types). Let G ∈ G. If
Γ ; cp1 :A1, . . . , cpn :An � M�G� is a compositional typing then ∃T1, . . . , Tn such
that G�pj �� Tj and 〈〈Tj〉〉 = Aj, for all pj ∈ part(G).

Theorems 4 and 5 tightly connect (i) global types, local types and projection, and
(ii) medium processes, and logic-based binary session types. They also provide an
independent deep justification, through purely logical arguments, to the notion
of projection.

3.2 A Behavioral Characterization of Global Swapping

Global swapping (Definition 6, Fig. 3) can be directly justified from more prim-
itive notions, based on the characterizations given by Theorems 4 and 5. By
abstracting a global type’s behavior in terms of its medium we may reduce trans-
formations on global types to type-preserving transformations on processes. This
is the content of Theorem 6 below, which connects global swapping (�sw) and
context bisimilarity (≈). Hence, sequentiality of mediums can be relaxed in the
case of causally independent exchanges captured by �sw.

Theorem 6. Let G1 ∈ G such that M�G1� has a compositional typing Γ ;Δ �
M�G1�, for some Γ,Δ. If G1 �sw G2 then Γ ;Δ � M�G1� ≈ M�G2�.

Since M�G� is a low-level representation of G, the converse of Theorem 6 is less
interesting, for type-preserving transformations at the (low) level of mediums
do not always correspond to behavior-preserving transformations at the (high)
level of global types. That is, since M�G� implements each communication in G
using several prefixes, swapping in G occurs only when all relevant prefixes in
M�G� can be commuted via �c.
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3.3 Operational Correspondence Results

The results given so far focus on the static semantics of multiparty and binary
systems, and are already key to justify essential properties such as absence of
global deadlock. We now move on to dynamic semantics, and establish oper-
ational correspondence results between a global type and its medium process
(Theorem 7).

We define the instrumented medium of a global type G, denoted M
˜k�G�, as a

natural extension of Definition 7. Process M
˜k�G� exploits fresh sessions (denoted

˜k), to emit a visible signal for each action of G. We use ˜k as annotated names
(cf. Convention 3): each action on a ki contains the identity of the participant of
G which performs it. Then, using M

˜k�G� we define the set of systems associated
to G (Definition 11), which collects process implementations for G mediated
by M

˜k�G�. Since interactions between local implementations and M
˜k�G� are

unobservable actions, Theorem 7 connects (i) the visible behavior of a system
along annotated names ˜k, and (ii) the visible behavior of G, defined by an LTS
on global types (a variant of that in [12]). Below, kp.P stands for kp(x).P when
x is not relevant in P . Also, ̂kp.P stands for kp(v).(0 | P ) for some v.

Definition 10 (Instrumented Mediums). Let ˜k be fresh, annotated names.
The instrumented medium of G ∈ G with respect to ˜k, denoted M

˜k�G�, is defined
as follows:

• Mk�end� = 0
• Mk1,k2�G1 | G2� = Mk1�G1� | Mk2�G2�
• Mk�p�q:{li〈Ui〉.Gi}i∈I� =

cp �
{

li : kp �li; cp(u). ̂kp.
(

cq � li; kq �{li : cq(v).([u↔v] | kq.Mk�Gi�)}{i}
)}

i∈I

The key case is Mk�p � q:{li〈Ui〉.Gi}i∈I�. Each action of the multiparty
exchange is “echoed” by an action on annotated name k: the selection of label
li by p is followed by prefix kp � li; the output from p (captured by the medium
by the input cp(u)) is echoed by prefix kp. This way, the instrumented process
M
˜k�G� induces a fine-grained correspondence with G, exploiting process actions

with explicit participant identities.
To state our operational correspondence result, we introduce extended global

types and a labeled transition system (LTS) for (extended) global types. The
syntax of extended global types is defined as G ::= G | G1 | G2 with

G ::= end | p�q:{li〈Ui〉.Gi}i∈I | p�q: l〈U〉.G | p�q: l((U)).G | p�q: ((U)).G

We consider parallel composition of sequential global types. We also have three
auxiliary forms for global types, denoted with �: they represent intermediate
steps. Types p� q: l〈U〉.G and p� q: l((U)).G denote the commitment of p to
output and input along label l , resp. Type p � q: ((U)).G represents the state
just before the actual input action by q. We need the expected extension of
Definition 10 for these types.
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p q:{li Ui .Gi}i∈I

p lj−−−→ p q: lj Uj .Gj (j ∈ I) p q: l U .G
p−→ p q: l((U)).G

p q: l((U)).G
q l−−→ p q: ((U)).G p q: ((U)).G

q−→ G

Fig. 4. LTS over finite, extended global types (Excerpt).

We adapt the LTS in [12] to the case of (extended) global types. The set
of observables is σ ::= p | p � l | p | p �l . Below, psubj(σ) denotes the partic-
ipant in σ. This way, e.g., psubj(p � l) = p. The LTS over global types, noted
G

σ−→ G′, is defined by rules including those in Fig. 4. Since Definition 10 anno-
tates prefixes on k with participant identities, their associated actions will be
annotated too; given a participant p, we may define the set of annotated visible
actions as: λp ::= kp(y) | kp �l | kp y | kp(y) | kp �l . We write kp and ̂kp to denote
actions kp(y) and kp(y), resp., whenever object y is unimportant. Also, psubj(λp)
denotes the participant p which annotates λ. This way, e.g., psubj(kp) = p and
psubj(kq �l) = q. To relate labels for global types and process labels, given an
annotated name k, we define mappings {{·}}k and || · || as follows:

{{p}}k = kp {{p �l}}k = kp �l {{p }}k = ̂kp {{ p �l }}k = kp �l
||kp|| = p ||kp �l || = p �l || ̂kp|| = p || kp �l || = p �l

Operational correspondence is stated in terms of the multiparty systems of
a global type. Following Definition 8, we say that Γ ;Δ,Δ′ � M

˜k�G� :: z:C
is an instrumented compositional typing if (i) it is a valid typing derivation;
(ii) npart(G) ⊆ dom(Δ); (iii) C = 1; (iv) dom(Δ′) = ˜k:

Definition 11 (Systems). Let G ∈ G be a WF global type, with part(G) =
{p1, . . . , pn}. Also, let Γ ;Δ,Δ′ � M

˜k�G� be an instrumented compositional typ-
ing, with Δ = cp1 :〈〈G�p1〉〉, . . . , cpn :〈〈G�pn〉〉, for some Γ . Let z̃ = npart(G). The
set of systems of G is defined as:

S
˜k(G) =

{

(νz̃)(Q1 | · · · | Qn | M
˜k�G�) | ·; · � Qj :: cpj :〈〈G�pj〉〉, j ∈ 1 . . . n

}

Thus, given G, a multiparty system is obtained by composing M
˜k�G� with well-

typed implementations for each of the local projections of G. An R ∈ S
˜k(G) is an

implementation of the multiparty protocol G. By construction, its only visible
actions are on annotated names: interactions between all the Qj and M

˜k�G� will
be unobservable.

Theorem 7 below connects global types and systems: it confirms that (instru-
mented) medium processes faithfully mirror the communicating behavior of

extended global types. Below, we write G
σ[p]−−−→ G′ if G

σ−→ G′ and psubj(σ) = p.

Also, we write P
λ[p]−−−→ P ′ (resp. P

λ[p]
=⇒ P ′) if P

λ−→ P ′ (resp. P
λ=⇒ P ′) holds

and psubj(λ) = p.
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Theorem 7 (Operational Correspondence). Let G be an extended WF

global type and R ∈ S
˜k(G). We have: If G

σ[p]−−−→ G′ then R
λ[p]
=⇒ R′, for some

λ,R′, k ∈ ˜k such that λ = {{σ}}k and R′ ∈ S
˜k(G′). Moreover, if there is some R0

s.t. R =⇒ R0
λ[p]−−−→ R′ then G

σ[p]−−−→ G′, for some σ,G′ such that σ = ||λ|| and
R′ ∈ S

˜k(G′).

4 Example: Sharing in Multiparty Conversations

Here we further illustrate reasoning about global types in G by exploiting the
properties given in Sect. 3. In particular, we illustrate non-trivial forms of repli-
cation and sharing.

Let us consider the global type GBS, given in Example 1. The medium
processes of GBS, denoted M�GBS�, has been detailed in Example 2; we proceed
to examine its properties. Relying on Theorems 4 and 5, we have the composi-
tional typing:

Γ ; c1:B1, c2:S, c3:B2 � M�GBS� :: − :1 (1)

for some Γ and with B1 = 〈〈GBS�B1〉〉, S = 〈〈GBS�S〉〉, and B2 = 〈〈GBS�B2〉〉. To
implement the protocol, one may simply compose M�GBS� with type compatible
processes ·; · � Buy1 :: c1:B1, ·; · � Sel :: c2:S, and ·; · � Buy2 :: c3:B2:

Γ ; · � (νc1)(Buy1 |(νc2)(Sel | (νc3)(Buy2 |M�GBS�))) (2)

The binary session types in Sect. 2 allows us to infer that the multiparty system
defined by (2) adheres to the declared projected types, is deadlock-free, and
terminating.

Just as we inherit strong properties for Buy1 , Sel , and Buy2 above, we
may inherit the same properties for more interesting system configurations. In
particular, local implementations which appeal to replication and sharing, admit
also precise analyses thanks to the characterizations in Sect. 3. Let us consider a
setting in which the processes to be composed with the medium must be invoked
from a replicated service (a source of generic process definitions). We may have
·; · � !u1(w).Buy1w :: u1: !B1 and

·; · � !u2(w).Selw :: u2: !S ·; · � !u3(w).Buy2w :: u3: !B2

and the following “initiator processes” would spawn a copy of the medium’s
requirements, instantiated at appropriate names:

·;u1: !B1 � u1(x).[x↔c1] :: c1:B1 ·;u2: !S � u2(x).[x↔c2] :: c2:S
·;u3: !B2 � u3(x).[x↔c3] :: c3:B2

Let us write RBuy1 , RBuy2 , and RSel to denote the composition of replicated
definitions and initiators above. Intuitively, they represent the “remote” vari-
ants of Buy1 , Buy2 , and RSel , respectively. We may then define the multiparty
system:

Γ ; · � (νc1)(RBuy1 |(νc2)(RSel |(νc3)(RBuy2 |M�GBS�)))
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which, with a concise specification, improves (2) with concurrent invocation/in-
stantiation of replicated service definitions. As (2), the revised composition above
is correct, deadlock-free, and terminating.

Rather than appealing to initiators, a scheme in which the medium invokes
and instantiates services directly is also expressible in our framework, in a type
consistent way. Using (1), and assuming Γ = u1:B1, u2:S, u3:B2, we may derive:

Γ ; · � u1(c1).u2(c2).u3(c3).M�GBS� (3)

Hence, prior to engaging in the mediation behavior for GBS, the medium first
spawns a copy of the required services. We may relate the guarded process in (3)
with the multicast session request construct in multiparty session processes [14].
Observe that (3) cleanly distinguishes between session initiation and actual com-
munication behavior: the distinction is given at the level of processes (cf. output
prefixes on u1, u2, and u3) but also at the level of typed interfaces.

The service invocation (3) may be regarded as “eager”: all required services
must be sequentially invoked prior to executing the protocol. We may also obtain,
in a type-consistent manner, a medium process implementing a “lazy” invocation
strategy that spawns services only when necessary. For the sake of example,
consider process

EagerBS � u3(c3).M�GBS�

in which only the invocation on u3 is blocking the protocol, with “open” depen-
dencies on c1, c2. That is, we have Γ ; c1:B1, c2:S � EagerBS :: z:1. It could be
desirable to postpone the invocation on u3 as much as possible. By combining
the commutations on process prefixes realized by �c [19] and Theorem 2, we
may obtain:

Γ ; c1:B1, c2:S � EagerBS ≈ LazyBS :: − :1

where LazyBS is obtained from EagerBS by “pushing inside” prefix u3(c3).

5 Multiparty Session Types with Behavioral Genericity

To illustrate the modularity of our approach, we conservatively extend, for the
first time, multiparty session types with parametric polymorphism, developed
for binary sessions in [4,22]. Although expressed by second-order quantifiers on
(session) types—in the style of the polymorphic λ-calculus—parametric poly-
morphism in our setting means behavioural genericity in multiparty conversa-
tions (i.e., passing first-class behavioral interfaces in messages), not just datatype
genericity. In this section we describe how to extend the approach and results in
Sect. 3 to polymorphic, multiparty session types.

In [4] we have extended the framework of [5] with impredicative universal
and existential quantification over session types, denoted with ∀X.A and ∃X.A,
respectively. These two types are interpreted as the input and output of a session
type, respectively. More precisely, ∀X.A is the type of a process that inputs some
session type S (which we may as a kind of interface passing) and then behaves
as prescribed by A{S/X}. ∃X.A is the type of a process that sends some session
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type S and then behaves as prescribed by A{S/X}. From the point of view of the
receiver of such S, the protocol S is in a sense opaque; therefore, after inputting
S the receiver behaves parametrically (in the sense of behavioral polymorphism)
for any such S. In any case, any usage of S by the sender will necessarily be
matched by some appropriate parties in the system. A relevant example of the
phenomenon can be recovered from [4]. Consider the type

CloudServer : ∀X.(api�X)�X

A session with this type will first input some session type X, say GMail, and then
will input a session with type api�GMail (that may be realized by a piece of code
that will first receive a channel implementing the api behavior and will after—
building on it—behave as specified by GMail) and then offers the behavior GMail.
A system implementing the CloudServer type must somehow provide the api
service internally and pass it to the channel of type api�GMail (e.g., representing
a piece of mobile code). Notice that after that the GMail service may be produced
by copy-cating the resulting behavior to the cloud server client. The crucial point
here is that the cloud server behaves uniformly for whatever session type X is
requested for it to execute; its role in this case is to provide the suitable api.
Of course, at runtime, all interactions at X will take place as prescribed by
the concrete session type involved (in this example, GMail), which may be an
arbitrarily complex (behaviorally generic) session type.

5.1 Binary Session Types with Parametric Polymorphism

We now recall key definitions from [4]. The process model in Sect. 2 is extended
with processes xA.P (output type A, proceed as P ) and x(X).P (receive a type
A, proceed as P{A/X}) and the reduction rule: xA.Q | x(X).P → Q | P{A/X},
where {A/X} is the substitution of type variable X with session type A. Thus,
our process syntax allows terms such as, e.g., xA.Q | x(X).y X.P , where A is a
session typed protocol.

We extend binary types (cf. Definition 1) with existential and universal quan-
tification:

A,B ::= 1 | !A | A ⊗ B |A�B | �{li:Ai}i∈I | ⊕{li:Ai}i∈I | X | ∃X.A | ∀X.A

Besides Δ and Γ , the polymorphic type system uses environment Ω to record
type variables. We have two judgments. Judgment Ω � A type denotes that A is
a well-formed type with free variables registered in Ω (see [4] for well-formedness
rules). Also, judgement Ω;Γ ;Δ � P :: x:A states that P implements a session
of type A along channel x, provided it is composed with processes providing
sessions linearly in Δ and persistently in Γ , such that the types occurring in Ω
are well-formed.

The required typing rules result by adding Ω in Fig. 2 and by considering rules
in Fig. 5, which explain how to provide and use sessions of a polymorphic type.
Rule (T∀R) types the offering of a session of universal type ∀X.A by inputing
an arbitrary type, bound to X, and proceeding as A, which may bind the type
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(T∀L)
Ω B type Ω; Γ ; Δ, x : A{B/X P :: T

Ω; Γ ;Δ, x : ∀X.A x B.P :: T

(T∀R)
Ω, X; Γ ; Δ P :: z:A

Ω; Γ ; Δ z(X).P :: z:∀X.A

(T∃L)
Ω, X; Γ ; Δ, x:A P :: T

Ω; Γ ; Δ, x : ∃X.A x(X).P :: T

(T∃R)
Ω B type Ω; Γ ; Δ P :: x:A{B/X}

Ω; Γ ;Δ x B.P :: x:∃X.A

Fig. 5. Typing rules for polymorphic, binary session types.

variable X, regardless of what the received type is. Rule (T∀L) says that the use
of type ∀X.A consists of the output of a type B (well-formed under Ω) which
then warrants the use of the session as A{B/X}. The existential type is dual:
providing an existentially typed session ∃X.A is accomplished by outputting a
type B and then providing a session of type A{B/X} (Rule (T∃R)). Using an
existential session ∃X.A implies inputing a type and then using the session as
A, regardless of the received session type (Rule (T∃L)).

Well-typed polymorphic processes satisfy Theorem 1 and relational para-
metricity [4], a reasoning principle stated next. We require some notation, fully
detailed in [4]: ω:Ω denotes a type substitution that assigns a closed type to
variables in Ω. Notation ω̂(P ) denotes the application of ω to type variables in
P . Also, η:ω1 ⇔ ω2 is an equivalence candidate assignment (a typed relation
on processes) between ω1 and ω2. Moreover, ≈L denotes a logical equivalence
relation that coincides with barbed congruence.

Theorem 8 (Relational Parametricity [4]). If Ω;Γ ;Δ � P :: z:A then, for
all ω1:Ω, ω2:Ω, and η:ω1 ⇔ ω2: Γ ;Δ � ω̂1(P ) ≈L ω̂2(P ) :: z:A[η:ω1 ⇔ ω2].

Theorem 8 entails behavioral genericity, a form of representation independence:
it says that process P behaves the same independently from instantiations of its
free type variables.

5.2 Multiparty Session Types with Polymorphism

We extend global types in G (Definition 2) with variables X,X ′, . . . and with
a construct p� q:{l [X].G′}, which introduces parametric polymorphism (X is
meant to occur in G′). To our knowledge, this is the first theory of its kind:

Definition 12 (Polymorphic Session Types). Define global types and local
types as

G ::= end | G1 | G2 | p�q:{li〈Ui〉.Gi}i∈I | p�q:{l [X].G} | X

U ::= bool | nat | str | . . . | T | (T )†

T ::= end | p?{li〈Ui〉.Ti}i∈I | p!{li〈Ui〉.Ti}i∈I | p!{l[X].T} | p?{l[X].T} | X

Above (·)† denotes a function on local types that discards participant identities.
E.g., (p?{l[X].T})† =?{l[X].(T )†} and (p?{li〈Ui〉.Ti}i∈I)† =?{li〈Ui〉.(Ti)†}i∈I .
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We write G∀∃ to denote the above global types. The global type p�q:{l [X].G}
signals that p sends to q an arbitrary local type (protocol), thus specifying q as
a generic partner. Also, G is a generic global specification: its behavior will be
depend on the type sent by p to q, which should be explicit in p’s implementation.
This new global type is related to local types p!{l[X].T} and p?{l[X].T}, which
are to be understood as existential and universal quantification on local types,
respectively—see below. The global type X should be intuitively understood as
a behavior that remains “globally abstract”, in the sense that it is determined by
a concrete local type exchanged between two participants, namely, as a result of
a (previous) communication of the form p�q:{l [X].G}. As a result, the (global)
communication behavior associated to local type exchanged between p and q
should remain abstract (opaque) to other participants of the protocol.

The projection of G ∈ G∀∃ onto participant r, denoted G � r, extends
Definition 4 by adding X�r = X and by letting:

(p�q:{l [X].G})�r =

⎧

⎪

⎨

⎪

⎩

p!{l[X].(G�r)} if r = p

p?{l[X].(G�r)} if r = q

G�r otherwise

Well-formedness of global types in G∀∃ is based on projectability but also on
consistent uses of type variables: a participant can only communicate the types
it knows. (This condition is similar to history-sensitivity, as in [1].) This way,
e.g., an ill-formed type is p � q:{l1[X].r � s:{l2〈?{l〈int〉.X}〉.end}}, since r, s
do not know the type sent by p.

5.3 Mediums for Multiparty Session Types with Polymorphism

Mediums for global types in G∀∃ are defined by extending Definition 7 as follows:

M�p�q:{l [X].G}� = cp �
{

l : cp(X).cq �l ; cq X.M�G�
}

M�X� = 0

Observe that type variable X should not generate a mediator behavior, as we
want to remain generic. The relation between local types and binary types
extends Definition 9 with:

〈〈p!{l[X].T}〉〉 = ⊕{l : ∃X.〈〈T 〉〉} 〈〈p?{l[X].T}〉〉 = �{l : ∀X.〈〈T 〉〉}
and by letting 〈〈X〉〉 = X and 〈〈(T )†〉〉 = 〈〈T 〉〉. The characterization results in
Sect. 3.1 hold also for global types in G∀∃.

6 Mediums at Work: A Behaviorally Generic Multiparty
Protocol

We illustrate our approach and results via a simple example. Consider the global
type Gp, inspired by the CloudServer from [4] already hinted to above. It fea-
tures behavioral genericity (as enabled by parametric polymorphism); below,
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str, bool, denote basic data types, and api is a session type describing the cloud
infrastructure API.

Gp = p�q:
{

l1 〈bool〉.q�r:{l [X].q�r:{l2
〈

?{l3〈api〉.X}〉.X}}}

We have participants p, q, and r. The intent is that r is a behaviorally generic
participant, that provides a behavior of type api required by q. Crucially, r may
interact with q independently of the local type sent by q. Such a local type is
explicit in q’s implementation (see below), rather than in the global type Gp.

In Gp, participant p first sends a boolean value to q; then, q sends an unspec-
ified protocol to r, say M , which is to be used subsequently in an exchange from
q to r. Notice that M occurs in the value that r receives from q and influ-
ences the behavior after that exchange. Indeed, the value ?{l3〈api〉.X} denotes
an unspecified session type that relies on the reception of a session of type api.
The local projections for Gp are Gp�p = p!{l1〈bool〉.end} and

Gp�q = p?
{

l1〈bool〉.q!{l [X].q!{l2〈?{l3〈api〉.X}〉.X}}}

Gp�r = q?
{

l [X].q?{l2〈?{l3〈api〉.X}〉.X}}

Above, the occurrences of X at the end of both Gp� q and Gp� r may appear
surprising, as they should represent dual behaviors. Notice that in each case,
X should be interpreted according to the local type that “bounds” X (i.e., the
output q!{l [X] . . .} in Gp � q and the input q?{l [X] . . .} in Gp � r). This dual
perspective should become evident when looking at the binary session types
associated to these projections. First, notice that we have that 〈〈?{l3〈api〉.X}〉〉 =
�{l3:(api�X)}. Writing (api�X) to stand for �{l3:(api�X)}), we have the
binary session types 〈〈Gp�p〉〉 = ⊕{l1 : 1 ⊗ 1} and

〈〈Gp�q〉〉 = �{l1 : 1� ⊕{l : ∃X. ⊕{l2 : (api�X) ⊗ X}
〈〈Gp�r〉〉 = �{l : ∀X. �{l2 : (api�X)�X}}}}

The medium process for Gp is then:

M�Gp� = cp �
{

l1 : cp(u).cq �l1; cq(v).
(

[u↔v] |
cq �{l : cq(X).cr �l ; cr X.

cq �{l2 : cq(u).cr �l2; cr(v).([u↔v] | 0)}})}

Using our extended characterization results, we may show that M�Gp� can safely
interact with implementations for p, q, and r whose types correspond to the
projections of Gp onto p, q, and r. Indeed, M�Gp� can safely interact with any
P , Qi, and R such that Ω;Γ ;Δ1 �P :: cp:〈〈Gp�p〉〉 and

Ω;Γ ;Δ3 �R :: cr:〈〈Gp�r〉〉 Ω;Γ ;Δ2 �Qi :: cq:〈〈Gp�q〉〉
Process (νcp, cq, cr)(M�Gp� | P | R | Qi) is a system for Gp (cf. Definition 11). It
is well-typed; we have Ω;Γ ;Δ1,Δ2,Δ3 � (νcp, cq, cr)(M�Gp� | P | R | Qi) :: − :
1. Process cp � l1; cp(f).(Bf | 0) is a concrete implementation for P , where name
f stands for a boolean implemented by Bf . As for R and Qi, we may have:
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R = cr �{l : cr(Y ).cr �{l2 : cr(y).y(a).(Aa | [cr↔a])}}
Q1 = cq �{l1 : cq(b).cq �l ; cq S.cq �l2; cq(w).(w(a).SMTPb

w,a | [m↔cq])}

Crucially, following the type 〈〈Gp�r〉〉, process R is behaviorally generic: indepen-
dently of the type received from Qi via the medium M�Gp� (cf. the type input
prefix cr(Y )), R enables process Aa to provide the API along name a. Process
Q1 is just one possible implementation for q: it provides an implementation of
a service SMTPb

w,a that relies on behavior api along name a and a boolean along
b to implement protocol S along w. A different implementation for q is process
Q2 below, which concerns session protocol I:

Q2 = cq �{l1 : cq(b).cq �l ; cq I.cq �l2; cq(w).(w(a).IMAPb
w,a | [m↔cq])}

where IMAPb
w,a uses api along a and boolean b to implement protocol I along w.

Note that R and any Qi have limited interactions with M�Gp�: to respect the
genericity stipulated by Gp, the polymorphic process M�Gp� only mediates the
exchange of the local type (S or I) and plugs the necessary connections; other
exchanges are direct between R and Q1 or Q2, and known to comply with the
(dynamically passed protocol) specified by the session type S or I.

Both (νcp, cq, cr)(M�Gp� | P | R | Q1) and (νcp, cq, cr)(M�Gp� | P | R | Q2)
are well-typed systems; hence, they satisfy fidelity and deadlock-freedom
(Theorem 1). Using properties of well-typed processes together with relational
parametricity (Theorem 8), we may further show that they are observationally
equivalent, provided a typed relation between session types S and I. That is,
Theorem 8 allows us to state the behavioral independence of the sub-system
formed by M�Gp�, P , and R with respect to any implementation Qi for partici-
pant q.

7 Concluding Remarks and Related Works

We developed the first analysis of multiparty protocols using binary session
types. Our medium processes capture the semantics of multiparty session types
and connect global types to well-typed implementations; this allows us to exploit
properties for typed processes to reason about multiparty systems. Since medi-
ums have a uniform definition, we may analyze global types with features such
as delegation, which go beyond the scope of recent automata-based analyses of
global types [12,16]. Our work thus complements such recent works. Our app-
roach naturally supports the analysis of multiparty session types with behavioral
genericity. This model, the first of its kind, is very powerful; it reuses techniques
from binary sessions [4], notably relational parametricity. These features suggest
that extensions of known multiparty sessions with behavioral genericity would
be hard to obtain without following linear logic foundations, as done here.

Given a global type, our characterization results relate its medium and its
local projections; these relations allow us to transfer properties of [5] (e.g.,
deadlock-freedom) to multiparty protocols. Our results stress the fundamental
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character of key notions in multiparty sessions (e.g., projections), and build on
connections between two distinct session type theories based on linear logic [5]
and on automata [12]. Our developments do not depend on the interpretation
of session types in [5] being intuitionistic; clearly, its reasoning techniques (e.g.,
behavioral equivalences [19]) are important in our results. Our approach should
extend also to interpretations based on classical linear logic [22].

Related Work. One challenge in decomposing a multiparty session type is
preserving its sequencing information. The work [9] shows how to decompose
a global type into simpler, independent pieces: global types use an additional
calls construct to invoke these pieces in the appropriate order, but connections
with binary sessions are not established. Correspondence assertions [2] track
data dependencies and detect unintended operations; they may allow to relate
independent binary sessions. Using standard binary/multiparty session types, we
capture sequencing information using a process extracted from a global type. Our
approach relies on deadlock-freedom (not available in [2]) and offers a principled
way of transferring it to multiparty systems.

To our knowledge, ours is the first formal characterization of multiparty ses-
sion types using binary session types. Previous works have, e.g., compared dif-
ferent multiparty session types but without connecting to binary types [11].
The work [18] (extended version) identifies a class of multiparty systems for
which deadlock-freedom analysis can be reduced to the analysis of linear
π-calculus processes. This reduction, however, does not connect with binary ses-
sion types, nor exploits other properties of processes to analyze global types. The
work [7] relates global types and a variant of classical linear logic; as in our work,
a challenge in [7] is capturing sequencing information in global types. While [7]
captures sequencing information in global types via role annotations in proposi-
tions/types (using an extra proof system, called coherence), our medium-based
approach enables process reasoning on global types, uses standard linear logic
propositions, and allows for conservative extensions with powerful reasoning tech-
niques, notably behavioral genericity as enabled by parametric polymorphism.

Medium processes are loosely related to the concept of orchestrators in
service-oriented computing. The work [17] shows how to synthesize an orches-
trator from a service choreography, using finite state machines. In contrast, we
consider choreographies given as behavioral types; mediums are obtained directly
from those types.
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